MetaObject Facility (M OF)
Specification

New Edition: v1.3-March 2000
Erratatov1.3-October 2001
Updateto Appendix A,v1.3.1-November 2001

Copyright 1997-1999, DSTC (Cooperative Research Centre for Enterprise Distributed Systems Technology)
Copyright 1997-1999, Electronic Data Systems
Copyright 1997-1999, IBM Corporation

Copyright 1997-1999, International Computers Limited
Copyright 1997-1999, Objectivity Inc.

Copyright 2000, Object Management Group

Copyright 1997-1999, Oracle Corporation

Copyright 1997-1999, Platinum Technology Inc.
Copyright 1997-1999, Rational Software Corporation
Copyright 1997-1999, System Software Associates
Copyright 1997-1999, Unisys Corporation

The companies listed above have granted to the Object Management Group, Inc. (OMG) anonexclusive, royalty-free, paid
up, worldwide license to copy and distribute thisdocument and to modify this document and distribute copies of the mod-
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to haveinfringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to i mplement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION ISBELIEVED TO BEACCURATE, THE OBJECT MAN-
AGEMENT GROUPAND THE COMPANIESLISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
ORIMPLIED, WITH REGARD TO THISMATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIEDWARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companieslisted
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize devel opers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may bereproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Useg, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMGPand
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and I10P are trademarks of the Object Management Group,
Inc. X/Open isatrademark of X/Open Company Ltd.

The UML logo is atrademark of Rational Software Corp.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Tableof Contents

Preface
1. MOFOVEIVIEW . ..o
L1 OVEIVIBW ..o
1.2 Software Development Scenarios.
1.3 TypeManagement SCENArioscovuvuvnenn..
14 Information Management Scenarios.
15 DataWarehouse Management Scenarios
2. MOF Conceptual Overviewoviva...
21 OVEIVIBW . .ottt
2.2 Meta-data Architectures.
2.21 Four Layer Meta-data Architectures.
2.2.2 The MOF Meta-data Architecture
223 MOF Meta-modeling Terminology.
23 The MOF Model - Meta-modeling Constructs.
231 ClaSSES .. .ot
232 ASSOCIAiONS. . ..o vt
233 Aggregation i
234 Referencesiiiiiiiii..
235 Daalypes.t
236 Packages.............
2.3.7 Constraintsand Consistency...............
2.3.8 Miscellaneous M eta-modeling Constructs
24 Meta-modelsand Mappings.
24.1 Abstract and Concrete Mappings
OMG-MOF V1.3 March 2000

Contents

2.4.2 CORBA Meta-data Services - The MOF
IDLMappingccovvviii i 2-22

24.3 Meta-datalnterchange - The MOF XML
Mappingcoovvii i 2-22
244 Mappingsof the MOF Model 2-22
3. MOFModelandInterfaces 31
31 OVEIVIBW .. 3-1
3.2 Howthe MOF Model isDescribed. 3-2
321 ClasseS....vi it 3-3
3.22 ASSOCIations. i 3-8
323 Datalypes. 3-9
324 EXCEPLIONSt 3-10
325 Constants.............. i, 3-10
326 Constraints.............c.coiiiiii... 3-10
327 UMLDiagrams.............cooviin... 3-10
3.3 TheStructure of the MOFModd 311
3.31 TheMOF Modd Package. 3-11
3.32 TheMOF Modd ServicelDL 3-13
3.3.3 TheMOF Mode Structure. 3-13
3.34 TheMOF Modd Containment Hierarchy. 3-15
34 MOFModel Classes. oiii i i 3-15
341 ModeElement 3-15
342 Namespacec..iiiiiin. 3-22
3.43 GeneralizableElement 3-25
344 TypedElement 3-30
345 Classifier i 331
346 Class. 331
347 Datalypet 3-33
348 TypeAlias............co .. 3-35
349 Feature........ 3-36
3.4.10 StructuralFeature 3-38
3.411 Attribute 3-39
3412 Reference........... .. 3-40
3.4.13 BehavioralFeature 3-43
3414 Operationcooviiiiiiiinn.. 3-43
3415 EXCeption........ ..ot 3-45
3.416 Association................ 3-47
3.4.17 AssociationEnd. 3-49
3418 Package......... ... 3-53
3419 Import. ... 3-55

i OMG-MOF V1.3 March 2000

Contents

3420 Parameter 3-58
3421 Constraint.ccoviiiiiiininin... 3-59
3422 ConstantClasscoovvinin... 3-62
3423 Tag ... 3-63
35 MOF Model Associationsc.couviuvnen... 3-65
351 Contains...........ooiiiiiiiiiii. 3-65
352 Generalizes. 3-67
353 Refersto............coiiiiiiiii.. 3-68
354 EXPOSESt 3-69
355 IsOfType.o 3-70
356 CanRaise...........ccoiiiiiiiiiii... 3-71
357 Al@SES 3-72
358 Constrains.............coiiiiiiiin.. 3-73
359 DependsOn........... . i, 3-74
3510 AttachesTo........... 3-76
3.6 MOFModel DataTypes. 3-77
361 CORBABasCTYypeSccovvnn.. 3-77
3.6.2 NameType............ .o, 3-77
3.6.3 AnnotationTypecovvvinn.. 3-77
3.6.4 TypeDescriptor.............covvuvnn.. 3-77
3.6.5 MultiplicityType.ot 3-78
3.6.6 VisibilityKind.............. 3-79
3.6.7 DepthKind 3-79
3.6.8 DirectionKind., 3-80
3.69 ScopeKind i 3-80
3.6.10 AggregationKind 3-80
3.6.11 EvaluationKind......................... 3-80
3.6.12 DependencyKind 3-81
3.6.13 FormatType............ ..o, 3-81
3.6.14 LiteralType.t 3-81
3.6.15 VeifyResultKind 3-82
3.6.16 ViolationType...........coivin.. 3-82
3.7 MOF Model Exceptions.cin.. 3-83
3.71 NameNotFound 3-83
3.72 NameNotResolved 3-83
3.7.3 ObjectNotExternalizable 3-84
3.7.4 FormatNotSupported 3-84
3.7.5 IlllformedExternalizedObject 3-84
3.8 MOFModel Constants., 3-85
381 Unbounded................ 3-85

OMG-MOF V.13 March 2000 iii

Contents

3.8.2 The Standard DependencyKinds. 3-85
3.9 MOF Model Constraints.ccoiviiennanan.. 3-86
3.91 MOF Model Constraints and other M2
Level Semantics. 3-86
3.9.2 Notational Conventions 3-86
3.9.3 OCL Usagein the MOF Model specification.. 3-88
3.94 TheMOF Modd Constraints 3-91
3.9.5 Semantic specifications for some Operations,
derived Attributes and Derived Associations . . 3-106
3.9.6 OCL Helper functions 3-111
4. The MOF Abstract Mapping, 4-1
A1 OVEIVIEW ..ot e 4-1
42 MOFVAUES.o 4-2
4.2.1 Semanticsof Equality for MOF Values 4-3
4.3 Semanticsof Classinstances. 4-3
4.4 Semanticsof Attributes o oL 4-4
441 Attributenameandtype.................. 4-4
442 Multiplicity. 4-5
443 SCOPE ..ottt 4-6
444 Isderived. 4-6
445 AQoregationiiiiie 4-6
446 Visibility and is_changeable............... 4-7
45 Package Composition., 4-7
451 PackageNesting............. 4-7
452 Package Generalization 4-8
453 Package Importation. 4-8
454 PackageClustering.o... 4-8
46 EXtents. 4-9
46.1 ThePurposeof Extents................... 4-9
46.2 ClassExtents, 4-10
4.6.3 AssociationExtents 4-10
46.4 PackageExtents........................ 4-11
4.7 Semanticsof ASSOCIAtiONSo it 4-12
471 MOF Associations in UML notation 4-14
4.7.2 Core Association Semantics............... 4-15
4.7.3 AssociationEnd Changeability 4-17
4.7.4 AssociationEnd Navigability 4-17
4.7.5 Association Aggregation 4-17
476 Derived Associations 4-17
OMG-MOF V1.3 March 2000

Contents

4.8 Aggregation Semantics 4-17

4.8.1 Aggregation“none” 4-18

4.8.2 Aggregation “composite” 4-18

483 Aggregation “shared” 4-18

49 ClosureRuUles. 4-18

49.1 TheReference ClosureRule............... 4-19

4.9.2 TheComposition ClosureRule. 4-20

410 Recommended Copy Semantics. 4-21

411 Computational Semantics.c. .. 4-22
4.11.1 A Style Guide for Metadata Computational

SemanticS. 4-22

4.11.2 Access operations should not change metadata 4-23
4.11.3 Update operations should only change the

nominatedmetadata 4-23
4.11.4 Derived Elements should behave like
non-derived Elements. 4-23
4.11.5 Constraint evaluation should not have
sideeffects. i 4-24
4.11.6 Access operations should avoid raising
Constraint exceptions. 4-24
5. MOFtoIDL Mapping.cvvuuiniiinn.n. 5-1
Bl OVEIVIAN .o e 5-1
5.2 MetaObjectsand Interfaces. 5-2
521 MetaObject TypeOverview............... 5-2
5.2.2 TheMeta Object Interface Hierarchy 5-4
5.3 Computational Semantics for the IDL Mapping. 5-6
5.3.1 Vaue Types and Equality inthe IDL Mapping. 5-6
5.3.2 Lifecycle Semanticsfor the IDL Mapping.... 5-8
5.3.3 Association Access and Update Semantics
forthelDL Mapping 5-11
5.3.4 Attribute Access and Update Semantics for the
IDLMappingcoiie i 5-15
5.3.5 Reference Semantics for the IDL Mapping ... 5-21
5.3.6 Cluster Semanticsfor theIDL Mapping. 5-22
5.3.7 Atomicity Semanticsfor the IDL Mapping ... 5-22
5.3.8 TheSupertype ClosureRule............... 5-22
5.3.9 Copy Semanticsfor the DL Mapping 5-23
54 ExceptionFramework 5-24
5.4.1 Error_kindstringvalues. 5-25
542 Structural Errors. 5-26

OMG-MOF V.13 March 2000 Y

Contents

543 ConstrantErrorsc..... 5-29

544 SemanticErrors............. 5-29

545 UsageErrors........... 5-30

54.6 ReflectiveErrors............. 5-30

55 Preconditionsfor IDL Generation 5-33
5.6 Standard Tagsfor the IDL Mapping. 5-35
5.6.1 Tagsfor Specifying IDL #pragma prefix 5-36

5.6.2 Tagsfor Providing Substitute Identifiers 5-36

5.6.3 Tagsfor Specifying IDL Inheritance 5-37

57 Generated IDL ISSUES. 5-39
5.7.1 Generated IDL Identifiers. 5-39

5.7.2 Generation Rulesfor Collection Types. 5-42

5.7.3 IDL ldentifier Qualification 5-44

5.7.4 File Organization and #include statements. ... 5-44

58 IDL Mapping Templates oot 5-44
5.8.1 Template Notation 5-45

5.8.2 Package Module Template 5-46

5.8.3 Package Factory Template 5-48

5.84 Package Template....................... 5-50

5.8,5 Class Forward Declaration Template 5-53

586 ClassTemplate......................... 5-53

5.87 ClassProxy Template.................... 5-54

5.88 Instance Template....................... 5-56

589 ClassCreateTemplate 5-57

5.8.10 AssociationTemplate.................... 5-58

5.8.11 Attribute Template 5-67

5.8.12 ReferenceTemplate 5-76

5.8.13 OperationTemplate 5-85

5.8.14 ExceptionTemplate 5-88

5.8.15 Constant Template 5-88

5.8.16 DatalypeTemplate. 5-89

5.8.17 Constraint Template. 5-90

5.8.18 Annotation Template 5-91

6. TheReflectiveModule 6-1
6.1 Introduction 6-1
6.2 TheReflectivelnterfaces. 6-3
6.2.1 Reflective Argument Encoding Patterns. 6-3

6.2.2 Reflective::RefBaseObject 6-5

6.2.3 Reflective::RefObject 6-9

Vi OMG-MOF V1.3 March 2000

Contents

6.2.4 Reflective::RefAssociation 6-22
6.25 Reflective::RefPackage 6-28
6.3 TheCORBA IDL for the Reflective Interfaces 6-29
6.3.1 Introduction 6-29
6.3.2 DataTypes.........c.c .. 6-30
GlOSSAIY. . v vt 1
Appendix A XMl fortheMOF....................... A-1
Appendix B MOFIDL Summary..................... B-1
Appendix C MODL Description of the MOF. C-1
Appendix D MOF Implementation Requirements D-1
Appendix E Future Directionsfor the MOF. E-1
INdeX .. Index-1

OMG-MOF V.13 March 2000 Vii

Contents

viii OMG-MOF V1.3 March 2000

Preface

About the Object Management Group

The Object Management Group, Inc. (OMG) isan international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OM G promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

Associated OMG Documents

The CORBA documentation set includes the following:

« Object Management Architecture Guide defines the OMG’s technical objectives
and terminology and describes the conceptual models upon which OMG standards
are based. It defines the umbrella architecture for the OMG standards. It also
provides information about the policies and procedures of OMG, such as how
standards are proposed, evaluated, and accepted.

« CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

* CORBAservices: Common Object Services Specification contains specifications
for OMG’s Object Services.

OMG-MOF V1.3 March 2000 iX

« CORBAfacilities: Common Facilities Specification is a collection of services that
many applications may share, but which are not as fundamental as the Object
Services. For instance, a system management or electronic mail facility could be
classified as a common facility. Common Facilities are used by most systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue, Suite 201
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

I ntroduction to OMG Modeling

This document describes the OMG standards for modeling distributed software
architectures and systems along with their CORBA Interfaces. It is composed of two
complementary specifications:

® Unified Modeling Language Specification
® Meta-Object Facility Specification

The Unified Modeling Language (UML) Specification defines a graphical language for
visualizing, specifying, constructing, and documenting the artifacts of distributed
object systems. The specification includes the formal definition of a common Object
Analysis and Design (OA&D) metamodel, a graphic notation, and a CORBA IDL
facility that supports model interchange between OA&D tools and metadata
repositories. The UML provides the foundation for specifying and sharing CORBA -
based distributed object models.

The Meta-Object Facility (MOF) Specification defines a set of CORBA |DL interfaces
that can be used to define and manipulate a set of interoperable metamodels and their
corresponding models. These interoperable metamodels include the UML metamodel,
the MOF meta-metamodel, as well as future OMG adopted technologies that will be
specified using metamodels. The MOF provides the infrastructure for implementing
CORBA-based design and reuse repositories. The MOF specifies precise mapping

X OMG-MOF V1.3 March 2000

rules that enable the CORBA interfaces for metamodels to be automatically generated,
thus encouraging consistency in manipulating metadata in all phases of the distributed
application development cycle.

Since the UML and MOF are based on a four-layer metamodel architecture it is
essential that the metamodels for each facility are architecturally aligned. For a
description of the four layer metamodel architecture, please refer to Section 2.2,
“Meta-data Architectures,” on page 2-1 in the MOF Specification. In order to achieve
architectural alignment considerable effort has been expended so that the UML and
MOF share the same core semantics. This alignment allows the MOF to reuse the
UML notation for visualizing metamodels. In those areas where semantic differences
are required, well-defined mapping rules are provided between the metamodels. The
OMG distributed repository architecture, which integrates UML and MOF with
CORBA s described in Section 0.5, “Resolution of Technical Criteriain the Preface of
the MOF Specification.

As the first adopted technologies specified using a metamodeling approach, the UML
and MOF establish a rigorous foundation for OM G's metamodel architectures. Future
metamodel standards should reuse their core semantics and emulate their systematic
approach to architecture alignment.

Architectural Alignment of UML, MOF, and CORBA

Introduction

This section explains the architectura alignment of the OA&D Facility (OA&DF)
metamodel and the MOF meta-metamodel, and their relationships to the OMA and
CORBA object models. When discussing specific models, MOF corresponds to the
MOF meta-metamodel also referred to as the MOF Model. The UML is used to refer
to the proposed OA& DF metamodel.

As yet, there is not an MOF meta-metamodel standard or an OA&D metamodel
standard. However, since each of these specifications has been unified, a proactive
approach has been taken towards architectural alignment. Considerable structure
sharing between the two specifications has been accomplished. As the OA&DF and
M OF technologies evolve, additional alignment work will be addressed by standard
OMG processes such as those for Revision Task Forces and subsequent RFPs.

The MOF and OA& DF alignment work has focused on aligning the metamodels and
applying the MOF IDL Mapping for generating the CORBA IDL for both the MOF
and UML models. This was accomplished by defining the MOF and UML models
using the MOF and by generating the IDL interfaces based on the MOF specification.
Note that both the MOF and OADF specifications use the UML notation for
graphically defining the models.

In terms of abstraction levels and the kinds of meta-metaobjects used, the UML and
MOF meta-metamodels are well aligned. There are significant advantages in aligning
the OA& DF meta-metamodel with the MOF meta-metamodel. In the case of the M OF,

OMG-MOF V1.3 March 2000 Xi

xii

Motivation

Approach

meta-metamodel alignment facilitates interoperability between the OA& DF and the
MOF. An example of OA& DF-MOF interoperability is the use of an MOF-compliant
repository to store an OA&DF object model.

Alignment of the UML, MOF, and CORBA paves the way for future extensibility of
CORBA in key areas such as richer semantics, relationships, and constraints. Likewise
the longer-term benefits to UML and M OF include better recognition and addressing of
distributed computing issues in developing CORBA-compliant systems.

The primary reason for aligning the OA& DF metamodel with the M OF meta
metamodel is to facilitate interoperability between the two facilities using CORBA
IDL. When considering interoperability between the OA&DF and the MOF, it is
important to consider the difference in scope between the facilities. The MOF goal is
to allow interoperability across the application development cycle by supporting the
definition of multiple meta models, whereas the OA& DF focuses on supporting the
definition of a single OA&D metamodel. An example of OA&DF-MOF
interoperability is the use of an MOF-compliant repository to store and interchange
OA& DF object models.

The key motivation to align the MOF and OA&DF with CORBA s to address the
requirement of aligning with CORBA and between the two facilities. In addition, the
MOF and OA&DF (especially the UML) specifications signify years of modeling and
metamodeling experience that are being integrated. As such, some of the key concepts
in the UML and MOF are potential candidates to evolve the OMG Core object model
and CORBA IDL in the future.

The UML and MOF are based on a four-layer metamodel architecture, where the MOF
meta-metamodel is the meta-metamodel for the UML metamodel. As a result, the
UML metamodel may be considered an instance-of the MOF meta-metamodel. Thisis
sometimes referred to as loose metamodeling, where an M, level model is an instance
of an M, level model.

Since the MOF and OA& DF have different scopes, and diverge in the area of
relationships, we have not been able to apply strict metamodeling. In strict
metamodeling, every element of an M, level model is an instance of exactly one
element of M,,,1 level model. Consequently, there is not a strict isomorphic mapping
between all the MOF meta-metamodel elements and the UML meta-metamodel
elements. In principle strict metamodeling is difficult (or sometimes impossible to
accomplish) as the complexity of new concepts (for example patterns and frameworks)
continuesto increase. In any case, using a small set of primitive concepts such as those
defined in the MOF it is possible to define arbitrarily complex metamodels.

OMG-MOF V1.3 March 2000

In spite of this, since the two models were designed to be interoperable, the two
metamodels are structurally quite similar. The following sections compare the core
MOF and UML modeling concepts, and contrast them with the OMA and CORBA/IDL
core object models. The issues related to mapping metaclasses which are not
isomorphic (e.g., Association classes) are also discussed.

The following tables are comparison tables that summarize the mappings of similar
concepts across the meta-metamodeling layers. Where there isno analog for a concept,
it will be identified and discussed in “Issues Related to UML-MOF Mapping” on

page -xv.

Metamodel Comparison

Most of the metaobjects for the UML core metamodel and the MOF core meta-
metamodel can be mapped to each other in a straightforward manner. Similarly, these
metaobjects can also be mapped to the OMA and CORBA core object modelsin a
direct way.

The following tables compare the core modeling concepts and the data types for these

models.
UML Metamodel MOF Meta- OMA Core Object Model | CORBA IDL
metamodel CORBA Object Model
Association (n-ary) Association (binary)
AssociationClass NA
AssociationEnd AssociationEnd
Attribute Attribute Attribute Attribute
BehavioralFeature Behavioral Feature
Class Class Class Interface (as Class)
Classifier Classifier
Constraint Constraint
DataType DataType Data type Data type
Dependency (class) /dependsOn (association)
Exception Exception Exception
Feature Feature
GeneralizableElement GeneralizableElement
Generalization (class) generalizes (association) | Generaization Generalization
Interface Class (as Interface) Interface Interface
ModelElement Model Element
NA Reference
NA Constant Constant
OMG-MOF V1.3 March 2000 Xiii

UML Metamodel MOF Meta- OMA Core Object Model | CORBA IDL
metamodel CORBA Object Model

Namespace Namespace ~ IR Containers

Operation Operation Operation Operation

Package Package Module

Parameter Parameter Parameter Parameter

Structural Feature Structural Feature

Type (stereotype) Class (as Type) Type Interface (as Type)

UML Metamodel

MOF M eta-metamode

CORBA Object Model and IDL

AggregationKind

AggregationKind

Boolean CORBA Boolean Boolean

Enumeration CORBA Enum Enum

Expression NameType

Integer CORBA Short, Long, Short, Long, Unsigned Short, Unsigned
Unsigned Short, Unsigned Long, Double, Octet, Float
Long, Double, Octet, Float

List List, Set Sequence

Multiplicity MultiplicityKind (simpler
than UML multiplicity)

Name NameKind Name

OperationDirectionKind DirectionKind

dependencies (reified as classes) | DependencyKind (enum)

ScopeKind ScopeKind

String CORBA String, Char String, Char

Time CORBA Time Service Data Time Service Data Types
Types

NA TypeDef TypeDef

Uninterpreted CORBA Any Any

VisibilityKind VisibilityKind

The MOF supports the full range of CORBA data types aswell as additional data types
defined using the MOF primitive types. UML supports a subset of CORBA data types
in its semantic model but mapping to a subset of specific CORBA types is clearly

possible.

Xiv

OMG-MOF V1.3

March 2000

The following sections discuss issues related to areas where the mapping between
metamodels is not direct.

I ssues Related to UML-MOF Mapping

In general, the mapping from the UML meta-metamodel to the MOF meta-metamodel
is straightforward.

A review of the previous comparison tables indicates that in most cases the mapping
from the UML meta-metamodel to the M OF meta-metamodel is direct. In fact, for
most of the core constructs there is a structural equivalency in the mapping.

The key differences are due to different usage scenarios of MOF and UML. The MOF
needs to be simpler, directly implementable, and provide a set of CORBA interfaces
for manipulating meta objects. The UML is used as a general-purpose modeling
language, with potentially many implementation targets. These differences are
commonly observed in repository, meta-CASE, and modeling-tool implementations.
The key differences are:

® The MOF only supports binary associations while UML supports higher-order (aso
referred to as 'N-ary') associations. This trade-off was made because N-ary
relationships are rarely used in meta-modeling and the design goal was to keep the
M OF interfaces simpler. We have anticipated extending the MOF to support higher
order associations in future.

® Associations in the MOF are limited to simple associations and cannot contain
features. Association Classesin UML can contain features (such as attributes). The
M OF has been defined to be structurally extensible to full-blown association classes
in the future by relaxing this constraint. UML Association Classes are modeled as
M OF Classes with well-defined multiplicity constraints to ensure shared lifetime of
features owned by the association.

® The MOF supports the concept of a Reference which allows direct navigation from
one Classifier to another. The UML metamodel uses the Target AssociationEnd's
'name' property as a 'pseudo-attribute’ for the same purpose, but navigates to another
classifier through an Association. The concept of reference is widely used in object
repositories, as well as object and object-relational databases and optimizes
navigation across a metamodel.

® Some concepts such as Generalization, Dependency, and Refinement are reified as
classes in UML, but implemented as Associations in the MOF. The MOF does not
require the richness of UML in these aress.

® The MOF supports the full set of CORBA data types, whereas the UML meta model
does not define data types to this depth. A CORBA-specific implementation of
UML is clearly possible by either creating the additional data types needed or by
providing appropriate mappings.

® The UML has clearly defined the similarities of the key concepts of Class, Interface,
and Type. The MOF and UML both use the Class concept as the most general of
these in their respective models. The MOF specification is focused only on
specification of meta models and generation of CORBA interfaces; therefore, it
does not deal with implementation concepts such as 'Methods." UML clearly needs

OMG-MOF V1.3 March 2000 XV

to support these concepts because UML can be used to model conceptual, logical,
and implementation models. In this sense, the M OF uses the Class concept to define
Types, since MOF Classes do not have any methods, just operations. Thisis
consistent with the definition of UML Type as a stereotype of Class with a
constraint that Types cannot contain methods. The MOF Class concept is rich
enough to define Interfaces, and in fact the MOF specification itself clearly shows
that an MOF Class can be mapped to multiple CORBA Interfaces.

The previous table shows that the mapping of metadatatypes between the meta-
metamodels is also straightforward. Here also there are more MOF meta-
metaobjects than there are UML meta-metaobjects. The MOF supports the full
range of CORBA data types as well as additional data types defined using the MOF
primitive types. UML supports a subset of CORBA data types in its semantic
model but maps to specific CORBA typesin its corresponding interface model.

Relationship to Other Models

A secondary emphasis was placed on the architectural alignment with CDIF and RM-
ODRP, both of which have influenced the metamodel architectures. CDIF offers many
useful concepts for specifying robust stream-based interchange formats. Similarly,
ODP provides many useful ideas for specifying model viewpoints.

Resol ution of Technical Criteria

XVi

Relationship to OMG IDL and CORE ‘95

OMG IDL is used to specify al the interfaces in the Meta Object Facility. The MOF
itself is of course manipulated using standard CORBA interfaces.

The OMG core object model describes how objects interact; therefore, it is an interface
or interaction model. No specific implementation is implied. The OMG object model
is not intended to be a metamodel (as described in the OMA). The CORBA object
model is a concrete model with the goal of specifying a mechanism for portability and
distributed object interoperability. The MOF does define a meta-metamodel (for
simplicity, we refer to this as the MOF model). The purpose of the MOF model is to
enabl e the definition and manipulation of metamodels in various domains, with the
initial focus being on object analysis and design metamodels. The MOF can be used to
specify the OMG object model, which it can treat as a meta-model. Likewise, because
the M OF defines a set of CORBA compliant interfaces, these interfaces conform to the
CORBA object model. The MOF can be used to specify additional semantics
(relationships, constraints) that are implied (or expressed in text) in the CORBA object
model.

The MOF is intended to provide support for richer meta data definition and
manipulation in a CORBA environment.

OMG-MOF V1.3 March 2000

Positioning within the Common Facilities Architecture

The Repository Common Facility is positioned within the Information Management
Common Facility and is composed of a number of common facilities and object
services, including the MOF and the Change Management Facility.

The standardization of the MOF provides a solid foundation for the OMG architecture
in moving toward a unifying architecture for defining and managing meta data in
distributed environments. illustrates the positioning of the M OF as akey component of
the CORBA architecture as well as within the Common Facilities Architecture.

The Meta Data/Schema Management facility in the figure corresponds to the MOF
described in this specification. Note that the MOF interfaces are initially targeted to
support the manipulation of OA& D metamodels; however, broader use in areas such as
data warehouse management and business object management is expected.

OM G Architecture and the Repository
Common Facility

Repository Common Facility

App licati Obiect Meta Data/ Data Versions...
pplication jects Schema Mgmt Interchange

@Q m e W= o NE O

APIs

Object Services

OMG Architecture and the Repository Common Facility

Federation of Object Schemas

The MOF dlows the definition of metamodels that are potentially domain independent
and architecture neutral. The metamodels registered in the MOF can correspond to
schemas that are in fact federated. The MOF uses the federation capabilities provided
by services such as the Trader Service and the Object Transaction Service. The schema
information itself is accessed using the interfaces specified in the M OF. The services of
the MOF can be used to define integrated metamodels that correspond to federated
schemas. This areais still emerging, and interfaces specifically designed to address
federation beyond the services already provided by CORBA (Object Transaction
Service and Object Trader service) are not specified in this specification.

OMG-MOF V1.3 March 2000 XVii

Conformance to the MOF

The M OF specification has two conformance points: 1) MOF Model and Interfaces and
2) OMG IDL Generation.

MOF Model and Interfaces

Document Summary

Xviii

The MOF Model and IDL is the first compliance point. This has the following
components:

® The MOF Model and the interfaces of the “Model” module which are defined in
Chapter 3. (Additionally, Section B.1, “MOF Model IDL,” on page B-1 gives the
consolidated IDL for the “Model” module.)

® The semantics of the “Model” module which are defined by elaborating the M OF to
IDL mapping’s semantic specifications in Chapter 5 for the MOF Model.

® The interfaces and semantics of the “Reflective” module which are defined in
Chapter 6. (Addiitonally, Section B.2, “Reflective IDL,” on page B-23 gives the
consolidated IDL for the “Reflective” module.)

In addition to this Preface, the MOF Specification contains the following chapters:

Chapter 1, Overview, provides several scenarios of domains where MOF is expected to
be used. The scenarios discussed include software development, type management,
information management, and data warehouse management.

Chapter 2, Model and Interfaces, is the main chapter of the specification. Each of the
MOF classes, associations, and data types are fully described along with the IDL
interfaces. The semantics of the MOF are defined using a combination of UML
notation, textual description, and constraints using the Object Constraint Language
(OCL). The MOF interfaces are used to manipulate meta models and meta model
constructs in a CORBA environment.

Chapter 3, MOF Packages, defines general purpose interfaces used by all M OF objects
to enable self discovery and general purpose manipulation of MOF objects. These
interfaces can be used in addition to, or instead of, specific interfaces defined in the
MOF Model chapter. These interfaces apply to MOF objects defined in this
specification as well as MOF objects defined using the MOF in additional OMG
specifications, such as the CORBA interfaces in the UML specification.

Chapter 4, MOF Semantic Details, provides a more comprehensive explanation of the
fundamental modeling concepts in the MOF, detailed semantics including structural
and behavioral constraints applied to more complex MOF concepts, such as
Associations and Packages. This chapter also describes MOF Extensibility
Mechanisms and the use of MOF in distributed repository environments.

OMG-MOF V1.3 March 2000

Acknowl edgments

Chapter 5, MOF to IDL Mapping, defines the generation of CORBA IDL from the
descriptions held in the MOF. IDL generation capability is intended to ensure that
various metamodels defined using the MOF have consistent IDL. Given an MOF
compliant meta-model (such as UML), this portion of the specification can be used to
generate a concrete IDL for UML.

Note — This specification does not require that the MOF can derive the meta-object
IDL automatically.

Appendix A, MOF IDL Summary, summarizes the complete set of IDL specifications
for the MOF and is provided in a format that can be easily processed by IDL
compilers.

Appendix B, MODL Description of the MOF, summarizes the Meta Object Definition
Language (MODL) textual description of the MOF which was used to generate the
CORBA IDL for the MOF.

Appendix C, MOF Implementation Requirements, suggests approaches and principles
that can be used to support MOF interoperability between implementation of MOF
from multiple vendors. Areas addressed include Model interoperability as well as
client tool interoperability when using multiple MOF implementations.

Appendix D, Implementation Requirements, includes vendor boundaries as well as
limited implementation requirements.

Appendix E, Future Directions of the MOF, summarizes potential areas of future work
related to the M OF based on feedback of MOF submitters and reviewers.

The following companies submitted and/or supported parts of the MOF specification:
e BEA Systems, Inc.
« Cooperative Research Centre for Distributed Systems Technology (DSTC)
» Data Access
« Digital Equipment Corporation
« Electronic Data Systems
« Hewlett-Packard Company
e |BM Corporation
« International Computers Limited
« MicroFocus
* Objectivity Inc.
« Oracle Corporation
* Platinum Technology Inc.
 Rational Software Corporation
e System Software Associates
e Unisys Corporation

OMG-MOF V1.3 March 2000 XiX

XX

OMG-MOF V1.3

March 2000

1.1 Overview

MOF Overview 1

Contents

This chapter contains the following topics.

Topic Page
“Overview” 1-1
“ Software Development Scenarios” 1-2
“Type Management Scenarios” 1-4
“Information Management Scenarios” 1-6
“Data Warehouse Management Scenarios’ 1-6

The MOF is intended to support a wide range of usage patterns and applications. To
understand the possible usage patterns for the MOF, the first thing one needs to
understand is the two distinct viewpoints for the MOF:

1. Modeling viewpoint: The designer's viewpoint, looking "down" the meta levels.
From the modeling viewpoint, the MOF is used to define an information model for
aparticular domain of interest. This definition is then used to drive subsequent
software design and/or implementation steps for software connected with the
information model.

2. Dataviewpoint: The programmer's viewpoint, looking at the current meta-level, and
possibly looking up at the higher meta-levels. From the data viewpoint, the MOF
(or more accurately, a product of the MOF) is used to apply the OMA-based

OMG-MOF V1.3 March 2000 1-1

distributed computing paradigm to manage information corresponding to a given
information model. In this mode, it is possible for a CORBA client to obtain the
information model descriptions and to use them to support reflection.

The second thing one needs to realize is that this MOF specification is intended to
provide an open-ended information modeling capability. The specification defines a
core MOF model that includes arelatively small, though not minimal, set of constructs
for object-oriented information modeling. The MOF model can be extended by
inheritance and composition to define a richer information model that supports
additional constructs. Alternatively, the MOF model can be used as a model for
defining information models. This feature allows the designer to define information
models that differ from the philosophy or details of the MOF model. In this context,
the MOF Model is referred to as a meta-metamodel because it is being used to define
metamodels such as the UML.

Finally, one needs to understand the purpose and the limitations of the MOF model to
the CORBA IDL mapping defined by this specification. The prime purpose of the
mapping is to define CORBA interfaces for information models defined in terms of the
MOF model® usi ng standard interfaces and interoperable semantics. These interfaces
allow aclient to create, access, and update information described by the model, with
the expectation that the information will be managed in a way that maintains the
structural and logical consistency constraints specified in the information model
definition.

While we anticipate that some vendors will supply tools (for example, IDL generators,
server generators, and so on) to support the development of software conforming to the
mapping, provision of these tools is not areguirement of this specification. The second
limitation is that the mapping is only intended to support the MOF model itself; that is,
it does not support extensions to the metamodel or to other unconnected information

models. Furthermore, since the IDL mapping is not itself modeled in the MOF, there
can be no standardized support for extending the mapping or defining new mappings.
Finaly, the IDL mapping in this specification supports only CORBA IDL. Mappings
from the MOF model to other interface definition languages are certainly feasible, as
are direct mappings to programming languages or data definition languages. However,
these mappings are beyond the scope of the first version of the MOF specification.

1.2 Software Development Scenarios

Initially, one of the most likely applications of the MOF will be to support the
development of distributed object-oriented software from high-level models. Such a
software development system would typically consist of arepository service for storing
the computer representations of models and a collection of associated tools. The latter
would allow the programmers and designers to input the models, and would assist in
the process of trandating these models into software implementations.

1. Both extensions to the MOF meta-model that are expressible in the meta-model itself, and
unconnected information models expressed using the MOF meta-model.

OMG-MOF V1.3 March 2000

In the simple case, the repository service could be an implementation of the MOF
model interfaces. This service would be accompanied by tools (for example, compilers
or graphical editors) that allow the designer to input information models using a human
readable notation for the MOF model. Assuming that the target for software
development is CORBA based, the system would include an IDL generator that
implements the standard MOF model-to-CORBA IDL mapping.

The usage scenario for this repository service would be along the following lines:

1. The programmer uses the input tools provided by the system to define an object-
oriented information model using the notation provided.

2. When the design is complete, the programmer runs the IDL generator to translate
the model into CORBA IDL.

3. The programmer examines the IDL, repeating steps 1 and 2 to refine the model as
required.

4. The programmer then implements the generated IDL to produce a target object
server, and implement the applications that use the object server.

The functionality of the development suite described above can be expanded in a
variety of ways. We can:

® Add generator tools to automatically produce the skeleton of an object server
corresponding to the generated IDL. Depending on the sophistication of the tool,
this skeleton might include code for the query and update operations prescribed by
the IDL mapping, and code to check the constraints on the information model.

® Add generator tools to produce automatically stereotypical applications such as
scripting tools and GUI-based browsers.

® Extend the repository service to store the specifications and/or implementation code
for target server and application functionality that cannot be expressed in the MOF
model.

While the MOF model is a powerful modeling language for expressing a range of
information models, it is not intended to be the ultimate modeling language. Instead,
one intended use of the MOF is as a tool for designing and implementing more
sophisticated modeling systems. The following example illustrates how the MOF might
be used to construct a software development system centered around a hypothetical
"Universal Design Language" (UDL).

Many parallels can be drawn between the hypothetical UDL discussed below and the
draft OA&DF UML proposal in that UML is designed to be a general purpose
modeling language for visualizing, designing, and developing component software.
The UDL can be thought of as an extension, as well as a refinement, of many of the
concepts in the UML. The extensions are mainly in the area of providing sufficient
detail to complete the implementation framework technologies and defining additional
meta models that address various technology domains such as database management,
transaction processing, etc.

OMG-MOF V1.3 Software Development Scenarios ~ March 2000 1-3

The developer of a software development system based on UDL might start by using
an MOF Model notation to define a meta-model for UDL. Conceivably, the UDL
metamodel could reuse part or al of the MOF Model, though this is not necessarily a
good idea®. The developer could then use a simple MOF-based development system
(along the lines described above) to translate the UDL metamodel into CORBA DL
for aUDL repository, and to provide hand-written or generated software that
implements the UDL repository and suitable UDL model input tools.

The hypothetical UDL development system cannot be considered complete without
some level of support for the process of creating working code that implements
systems described by the UDL models. Depending on the nature of the UDL, this
process might involve a number of steps in which the conceptual design is transformed
into more concrete designs and, finaly, into program source code. A UDL
development system might provide arange of toolsto assist the target system designer
or programmer. These tools would need to be supported by repository functions to
store extra design and implementation information, along with information such as
version histories, project schedules, and so on, that form the basis of a mature software
development process.

In practice, a software development system implemented along these lines would have
difficulty meeting the needs of the marketplace. A typical software engineering "shop"
will have requirements on both the technical and the process aspects of software
engineering that cannot be met by a "one-size-fits-all" development system. The
current trend in software development systems is for Universal Repository systems;
that is, for highly flexible systems that can be tailored and extended on the fly.

An MOF-based universal repository system would be based around the core of the
MOF Model, and a suite of tools for developing target metamodels (for example, the
UDL) and their supporting tools. Many of the tools in the universal repository could be
reflective; that is, the tools could make use of information from higher meta-levels to
allow them to operate across a range of model types. Functionality, such as persistence,
replication, version control, and access control would need to be supported uniformly
across the entire repository framework.

1.3 TypeManagement Scenarios

A second area where early use of the MOF is likely is in the representation and
management of the various kinds of type information used by the expanding array of
CORBA infrastructure services.

The CORBA Interface Repository (IR) is the most central type-related service in
CORBA. The IR serves as a central repository for interface type definitionsin a
CORBA-based system. The current IR essentially provides access to interface
definitions that conform to the implied information model of CORBA IDL. While the

2. The MOF meta-model has specific requirements (e.g., model simplicity and support for
automatic IDL generation) that are not generally applicable. As a consequence, it is unrea-
sonable to expect the MOF metaOmodel design to be suitablefor al kinds of object model-

ing.

OMG-MOF V1.3 March 2000

IR interfaces are tuned fairly well to read-only access, there is no standard update
interface and no way to augment the interface definitions in the IR with other relevant
information, such as behavioral semantics.

Given a simple M OF-based development environment (as described above), it would
be easy to describe the implied information model for CORBA IDL using a notation
for the MOF Model. The resulting CORBA IDL model could then be translated into
the IDL for an MOF-based replacement for the CORBA IR. While this replacement IR
would not be upwards compatible with the existing IR, the fact that it was MOF-based
would provide a number of advantages. The MOF-based IR would:

® Support update interfaces.

® Be extensible in the sense that it would be feasible to extend the CORBA DL
model specification by (MOF Model) composition and inheritance. This ability
would help smooth the path for future extensions to the CORBA object model.

®* Make it easier to federate multiple IR instances and to represent associations
between CORBA interface types and other kinds of type information.

® Automatically include links to its own meta-information definition expressed using
M OF meta-objects.

Other candidates for use of MOF-based technology among existing and forthcoming
infrastructure services include:

® Trader: The CORBA trader service maintains a database of "service offers’ from
services in a CORBA-based distributed environment. These offers have associated
service types that are represented using the
CosTradingRepos:: ServiceTypeRepository interface. (A trader service typeisa
tuple consisting of a type name, an interface type, and a set of named property
types. Service types can be defined as subtypes of other service types.)

® Notification: At least oneinitial submission for the forthcoming Notification service
includes the notion of an event type. (An event type is a tuple consisting of a type
name, a set of named property types, and a set of supertypes.)

In both cases, an MOF-based type repository would have the advantages listed
previously for the MOF-based I mplementation Repository.

L ooking to the future, there are a number of other possible uses for M OF-based type
repositories in infrastructure services. For example:

® Service interface bridges: As CORBA matures and there is large-scale deployment
as part of enterprise-wide computing infrastructures, it will become increasingly
necessary to cope with legacy CORBA objects; that is, with objects that provide or
use out-of-date service interfaces. In situations where statically deployed object
wrappers are not a good solution, one aternative isto provide an ORB-level service
that can insert an interface bridge between incompatible interfaces at bind time.
Such a service would depend on types that describe the available bridges and the
mechanisms used to instantiate them.

® Complex bindings: RM-ODP supports the idea that bindings between objects in a
distributed environment can be far more complex than simple RPC, stream or
multicast protocols. RM-ODP defines the notion of a multi-party binding involving

OMG-MOF V1.3 Type Management Scenarios ~ March 2000 1-5

an arbitrary number of objects of various types, in which different objects fill
different roles in the binding. A CORBA service to manage complex bindings
would be based on formally described binding types that specify the numbers and
types of objects filling each role and the allowed interaction patterns (behaviors) for
a given binding.

1.4 Information Management Scenarios

The previous sections focused on the use of the MOF to support the software
development life-cycle and the type management requirements of CORBA
infrastructure services. This section broadens the scope to the more general domain of
information management; that is, the design, implementation, and management of large
bodies of more or less structured information.

First, note that some of the ideas outlined above carry over to the information
management domain. In some cases, it may be appropriate to define the information
model (that is, the database schema) for the application of interest directly using the
MOF Model. In this case, the technology described previously can be used to automate
the production of CORBA-based servers to store the information and applications to
useit. In other situations, the MOF Model can be used to define a metamodel suitable
for defining information models for the domain of interest; for example, a metamodel
for describing relational database schemas. Then a development environment can be
designed and implemented using MOF-based technology that supports the generation
of CORBA-based data servers and applications from information models.

In addition, the MOF potentially offers significant benefits for large-scale information
systems by allowing such a system to make meta-information available at run-time.
Some illustrative examples follow.

Information discovery: The World-Wide Web contains a vast amount of useful (and
useless) information on any topic imaginable. However, this information is largely
inaccessible. In the absence of other solutions, current generation web indexing
systems or search engines must rely on simple word matching. Unless the user frames
queries carefully, the number of "hits" returned by a search engine are overwhelming.
Furthermore, it is now apparent that even the largest search engines cannot keep pace
with the Web's rate of growth.

In the absence of software that can "understand" English text, the approach most likely
to succeed is to build databases of meta-data that describe web pages. If this meta-data
is represented using M OF-based technology and an agreed base metamodel for the
meta-data, the framework can support local meta-data extensions through judicious use
of MOF-supported reflection. In addition, because the meta-data framework is defined
in the MOF context, it can be accessible to a larger class of generic tools.

1.5 DataWarehouse Management Scenarios

Data warehousing is arecent development in enterprise-scal e information management.
The data warehouse technique recognizes that it is impractical to manage the
information of an enterprise as a unified logical database. Instead, this technique

OMG-MOF V1.3 March 2000

extracts information from logically- and physically-distinct databases, integrates the
information, and stores it in a large-scale "warehouse" database that allows read-only
access to possibly non-current data. The extraction and integration processes depend
on a database administrator creating a mapping from the schemas for the individual
databases to the schema of the warehouse. If the meta-information for the various
databases is represented using MOF-based technology, then it should be possible to
create sophisticated tools to assist the database administrator in this process.

Meta data is often described as the "heart and soul" of the data warehouse
environment. The MOF can be used to automate meta data management of data
warehouses. Current meta data repositories that manage data warehouses often use
static meta data using batch file-based meta data exchange mechanisms. We expect the
use of MOF- and standard CORBA -based event and messaging mechanisms and
mobile agent technology (also being standardized by OMG) to drive a new generation
of data warehouse management tools and systems that are more dynamic. These tools
will enable customers to react in a timelier manner to changing data access patterns
and newly discovered patterns, which is the focus of data mining and information
discovery systems.

The MOF interfaces and the MOF Model can be used to define specific metamodels
for database, data warehouse, model transformation, and warehouse management
domains. The integration between these models in a run time data warehouse and the
development environment (which has data models) and UML based object models
(which describes the corporate data models and operational databases) is atypical use
of an MOF. The traceability across these environments is enabled by defining an
impact analysis metamodel which builds on the rich model of relationships supported
by the MOF.

OMG-MOF V1.3 Data Warehouse Management Scenarios ~ March 2000 1-7

1-8

OMG-MOF V1.3

March 2000

2.1 Overview

MOF Conceptual Overview 2

Contents

This chapter contains the following topics.

Topic Page
“Overview” 2-1

“ Meta-data Architectures’ 2-1
“The MOF Model - Meta-modeling Constructs’ 2-5
“Meta-models and Mappings’ 2-21

The Meta Object Facility is a large specification. This chapter aims to make the MOF
specification easier to read by providing a conceptual overview of the MOF.

The chapter starts by explaining the MOF s conceptual architecture for describing and
defining meta-data. The next section introduces the meta-modeling constructs that are
used to describe meta-data. This is followed by a section that describes how meta-
models are mapped to implementation technologies, including the IDL mapping and
XMI.

2.2 Meta-data Architectures

The central theme of the MOF approach to meta-data management is openness. The

aim isto provide a framework that supports any kind of meta-data, and that allows new
kinds to be added as required. In order to achieve this, the MOF uses a layered meta-
data architecture that is based on the traditional four layer meta-modeling architecture

OMG-MOF V1.3 March 2000 2-1

2-2

that is popular within standards communities such as SO and CDIF. The key feature of
this architecture is a meta-meta-modeling layer that provides a common language that
ties together the meta-models and models.

The MOF meta-data architecture is typically (though not exclusively) used as a four
layer framework. The MOF Model, which corresponds to the meta-meta-model in a
traditional four layer meta-modeling architecture, is an object modeling language that
is closely related to UML. The MOF Model is used to define the structure and
semantics of general or domain specific meta-models (i.e., schemas for the meta-data
of interest). While the MOF Model is object-oriented, it is equally well suited to
defining object oriented meta-models, more traditional (e.g., Relational, Entity-
Relationship) meta-models, and even simpler ones.

The traditional four layer meta-data architecture is briefly described below. Thisis
followed by a description of how this maps onto the MOF meta-data architecture.

2.2.1 Four Layer Meta-data Architectures

The traditional framework for meta-modeling is based on an architecture with four
layers. These layers are conventionally described as follows:

® The user object layer is comprised of the information that we wish to describe. This
information is typically referred to as “data.”

® The model layer is comprised of the meta-data that describes information. M eta-
datais informally aggregated as models.

® The meta-model layer is comprised of the descriptions (i.e., meta-meta-data) that
define the structure and semantics of meta-data. M eta-meta-data is informally
aggregated as meta-models. A meta-model can also be thought of as a “language”
for describing different kinds of data.

® The meta-meta-model layer is comprised of the description of the structure and
semantics of meta-meta-data. In other words, it is the “language” for defining
different kinds of meta-data.

The traditional framework is illustrated in Figure 2-1 on page 2-3. This particular
example shows how the meta-data for simple records (i.e., “ StockQuote” instances)
might be represented. The layers are populated as follows:

® The information layer includes some illustrative StockQuote instances.

® The model level includes the meta-data that represents the record type for
“StockQuote” instances. The record type has a name (“ StockQuote”) and two fields,
each of which also has a name and a type. This type will typically be part of some
larger scale data schema (not shown here).

® The meta-model level defines what it means to be a record type. The meta-Class for
Record is shown as having two meta-Attributes, the first defining the Record’s
name, and the second defining its fields. The Meta-Class for a Field (not shown in
full) would similarly define the meta-Attributes for the field name and type.

OMG-MOF V1.3 March 2000

® The meta-meta-model level is typically hard-wired, and defines the machinery that
supports the meta-data framework’s meta-modeling constructs; e.g., meta-Classes
and meta-Attributes.

Note — In theory, it is possible to add a meta-meta-meta-model and so on. However, for
the purposes of the MOF, this 4-layer model suffices.

meta-meta-model

Hard-wired Meta-meta-model

MetaClass (“Record”,
[MetaAttr (“name’, String),
MetaAttr (“fields”, List < “Field">)]
MetaClass (“Field”, ...)

meta-model

Record (“StockQuote”,
[Field (“company”, String)
Field (“price”, FixedPoint)])

model

StockQuote (“ Sunbeam Harvesters’, 98.77)

StockQuote (“Ace Taxi Cab Ltd", 12.32) information

Figure2-1 Four Layer Meta-data Architecture

While the diagram above shows only one model and one meta-model, the primary aim
of having four meta- layersis to support multiple models and meta-models. Just as the
model that defines the “ StockQuote” type describes many StockQuote instances at the
information level, the meta-model that defines “Record” and “Field” can describe
many record types at the model level. Similarly, the meta-meta-model level can
describe many other meta-models that in turn represent other kinds of meta-data.

The four layer meta-data architecture has a number of advantages:

® Assuming that the meta-meta-model is rich enough, it can support most if not all
kinds of meta-information imaginable.

® |t potentially allows different kinds of meta-data to be related. (This depends on the
design of the framework’s meta-meta-model.)

® |t potentially allows interchange of both meta-data (models) and meta-meta-data
(meta-models). (This presupposes that the parties to the exchange are using the
same meta-meta-model.)

2.2.2 The MOF Meta-data Architecture

The MOF meta-data architecture, shown in Figure 2-2, is based on the traditional four
layer meta-data architecture described above.

OMG-MOF V1.3 Meta-data Architectures March 2000 2-3

2-4

M3 layer
MOF Model meta-meta-model
— —
M2 layer
UML IDL
Meta-model Meta-model meta-models
[1
| M1 layer
[
models
UML Modeds IDL Interfaces

MO layer
Figure2-2 MOF Meta-data Architecture

The above diagram shows the MOF meta-data architecture instantiated with meta-
models and models for UML and OMG IDL.

The MOF meta-data architecture has a few important features that distinguish it from
earlier meta-modeling architectures:

® The MOF Model is object-oriented, supporting meta-modeling constructs that are
aligned with (though a bit simpler than) UML'’s object modeling constructs. Hence,
the diagram above uses UML style Package icons to denote MOF-based meta-
models as well as UML models.

® The MOF Model is self-describing. In other words, the MOF Model is formally
defined using its own meta-modeling constructs. Hence, the MOF Model is aso
denoted by a UML style Package icon.

The self-defining nature of the MOF Model has some important consequences:

® It helpsto validate the MOF's meta-modeling constructs. Since the MOF Model can
describe itself, it should be adequate for describing other meta-models of similar
compl exity.

® |t dlows the MOF's interfaces and behavior to be defined by applying the MOF
IDL mapping to the MOF Model. This provides uniformity of semantics between
computational objects that represent models and meta-models. It also means that
when a new technology mapping is defined, the APIs for managing meta-models in
that context are implicitly defined as well.

® |t provides an architectural basis for future extensions and modifications to the
MOF Model.

OMG-MOF V1.3 March 2000

2.2.3 MOF Meta-modeling Terminology

2.3 The MOF Model

There is enormous scope for confusion if standard meta-modeling terminology is used
in the MOF specification. To avoid this and to make it easier to read, we have opted to
simplify the terminology. Some particular points of confusion are as follows:

® The number of MOF meta-levels is not fixed. Since meta-levels are conventionally
named upwards from the “information” layer, the meta-level of the top of MOF
meta-data framework can vary.

® There are a number of object modeling concepts that appear at two, three, or even
four levels in awell populated MOF meta-data framework. For example, a classin
a UML is described by an instance of the class “Class’ in the UML meta-model.
Thisisin turn described by an instance of the class “Class’ in the MOF Model.
Finally, the class “Class’ in the MOF Model is described by itself.

* While the “meta-" prefix has a clear meaning in the context of the MOF, evidence
suggests that people who encounter it for the first time find it very confusing. This
is particularly the case for forms like “meta-meta-" and “ meta-meta-meta-".

To avoid some of this confusion, we generally try to avoid using the “meta-" prefix. In
particular, while the core of the MOF is a meta-meta-model (assuming that there are 4
meta- layers), it is referred to as “the MOF Model.” Similarly, rather than using terms
like Class, MetaClass, and M etaMetaClass, we use phraseology like “an M1-level
instance of an M2-level Class.” Terms like M 1-level and M2-level are relative labels of
the meta- levels. (We assume that the reader can mentally adjust the “meta-ness” to fit
the context.)

There are three cases where it is convenient to use the “meta-" prefix as part of MOF
terminology:

1. The term “meta-data’ is used to refer to data whose purpose is to describe other
data.

2. The term “meta-model” is used to refer to a model of some kind of meta-data.

3. The term “meta-object” is used to refer to an abstract or technology specific object
that represents meta-data.

In each case, the term is used across all meta-levels and has a deliberately imprecise
meaning.

The core modeling concepts in the MOF use terms that are common with UML. For
example, an MOF Class corresponds to a UML Class, an MOF Attribute corresponds
toaUML Attribute, and an MOF Association correspondsto a UML Association. Note
however that the correspondence is not dways a direct match. For example, UML
Associations may have many AssociationEnds, but MOF Associations must have
precisely two.

- Meta-modeling Constructs

This section introduces the MOF’s core meta-modeling constructs (i.e., the MOF's
“abstract language”) for defining meta-models.

OMG-MOF V1.3 The MOF Model - Meta-modeling Constructs March 2000 2-5

2-6

MOF meta-modeling is primarily about defining information models for meta-data.
The MOF uses an object modeling framework that is essentialy a subset of the UML
core. In a nutshell, the 4 main modeling concepts are:

1. Classes, which model MOF meta-objects.
2. Associations, which model binary relationships between meta-objects.
3. DataTypes, which model other data (e.g. primitive types, external types, etc.).

4. Packages, which modularize the models.

2.3.1 Classes

23.11

Classes are type descriptions of “first class instance” MOF meta-objects. Classes
defined at the M2 level logically have instances at the M1 level. These instances have
object identity , state, and behavior. The state and behavior of the M1 level instances are
defined by the M2 level Class in the context of the common information and
computational models defined by the MOF specification.

Instances of classes belong to class extents that impact on certain aspects of their
behavior. It is possible to enumerate all instances of a class in a class extent (see
Section 4.6.2, “Class Extents,” on page 4-10).

Classes can have three kinds of structural features. Attributes and Operations described
below and References described in Section 2.3.4, “References,” on page 2-12. Classes
can also contain Exceptions, Constants, DataTypes, Constraints, and other elements.

Attributes

An Attribute defines a notional slot or value holder, typically in each instance of its
Class. An Attribute has the following properties.

Property Description

name Unique in the scope of the Attribute’s Class.

type May be a Class or a DataType.

“isChangeable” flag Determines whether the client is provided with an

explicit operation to set the attribute’s value.

“isDerived” flag Determines whether the contents of the notional value
holder is part of the “explicit state” of a Class instance,
or is derived from other state.

“multiplicity” (see “Attribute and Parameter Multiplicities’ on
specification page 2-7)

The aggregation properties of an Attribute depend on the Attribute’s type; see
Section 2.3.3, “Aggregation,” on page 2-11.

OMG-MOF V1.3 March 2000

23.1.2

2.3.1.3

23.14

Operations

Operations are “hooks’ for accessing behavior associated with a Class. Operations do
not actually specify the behavior or the methods that implement that behavior. Instead
they simply specify the names and type signatures by which the behavior is invoked.
Operations have the following properties.

Property Description

name Unique in the scope of the Class.

list of positional parameters having the following properties:

Parameter name:

Parameter type may be denoted by a Class or a DataType

Parameter direction | determines whether actual arguments are passed from

of “in,” “out,” or “in | client to server, server to client, or both.

out”

Parameter see “Attribute and Parameter Multiplicities’ on page 2-7
“multiplicity”

specification

An optional return type.

A list of Exceptions that can be raised by an invocation.

Attribute and Operation Scoping

Attributes and Operations can be defined as “classifier level” or “instance level.” An
instance-level Attribute has a separate value holder for each instance of a Class. By
contrast, a classifier-level Attribute has a value holder that is shared by all instances of
the Class in its class extent.

Similarly, an instance-level Operation can only be invoked on an instance of a Class
and will typically apply to the state of that instance. By contrast, a classifier-level
Operation can be invoked independently of any instance, and can apply to any or all
instances in the class extent.

Attribute and Parameter Multiplicities

An Attribute or Parameter may be optional-valued, single-valued, or multi-valued
depending on its multiplicity specification. This consists of three parts:

1. The “lower” and “upper” fields place bounds on the number of elements in the
Attribute or Parameter value. The lower bound may be zero and the upper may be
“unbounded.”

OMG-MOF V1.3 The MOF Model - Meta-modeling Constructs March 2000 2-7

2-8

2.3.1.5

® A single-valued Attribute or Parameter has lower bound 1 and upper bound 1. An
optional-valued Attribute or Parameter has lower bound 0 and upper bound 1. All
other cases are called multi-valued parameters (since their upper bound is greater
than 1).

Note — Multiplicity bounds are typically notated as one or two numbers, with “*” used
to denote unbounded. For example, a UML bounds specification of “1” translates to
lower and upper bounds of 1, and “2..*” translates to alower bound of 2 and no upper
bound.

2. The"“is ordered” flag says whether the order of valuesin a holder has semantic
significance. For example, if an Attribute is ordered, the order of the individual
values in an instance of the Attribute will be preserved.

3. The “is_unique’ flag says whether instances with equal value are allowed in the
given Attribute or Parameter. The meaning of “equal value” depends on the base
type of the Attribute or Parameter. See Section 4.2.1, “Semantics of Equality for
MOF Values,” on page4-3 , and Section 5.3.1, “Value Types and Equality in the IDL
Mapping,” on page 5-6 for additional information.

Note — The bounds and uniqueness parts of a multiplicity specification can giverise to
runtime “structural checks’ (see “Structural Consistency” on page 2-19). By contrast,
orderedness does not imply any runtime checking.

Class Generalization

The MOF allows Classes to inherit from one or more other Classes. Following the lead
of UML, the MOF Model uses the verb “to generalize” to describe the inheritance
relationship (i.e., a super-Class generalizes a sub-Class).

The meaning of MOF Class generalization is similar to generalization in UML and to
interface inheritance in CORBA IDL. The sub-Class inherits all of the contents of its
super-Classes (i.e., al of the super-Classes Attributes, Operations and References, and
all nested DataTypes, Exceptions and Constants). Any explicit Constraints that apply to
a super-Class and any implicit behavior for the super-Class apply equally to the sub-
Class. At the M1 level, an instance of an M2-level Classis type substitutable for
instances of its M2-level super-Classes.

The MOF places restrictions on generalization to ensure that it is meaningful and that
it can be mapped onto a range of implementation technologies:

® A Class cannot generalize itself, either directly or indirectly.

® A Class cannot generalize another Class if the sub-Class contains a model element
with the same name as a model element contained or inherited by the super-Class
(i.e., no over-riding is allowed).

OMG-MOF V1.3 March 2000

2

2.3.1.6

23.1.7

® When a Class has multiple super-Classes, no model elements contained or inherited
by the super-Classes can have the same name. There is an exception (analogous to
the “diamond rule” in CORBA IDL) that alows the super-Classes to inherit names
from a common ancestor Class.

Note — It isalso possible to use Tagsto specify that the interfaces generated for a Class
inherits from pre-existing interfaces.

Abstract Classes

A Class may be defined as “abstract.” An abstract Class is used solely for the purpose
of inheritance. No meta-objects can ever exist whose most-derived type corresponds to
an abstract Class.

Note — The MOF uses “abstract Class” in the same sense as UML, and also Java and
many other object oriented programming languages. Specifying an MOF Class as
“abstract” does not say how instances are transmitted. In particular, the use of the term
“abstract class” has no relationship to the IDL keyword “abstract” introduced by the
Objects-by-value specification.

Leaf and Root Classes

A Class may be defined as a“leaf” or “root” Class. Declaring a Class as aleaf prevents
the creation of any sub-Classes. Declaring a Class as a root prevents the declaration of
any super-Classes.

2.3.2 Associations

2321

Associations are the MOF Model’s primary construct for expressing the relationships
in ameta-model. At the M1 level, an M2 level MOF Association defines relationships
(links) between pairs of instances of Classes. Conceptually, these links do not have
object identity, and therefore cannot have Attributes or Operations.

Association Ends

Each MOF Association contains precisely two Association Ends describing the two
ends of links. The Association Ends define the following properties..

Property Description

A name for the end This is unique within the Association.

A type for the end This must be a Class.

Multiplicity specification | See “Association End Multiplicities” on page 2-10.

OMG-MOF V1.3 The MOF Model - Meta-modeling Constructs March 2000 2-9

Property Description
An aggregation See “Association Aggregation” on page 2-12.
specification

A “navigability” setting | Controls whether References can be defined for the end
(see Section 2.3.4, “References,” on page 2-12).

A “changeability” setting | Determines whether this end of a link can be updated
“in place.”

2.3.2.2 Association End Multiplicities

Each Association End has a multiplicity specification. While these are conceptually
similar to Attribute and Operation multiplicities, there are some important differences:

® An Association End multiplicity does not apply to the entire link set. Instead, it
applies to projections of the link set for the possible values of the “other” end of a
link. See Figure 2-3.

® Since duplicate links are disallowed in M1-level link sets, “is_unique” isimplicitly
TRUE. The check for duplicate links is based on equality of the instances that they
connect; see Section 4.2.1, “ Semantics of Equality for MOF Values,” on page 4-3.

left: Class A right: Class B

A b1 _____ Projection of al
Projection of b1 - -- a2 bl " Projection of a2
Projection of b2-:" | a3 ,,"bl\ - . Projection of a3

Figure 2-3 The projections of alink set

Figure 2-3 shows a link set for an Association with an AssociationEnd named “|eft”
whose Class is A, and a second named “right” whose Class is B. Instances of A are
shown as “al,” “a2,” and “a3” and “b1” and “b2" are instances of B. In this example
with five links, the projection of “al” is the collection { b1}, and the projection of “b1”
is the collection {al, a2, a3}. If there is another B instance (say “b3") with no
corresponding links, the projection of that b3 is an empty collection.

2-10 OMG-MOF V1.3 March 2000

The “lower” and “upper” bounds of an Association End constrain the number of
instances in a projection. For example, if the “left” End of the Association has a
bounds “0..3”, then the projection of the link set for any extant instance of B must
contain between zero and three instances of A.

The “is_ordered” flag for the Association End determines whether the projections from
the other End have an ordering. The MOF Model only allows one of an Association’s
two Association Ends to be marked as “ordered.”

In the above example, this could say whether order of the elements of the projection of
“b1” is significant (i.e., whether {al, a2, a3} is a set or a unique list).

2.3.3 Aggregation

2.33.1

In an MOF meta-model Classes and DataTypes can be related to other Classes using
Associations or Attributes. In both cases, aspects of the behavior of the relationships
can be described as aggregation semantics.

Aggregation Semantics

The MOF supports two kinds of aggregation for relationships between instances (i.e.,
“composite” and “non-aggregate”’). A third aggregation semantic - “shared” - is not
supported in this version of the M OF specification.

A non-aggregate relationship is a (conceptually) loose binding between instances with
the following properties:

® There are no special restrictions on the multiplicity of the relationships.
® There are no special restrictions on the origin of the instances in the relationships.

® The relationships do not impact on the lifecycle semantics of related instances. In
particular, deletion of an instance does not cause the deletion of related instances.

By contrast, a composite relationship is a (conceptually) stronger binding between
instances with the following properties:

® A composite relationship is asymmetrical, with one end denoting the “composite”
or “whole” in the relationship and the other one denoting the “components” or
“parts.”

® An instance cannot be a component of more than one composite at a time, under
any composite relationship.

® An instance cannot be a component of itself, its components, its components
components and so on under any composite relationship.

®* When a“composite” instance is deleted, all of its components under any composite
relationship are also deleted, and all of the components’ components are del eted and
S0 on.

® The Composition Closure Rule: an instance cannot be a component of an instance
from a different package extent (see Section 4.9.2, “The Composition Closure
Rule,” on page 4-20).

OMG-MOF V1.3 The MOF Model - Meta-modeling Constructs March 2000 2-11

2-12

2.3.3.2

2.3.3.3

Association Aggregation

The aggregation semantics of an Association are specified explicitly using the
“aggregation” Attribute of the AssociationEnds. In the case of a“composite”
Association, the “aggregation” Attribute of the “composite” AssociationEnd is set to
true and the “aggregation” Attribute of the “component” AssociationEnd is set to false.
Also, the multiplicity for the “composite” AssociationEnd is required to be “[0..1]" or
“[1..1]" in line with the rule that an instance cannot be a component of multiple
composites.

Attribute Aggregation

The effective aggregation semantics for an Attribute depend on the type of the
Attribute. For example:

® An Attribute whose type is expressed as a DataType has “hon-aggregate” semantics.

® An Attribute whose type is expressed as a Class has “composite” semantics.

It is possible to use a DataType to encode the type of a Class. Doing this allows the
meta-model to define an Attribute whose value or values are instances of a Class
without incurring the overhead of “composite’” semantics.

2.3.4 References

The MOF Model provides two constructs for modeling relationships between Classes
(i.e., Associations and Attributes). While MOF Associations and Attributes are similar
from the information modeling standpoint, they have important differences from the

standpoints of their computational models and their corresponding mapped interfaces.

Note — Attributes can also model relationships between Classes and DataTypes, but
that is not relevant to this point.

Associations offer a “query-oriented” computational model. The user performs
operations on an object that notionally encapsulates a collection of links:

® Advantage: The association objects allow the user to perform “global” queries over
all relationships, not just those for a given object.

® Disadvantage: The client operations for accessing and updating relationships tend to
be more complex.

Attributes offer a “navigation-oriented” computational model. The user typically
performs get and set operations on an attribute.

® Advantage: The get and set style of interfaces are simpler, and tend to be more
natural for typical meta-data oriented applications which “traverse” a meta-data
graph.

® Disadvantage: Performing a “global” query over a relationship expressed as an
Attribute is computationally intensive.

OMG-MOF V1.3 March 2000

2

The MOF Model provides an additional kind of Class feature called a Reference that
provides an alternative “Attribute like” view of Associations. A Referenceis specified
by giving the following:

® aname for the Reference in its Class,

® an “exposed” Association End in some Association whose type is this Class or a
super-Class of this Class, and

* a‘“referenced” Association End which is the “other” end of the same Association.

Defining a Reference in a Class causes the resulting interface to contain operations
with signatures that are identical to those for an “equivalent” Attribute. However, rather
than operating on the values in an attribute slot of a Class instance, these operations
access and update the Association, or more precisely a projection of the Association.
Thisisillustrated in UML-like notation in Figure 2-4.

My _Class 1 My_Assoc
end_l en d_2 M y_C| ass_2
attr: | nteger
. 1| ...
fref:My Class 2 | A oo d
) / g
N - - -

— _ — — 7 «eferences»

Figure 2-4 An example of a Reference

Figure 2-4 shows a Class called My_Class 1 that is related to My_Class 2 by the
Association My _Assoc. My_Class 1 has an Attribute called “attr” whose type is
Integer. In addition, it has a Reference called “ref” that references “end2” of the
Association. This provides an API for “ref” that allows a user to access and update a
My_Class_1 instance’s link to a My_Class 2 instance using get and set operations.

Note — Strictly speaking, the UML notation in the diagram shows “ref” as a derived
attribute of My_Class_1 with type of My_Class 2.

The example above shows a Reference that “exposes” an Association End with a
multiplicity of “[1..1]". References can actually expose ends with any valid
multiplicity specification. The resulting Reference operations are similar to those for
an Attribute with the same multiplicity. However, since MOF Associations do not
allow duplicates, Association Ends and therefore References must always have their
multiplicity “is_unique” flag set to true.

There are some of important restrictions on References:

®* When the “is_navigable” property of an Association End is false, it is not legal to
define a Reference that “references” that Association End.

® An M1 instance of aClass that “references” an Association cannot be used to make
alink in an instance of the Association in a different extent. This restriction is
described in Section 4.9.1, “The Reference Closure Rule,” on page 4-19.

OMG-MOF V1.3 The MOF Model - Meta-modeling Constructs March 2000 2-13

2-14

2.3.5 DataTypes

Meta-model definitions often need to use attribute and operation parameter values that
have “ordinary” types. The MOF provides the meta-modeling concept of a DataType to
fill this need.

In general terms, DataTypes can be used to represent two kinds of type:

1. Meta-models often need to define types whose values do not have object identity;
e.g. integers, strings, enumerations and so on.

2. Meta-models sometimes need to reuse “external” types; i.e. types which are defined
in some kind of non-M OF interface specification.

Note — The current MOF specification only states how CORBA data types and
(external) CORBA interface types are handled. Support for other type systems is
scheduled for inclusion in the next revision.

See Section 3.4.7, “DataType,” on page 3-33 for more details on how DataTypes are
used to express types.

2.3.6 Packages

2.3.6.1

The Package is the MOF Model construct for grouping elements into a meta-model.
Packages serve two purposes.

1. Atthe M2 level, Packages provide away of partitioning and modularizing the meta-
model space. Packages can contain most kinds of model element (e.g., other
Packages, Classes, Associations, DataTypes, Exceptions, Constants and so on).

2. At the M1 level, Package instances act the outermost containers for meta-data.
Indirectly, they also define the scope boundaries of Association link sets and of
“classifier level” Attributes and Operations on Class instances (see Section 4.6.4,
“Package Extents,” on page 4-11).

The MOF Model provides four mechanisms for meta-model composition and reuse
(i.e., generalization, nesting, importing, and clustering). These are described in the
following subsections.

Package Generalization

Packages may be generalized by (inherit from) one or more other Packages in a way
that is analogous to Class generalization described in Section 2.3.1.5, “Class
Generalization,” on page 2-8. When one Package inherits from another, the inheriting
(sub-) Package acquires all of the meta-model elements belonging to the (super-)
Package it inherits from. Package inheritance is subject to rules that prevent name
collision between inherited and locally defined meta-model elements.

OMG-MOF V1.3 March 2000

2

2.3.6.2

2.3.6.3

At the M1 level, a sub-Package instance has the ability to create and manage its own
collections of Class instances and Links. This applies to the Classes and Associations
that it defines explicitly, and to those that it acquires by inheritance.

The relationship between instances of the super- and sub-Packages is similar to
relationship between instances of super- and sub-Classes:

® A sub-Package instance is type substitutable for instances of its super-Packages
(i.e., the sub-Package instance “I1S_A” super-Package instance).

® A sub-Package instance does not use or depend on an instance of the super-Package
(i.e., thereisno “IS_PART_OF” relationship).

Packages may be defined as “root” or “leaf” Packages (with anaogous meaning to
“root” and “leaf” Classes), but “abstract” Packages are not supported.

Package Nesting

A Package may contain other Packages, which may in turn contain other Packages.
Model elements defined in nested Packages may be strongly coupled to other model
elements in the same containment. For example, a Class in a nested Package have a
Reference that links it via an Association in its context, or its semantics could be
covered by a user-defined Constraint that applies to the enclosing Package.

A nested Package is a component of its enclosing Package. Since, in general, the
model elementsin a nested Package can be inextricably tied to its context, there are
some significant restrictions on how nested Packages can be composed. In particular,

® anested Package may not generalize or be generalized by other Packages.
® anested Package may not be imported or clustered by other Packages.

Nested Packages are not directly instantiable. No factory objects or operations are
defined for nested Package instances. An M1 level instance of a nested Package can
only exist in conjunction with an instance of its containing Package. Conceptually, a
nested Package instance is a component of an instance of its containing Package.

Note — The main effect of nesting one Package inside another is to partition the
concepts and the namespace of the outer Package. Nesting is not a mechanism for
reuse. Indeed when a Package is nested, the options for reusing its contents are
curtailed.

Package Importing

In many situations, the semantics of Package nesting and generalization do not provide
the best mechanism for meta-model composition. For example, the meta-modeler may
wish to reuse some elements of an existing meta-model and not others. The MOF
provides an import mechanism to support this.

OMG-MOF V1.3 The MOF Model - Meta-modeling Constructs March 2000 2-15

2-16

2.3.6.4

A Package may be defined as importing one or more other Packages. When one
Package imports another, the importing Package is allowed to make use of elements
defined in the imported one Package. As a shorthand, we say that the elements of the
imported Package are imported.

Here are some exampl es of how a Package can reuse imported elements. The importing
Package can declare:

® Attributes, Operations, or Exceptions using imported Classes or DataTypes,
® QOperations that raise imported Exceptions,

® DataTypes and Constants using imported DataTypes or Constants,

® Classes whose supertypes are imported Classes, and

® Associations for which the types of one or both Association Ends is an imported
Class.

At the M1 level, an instance of an importing Package has no explicit relationship with
any instances of the Packages that it imports. Unlike a subtype Package, an importing
Package does not have the capability to create instances of imported Classes. A client
must obtain any imported Class instances it needs via a separate instance of the
imported Package.

Package Clustering

Package clustering is a stronger form of Package import that binds the importing and
imported Package into a “cluster.” As with ordinary imports, a Package can cluster a
number of other Packages, and can be clustered by a number of other Packages.

An instance of a cluster Package behaves as if the clustered Packages were nested
within the Package. That is, the lifecycle of a clustered Package instance is bound to
the lifecycle of its cluster Package instance. In particular:

® When the user creates an instance of a cluster Package, an instance of each of its
clustered Packages is created automatically.

® Theinstances of the clustered Packages created above all belong to the samecluster
Package extent.

® Deleting a cluster Package instance automatically deletes its clustered Packaged
instances, and the clustered Package instances cannot be deleted except as part of
the deletion of the cluster Package instance.

However, unlike a nested Package, it is possible to create an independent instance of a
clustered Package. Also, in some situations clustered Package instances are not strictly
nested.

Note — It is possible to cluster or inherit from Packages that cluster other Packages.
The impact of this on M1 level instance relationships is discussed in Section 4.6.4,
“Package Extents,” on page 4-11.

OMG-MOF V1.3 March 2000

In summary, the relationship between the M1 level instances in a Package cluster is
that each clustered Package instance is a component of the cluster Package instance.
Unlike nested Packages, there is no composite relationship between the M2 level

Packages.

2.3.6.5

Summary of Package Composition Constructs

The properties of the four Package composition mechanisms defined by the MOF
Model are summarized by Table 2-1.

Table 2-1 Package Composition Constructs

M eta-model Construct Conceptual M2 level Relationship | M1level Relationship
Relationship Properties Properties
Nesting P1 contains P2 PL—— P2 Ple—— P2
Generalization / Inheritance | P1 generalizes P2 PR-- = P1 P2—> P1
Importing P1 imports P2 PlL.--= P2 none
Clustering P1 clusters P2 PlL- - = P2 P1O—— P2
or none

The symbology of the table is based on UML (i.e., afilled diamond means
composition, a hollow diamond means aggregation, a hollow triangle means
inheritance, and a dotted arrow means “depends on”).

Notethat P1 and P2 denote different (though related) things in different columns of the
table:

® |n column 2, they denote conceptual M2 level Packages in a meta-model.

® |n column 3, they denote both the conceptual M2 level Packages, and the objects
that represent them in a reified meta-model.

® |n column 4, they denote M1 level Package instances (when underlined) or their
types.

2.3.7 Congtraints and Consistency

The MOF Model constructs described so far allow the meta-modeler to define a meta-
data information that comprises nodes (Classes) with attached properties (Attributes /
DataTypes) and relationships between nodes (Associations). While the above
constructs are sufficient to define an “abstract syntax” consistent of meta-data nodes
and links, this syntax typically needs to be augmented with additional consistency
rules.

This section describes the MOF Model’s support for consistency rules and model
validation.

OMG-MOF V1.3 The MOF Model - Meta-modeling Constructs March 2000 2-17

2-18

2.3.7.1 Constraints

The MOF Model defines a element called Constraint that can be used to attach
consistency rules to other meta-model components. A Constraint comprises:

® aconstraint name,

® a‘“language’ that identifies the language used to express the consistency rules,
® an “expression” in the language that specifies arule,

® an “evaluation policy” that determines when the rule should be enforced, and

® aset of “constrained elements.”

A Constraint expression is an expression in some language that can be “evaluated” in
the context of a meta-model to decide if it is valid. The MOF specification does not
define or mandate any particular languages for Constraint expressions, or any
particular evaluation mechanisms. Indeed, it is legitimate for Constraints to be
expressed in informal language (e.g., English) and for validation to be implemented by
ad-hoc programming. However, the Constraints that are part of the MOF M odel
specification itself are expressed in Object Constraint Language (OCL) as described in
the UML specification.

The evaluation policy property of a Constraint determines whether the consistency rule
should be enforced immediately or at a later time. Figure 2-5 gives a simple example
that will be used to illustrate the need for evaluation policies.

Constraint X 5 My_Class
aisodd [T T T ———| - = a Integer
_ N //,::-—— b: Integer
Congtraint Y e
bequalsa* 2

Figure 2-5 Examples of Constraints

In Figure 2-5, Constraint X constrains only Attribute a while Constraint B constrains
both Attributes a and b.

It is feasible to check the first Constraint (X: “ais odd” on the Attribute “a’) at any
time. It could be checked whenever avalue for “a” is supplied (e.g., at instance
creation and when “a” is updated). An exception would be raised if the new value for
“a’ waseven. Alternatively, constraint checking could be deferred to alater point (e.g.,
when the user requests validation of a model).

OMG-MOF V1.3 March 2000

2

2.3.7.2

2.3.7.3

The second constraint (Y: “b equals a* 2" on both Attributes “a’ and “b") is another
matter. If a server enforces Y on every update, the user would never be able to change
the values of either “a” or “b.” No matter which order the user invoked the operations,
the updates would raise an exception. Instead, enforcement of Y must be deferred until
both “a” and “b” have been updated.

Note — The Constraint construct is intended to be used for specifying consistency rules
for models rather than for defining the computation behavior of (for example)

Operations. It is “bad style” to specify Constraint expressions that have side-effects on
the state of amodel, not least because it is unspecified when Constraints are evaluated .

Sructural Consistency

As noted previously, an M OF-based meta-model defines an “abstract syntax” for meta-
data. Some aspects of the abstract syntax are enforced by the corresponding meta-data
server's IDL. For example, the operation that creates a link for an Association has a
type signature that prevents the user from creating alink with the wrong kind of Class
instances. However, some aspects of the abstract syntax can only be enforced by
runtime structural consistency checks. While most of the structural checks are made
immediately, checks for “underflow” often need to be deferred.

It is not practical for a meta-model to specify a priori al possible things that can go
wrong in a/n MOF-based meta-data server. It is therefore necessary to recognize that
a/n MOF server may need to perform a variety of runtime checks that are neither
defined or implied by the meta-model. These include additional meta-data validation
that is not specified by the meta-model, resource and access control checks, and
internal error checking.

Consistency Checking Mechanisms

The MOF specification provides alot of latitude for meta-data server implementations
in the area of constraint checking or validation.

® Support for checking of Constraints is not mandatory. In particular, there is no
requirement to support any particular language for Constraint expressions.

® The set of events (if any) that may trigger deferred checking is not specified. No
general APIs are specified for initiating deferred consistency checking.

® Persistence and interchange of meta-data, which isin an inconsistent state may be
allowed. (Indeed, this would seem to be a prerequisite for some styles of meta-data
acquisition.)

® There are no specified mechanisms for ensuring that validated meta-data remains
valid, or that it does not change.

The one aspect of consistency checking that is mandatory is that a meta-data server
must implement all structural consistency checks that are labeled as immediate.

OMG-MOF V1.3 The MOF Model - Meta-modeling Constructs March 2000 2-19

2-20

2.3.8 Miscellaneous Meta-modeling Constructs

2.3.8.1

2.3.8.2

2.3.8.3

This section describes the remaining significant elements of the MOF Model.

Congtants

The Constant model element allows the meta-modeler to define simple bindings
between a name and a constant value. A Constant simply maps onto a constant
declaration in (for example) the IDL produced by the MOF IDL mapping.

Exceptions

The Exception model element allows the meta-modeler to declare the signature of an
exception that can be raised by an Operation. An Exception simply maps onto (for
example) an IDL exception declaration.

Tags

The Tag model element is the basis of a mechanism that allows a “pure’” MOF meta-
model to be extended or modified. A Tag consists of:

® aname that can be used to denote the Tag in its container,

® a‘“tagid’ that denotes the Tag's kind,

® acollection of zero or more “values” associated with the Tag, and

® the set of other model elements that the Tag is “attached” to.

The meaning of a model element is (notionally) modified by attaching a Tag to it. The
Tag's “tag id” categorizes the intended meaning of the extension or modification. The
“values’ then further parameterize the meaning.

As a general rule, the definition of values and meanings for “tag id” strings is beyond
the scope of the MOF specification. The specification recommends a tag id naming
scheme that is designed to minimize the risk of name collision, but use of this scheme
is not mandatory; see Section 3.4.23, “Tag,” on page 3-63.

One exception to thisisthe MOF to IDL Mapping. This defines some standard tag ids
that allow a meta-model to influence the IDL mapping; see Section 5.6, “ Standard Tags
for the IDL Mapping,” on page 5-35 for the complete list. For example:

® “Substitute Name” provides an alternative IDL identifier for an element in a meta-
model, and

® “IDL Prefix” allows the meta-modeler to specify the IDL “prefix” for a top-level
Package.

OMG-MOF V1.3 March 2000

2.4 Meta-modelsand Mappings

The previous sections outlined the overall meta-data architecture for the MOF, and the
meta-modeling constructs provided by the MOF Model. This section describes the
Mapping approach that is used to instantiate MOF meta-models and meta-data in the
context of a given implementation technology.

This section is organized as follows. The first subsection outlines the purpose and
structure of MOF Mappings. The next two subsections give high-level overviews of the
OMG MOF technology mappings defined to date. The final subsection explains how
the standard mappings are applied to the MOF Model to produce the OMG IDL for the
MOF Model server and an XML DTD for meta-model interchange.

2.4.1 Abstract and Concrete Mappings

MOF Mappings relate an M2-level meta-model specification to other M2 and M1-level
artifacts, as depicted in Figure 2-6.

M3level 1
Mof
Model
______ XMI - XML Mapping
M2 level -
Application - i
Meta-model Applic'n Applicn

IDL + Server XMI DTD

IDL Mapping

Abstract Mapping

M1level x X
Application meta-data Application

as CORBA objects me;:/ldftzas

Application meta-data an oc.

Figure 2-6 The function of MOF Technology Mappings

Figure 2-6 depicts the Mapping derived relationships for an application meta-model as
follows:

® The Abstract mapping (defined in “The MOF Abstract Mapping” chapter) fleshes
out a MOF meta-model into an abstract information model (i.e., by spelling out the
logical structure of the meta-data described by the meta-model).

® The IDL Mapping (Section 2.4.2, “CORBA Meta-data Services - The MOF IDL
Mapping,” on page 2-22) produces the standard OMG IDL and associated
behavioral semantics for meta-objects that can represent meta-data conforming to
the meta-model.

® The XML Mapping (see Section 2.4.3, “Meta-data I nterchange - The MOF XML
Mapping,” on page 2-22) produces the standard XML DTD for interchanging meta-
data conforming to the meta-model.

OMG-MOF V1.3 Meta-models and Mappings March 2000 2-21

2-22

The Abstract Mapping has two roles: 1) it serves to define the “meaning” of a meta-
model, and 2) it provides a point of alignment for current and future MOF technology
Mappings.

Since the IDL and XML Mappings are both aligned with the Abstract Mapping thereis
a mechanical one-to-one correspondence between abstract meta-data and meta-data
expressed as XMI documents and as CORBA meta-objects. This correspondence holds
for all meta-models. More significantly, it should also hold for any future meta-model
Mappings (e.g., to Javaor DCOM technology) provided that they are aligned with the
Abstract Mapping.

2.4.2 CORBA Meta-data Services - The MOF IDL Mapping

The MOF IDL Mapping produces a specification for a CORBA meta-data service from
a MOF meta-model specification. The OMG IDL interfaces and associated behavioral
semantics are specified in the “MOF to IDL Mapping” chapter and “The Reflective
Module” chapter. These interfaces support creating, updating, and accessing meta-data
in the form of CORBA objects, either using “specific” interfaces that are tailored to the
meta-model or “generic” interfaces that are meta-model independent.

The MOF IDL Mapping places some additional restrictions in MOF meta-models
beyond those set out in the “MOF Model and Interfaces” chapter. See Section 5.5,
“Preconditions for IDL Generation,” on page 5-33 for details.

2.4.3 Meta-data Interchange - The MOF XML Mapping

Interchange of MOF-based meta-data is defined in a separate OMG specification. The
XMI (XML-based Meta-data Interchange) specification leverages the W3C's XML
(eXtensible Markup Language) technology to support the interchange of meta-data and
meta-models between M OF-based and other meta-data repositories.

The XM specification (ad/98-07-01) has two main parts:

1. The“XML DTD Production Rules’ define a uni-directional mapping from a/n MOF
meta-model to a XML DTD (Document Type Definition) for meta-data interchange
documents.

2. The “XML Document Production Rules” define a bi-directional mapping between
an XML document (structured according to the above DTD) and MOF-based meta-
data that (implicitly) conforms to the Abstract Mapping.

2.4.4 Mappings of the MOF Model

The XM specification has been applied to the MOF Model (rendered as a/n MOF
meta-model) to produce XML and DTD documents that form an optional compliance
point of the MOF specification:

OMG-MOF V1.3 March 2000

2

® Appendix A.1, “The MOF Model in XML" contains an XMI rendering of the MOF
Model itself, along with the XMI generated DTD for MOF meta-models. This XML

document should be viewed as a normative rendering of the MOF Model for
interchange purposes.

® Appendix A.2, “The XMI DTD for MOF meta-models’ contains the normative XM|
DTD for the interchange of MOF meta-models.

OMG-MOF V1.3 Meta-models and Mappings March 2000 2-23

2-24 OMG-MOF V1.3 March 2000

3.1 Overview

MOF Model and I nterfaces 3

Contents

This chapter contains the following topics.

Topic Page
“Overview” 31
“How the MOF Model is Described” 3-2
“The Structure of the MOF Model” 311
“MOF Model Classes” 3-15
“MOF Model Associations’ 3-65
“MOF Model Data Types’ 3-77
“MOF Model Exceptions’ 3-83
“MOF Model Constants” 3-85
“MOF Model Constraints’ 3-86

This chapter describes the model that defines the MOF. The MOF provides a set of
modeling elements, including the rules for their use, with which to construct models.
Specifically, the MOF modeling elements support development of meta-models. This
focus enables the MOF to provide a more domain-specific modeling environment for
defining meta-models instead of a general-purpose modeling environment.

A well-designed modeling tool or facility should be based on a meta-model that
represents the modeling elements and the rules provided by the tool or facility.

OMG-MOF V1.3 March 2000 31

3-2

Every meta-model is also a model. If the MOF Model described in this section is the
meta-model for the M OF, where is the model for this meta-model ? Formally, the MOF
is defined in itself; that is, the modeling elements defined in the MOF Model and
provided by the MOF are used to define the MOF Model itself. In essence, the MOF
Model is its own meta-model. However, this circular definition does not support
presentation of the model. Therefore, this specification describes the MOF narratively
and through the use of UML notation, tables, and Object Constraint Language (OCL)
expressions.

Note that the use of UML notation is a convenience to the designers of the MOF and
to the readers of the MOF specification. The semantics of the MOF Model are
completely defined in the M OF specification and do not depend on the semantics of
any other model. The MOF interfaces used to manipulate meta-models are dependent
on CORBA in that these interfaces are specified using CORBA IDL.

A significant amount of the MOF Model syntax and semantics definition is constraint-
based. This specification describes the constraint expressions as clearly as possible. In

addition, the specification provides a reference to the OCL expression that defines each

constraint.

The OCL, which is defined in Object Constraint Language Definition, provides a small
set of language elements used to define expressions (see the Unified Modeling
Language Specification for additional OCL information). As an expression language,
OCL cannot change the state of objects; however, it can express constraints (including
invariants, preconditions, and post-conditions). OCL expressions use operations
defined in the MOF Model with the attribute isQuery set to TRUE. (Such operations do
not change the state of the object.). To ensure complete specification of constraints,
this document provides OCL definitions for M OF-defined operations used in OCL
expressions. In addition, to avoid ambiguity or misinterpretation this specification uses
OCL to define a few of the most complex concepts of the MOF Model.

The interfaces through which the MOF is utilized are generated from the MOF Model.
However, these interfaces do not provide the semantic information necessary to
determine the behavior of their operations. Therefore, it is essential to understand the
MOF in terms of its model and related semantics, not just its interfaces.

3.2 Howthe MOF Moddl isDescribed

This chapter describes the modeling elements that comprise the MOF Model and
provide the building blocks for meta-models. Because these elements are formally
described with the MOF Model itself, the characteristics used to describe the model are
the same characteristics provided by the model.

The following subsections briefly describe the conventions that this specification uses
to define the model elements and their characteristics, with a few exceptions noted.

OMG-MOF V1.3 March 2000

3.2.1 Classes

3211

Classes are the fundamental building blocks of MOF meta-models and the MOF
Model. A Class can have three kinds of features; Attributes, References, and
Operations. They may inherit from other Classes, and may be related to other Classes
by Associations. Classes are presented in detail in Section 4.3, “ Semantics of Class
Instances,” on page 4-3.

The MOF uses the term Class with a meaning that is similar to that of Classin UML.
An MOF Classis an abstract specification or classification of meta-objects that
includes their state, their interfaces, and (at least informally) behavior. A Class
specification is sufficient to allow the generation of concrete interfaces with well
defined semantics for managing meta-object state. However, an MOF Class
specification does not include any methods to implement meta-object behavior.

The Classes that make up the MOF Model are introduced in Section 3.3, “The
Structure of the MOF Model,” on page 3-11 and specified in detail in Section 3.4,
“MOF Model Classes,” on page 3-15. Each Class is defined in terms of its name(s), its
super-Classes, the Classes whose instances it can contain, its attributes, its references,
its operations, its constraints, and whether it is abstract or concrete.

Note — Except where stated, the order in which Section 3.4, “MOF Model Classes
introduces Classes and their component features is not normative. The normative order
is defined in the XM1 for the MOF Model which may be found in Appendix A. This
order determines the order in which elements appear in the generated IDL, and is in
theory significant.

This document uses a hybrid textual and tabular notation to define the important
characteristics of each Class in the MOF Model. The notation defines defaults for most
characteristics, so that the Class definitions need only explicitly specify characteristics
that are different from the default. The following text explains the notation used for
Classes and their characteristic.

ClassHeading

Each Class in the MOF Model is introduced by a second level section heading. The
heading defines the standard M odelElement name for the Class. The Classes hame on
the heading line can be followed by the word “ abstract” or by a“substitute_name” for
some mapping. For example, the following:

34.1 Model Element abstract

introduces a Class called “ModelElement” and definesits Chapter “isAbstract” flag to
have the value “true.” On the other hand, the following:

3.4.11 Alttribute idl_substitute_name * MofAttribute”

OMG-MOF V1.3 How the MOF Model isDescribed March 2000 3-3

3-4

3212

3.2.1.3

3214

introduces a Class called “Attribute” and defines its substitute name (for the IDL
mapping) as “MofAttribute.” The latter information is encoded using a Tag whose
“tagld” is “idl_substitute_name” and whose “values’ consist of the Any-ized string
“MofAttribute.”

Unless stated otherwise each Class in the MOF Model has “isAbstract” set to false, and
has no attached Tags.

Note — The MOF uses “abstract Class” in the same sense as UML, and also Java and
many other object oriented programming languages. There is no relationship with the
IDL keyword “abstract” introduced in CORBA 2.3.

The paragraph or paragraphs following a Class heading give a description of the Class,
its purpose, and its meaning.

Superclasses

The “Superclasses’ heading lists the MOF Classes that generalize the Class being
described. In the MOF context, generalization is another term for inheritance. Saying
that a Class A generalizes a Class B, means the same as saying that Class B inherits
from Class A. The sub-Class (B) inherits the contents of the super-Class (A). Multiple
inheritance is permitted in the MOF.

This heading is always present, since with the sole exception of Model Element, all
Classes in the MOF Model have super-Classes.

Contained Elements

Instances of the sub-Classes of NameSpace can act as containers of other elements. If
present, the “Contained Elements’ heading lists the Classes whose instances may be
contained by an instance of this container Class. It also gives the index of the MOF
Model Constraint that defines the containment rule for the Class. For more details, see
Section 3.3.3, “The MOF Model Structure,” on page 3-13. In particular, Table 3-4 on
page 3-9 expresses the MOF Class containment rules in a concise form.

If the “Contained Elements’ heading is absent, instances of the Class may not contain
other instances. This occurs if the Class is an abstract Class (and therefore has no
instances), or if the Class is not derived from the Namespace Class.

Attributes

The “Attributes’” heading lists the Attributes for a Class in the MOF Model. Attributes
that are inherited from the super-Classes are not listed. If the “Attributes” heading is
missing, the Class has no Attributes.

All Attributes defined in the MOF Model have a “visibility” of “public_vis.” All have
a“type” that is represented using a DataType, and therefore all have aggregation
semantics of “none.” The remaining characteristics of Attributes are defined using the
notation described in Table 3-1.

OMG-MOF V1.3 March 2000

Table 3-1 Notation for Attribute Characteristics

Entry Description

type: This entry defines the base type for the Attribute. Thisis expressed
as the name of a DataType defined in Section 3.6, “MOF Model
Data Types,” on page 3-77, or as the name of a CORBA data type
(e.g., “boolean” or “string”). The base type is represented by the
Attribute’s “type.”

multiplicity: Thisentry definesthe “multiplicity” for the Attribute, consisting of

its “lower” and “upper” bounds, an “isOrdered” flag, and an

“isUnique” flag. See Section 3.6.5, “Multiplicity Type,” on

page 3-78, and Section 4.4.2, “Multiplicity,” on page 4-5 for more

details. The multiplicity for an Attribute is expressed as follows:

* The “lower” and “upper” bounds are expressed as “exactly one,” ,“zero
or one,” “zero or more,” and “one or more.”

* If the word “ordered” appears, “isOrdered” should be true. If it is
absent, “isOrdered” should be false.

e |f theword “unique” appears, “isUnique” should be true. If it is absent,
“isUnique” should be false.

changeable: This optional entry defines the “isChangeable” flag for the
Attribute. If omitted, “isChangeable” is true.

derived from: | This optional entry either describes the derivation of a derived
Attribute, or if the entry is present, the Attribute s “isDerived” flag
will be true. If it is absent, the flag will be false.

scope: This optional entry defines the “scope” of an Attribute as either
“instance_level” or “classifier_level.” If the entry is absent, the
Attribute’s “scope” is “instance_level.”

3.2.1.5 References

The “References’ heading lists the References for a Class in the MOF Model. A
Reference connects its containing Class to an Association End belonging to an
Association that involves the Class. This allows a client to navigate directly from an
instance of the Class to other instance or instances that are related by links in the
Association. If the “References’ heading is absent, the Class has no References.

A Classinvolved in an Association may or may not have a corresponding Reference. A
Reference means that a client can navigate to instances of the other Class; however,
this comes at the cost of some restrictions. In particular, if one or both Classes in an
Association have References for that Association, the Reference Closure rule restricts
the creation of links between instances in different “extents’ (see Section 4.9.1, “The
Reference Closure Rule,” on page 4-19).

OMG-MOF V1.3 How the MOF Model isDescribed March 2000 3-5

3-6

Note — The modeling of navigation in MOF differs from UML. In UML, mechanisms
for navigating links are available when the “isNavigable” flag is true for a given
AssociationEnd. In this case, stronger uniqueness constraints on AssociationEnd names
mean that they are unique within the namespaces of the Association and all Classes
involved and their sub-Classes. This means that the AssociationEnd names uniquely
bind to a “navigator” operation in each context in which navigation might be used.

Most characteristics of Referencesin the MOF Model are either common across all
References or derived from other information:

® The “visibility” of al References in the MOF Model is “public_vis.”
® The “scope” of al References is “instance_scope.”

® The “type” of all References is the same as the “type” of the AssociationEnd it
references.

® The “multiplicity” of all References is the same as the “multiplicity” of the
AssociationEnd it references.

The variable characteristics of References are defined or documented using the
notation described in Table 3-2.

Table 3-2 Notation for Reference characteristics

Entry Description

class: This entry documents the base type of the Reference and is
represented as its “type.” Note that the “type”’ of a Reference must
be the same as the “type” of the referenced A ssociationEnd.

defined by: This entry defines the Association and AssociationEnd that the
Reference is linked to via a RefersTo link.

multiplicity: This entry documents the “multiplicity” characteristics for the

Reference. These are written the same way as Attribute

“multiplicity” characteristics, except that “unique’ is omitted

because its value is predetermined (see Section 3.2.2.2, “Ends,” on

page 3-8). Note the following:

* the OCL constraints on Multiplicity Type and AssociationEnd mean that
the “isUnique” field must be “false” if the “upper” bound is 1 and
“true” otherwise, and

* the “multiplicity” settings for an AssociationEnd and its corresponding
Reference(s) must be the same.

changeable: This optional entry defines the setting of the Reference’'s
“isChangeable” flag. If the entry is absent, the “isChangeable” flag
is true.

inverse: This optional entry documents the “inverse” Reference for this

Reference (i.e., the Reference on the link related Class that allows
navigation back to this Reference’s Class). If this entry is absent,
the Reference does not have an inverse Reference.

OMG-MOF V1.3 March 2000

3.2.1.6 Operations

The “Operations” heading lists the Operations for a Class in the MOF Model. If the
heading is absent, the Class has no Operations.

All Operations for Classes in the MOF Model have “visibility” of “public_vis.” The
remaining characteristics of References are defined using notation described in

Table 3-3.

Table 3-3 Notation for Operation Characteristics

Entry

Description

return type:

This optional entry defines the “type” and “multiplicity” of the
Operation’s return Parameter (i.e., the one with “direction” of
“return_dir”). The “type” is denoted by a hame of a Class or
DataType in the MOF Model, or a name of a CORBA data type.
The “multiplicity” is expressed like an Attribute “ multiplicity” (see
Table 3-2 on page 3-6), except that when it is absent, the
“multiplicity” defaults to “exactly one.”

The return Parameter (if it exists) should be the first contained
Parameter of the Operation. If this entry is absent or says “none,”
the Operation does not have a return Parameter.

isQuery:

This optional entry defines the Operation’s “isQuery” flag. If it is
absent, the “isQuery” flag has the value false.

scope:

This optional entry defines the Operation’s “scope.” If it is absent,
the Operation has a “scope” of “instance_level.”

parameters:

This entry defines the Operation’s non-return Parameter list in the
the order that they appear in the Operation’s signature. The
“name,” “direction,” “type,” and “multiplicity” are defined for
each Parameter. If the “multiplicity” is not explicitly specified, it
defaults to “exactly one.” If the entry simply says “none,” the
Operation has no non-return Parameters.

exceptions:

This optional entry defines the list of Exceptions that this
Operation may raise in the order that they appear in the
Operation’s signature. If it is absent, the Operation raises no
Exceptions.

operation
semantics:

This optional entry simply gives a cross reference to the OCL
defining the Operation’s semantics. Note that the MOF Model does
not provide a standard way of representing an Operation’ s semantic
specification, and it is not included in the normative XMl
serialization of the MOF Model.

OMG-MOF V1.3

How the MOF Model isDescribed March 2000 3-7

3-8

3.2.17

3.2.1.8

Constraints

The “Constraints” heading lists the Constraints that are attached to this Class in the
MOF Model. The OCL for the Constraints may be found in Section 3.9.4, “The MOF
Model Constraints,” on page3-91 . Each listed Constraint “constrains” the Class, and is
also contained by it.

IDL

The “IDL” heading shows an excerpt of the MOF Model IDL that corresponds to this
Class. The excerpts, which are part of the “Model” module given in the “MOF to IDL
Summary” appendix, consist of a Class proxy interface and an Instance interface. For
information on these interfaces, refer to the “MOF to IDL Mapping” chapter.

3.2.2 Associations

3221

3222

The Associations in the MOF Model are defined in Section 3.5, “MOF Model
Associations,” on page 3-65.

Associations describe relationships between instances of Classes. In short, an
Association relates two Classes (or relates one Class to itself) to define a“link set” that
contains two-ended “links” between instances of the Classes. The properties of an
Association rest mostly in its two AssociationEnds. Refer to Section 4.7, “ Semantics of
Associations,” on page 4-12 for a more detailed explanation.

Association Heading

Each Association in the MOF Model isintroduced by a secondlevel section heading in
Section 3.5, “MOF Model Associations,” on page 3-65. The heading defines the
standard M odel Element name for the Association. The Classes name on the heading
line can be followed by the word “derived.” For example, the following:

354 Exposes derived

introduces an Association called “Exposes” and defines its Chapter “isDerived” flag to
be true. If the word “ derived” is not present, the Association’s “isDerived” flag is false.

The paragraph or paragraphs following an Association heading give a description of
the Association, its purpose, and its meaning.

Ends

The “Ends” heading defines the two AssociationEnds for an Association in the MOF
Model. The two AssociationEnds are defined by giving their “name” values and
defining the remaining characteristics in tabular form.

Every AssociationEnd in the MOF Model has both “isNavigable” and “isChangeable’
set to true. The remaining characteristics of AssociationEnds are defined using notation
described in Table 3-4.

OMG-MOF V1.3 March 2000

Table 3-4 AssociationEnds Characteristics

Entry Description

class: This entry specifies the Class whose instances are linked at this
end of the Association. Thisis represented by the AssociationEnd’s
“name” attribute.

multiplicity: This entry defines the AssociationEnd's “multiplicity” attribute.

This is expressed in the same way as References (i.e., uniqueness

isimplicit - see Section 3.2.1.5, “References,” on page 3-5). Note

the following:

* the OCL constraints on Multiplicity Type and AssociationEnd mean that
the “isUnique” field must be “false” if the “upper” bound is 1 and
“true” otherwise, and

* the “multiplicity” settings for an AssociationEnd and its corresponding
Reference(s) must be the same.

aggregation: This optional entry defines the AssociationEnd’s “aggregation”
attribute as one of “composite,” “shared,” or “none” (see

Section 4.7.5, “Association Aggregation,” on page 4-17). If the
entry is absent, the AssociationEnd’s “aggregation” attribute takes
the value “none.”

3.2.2.3 Derivation

The “Derivation” heading defines how a derived Association should be computed. It
may include marker for an OCL rule defined in Section 3.9.5, “ Semantic specifications
for some Operations, derived Attributes and Derived Associations,” on page 3-106.

3.2.24 IDL

The “IDL” heading shows an excerpt of the MOF Model IDL that corresponds to this
Association. These excerpts, which are part of the “Model” module given in the MOF
IDL Summary appendix, consist of an Association interface and related IDL data
types. For more information, refer to Chapter 5 - MOF to IDL Mapping.

3.2.3 DataTypes

The DataTypes that form part of the MOF Model are described in Section 3.6, “MOF
Model Data Types,” on page 3-77.

All DataTypes in the MOF Model have “visibility” of “public_vis.” The settings of the
dummy attributes are “isAbstract” - false, “isRoot” - true, and “isLeaf” - true.

The remaining characteristics are the Exception’s
®* “name” - given in the section heading,

® Container - given by the “Container” heading, and

OMG-MOF V1.3 How the MOF Model isDescribed March 2000 3-9

3-10

® “typeCode” that can be determined from the declaration under the “IDL” heading.

If the “Container” heading is absent, the DataType is contained by the Model Package.

3.2.4 Exceptions

The Exceptions that form part of the MOF Model are described in Section 3.7, “MOF
Model Exceptions,” on page 3-83.

All Exceptions in the MOF Model have “visibility” of “public_vis’ and “scope” of
“classifier_level.”

The remaining characteristics are the Exception’s
® “name” - given in the section heading, and

® Parameters and Container, which are given in the corresponding headings.

If the Container heading is absent, the Exception is contained by the Model Package.

3.2.5 Congtants

The Constants that form part of the MOF Model are described in Section 3.9, “MOF
Model Constraints,” on page 3-86.

The characteristics of a Constant are its

® “name” - given in the section heading, and

® Container - given under the “Container” heading, and

® “type’ and “value” that can be determined from the IDL.

If the “Container” heading is absent, the DataType is contained by the Model Package.

3.2.6 Congtraints

The Constraints that form part of the MOF Model are described in Section 3.9, “MOF
Model Constraints,” on page 3-86. The notation used for describing the constraints is
described in Section 3.9.2.1, “Notation for MOF Model Constraints,” on page 3-86.

3.2.7 UML Diagrams

At various points in this chapter, UML class diagrams are used to describe aspects of
the MOF Model. To understand these diagrams, the reader should mentally map from
UML modeling concepts to the equivalent MOF meta-modeling constructs.

Thereis one point in which this document’s use of UML notation requires explaining.
In standard UML notation, an arrowhead on an Association line indicates that the
Association is navigable in the direction indicated. Absence of an arrowhead can mean
either that the Association is navigable or that it is navigable in both directions,
depending on the context.

OMG-MOF V1.3 March 2000

As was explained in Section 3.2.1.5, “References,” on page 3-5, the MOF models
navigable Associations in a different way. Thus in this document, an arrowhead on one
end of an Association means that a Reference exists on the Class at the opposite end
that allows navigation in the indicated direction. If there are no arrowheads, there are
References on the Classes at both ends of the Association.

3.3 The Sructure of the MOF Model

This section gives an overview of the structure of the MOF Model.

3.3.1 The MOF Model Package

The MOF Model, asiit is currently defined, consists of a single non-nested Package
called “Model.”

The class diagram in Figure 3-1 on page 3-12 shows the Classes and Associations of

the “Model” Package. To aid readability, Class features, DataTypes, and other details
have been omitted from the diagram. These details are all specified in later sections of
this chapter.

OMG-MOF V1.3 The Sructure of the MOF Model March 2000 3-11

g pesocke+

{ppo}

o «0
kg «0
<<uodeX JJoN>> Thoe+ - LR Ko+ woieedo
«0 B—
ssabay BLOPI+ 0ueeRy <<ONQNVION>>
«0 sep aderg WOR0SSY
eI+
H 7
oS-
PUZLOIR0SSY PUFEIRRRL <
angseniug anpeporepg e
g BysED
&
B
PR el MW +0
\BuBERAeZERRD | adkors+
ange4 SIPRBY
X0 0
saediL {0}
adpedns+
ahLjos| <0
wodwy
% 0 =1 1)
70
Lewegpediy+ . Rl .0 aoeckawy
euwsRdAL SRS
0 JUBIISUOOH P
ﬁ SUBHD
Bey+

SURISUCD
T

LBUWR0BURIISU00+

0] sayeny

UOSpLedRq/

Figure3-1 The MOF Model Package

March 2000

OMG-MOF V1.3

3-12

3.3.2 The MOF Model Service IDL

The “Model” Package is used to generate the CORBA IDL for the OMG MOF Model
service using the MOF to IDL Mapping defined in the “MOF Abstract Mapping”
chapter through the “Reflective Module” chapter. Relevant fragments of the resulting
IDL is embedded in the Class, Association, DataType, and Exception descriptions in
Section 3.4, “MOF Model Classes,” on page 3-15 through Section 3.7, “MOF Model
Exceptions,” on page 3-83. The complete IDL, along with the dependent “ Reflective”
IDL may be found in the MOF IDL Summary appendix.

The IDL for the MOF Model service requires a “prefix” of “org.omg.mof.” To this end,
the “Model” Package is defined to have an “idl_prefix’ Tag with value “org.omg.mof.”

3.3.3 The MOF Model Sructure

3331

The core structure of the MOF Model is shown in the class diagram in Figure 3-2. This
diagram shows the key abstract Classes in the MOF Model and the key Associations
between them.

Key Abstract Classes

The key abstract Classes in the MOF Model are as follows:

® ModelElement - thisis the common base Class of all M3-level Classesin the MOF
Model. Every ModelElement has a “name.”

® Namespace - this is the base Class for all M3-level Classes that need to act as
containers in the MOF Model.

® GeneralizableElement - this is the base Class for all M3-level Classes that support
“generalization” (i.e., inheritance).

® TypedElement - thisis the base Class for M3-level Classes such as Attribute,
Parameter, and Constant whose definition reguires a type specification.

® Classifier - thisis the base Class for all M3-level Classes that (notionally) define
types. Examples of Classifier include Class and DataType.

OMG-MOF V1.3 The Sructure of the MOF Model March 2000 3-13

Generalizes

3-14

/DependsOn

Contains

+dependent

0..*

ModelElement

name : NameTy pe
+provider |annotation : AnnotationTy pe

+containedElement

0..* / qualifiedName : NameTy pe

verify ()

isFrozen()
findRequiredElements()
isVisible()
isRequiredBecause()

0..*
{ordered}

) Namespace
+container

0.1 look upEle ment()
resolveQualifiedN am e()
namelsValid()

findEle mentsBy Ty pe()

+subty pe

0..*
+superty pe {ordered}

GeneralizableElement

0..*

visibility : Visibility Kind
isAbstract : boolean
isRoot : boolean
isLeaf : boolean

| allSuperty pes : GeneralizableElement

lookupElementExtended()
findElementsBy Ty peExtended()

B

TypedElement

0..*
+ty pedElement

IsOfType

ty pe

A
Classifier

Figure 3-2 The Key Abstractions of the MOF Model

3.3.3.2 Key Associations

The key Associations in the MOF Model are as follows:

® Contains - this Association relates a Model Element to the Namespace that contains
it (see Section 3.3.4, “The MOF Model Containment Hierarchy,” on page 3-15).

® Generalizes - this Association relates a GeneralizableElement to its ancestors (i.e.,
supertypes) and children (i.e., subtypes) in a model element inheritance graph. Note
that a GeneralizableElement may not know about all of its subtypes.

® |sOfType - this Association relates a TypedElement to the Classifier that defines its

type.

OMG-MOF V1.3

March 2000

® DependsOn - this derived Association relates a Model Element to others that its
definition depends on. (It is derived from Contains, Generalizes, |sOfType, and
other Associations not shown here.)

3.3.4 The MOF Model Containment Hierarchy

The most important relationship in the MOF Model is the Contains Association.
Containment is a utility Association that isused to relate (for example) Classes to their
Operations and Attributes, Operations to their Parameters and so on. While the class
diagram shows that only Model Element objects which are subtypes of Namespace can
contain any other ModelElements, the MOF Model restricts the legal containments to
eliminate various nonsensical and problematical cases.

Table 3-5 defines the legal ModelElement containments in matrix form. The row
headings list al non-abstract subtypes of Namespace (i.e., possible containers) and the
column headings list all non-abstract ModelElements (i.e., possible contained
elements). For each combination of container and contained, the corresponding table
cell is either “Y” showing that containment is legal or “N” showing that it is not.

Table 3-5 The ModelElement Containment Matrix

©
c
c () c c = L = — :@
o 8/ S| ¢/ 38| 6|68 | =< R
g 8o =5 3258% 32 8888 g
S| = | ®| 8| | 0| 5| Q| 8 ®| B| c| o] -
& O — — o o — [o
o g 3 2T 2% 55 38 6 3 &
o g <je|ojuia glo 9 F
<
Package Y/Y|Y|IN|N|/N/ N/ Y| N|N|Y|Y | INI|Y
Class N Y |Y|N|Y|Y|Y|Y NI N|Y|Y|N]|Y
DataType NIN/N|N| N|N|/N/N|N|NJY | N|Y]|Y
Association | N [N [N [N [N N[N |N|N|Y |Y|N|N]|Y
Operation NIN/N|N| N|N|I/N/N|Y | NJY|N|N]|Y
Exception N|IN|IN| NN N NINJY|N|N|N|N] Y
3.4 MOF Modd Classes
3.4.1 Mode Element abstract

Model Element classifies the elementary, atomic constructs of models. ModelElement is
the root Class within the MOF Model.

OMG-MOF V1.3 MOF Model Classes March 2000 3-15

Super Classes

None. (While the CORBA IDL for ModelElement inherits from Reflective::RefObject,
this is not generalization in the MOF Model sense. Rather it is an artifact of the IDL

mapping.)
Attributes

name

Provides a meta-modeler supplied name that uniquely identifies the M odel Element
in the context of the Model Element’s containing Namespace. When choosing a
ModelElement’s name, the meta-modeler should consider the rules for translating
names into identifiers in the relevant mappings (e.g., Section 5.7.1, “Generated
IDL Identifiers,” on page 5-39).

type: NameType
multiplicity: exactly one
annotation

Provides an informal description of the ModelElement..

type: AnnotationType
multiplicity: exactly one
gualifiedName

Provides a unique name for the Model Element within the context of its outermost
containing Package. The qualifiedName is alist of NameType values consisting of
the names of the ModelElement, its container, its container’s container and so on
until a non-contained element is reached. The first member of thelist is the name
of the non-contained element.

type: NameType

multiplicity: one or more; ordered; non-unique
changeable: no

derived from: [S-12]

3-16 OMG-MOF V1.3 March 2000

References

container

Identifies the Namespace that contains the M odelElement. Since the Contains
Association is a Composite Association, any Model Element can have at most one
container, and the containment graph is strictly tree shaped.

type: Namespace

defined by: Contains::container
multiplicity: Zero or one

inverse: ModelElement::contents

requiredElements

Identifies the M odel Elements on whose definition the definition of this
ModelElement depends. For a definition of dependency, see Section 3.5.9,
“DependsOn,” on page 3-74.

type: ModelElement
defined by: DependsOn::provider
multiplicity: Zero or more
constraints
Identifies the set of Constraints that apply to the ModelElement. A Constraint
applies to all instances of the ModelElement and its sub-Classes.
type: Constraint
multiplicity: Zero or more
inverse: Constraint::constrainedElements.
defined by: Constrains::provider

OMG-MOF V1.3 MOF Model Classes March 2000 3-17

Operations

verify

Each ModelElement is capable of checking its own correctness, as defined by the
inherent properties of meta-models described in this specification, and constraints
that hold over the Model Element. The client of the operation specifies whether the
operation should propagate to any ModelElements that this Model Element might
contain (if it is capable of containing elements), or whether it should return after
only checking itself. The verify operation checks inherent constraints on the object
and its attributes plus any constraints contained by the object. The operation
returns valid if al verification checks passed; otherwise, it returnsinvalid. A
parameter returns representations of any constraint violations detected. If the
operation returns invalid, this parameter must not be empty. When the depth
argument is deep, and this element (and, by definition, all its dependent elements)
are published, the operation returns published.

return type: VerifyResultKind

parameters: depth: in DepthKind

violations: out ViolationType (multiplicity: zero or
more; unique)

isQuery: yes

isFrozen

Reports the freeze status of a ModelElement. A ModelElement, at any particular
time, is either frozen or not frozen. All ModelElements of a published model are
permanently frozen.

return type: boolean

isQuery: yes

3-18 OMG-MOF V1.3 March 2000

findRequiredElements

Supports selecting a subset of the M odel Elements that this one depends on, based
on their dependency categories. The “kinds’ argument gives a bag of
DependencyKinds that are of interest to the caller. String constants for the
standard dependency categories are given in Section 3.8, “MOF Model
Constants,” on page 3-85 and their meanings are defined in Section 3.5.9,
“DependsOn,” on page 3-74. In this context, the AlIDep pseudo-category (i.e.,
“all™) is equivalent to passing all of the standard categories in the “kinds’
argument, and the IndirectDep pseudo-category (i.e., “indirect”) is ignored.

If the “recursive” argument is “false”, the operation return the direct dependents
only. If itis“true” all dependents in the transitive closure of the specified “kinds”
are returned.

return type: ModelElement (multiplicity: zero or more; unordered,
unique)

isQuery: yes

parameters: kinds: in DependencyKind (multiplicity: one or more;

unordered; unique)

recursive: in boolean

operation semantics [S-4]

isVisible

Returns true. This operation is reserved for future use when the MOF visibility
rules have stabilized. Then it will determine whether the supplied otherElement is
visible to this Model Element.

return type: boolean

isQuery: yes

parameters: otherElement: in Model Element
operation semantics [S-3]

OMG-MOF V1.3 MOF Model Classes March 2000

3-19

isRequiredBecause

This operation performs two functions:

* It checks whether this ModelElement directly or indirectly depends on the
Model Element given by “otherElement”. If it does, the operation’s result is “true;”
otherwise, it is “false.”

* If adependency exists (i.e., theresult is “true”), the operation returns a DependencyKind
in “reason” that categorizes the dependency. String constants for the DependencyKind
categories are given in Section 3.8, “MOF Model Constants,” on page 3-85 and their
meanings are defined in Section 3.5.9, “DependsOn,” on page3-74. If the dependency is
indirect, IndirectDep is returned. If there are multiple dependencies, any category that
applies may be returned in “reason.” If no dependencies exist, an empty string is
returned in “reason.”

return type: boolean
isQuery: yes
parameters: otherElement: in Model Element
reason: out DependencyKind
operation semantics [S-5]
Constraints

[A ModelElement that is not a Package must have a container. [C-1]]
[The attribute values of a ModelElement which is frozen cannot be changed. [C-2]]

[A frozen ModelElement which isin a frozen Namespace can only be deleted, by
deleting the Namespace. [C-3]]

[The link sets that express dependencies of a frozen Element on other Elements cannot
be explicitly changed. [C-4]]

IDL

interface ModelElementClass : Reflective::RefObject {

3-20

readonly attribute ModelElementUList all_of_type_model_element;

const string MUST_BE_CONTAINED_UNLESS_PACKAGE =
"org.omg.mof:constraint.model.model_element.must_be_contained_unless_package";

const string FROZEN_ATTRIBUTES_CANNOT_BE_CHANGED =
"org.omg.mof:constraint.model.model_element.frozen_attributes_cannot_be_changed";

const string FROZEN_ELEMENTS_CANNOT_BE_DELETED =
"org.omg.mof:constraint.model.model_element.frozen_elements_cannot_be_deleted";

const string FROZEN_DEPENDENCIES_CANNOT_BE_CHANGED =
"org.omg.mof:constraint.model.model_element.frozen_dependencies_cannot_be_changed";

typedef string DependencyKind;

typedef sequence <::Model::ModelElementClass::DependencyKind>DependencyKindSet;

const DependencyKind CONTAINER_DEP = "container";

const DependencyKind CONTENTS_DEP = "contents";

const DependencyKind SIGNATURE_DEP = "signature";

const DependencyKind CONSTRAINT_DEP = "constraint";

const DependencyKind CONSTRAINED_ELEMENTS_DEP = "constrained elements";

OMG-MOF V1.3 March 2000

const DependencyKind SPECIALIZATION_DEP = "specialization";

const DependencyKind IMPORT_DEP = "import";

const DependencyKind TYPE_DEFINITION_DEP = "type definition";

const DependencyKind REFERENCED_ENDS_DEP = "referenced ends";

const DependencyKind TAGGED_ELEMENTS_DEP = "tagged elements";

const DependencyKind INDIRECT_DEP = "indirect";

const DependencyKind ALL_DEP ="all";

enum VerifyResultKind {valid, published, invalid};

enum DepthKind {shallow, deep};

struct ViolationType {

string error_kind;

Reflective::RefObject element_in_error;

Reflective::NamedValueList values_in_error;

string error_description;

k

typedef sequence <::Model::ModelElementClass::ViolationType> ViolationTypeSet;
}; 1/ end of interface ModelElementClass

interface ModelElement : ModelElementClass {

NameType name ()
raises (Reflective::MofError);

void set_name (in NameType new_value)
raises (Reflective::MofError);

NameTypeList qualified_name ()
raises (Reflective::MofError);

AnnotationType annotation ()
raises (Reflective::MofError);

void set_annotation (in AnnotationType new_value)
raises (Reflective::MofError);

ModelElementSet required_elements ()
raises (Reflective::MofError);

ModelElementSet find_required_elements (

in ModelElementClass::DependencyKindSet kinds,
in boolean recursive)

raises (Reflective::MofError);

boolean is_required_because (in ModelElement other_element,

out ModelElementClass::DependencyKind reason)

raises (Reflective::MofError);

Namespace container ()
raises (Reflective::NotSet, Reflective::MofError);

void set_container (in Namespace new_value)
raises (Reflective::MofError);

void unset_container ()
raises (Reflective::MofError);

ConstraintSet constraints ()
raises (Reflective::MofError);

void set_constraints (in ConstraintSet new_value)
raises (Reflective::MofError);

void add_constraints (in Constraint new_element)
raises (Reflective::MofError);

void modify_constraints (in Constraint old_element, in Constraint new_element)
raises (Reflective::MofError);

void remove_constraints (in Constraint old_element)
raises (Reflective::NotFound, Reflective::MofError);

ModelElementClass::VerifyResultKind verify (

OMG-MOF V1.3 MOF Model Classes March 2000 3-21

3-22

in ModelElementClass::DepthKind depth,
out ModelElementClass::ViolationTypeSet problems)
raises (Reflective::MofError);
boolean is_frozen ()
raises (Reflective::MofError);
boolean is_visible (in ModelElement other_element)
raises (Reflective::MofError);

3.4.2 Namespace abstract

The Namespace Class classifies and characterizes Model Elements that can contain
other ModelElements. Along with containing the M odel Elements, a Namespace
defines a namespace, the allowable set of names and the naming constraints, for these
elements.

Subclasses of the Namespace Class have mechanisms for effectively extending their
namespace, without actually containing additional M odelElements. Thus Namespace
can be viewed in terms of its two roles, as a container and as a namespace mechanism.
Because only subclasses extend the namespace, the namespace and contents are
coincident in the definition of the Namespace Class. Each Namespace has four
collections (the latter three derivable) that are used in the MOF Model’s Constraints.
These collections are:

® The contents (also called the direct contents), which are defined by the contents
reference.

* All contents, the transitive closure on the contents reference.

® The extended namespace (the contents plus elements included by extension), which
Namespace subclasses accomplish through generalization and importation.

® The extended contents (the transitive closure on the contents reference applied to
the extended namespace).

The definitions of these collections may be found in Section 3.9.6, “OCL Helper
functions,” on page 3-111.

SuperClasses

M odel Element

References

contents

Identifies the set of Model Elements that a Namespace contains.

class: Model Element

OMG-MOF V1.3 March 2000

defined by: Contains::containedElement

multiplicity: zero or more; ordered

inverse: M odelElement::container
Operations

lookupElement

Searches for an element contained by this Namespace whose name is precisely
equal (as a string) to the supplied name. The operation either returns a
ModelElement that satisfies the above, or raises the NameNotFound exception.

return type: M odel Element
isQuery: yes

parameters: name : in NameType
exceptions: NameNotFound
operation semantics: [S-6]

resolveQualifiedName

Searches for a ModelElement contained within this Namespace that is identified
by the supplied qualifiedName. The qualifiedName is interpreted as a “ path”
starting from this Namespace.

return type: ModelElement (exactly one). If no element is found,
an exception is raised.

isQuery: yes

parameters: qualifiedName : in NameType (multiplicity one or
more; ordered; not unique)

exceptions: NameNotResolved

operation semantics:

[S-7]

namel svalid

Determines whether the proposedName can be used as the name for a new
member Model Element in this Namespace. Specifically, it checks that the
Namespace uniqueness rules would still be satisfied after adding such a name.

return type: boolean
isQuery: yes
parameters: proposedName : in NameType

operation semantics:

[S-8]

OMG-MOF V1.3 MOF Model Classes March 2000

3-23

findElementsByType

Returns all the Model Elements identified by the contents reference defined for this
Namespace that are of the Class supplied. The returned list of ModelElementsis a
subset of the Model Elements contained by this Namespace. This operation can
either return only those Model Elements that exactly match the specified class or
those Model Elements that are instances of the specified class and one or more of
its subclasses.

Because Model Element is an abstract class, invoking this operation with the

of Type argument specified as M odel Element and the includeSubtypes argument
set to false returns an empty list. Because ModelElement is the base type for all
instances that can be contained by a Namespace, invoking the operation with the
of Type argument specified as M odel Element, and includeSubtypes set to true,
returns al the contained elements of the Namespace.

return type: ModelElement (multiplicity zero or more; ordered,;
unique)
isQuery: yes
parameters: of Type : in Class
includeSubtypes : in boolean
operation semantics: [S-9]
Constraints

[The names of the contents of a Namespace must not collide. [C-5]]

IDL

interface NamespaceClass : ModelElementClass {

readonly attribute NamespaceUList all_of_type_namespace;

const string CONTENT_NAMES_MUST_NOT_COLLIDE =
"org.omg.mof:constraint.model.namespace.content_names_must_not_collide";

exception NameNotFound {

b

NameType name;

exception NameNotResolved {

}

string explanation;

NameTypelList rest_of_name;

}; Il end of interface NamespaceClass

interface Namespace : NamespaceClass, ModelElement {
ModelElementUList contents ()

3-24

raises (Reflective::MofError);
void set_contents (in ModelEl
raises (Reflective::MofError);
void add_contents (in ModelE

ementUList new_value)

lement new_element)

OMG-MOF V1.3 March 2000

raises (Reflective::MofError);
void add_contents_before (in ModelElement new_element,
in ModelElement before_element)
raises (Reflective::NotFound, Reflective::MofError);
void modify_contents (in ModelElement old_element,
in ModelElement new_element)
raises (Reflective::NotFound, Reflective::MofError);
void remove_contents (in ModelElement old_element)
raises (Reflective::NotFound, Reflective::MofError);

ModelElement lookup_element (in NameType name)

raises (NamespaceClass::NameNotFound, Reflective::MofError);
ModelElement resolve_qualified_name (in NameTypelList qualified_name)

raises (NamespaceClass::NameNotResolved, Reflective::MofError);
ModelElementUList find_elements_by_type (in Class of_type,

in boolean include_subtypes)

raises (Reflective::MofError);
boolean name_is_valid (in NameType proposed_name)

raises (Reflective::MofError);

b

3.4.3 GeneralizableElement abstract

The GeneralizableElement Class classifies and characterizes Model Elements that can
be generalized through supertyping and specialized through subtyping. A
GeneralizableElement inherits the features of each of its supertypes, the features of the
supertypes of the immediate supertypes, and so on (in other words all the features of
the transitive closure of all the supertypes of the GeneralizableElement).

When a GeneralizableElement inherits a feature, that feature name effectively becomes
part of the namespace for the GeneralizableElement and the feature is considered part
of the extended namespace of the Namespace. Therefore, a Generalizabl eElement
cannot have asuperclass if it causes an inherited feature to have a namespace collision
with its own features - see Constraint -- [The names of the contents of a
GeneralizableElement should not collide with the names of the contents of any direct
or indirect supertype. [C-8]].

To the degree that a GeneralizableElement is defined by its features, the
superclass/subclass association defines substitutability. Any instance of a
GeneralizableElement can be supplied wherever an instance of a superclass of that
GeneralizableElement is expected.

Super Classes

Namespace

OMG-MOF V1.3 MOF Model Classes March 2000 3-25

Attributes

visibility

In the future, this Attribute will be used to limit the ability of ModelElements
outside of this GeneralizableElement’s container to depend on it; see

Section 3.6.6, “VisibilityKind,” on page 3-79. The rules of visibility of MOF
ModelElements are not currently specified.

type: VisibilityKind
multiplicity: exactly one
isAbstract

Indicates whether the GeneralizableElement is expected to have instances. When
isAbstract is true, any instance that is represented or classified by this
GeneralizableElement is additionally an instance of some specialization of this
GeneralizableElement. No operation that supports creation of instances of this
GeneralizableElement should be available.

type: boolean
multiplicity: exactly one
isRoot

Specifies whether the GeneralizableElement may have supertypes. True indicates
that it may not have supertypes, false indicates that it may have supertypes
(whether or not it actually has any)

type: boolean
multiplicity: exactly one
isL eaf

Specifies whether the GeneralizableElement may be a supertype of another
Generalizable Element. True indicates that it may not be a supertype, false
indicates that it may be a supertype (whether or not it actudly is).

type: boolean
multiplicity: exactly one
3-26 OMG-MOF V1.3 March 2000

References

supertypes

Identifies the set of superclasses for a GeneralizableElement. Note that a
GeneralizableElement does not have a reference to its subclasses.

class: GeneralizableElement
defined by: Generalizes::supertype
multiplicity: zero or more; ordered
Operations
allSupertypes

Returns a list of direct and indirect supertypes of this GeneralizableElement. A
direct supertype is a GeneralizableElement that directly generalizes this one. An
indirect supertype is defined (recursively) as a supertype of some other direct or
indirect supertype of the GeneralizableElement. The order of the list elementsis
determined by a depth-first traversal of the supertypes with duplicate elements
removed.

return type: GeneralizableElement (multiplicity zero or more,
ordered, unique)

isQuery: yes

parameters: none

operation semantics: [S-1]

lookupElementExtended

Returns an element whose name matches the supplied “name.” Like the
“lookupElement” operation on Namespace, this operation searches the contents of
the GeneralizableElement. In addition, it triesto match the name in the contents of
all direct and indirect supertypes of the GeneralizableElement. For Packages, a
subclass of GeneralizableElement, the operation can also match a Namespace
associated with an Import objects. NameNotFound is raised if no element matches
the name.

return type: ModelElement (multiplicity exactly one)
isQuery: yes

parameters: name : in NameType

exceptions NameNotFound

operation semantics: [S-10]

OMG-MOF V1.3 MOF Model Classes March 2000

3-27

findElementsByTypeExtended

Provides an extension of the findElementsByType defined for Namespace so that
contained elements of all superclasses (direct and indirect) of the
GeneralizableElement are included in the search. The order of the returned
elements is determined by the order of the elements contained in the
GeneralizableElements and a depth-first traversal of the superclasses.

Subclasses can include alarger overall area for the lookup. Package, a sub class of
GeneralizableElement, also considers the elements brought into this Namespace
through the use of Import.

return type: ModelElement (multiplicity zero or more; ordered,;
unique)
isQuery: yes
parameters: of Type : in Class
includeSubtypes : in boolean
operation semantics: [S-11]
Constraints

[A Generalizable Element cannot be its own direct or indirect supertype. [C-6]]

[A supertypes of a GeneralizableElement must be of the same kind as the
GeneralizableElement itself. [C-7]]

[The names of the contents of a GeneralizableElement should not collide with the
names of the contents of any direct or indirect supertype. [C-8]]

[Multiple inheritance must obey the “Diamond Rule”. [C-9]]

[If a Generalizable Element is marked as a “root”, it cannot have any supertypes.
[C-10]]

[A GeneralizableElement’s immediate supertypes must all be visible to it. [C-11]]

[A GeneralizableElement cannot inherit from a GeneralizableElement defined as a
“leaf”. [C-12]]

IDL

interface GeneralizableElementClass : NamespaceClass {

readonly attribute GeneralizableElementUList

all_of_type_generalizable_element;

const string SUPERTYPE_MUST_NOT_BE_SELF =
"org.omg.mof:constraint.model.generalizable_element.supertype_must_not_be_self";

const string SUPERTYPE_KIND_MUST_BE_SAME =
"org.omg.mof:constraint.model.generalizable_element.supertype_kind_must_be_same";

const string CONTENTS_MUST_NOT_COLLIDE_WITH_SUPERTYPES
"org.omg.mof:constraint.model.generalizable_element”

3-28 OMG-MOF V1.3 March 2000

“.contents_must_not_collide_with_supertypes";
const string DIAMOND_RULE_MUST_BE_OBEYED =

"org.omg.mof:constraint.model.generalizable_element.diamond_rule_must_be_obeyed";

const string NO_SUPERTYPES_ALLOWED_FOR_ROOT =

"org.omg.mof:constraint. model.generalizable_element.no_supertypes_allowed_for_root";

const string SUPERTYPES_MUST_BE_VISIBLE =

"org.omg.mof:constraint. model.generalizable_element.supertypes_must_be_visible";

const string NO_SUBTYPES_ALLOWED_FOR_LEAF =

"org.omg.mof:constraint. model.generalizable_element.no_subtypes_allowed_for_leaf";

}; I/ end of interface GeneralizableElementClass

interface GeneralizableElement : GeneralizableElementClass, Namespace {
boolean is_root ()
raises (Reflective::MofError);
void set_is_root (in boolean new_value)
raises (Reflective::MofError);
boolean is_leaf ()
raises (Reflective::MofError);
void set_is_leaf (in boolean new_value)
raises (Reflective::MofError);
boolean is_abstract ()
raises (Reflective::MofError);
void set_is_abstract (in boolean new_value)
raises (Reflective::MofError);
VisibilityKind visibility ()
raises (Reflective::MofError);
void set_visibility (in VisibilityKind new_value)
raises (Reflective::MofError);
GeneralizableElementUList supertypes ()
raises (Reflective::MofError);
void set_supertypes (in GeneralizableElementUList new_value)
raises (Reflective::MofError);
void add_supertypes (in GeneralizableElement new_element)
raises (Reflective::MofError);
void add_supertypes_before (in GeneralizableElement new_element,
in GeneralizableElement before_element)
raises (Reflective::NotFound, Reflective::MofError);
void modify_supertypes (in GeneralizableElement old_element,
in GeneralizableElement new_element)
raises (Reflective::NotFound, Reflective::MofError);
void remove_supertypes (in GeneralizableElement old_element)
raises (Reflective::NotFound, Reflective::MofError);
GeneralizableElementUList all_supertypes ()
raises (Reflective::MofError);
ModelElement lookup_element_extended (in NameType name)
raises (NameNotFound, Reflective::MofError);
ModelElementUList find_elements_by_type_extended (in Class of_type,
in boolean include_subtypes)
raises (Reflective::MofError);

OMG-MOF V1.3 MOF Model Classes March 2000

3-29

3.4.4 TypedElement abstract

The TypedElement type is an abstraction of Model Elements that require a type as part
of their definition. A TypedElement does not itself define atype, but is associated with
a Classifier.

SuperClasses

M odel Element

References

type
Provides the representation of the type supporting the TypedElement through this
reference.
class: Classifier
defined by: IsOf Type::type
multiplicity: exactly one

TypedElerment
GeneralizableElement 0.*
+ty pedElement
Classifier *type IsOfType
4& 1
DataTy pe Class
typeCode : Ty peDescriptor isSingleton : boolean

Figure 3-3 MOF Model Classifiers

3-30 OMG-MOF V1.3 March 2000

Constraints
[An Association cannot be the type of a TypedElement. [C-13]]

[A TypedElement can only have a type that is visible to it. [C-14]]

IDL

interface TypedElementClass : ModelElementClass {
/I get all typed_element including subtypes of typed_element
readonly attribute TypedElementUList all_of_type_typed_element;
const string ASSOCIATIONS_CANNOT_BE_TYPES =
"org.omg.mof:constraint. model.typed_element.associations_cannot_be_types";
const string TYPE_MUST_BE_VISIBLE =
"org.omg.mof:constraint. model.typed_element.type_must_be_visible";

}; I end of interface TypedElementClass

interface TypedElement : TypedElementClass, ModelElement {
Classifier type ()
raises (Reflective::MofError);
void set_type (in Classifier new_value)
raises (Reflective::MofError);

b

3.45 Classifier abstract

A classifier provides a classification of instances through a set of Features it contains.

SuperClasses
Generalizabl eElement

IDL

interface ClassifierClass : GeneralizableElementClass {
readonly attribute ClassifierUList all_of_type_classifier;
}; 1/ end of interface ClassifierClass

interface Classifier : ClassifierClass, GeneralizableElement { };

3.4.6 Class

A Class defines a classification over a set of object instances by defining the behavior
they exhibit. This behavior is represented through operations, attributes, references,
participation in associations, nested classes, constants, and constraints. Although the
same or similar elements are used in other environments for representing Classes and
their implementations, in the MOF these elements specify the class characteristics in
an implementation-independent manner. For instance, defining a Class as having an
attribute does not require the implementation of the Class (the software which provides
the conformant behavior) to have an attribute, to hold the attribute value, etc. The

OMG-MOF V1.3 MOF Model Classes March 2000 3-31

implementation simply must insure that the behavior conforms to the definition of the
attribute. The use of al the additional elements beyond operations provides a much
richer environment for defining Class behavior. Likewise, this construct is not an
interface. Its expressibility goes beyond interface representations. The MOF's IDL
translation capabilities map a single Class onto two interfaces. It would be possible to
define transformations to alternate interface representations, such as Java's interfaces.

There are, and probably always will be, divergent views among industry leaders on the
definition of the concepts of Class Type, and Interface. As a domain-specific modeling
environment, so long as the MOF is clear about the meaning of Class within the MOF,
it should remain immune from such concerns.

SuperClasses

Classifier

Contained Elements

Class, DataType, Attribute, Reference, Operation, Exception, Constraint, Constant, Tag
-- see [A Class may contain only Classes, DataTypes, Attributes, References,
Operations, Exceptions, Constraints and Tags. [C-15]].

Attributes

isSingleton

When isSingleton is true, at most one M1 level instance of this Class may exist
within the M1-level extent of the Class.

type: boolean
multiplicity: exactly one
Constraints

[A Class may contain only Classes, DataTypes, Attributes, References, Operations,
Exceptions, Constraints and Tags. [C-15]]

[A Class that is marked as abstract cannot also be marked as singleton. [C-16]]

IDL

interface ClassClass : ClassifierClass {
readonly attribute ClassUList all_of_type_class;
readonly attribute ClassUList all_of_class_class;
const string CLASS_CONTAINMENT_RULES =
"org.omg.mof:constraint. model.class.class_containment_rules";
const string ABSTRACT_CLASSES_CANNOT_BE_SINGLETON =
"org.omg.mof:constraint.model.class.abstract_classes_cannot_be_singleton";

3-32 OMG-MOF V1.3 March 2000

Class create_class (
[*from ModelElement */ in ::Model::NameType name,
[*from ModelElement */ in ::Model::AnnotationType annotation,
[* from GeneralizableElement */in boolean is_root,
[* from GeneralizableElement */ in boolean is_leaf,

[* from GeneralizableElement */in boolean is_abstract,

/* from GeneralizableElement */ in ::Model::VisibilityKind visibility,

}; 1/ end of interface ClassClass

/* from Class */

in boolean is_singleton)

raises (Reflective::MofError);

interface Class : ClassClass, Classifier {

boolean is_singleton ()

raises (Reflective::MofError);
void set_is_singleton (in boolean new_value)
raises (Reflective::MofError);

3.4.7 DataType

The DataType model element is primarily used to represent M OF data types and native
types, as classified and described in Section 4.2, “MOF Values,” on page 4-2. The type
information in a DataType is currently represented as a CORBA TypeCode, which has
an encoding that is self-contained, transmissible, and relatively compact. Datarypes are
also used to represent the type of a non-aggregate Attribute whose effective type is a
Class.

The types represented by DataTypes fall into two groups:

1. A DataTypethat requires an IDL declaration must have a“name,” which mapsto an
IDL identifier.

2. A DataType that does not require an IDL declaration must have a“name” that starts
with a“*” character. Such a DataType can be further classified as

< a DataType for an anonymous CORBA data type (e.g., “boolean,” “char,” and so
on),

« a DataType that denotes a non-aggregate Class (i.e., one whose “typeCode” has
kind of tk_objRef and that has a TypeAlias linkage to a Class - see Section 3.4.8,
“TypeAlias,” on page 3-35), or

» aDataType that denotes a named external CORBA interface or data type (e.g., a
use of a CORBA type defined in the Interface Repository). External anonymous
data types cannot be used.

In the last case, the IDL mapping relies on the DataType's “typeCode” having a
repositoryld that can be translated into a qualified name for the type.

Note — TypeCodes in a DataType are restricted to those supported by CORBA 2.2.
(This restriction may be removed in a future revision of this document.) Furthermore,
TypeCodes with kind of tk_null, tk_void, tk_principal and tk_except may not be used.

OMG-MOF V1.3 MOF Model Classes March 2000 3-33

Super Classes

Classifier

Contained Elements

TypeAlias, Constraint, Tag -- see [A DataType may contain only TypeAliases,
Constraints and Tags. [C-17]].

Attributes

typeCode

This attribute uses a CORBA TypeCode type to encode a DataType's type
information. The TypeCode value should be such that the obvious 1-to-1 mapping
between a TypeCode and IDL text applies. For example:

* <tk _boolean> should denote “boolean,” and

* <tk_alias(‘ Foo',<tk_boolean>)> should denote “typedef boolean Foo.”

type: TypeDescriptor
multiplicity: exactly one
Constraints

[A DataType may contain only TypeAliases, Constraints and Tags. [C-17]]

[The typeCode of a DataType must denote a CORBA 2.2 compliant object type or data

type. [C-18]]
[Inheritance / generalization is not applicable to DataTypes. [C-19]]

[A DataType cannot be abstract. [C-20]]

IDL

interface DataTypeClass : ClassifierClass {
readonly attribute DataTypeUList all_of_type_data_type;
readonly attribute DataTypeUList all_of_class_data_type;
const string DATA_TYPE_CONTAINMENT_RULES =

"org.omg.mof:constraint.model.data_type.data_type_containment_rules";

const string THIS_TYPECODE_NOT_SUPPORTED =

"org.omg.mof:constraint.model.data_type.this_typecode_not_supported”;

const string DATA_TYPES_HAVE_NO_SUPERTYPES =

"org.omg.mof:constraint. model.data_type.data_types_have_no_supertypes";

const string DATA_TYPES_CANNOT_BE_ABSTRACT =

DataType create_data_type (
/* from ModelElement */in ::Model::NameType name,
[* from ModelElement */in ::Model::AnnotationType annotation,

3-34

"org.omg.mof:constraint. model.data_type.data_types_cannot_be_abstract";

OMG-MOF V1.3 March 2000

/* from GeneralizableElement */in boolean is_root,
/* from GeneralizableElement */in boolean is_leaf,
[* from GeneralizableElement */in boolean is_abstract,
[* from GeneralizableElement */in ::Model::VisibilityKind visibility,
/* from DataType */in TypeDescriptor type_code)
raises (Reflective::MofError);
}; 1/ end of interface DataTypeClass

interface DataType : DataTypeClass, Classifier {
TypeDescriptor type_code ()
raises (Reflective::MofError);
void set_type_code (in TypeDescriptor new_value)
raises (Reflective::MofError);

3.4.8 TypeAlias

A TypeAlias is used to relate an embedded use of atype within a DataType to the
Classifier that defines it. This isillustrated in Figure 3-4, which shows how a non-
aggregate Class-valued Attribute would be represented in an M OF meta-model.

C1:Class Al : Attribute
name = “MyClass’ name = “myAttr”
type
1sOf Type 1sOf Type
type
TA1: TypeAlias D1 : Datalype
name = “local:tal” Contains name = “*anon-1"
typeCode =
\ <objRef(“MyClass’, “local:tal”)>
\ 7
~ ~

Figure3-4 A TypeAlias relates a Classifier and its use in a DataType

As Section 3.4.11, “Attribute,” on page 3-39describes, the type of a non-aggregate
Class-valued Attribute is represented by a DataType with an “objRef” TypeCode. This
is shown on the right hand side of Figure 3-4. Notice that D1's “typeCode” valueis an
“objRef” TypeCode with two components. The first component is a simple name for
the Class, and the second is the repositoryld value for the TypeCode. While a
repositoryld with the “local” syntax has been used here, any legal repositoryld syntax
may be used.

OMG-MOF V1.3 MOF Model Classes March 2000 3-35

The linkage from the use of a Classifier within the typeCode of a DataType has to be
made by a round-about route. Any DataType instance may “contain” one or more
TypeAlias instances, each of which has a “name” and a “type.” When the “name” of a
TypeAliasis equal to arepositoryld inthe DataType s “typeCode,” the Classifier that is
the TypeAlias “type” is the one that defines the TypeCode that the repositoryld
belongs to.

If a TypeAlias related repositoryld belongs to a TypeCode that is embedded in the

DataType's “typeCode,” this means that the Classifier it relates to defines a component

of the DataType (e.g., a member type of a struct or the content type of an array). A
complex DataType may contain multiple TypeAliases.

SuperClasses

TypedElement

IDL

interface TypeAliasClass : TypedElementClass {
readonly attribute TypeAliasUList all_of_type_type_alias;
readonly attribute TypeAliasUList all_of_class_type_alias;

TypeAlias create_type_alias (
/* from ModelElement */
/* from ModelElement */

raises (Reflective::MofError);

in ::Model::NameType name,
in ::Model::AnnotationType annotation)

}; I end of interface TypeAliasClass

interface TypeAlias : TypeAliasClass, TypedElement {};

); // end of interface TypeAlias

3-36

3.4.9 Feature abstract

A Feature defines a characteristic of the Model Element that contains it. Specifically,
Classifiers are defined largely by a composition of Features. The Feature Class and its
sub-Classes are illustrated in Figure 3-5.

OMG-MOF V1.3 March 2000

fomasab [

a W Jak]
X = it = rin'n il ik GETEEN I . ACEeRE BN T
- | r 58] et gt s
= f Cha T
i d - LB
|

Figure3-5 Feature Classes of the MOF Model

Super Classes

M odel Element

Attributes

visibility

In the future, this Attribute will be used to limit the ability of ModelElements
outside of this Feature’s container to make use of it; see Section 3.6.6,
“VisibilityKind,” on page 3-79. The rules of visibility of MOF ModelElements are
not currently specified.

type: VisibilityKind
multiplicity: exactly one
scope

The scope defines whether a Feature supports the definition of instances of the
Classifier owning the Feature or of the Classifier as a whole. When scope is
instancel evel, the Feature is accessed through instances of the Feature's owning
Classifier; when scope is classifier, the Feature is accessed through the Classifier
itself (or through its instances). For Structural Features, a scope of instancel evel
indicates that a value represented by the Structural Feature is associated with each
instance of the Classifier; a scope of classifierLevel indicates that the

Structural Feature value is shared by the Classifier and dl its instances.

type: ScopeKind

multiplicity: exactly one

OMG-MOF V1.3 MOF Model Classes March 2000 3-37

IDL

interface FeatureClass : ModelElementClass {
readonly attribute FeatureUList all_of_type_feature;
}; 1/ end of interface FeatureClass

interface Feature : FeatureClass, ModelElement {

ScopeKind scope ()
raises (Reflective::MofError);

void set_scope (in ScopeKind new_value)
raises (Reflective::MofError);

VisibilityKind visibility ()
raises (Reflective::MofError);

void set_visibility (in VisibilityKind new_value)
raises (Reflective::MofError);

3.4.10Sructural Feature abstract

A Structural Feature defines a static characteristic of the M odel Element that contains it.
The attributes and references of a Class define structura properties, which provide for
the representation of the state of its instances.

Super Classes

Feature, TypedElement

Attributes

multiplicity

Multiplicity defines constraints on the collection of instances or values that a
Structural Feature can hold. Multiplicity defines a lower and upper bound to the
cardinality of the collection, although the upper bound can be specified as
Unbounded. Additionally multiplicity defines two other characteristics of the
collection: 1) a constraint on collection member ordering, and 2) a constraint on
collection member uniqueness.

Specificaly, Multiplicity contains an isOrdered field. When isOrdered istrue, then
the ordering of the elements in the set are preserved. Typically, a mechanism is
provided for adding elements to the collection positionally. Multiplicity also has
an isUnique field. When isUniqueis true, then the collection is constrained to hold
no more than one of any value or instance.

type: MultiplicityType

multiplicity: exactly one

3-38 OMG-MOF V1.3 March 2000

isChangeable

The isChangeabl e attribute places restrictions on the use of certain operations,
which could change the set of values or instances of the Structural Feature, and on
the operations that will get generated in IDL or other language generation. For any
elaboration, no means are automatically created which provides a means of
altering the attribute value. When IDL is generated, for instance, the operations,
which are normally generated for changing the Structural Feature, will not be
generated. However, isChangeable does not actually constrain the

Structural Feature to make it immutable. Any operations explicitly defined in a
model may change the Structural Feature values or instances (assuming the
operation would have otherwise been able to do so).

type: boolean
multiplicity: exactly one
IDL

interface StructuralFeatureClass : FeatureClass, TypedElementClass {
readonly attribute StructuralFeatureUList all_of_type_structural_feature;
}; /l end of interface StructuralFeatureClass

interface StructuralFeature : StructuralFeatureClass, Feature, TypedElement {
Multiplicity Type multiplicity ()
raises (Reflective::MofError);
void set multiplicity (in MultiplicityType new_value)
raises (Reflective::MofError),
boolean is_changeable ()
raises (Reflective::MofError);
void set_is_changeable (in boolean new_value)
raises (Reflective::MofError);

b

3.4.11 Attribute idl_substitute_name “ MofAttribute”

An Attribute (referred to as a MofAttribute in the mapped IDL) defines a
Structural Feature which contains values for Classifiers or their instances.

SuperClasses

Structural Feature

Contained Elements

None (not a Namespace)

OMG-MOF V1.3 MOF Model Classes March 2000 3-39

Attributes

isDerived

A derived attribute is one whose values are not part of the state of the object
instance, but whose values can be determined or computed. In a sense, all
attributes are derived, since it is up to the class's implementation to hold or
calculate the values. However, by convention, isDerived indicates that the derived
state is based on other information in the model. Modification of the derived
Attribute causes the information upon which the Attribute is derived to be
updated.

type: boolean
multiplicity: exactly one
IDL

interface MofAttributeClass : StructuralFeatureClass {
readonly attribute MofAttributeUList all_of_type_mof_attribute;
readonly attribute MofAttributeUList all_of_class_mof_attribute;

MofAttribute create_mof_attribute (

/* from ModelElement */
/* from ModelElement */
/* from Feature */
/* from Feature */
/* from StructuralFeature */
/* from StructuralFeature */
/* from MofAttribute */
raises (Reflective::MofError);

in ::Model::NameType name,

in ::Model::AnnotationType annotation,
in ::Model::ScopeKind scope,

in ::Model::VisibilityKind visibility,

in ::Model::Multiplicity Type multiplicity,
in boolean is_changeable,

in boolean is_derived)

}; /' end of interface MofAttributeClass

interface MofAttribute : MofAttributeClass, StructuralFeature {

boolean is_derived ()

raises (Reflective::MofError);

void set_is_derived (in boolean new_value)

raises (Reflective::MofError);

b

3.4.12 Reference

A Reference defines a Classifier's knowledge of, and access to, links and their
instances defined by an Association. Although a Reference derives much of its state
from a corresponding AssociationEnd, it provides additional information; therefore, the
MOF cannot adequately represent some meta-models without this mechanism. The
inherited attributes defined in Structural Feature (multiplicity and is_changeable) are
constrained to match the values of its corresponding AssociationEnd. However, it has
its own visibility, name, and annotation defined. For further discussion on Reference,
its purpose, and how it derives its attributes, see Section 3.2.2, “Associations,” on
page 3-8.

3-40

OMG-MOF V1.3 March 2000

Note — When creating a Reference, values for the inherited attributes of multiplicity
and is_changeable must be supplied. These must be the same as the corresponding
attributes on the AssociationEnd to which the Reference will subsequently be linked.

Super Classes

Structural Feature

References

referencedEnd

The referencedEnd of a Reference is the end representing the set of LinkEnds of
principle interest to the Reference. The Reference provides access to the instances
of that AssociationEnd's class, which are participants in that AssociationEnd's
Association, connected through that AssociationEnd's LinkEnds. In addition, the
Reference derives the majority of its state information - multiplicity, etc., from
that Reference.

class: AssociationEnd
defined by: RefersTo::referencedEnd
multiplicity: exactly one
changeable: yes
exposedEnd
The exposedEnd of a Reference isthe AssociationEnd representing the end of the
Reference's owning Classifier within the defining Association.
class AssociationEnd
defined by: Exposes::exposedEnd
multiplicity: exactly one
changeable: yes
Constraints

[The multiplicity for a Reference must be the same as the multiplicity for the
referenced AssociationEnd. [C-21]]

[Classifier scoped References are not meaningful in the current M1 level computational
model. [C-22]]

[A Reference can be changeable only if the referenced AssociationEnd is also
changeable. [C-23]]

OMG-MOF V1.3 MOF Model Classes March 2000 3-41

[The type attribute of a Reference and its referenced AssociationEnd must be the same.
[C-24]]

[A Reference is only allowed for a navigable AssociationEnd [C-25]]

[The containing Class for a Reference must be equal to or a subtype of the type of the
Reference’s exposed AssociationEnd. [C-26]]

[The referenced AssociationEnd for a Reference must be visible from the Reference.

[C-27]]

IDL

interface ReferenceClass : StructuralFeatureClass {
readonly attribute ReferenceUList all_of_type_reference;
readonly attribute ReferenceUList all_of_class_reference;
const string REFERENCE_MULTIPLICITY_MUST_MATCH_END =
"org.omg.mof:constraint.model.reference.reference_multiplicity_must_match_end";
const string REFERENCE_MUST_BE_INSTANCE_SCOPED =
"org.omg.mof:constraint.model.reference.reference_must_be_instance_scoped";
const string CHANGEABLE_REFERENCE_MUST_HAVE_CHANGEABLE_END =
"org.omg.mof:constraint. model.reference.changeable_reference_must_have_changeable_end";
const string REFERENCE_TYPE_MUST_MATCH_END_TYPE =
"org.omg.mof:constraint. model.reference.reference_type_must_match_end_type";
const string REFERENCED_END_MUST_BE_NAVIGABLE =
"org.omg.mof:constraint. model.reference.referenced_end_must_be_navigable";
const string CONTAINER_MUST_MATCH_EXPOSED_TYPE =
"org.omg.mof:constraint.model.reference.container_must_match_exposed_type";
const string REFERENCED_END_MUST_BE_VISIBLE =
"org.omg.mof:constraint.model.reference.referenced_end_must_be_visible";

Reference create_reference (

[* from ModelElement */ in ::Model::NameType name,

[* from ModelElement */ in ::Model::AnnotationType annotation,
[* from Feature */ in ::Model::ScopeKind scope,

[* from Feature */ in ::Model::VisibilityKind visibility,

[* from StructuralFeature */ in ::Model::Multiplicity Type, multiplicity,
[* from StructuralFeature */ in boolean is_changeable)

raises (Reflective::MofError);
}; I end of interface ReferenceClass

interface Reference : ReferenceClass, StructuralFeature {

AssociationEnd exposed_end ()
raises (Reflective::MofError);

void set_exposed_end (in AssociationEnd new_value)
raises (Reflective::MofError);

AssociationEnd referenced_end ()
raises (Reflective::MofError);

void set_referenced_end (in AssociationEnd new_value)
raises (Reflective::MofError);

b

3-42 OMG-MOF V1.3 March 2000

3.4.13Behavioral Feature abstract

A Behavioral Feature defines a dynamic characteristic of the Model Element that
contains it. Because a BehavioralFeature is partially defined by the Parameters it
contains, it is both a Feature and a Namespace.

SuperClasses

Feature, Namespace

IDL

interface BehavioralFeatureClass : FeatureClass, NamespaceClass {
readonly attribute BehavioralFeatureUList
all_of_type_behavioral_feature;
}; 1/ end of interface BehavioralFeatureClass

interface BehavioralFeature :
BehavioralFeatureClass, Feature , Namespace {};

3.4.14 Operation

An Operation defines a dynamic feature which offers a service. The behavior of an
operation is activated through the invocation of the operation.

Super Classes

Behavioral Feature

Contained Elements

Parameter, Constraint -- see [OperationContainmentRules [C-28]]
Attributes

isQuery

OMG-MOF V1.3 MOF Model Classes March 2000 3-43

Defining an Operation with an isQuery value of true denotes that the behavior of
the operation will not alter the state of the object. The state of a Classifier, for this
definition, is the set of values of al of the Classifier's class-scope and instance-
scope Structural Features.

For instance, an Operation of a Class, defined with a scope of instance, will not
change the values or instances of any instance-scope Structural Feature of the Class
instance, as a result of invoking this Operation. An Operation of a Class with a
scope of classifier will not change the values or instances of any of the classifier-
scope Structural Features or instance-scope Structural Features.

This attribute does not define a constraint enforced by the model, but rather a
promise that the operation’'s implementation is expected to uphold. An operation
which is not defined as isQuery equals false is not guaranteed to change the state
of its object. The isQuery constraint does not proscribe any specific
implementation, so long as the definition of isQuery above is observed.

type: boolean
multiplicity: exactly one
References
exceptions

An Operation, upon encountering an error or other abnormal condition, may raise
an Exception. The exceptions reference provides the Operation with the set of
Exceptions it is allowed to raise.

class: Exception

defined by: CanRaise::except

multiplicity: zero or more, ordered
Constraints

[An Operation may only contain Parameters, Constraints and Tags. [C-28]]
[An Operation may have at most one Parameter whose direction is “return”. [C-29]]

[The Exceptions raised by an Operation must be visible to the Operation. [C-30]]

IDL

interface OperationClass : BehavioralFeatureClass {
readonly attribute OperationUList all_of_type_operation;
readonly attribute OperationUList all_of_class_operation;

3-44 OMG-MOF V1.3 March 2000

const string OPERATION_CONTAINMENT_RULES =

"org.omg.mof:constraint. model.operation.operation_containment_rules";

const string OPERATIONS_HAVE_AT_MOST_ONE_RETURN =
"org.omg.mof:constraint.model.operation.operations_have_at_most_one_return";
const string OPERATION_EXCEPTIONS_MUST_BE_VISIBLE =
"org.omg.mof:constraint.model.operation.operation_exceptions_must_be_visible";

Operation create_operation (

[* from ModelElement */ in ::Model::NameType name,

[* from ModelElement */ in ::Model::AnnotationType annotation,

[* from Feature */ in ::Model::ScopeKind scope,

[* from Feature */ in ::Model::VisibilityKind visibility,
/*from Operation */ in boolean is_query)

raises (Reflective::MofError);
}; Il end of interface OperationClass

interface Operation : OperationClass, BehavioralFeature {
boolean is_query ()
raises (Reflective::MofError);
void set_is_query (in boolean new_value)
raises (Reflective::MofError);
MofExceptionUList exceptions ()
raises (Reflective::MofError);
void set_exceptions (in MofExceptionUList new_value)
raises (Reflective::MofError);
void add_exceptions (in MofException new_element)
raises (Reflective::MofError);
void add_exceptions_before (in MofException new_element, in MofException before_element)
raises (Reflective::NotFound, Reflective::MofError);
void modify_exceptions (in MofException old_element,
in MofException new_element)
raises (Reflective::NotFound, Reflective::MofError);
void remove_exceptions (in MofException old_element)
raises (Reflective::NotFound, Reflective::MofError);

b

3.4.15Exception idl_substitute_name “ MofException”

An Exception (referred to as a MofException in the mapped IDL) defines an error or
other abnormal condition. The Parameters of an Exception hold a record of an
occurrence of the exceptional condition.

SuperClasses

Behavioral Feature

Contained Elements

Parameter; see [ExceptionContainmentRules [C-31]]

OMG-MOF V1.3 MOF Model Classes March 2000 3-45

Constraints
[An Exception may only contain Parameters and Tags. [C-31]]

[An Exception’s Parameters must all have the direction “out”. [C-32]]

IDL

interface MofExceptionClass : BehavioralFeatureClass {
readonly attribute MofExceptionUList all_of_type_mof_exception;
readonly attribute MofExceptionUList all_of_class_mof_exception;
const string EXCEPTION_CONTAINMENT_RULES =
"org.omg.mof:constraint.model.mof_exception.exception_containment_rules";
const string EXCEPTIONS_HAVE_ONLY_OUT_PARAMETERS =
"org.omg.mof:constraint.model.mof_exception.exceptions_have_only_out_parameters";

MofException create_mof_exception (
[* from ModelElement */ in ::Model::NameType name,
[* from ModelElement */ in ::Model::AnnotationType annotation,
/* from Feature */ in ::Model::ScopeKind scope,
[* from Feature */ in ::Model::VisibilityKind visibility)
raises (Reflective::MofError);
}; 1/ end of interface MofExceptionClass

interface MofException : MofExceptionClass, BehavioralFeature {};

3-46 OMG-MOF V1.3 March 2000

ModelElement

Namespace

TypedElement

Feature
visibility : Visibility Kind
scope : ScopeKind

StructuralFeature

BehavioralFeature multiplicity : Multiplicity Ty pe

isChangeable : boolean

B

:] :
Operation +operation CanRaise +except <<MofException>>

<<Mof Attribute>>
Attribute Reference

isDerived : boolean]

isQuery : boolean |
j 0-*

Exception

0..*
{ordered}

Figure3-6 MOF Model Elements for Association

3.4.16 Association

An association defines a classification over a set of links, through a relationship
between Classifiers. Each link which is an instance of the association denotes a
connection between object instances of the Classifiers of the Association. The MOF
restricts associations to binary, restricting each link to two participating objects. This
restriction also means that the association is defined between two Classifiers (which
may be the same Classifier). The name of the Association is considered directional if it
provides a clearer or more accurate representation of the association when stated with
one participating class first rather than the other. For instance, Operation CanRaise
Exception is correct; Exception CanRaise Operation is incorrect.

The definition of an Association requires two AssociationEnds. If the name of the
association is directional, the name is understood to read in the order: first contained
€lement; association name; second contained element. These contained elements are
AssociationEnd instances, and the reading of the subject; verb; object uses either the
AssociationEnd name or the AssociationEnd's class name. The onus is on the MOF
user to determine whether the name is directional, and to place the AssociationEnds in

OMG-MOF V1.3 MOF Model Classes March 2000 3-47

proper order within the Association's contents to support the name direction. The
representation of a Classifier's knowledge of its participation in an association requires
the use of a Reference.

SuperClasses

Classifier

Contained Elements

AssociationEnd, Constraint -- see [AssociationContainmentRules [C-33]]

Attributes

isDerived

A derived association has no Links as instances. Instead, its Links are derived
from other information in a meta-model. The addition, removal, or modification of
aderived Association's Link causes the information upon which the Association is
derived to be updated. The results of such an update are expected to appear, upon
subsequent access of the derived Association's Links, to have the same effect asan
equivalent operation on an Association which is not derived.

type: boolean
multiplicity: exactly one
Constraints

[An Association may only contain AssociationEnds, Constraints and Tags. [C-33]]
[Inheritance / generalization is not applicable to Associations. [C-34]]

[The values for “isLeaf” and “isRoot” on an Association must be true. [C-35]]
[An Association cannot be abstract. [C-36]]

[Associations must have visibility of “public”. [C-37]]

[An Association must be binary; i.e. it must have exactly two AssociationEnds. [C-38]]

IDL

interface AssociationClass : ClassifierClass {
readonly attribute AssociationUList all_of_type_association;
readonly attribute AssociationUList all_of_class_association;
const string ASSOCIATIONS_CONTAINMENT_RULES =
"org.omg.mof:constraint.model.association.associations_containment_rules";
const string ASSOCIATIONS_HAVE_NO_SUPERTYPES =
"org.omg.mof:constraint. model.association.associations_have_no_supertypes";

3-48 OMG-MOF V1.3 March 2000

const string ASSOCIATIONS_MUST_BE_ROOT_AND_LEAF =
"org.omg.mof:constraint. model.association.associations_must_be_root_and_leaf";
const string ASSOCIATIONS_CANNOT_BE_ABSTRACT =
"org.omg.mof:constraint.model.association.associations_cannot_be_abstract";
const string ASSOCIATIONS_MUST_BE_PUBLIC =

"org.omg.mof:constraint. model.association.associations_must_be_public";

const string ASSOCIATIONS_MUST_BE_BINARY =

"org.omg.mof:constraint. model.association.associations_must_be_binary";

Association create_association (
/*from ModelElement */
/*from ModelElement */
/*from GeneralizableElement */
/*from GeneralizableElement */
/* from GeneralizableElement */
/*from GeneralizableElement */
/*from Association */

raises (Reflective::MofError);

}; 1/ end of interface AssociationClass

in ::Model::NameType name,

in ::Model::AnnotationType annotation,
in boolean is_root,

in boolean is_leaf,

in boolean is_abstract,

in ::Model::VisibilityKind visibility,

in boolean is_derived)

interface Association : AssociationClass, Classifier {

boolean is_derived ()
raises (Reflective::MofError);

void set_is_derived (in boolean new_value)

raises (Reflective::MofError);

3.4.17 AssociationEnd

An association is composed of two AssociationEnds. Each AssociationEnd defines a
Classifier participant in the Association, the role it plays, and constraints on sets of the
Classifier instances participating. An instance of an AssociationEnd is a LinkEnd,
which defines a relationship between a link, in instance of an Association, and an
instance of the AssociationEnd's Classifier, provided in its type attribute.

SuperClasses

TypedElement

OMG-MOF V1.3 MOF Model Classes March 2000 3-49

3-50

Attributes

multiplicity

Multiplicity defines constraints on sets of instances. Each instance of the
Classifier defined by the opposite AssociationEnd's type defines a set which this
multiplicity attribute constrains. Given one of those instances, x, the set is defined
as the instances connected by LinkEnds of this AssociationEnd to that instance x.
Refer to Section 3.6.5, “MultiplicityType,” on page 3-78 for a description on how
the multiplicity attribute constrains a set. In its use is describing AssociationEnds,
isUnique has been constrained to be true, as a simplification. This constraint
means that the same two instances cannot participate in more than one Link while
participating under the same AssociationEnd. Normally, two instances cannot be
linked by more than one Link of an Association at all. But when the
AssociationEnd types allow the two instances switch ends, they can form a second
Link without violating the isUnique constraint.

type: Multiplicity Type
multiplicity: exactly one
aggregation

Certain associations define aggregations - directed associations with additional
semantics (see Section 4.8, “Aggregation Semantics,” on page 4-17). When an
AssociationEnd is defined as composite or shared, the instance at “this’ end of a
Link is the composite or aggregate, and the instance at the “other” end is the
component or subordinate..

type: AggregationKind
multiplicity: exactly one
isNavigable

The isNavigable attribute determines whether or not the AssociationEnd supports

link “navigation”. This has two implications:

* A Class defined with an appropriate Reference supports navigation of links from one
Class instance to another. If isNavigable is false for an AssociationEnd, no such
References may be created.

* Setting isNavigable to false also suppress a mapping’s mechanisms for indexing links
based on this AssociationEnd.

type: boolean

multiplicity: exactly one

OMG-MOF V1.3 March 2000

isChangeable

The isChangeabl e attribute restricts the capability to perform actions that would
modify sets of instances corresponding to this AssociationEnd (the same sets to
which multiplicity is applied). Specifically, the set may be created when the
instance defining the set - the instance at the opposite end of the Links - is created.
This attribute does not make the set immutable. Instead, it affects the generation of
operations in Model Elaboration which would allow modification of the set. For
IDL generation, the only operation that allows the set to be modified would be one
or more factory operations that create the instance and create the set. The modeler
is free to define specific operations that allow modification of the set. Note that
defining this AssociationEnd with isChangeable equals fal se places restrictions on
the changeability of the other AssociationEnd, due to their interdependence..

type: boolean
multiplicity: exactly one
Operations
otherEnd
Provides the other AssociationEnd (i.e., not this one) in the enclosing Association.
return type: AssociationEnd
isQuery: yes
parameters: none
operation semantics: [S-2]
Constraints

[The type of an AssociationEnd must be Class. [C-39]]
[The “isUnique” flag in an AssociationEnd’s multiplicity must be true. [C-40]]
[An Association cannot have two AssociationEnds marked as “ordered”. [C-41]]

[An Association cannot have an aggregation semantic specified for both
AssociationEnds. [C-42]]

IDL

interface AssociationEndClass : TypedElementClass {
readonly attribute AssociationEndUList all_of_type_association_end;
readonly attribute AssociationEndUList all_of_class_association_end;
const string END_TYPE_MUST_BE_CLASS =
"org.omg.mof:constraint.model.association_end.end_type_must_be_class";
const string ENDS_MUST_BE_UNIQUE =
"org.omg.mof:constraint.model.association_end.ends_must_be_unique";

OMG-MOF V1.3 MOF Model Classes March 2000 3-51

3

const string CANNOT_HAVE_TWO_ORDERED_ENDS =
"org.omg.mof:constraint.model.association_end.cannot_have_two_ordered_ends";

const string CANNOT_HAVE_TWO_AGGREGATE_ENDS =
"org.omg.mof:constraint.model.association_end.cannot_have_two_aggregate_ends";

AssociationEnd create_association_end (

[* from ModelElement */ in ::Model::NameType name,

[* from ModelElement */ in ::Model::AnnotationType annotation,

[* from AssociationEnd */ in boolean is_navigable,

[* from AssociationEnd */ in ::Model::AggregationKind aggregation,
[* from AssociationEnd */ in ::Model::Multiplicity Type multiplicity,

[* from AssociationEnd */ in boolean is changeable)

raises (Reflective::MofError);
}; 1/ end of interface AssociationEndClass

interface AssociationEnd : AssociationEndClass, TypedElement {
boolean is_navigable ()
raises (Reflective::MofError);
void set_is_navigable (in boolean new_value)
raises (Reflective::MofError);
AggregationKind aggregation ()
raises (Reflective::MofError);
void set_aggregation (in AggregationKind new_value)
raises (Reflective::MofError);
Multiplicity Type multiplicity ()
raises (Reflective::MofError);
void set_multiplicity (in MultiplicityType new_value)
raises (Reflective::MofError);
boolean is changeable ()
raises (Reflective::MofError);
void set is changeable (in boolean new value);
AssociationEnd other_end ()
raises (Reflective::MofError);
}; 1/ end of interface AssociationEnd

3-52 OMG-MOF V1.3 March 2000

TypedElenent

:

AssociationEnd

multiplicity : MultiplicityType
Qassifier RefersTo +referencedEnd |aggregation : AggregationKind
isNavigable : boolean

1 isChangeable : boolean
Z} / otherEnd : AssociationEnd
+referent
0.*
Association Reference +referrer /EXpOSES 1
0.* +exposedEnd

Figure3-7 MOF Model Packaging

3.4.18 Package

A package is formed as a composition of ModelElements. A package defines a
modeling unit, models are constructed and presented as packages. A model is a
package. Packages are also uses as organizational constructs in modeling. Nesting,
importation, and generalization are used to manage the complexity of models.
Super Classes

GeneralizableElement
Contained Elements

Package, Class, Association, DataType, Exception, Import, Constraint, Constant -- see
[PackageContainmentRules [C-43]]

OMG-MOF V1.3 MOF Model Classes March 2000 3-53

Operations

externalize

Externalize the Package and all of its Model Elements (transitive closure on the
containment hierarchy) in a format specified by the format parameter, into a
stream of type any.

return type: any

isQuery: yes

parameters: format : in FormatType

exceptions: ObjectNotExternalizable, FormatNotSupported
internalize

Reify a model encoded in “stream” in some externa format specified by “format
as a MOF Package.

return type: Package
scope: classifier-scope
parameters: format : in FormatType
stream : in any
exceptions: FormatNotSupported, 1lIformedExternalizedObject
Constraints

[A Package may only contain Packages, Classes, DataTypes, Associations, Exceptions,
Constraints, Imports and Tags. [C-43]]

[Packages cannot be declared as abstract. [C-44]]

IDL

interface PackageClass : GeneralizableElementClass {
readonly attribute PackageUList all_of_type_package;
readonly attribute PackageUList all_of_class_package;
const stringPACKAGE_CONTAINMENT_RULES =
"org.omg.mof:constraint.model.package.package_containment_rules";
const stringPACKAGES_CANNOT_BE_ABSTRACT =
"org.omg.mof:constraint.model.package.packages_cannot_be_abstract";

typedef string FormatType;
exception FormatNotSupported {};

exception ObjectNotExternalizable { string explanation; };
exception IllformedExternalizedObject { string explanation; };

3-54 OMG-MOF V1.3 March 2000

GeneralizableElement internalize (in PackageClass::FormatType format,

in any stream)
raises (PackageClass::FormatNotSupported,

PackageClass::llIformedExternalizedObject,

Reflective::MofError);
Package create_package (
/* from ModelElement */
/* from ModelElement */
/* from GeneralizableElement */
/* from GeneralizableElement */
/* from GeneralizableElement */
/* from GeneralizableElement */
raises (Reflective::MofError);
}; /l end of interface PackageClass

in ::Model::NameType name,

in ::Model::AnnotationType annotation,
in boolean is_root,

in boolean is_leaf,

in boolean is_abstract,

in ::Model::VisibilityKind visibility)

interface Package : PackageClass, GeneralizableElement {

any externalize (in PackageClass::FormatType format)
raises (PackageClass::ObjectNotExternalizable,

PackageClass::FormatNotSupported,
Reflective::MofError);

3.4.19 Import

An Import alows a Package to make use of ModelElements defined in some other
Namespace. An Import object is related to another Namespace via the Aliases
association. When a Package contains an Import object, it imports the associated
Namespace. This means that ModelElements defined within the imported Namespace
are visible in the importing Package.

An Import allows the visibility of the imported Package's contained Model Elements to
be further restricted. An Import object represents either Package importing or Package
clustering, depending on the “isClustered” attribute.

SuperClasses

M odel Element

Attributes

visibility

In the future, this Attribute will modify the visibility of imported ModelElements
in the context of the importing Namespace. For a description of visibility kinds,
see Section 3.6.6, “VisibilityKind,” on page 3-79. The MOF rules of visibility are
not currently specified.

type: VisibilityKind
multiplicity: exactly one
OMG-MOF V1.3 MOF Model Classes March 2000 3-55

isClustered

The isClustered flags determines whether the Import object represents ssimple
Package importation, or Package clustering.

type: boolean
multiplicity: exactly one
References
importedNamespace
The Import knows about the Namespace that it references.
class: Namespace
defined by: Aliases::imported
multiplicity: exactly one
Constraints

[The Namespace imported by an Import must be visible to the Import’s containing
Package. [C-45]]

[Itisonly legal for a Package to import or cluster Packages or Classes. [C-46]]

[Packages cannot import or cluster themselves. [C-47]]

[Packages cannot import or cluster Packages or Classes that they contain. [C-48]

[Nested Packages cannot import or cluster other Packages or Classes. [C-49]9]

IDL

interface ImportClass : ModelElementClass {

readonly attribute ImportUList all_of_type_import;
readonly attribute ImportUList all_of_class_import;

const string IMPORTED_NAMESPACE_MUST_BE_VISIBLE =
"org.omg.mof:constraint.model.import.imported_namespace_must_be_visible";

const string CAN_ONLY_IMPORT_PACKAGES_AND_CLASSES =
"org.omg.mof:constraint.model.import.can_only_import_packages_and_classes";

const string CANNOT_IMPORT_SELF =

"org.omg.mof:constraint.model.import.cannot_import_self";

const string CANNOT_IMPORT_NESTED_COMPONENTS =

"org.omg.mof:constraint.model.import.cannot_import_nested_components";

const string NESTED_PACKAGES_CANNOT_IMPORT =

"org.omg.mof:constraint.model.import.nested_packages_cannot_import";

Import create_import (

/*from ModelElement */ in ::Model::NameType name,
[*from ModelElement */ in ::Model::AnnotationType annotation,
3-56 OMG-MOF V1.3 March 2000

[*from Import */ in ::Model::VisibilityKind visibility,
/*from Import */ in boolean is_clustered)
raises (Reflective::MofError);
}; /' end of interface ImportClass

interface Import : ImportClass, ModelElement {

VisibilityKind visibility ()
raises (Reflective::MofError);

void set_visibility (in VisibilityKind new_value)
raises (Reflective::MofError);

boolean is_clustered ()
raises (Reflective::MofError);

void set_is_clustered (in boolean new_value)
raises (Reflective::MofError);

Namespace imported_namespace ()
raises (Reflective::MofError);

void set_imported_namespace (in Namespace new_value)
raises (Reflective::MofError);

b

ModelElement

!

Namespace

Aliases +imported

Import +importer 1
visibility : VisibilityKind
isClustered : boolean

0.*

GeneralizableElement

e

Paclage

externalize()
$internalize()

Figure3-8 MOF Model - Other Elements

OMG-MOF V1.3 MOF Model Classes March 2000

3-57

3.4.20 Parameter

A parameter provides a means of communication with operations and other
BehavioralFeatures. A parameter passes or communicates values of its defined type.

SuperClasses
TypedElement

Attributes

direction

This attribute specifies the purpose of the parameter; to input a value, to output a
value, both purposes, or to provide an operation return value.

type: DirectionKind
multiplicity: exactly one
multiplicity

Multiplicity defines cardinality constraints on the set of instances or values that a
Parameter can hold. Multiplicity defines a lower and upper bound on the set,
although the upper bound can be specified as Unbounded. Additionally,
multiplicity defines two other characteristics of the set: 1) constraints on set
member ordering, and 2) constraints on unique set elements. Specifically,
Multiplicity contains an isOrdered field. When isOrdered is true, the ordering of
the elements in the set are preserved. Multiplicity also has an isUnique field.
When isUnique is true, the set is constrained to hold no more than one of any
value or instance.

type: Multiplicity Type
multiplicity: exactly one
IDL

interface ParameterClass : TypedElementClass {
readonly attribute ParameterUList all_of_type_parameter;
readonly attribute ParameterUList all_of_class_parameter;

Parameter create_parameter (

/* from ModelElement */
/* from ModelElement */
/* from Parameter */
/* from Parameter */

in ::Model::NameType name,

in ::Model::AnnotationType annotation,
in ::Model::DirectionKind direction,

in ::Model::Multiplicity Type multiplicity)

raises (Reflective::MofError);

}; I end of interface ParameterClass

3-58

OMG-MOF V1.3 March 2000

interface Parameter : ParameterClass, TypedElement {

b

DirectionKind direction ()

raises (Reflective::MofError);
void set_direction (in DirectionKind new_value)
raises (Reflective::MofError);

Multiplicity Type multiplicity ()

raises (Reflective::MofError);
void set_multiplicity (in MultiplicityType new_value)
raises (Reflective::MofError);

3.4.21 Constraint

A Constraint defines a rule that restricts the state or behavior of one or more elements
in the meta-model. When a Constraint is attached to a Mode Element, the rule it
encodes applies to all relevant instances of the Model Element in a model.

A Constraint rule, represented by the “expression” attribute, may be encoded in any
form. The “language” attribute may be used to denote the language and encoding
scheme used.

While some Constraints on a model may need to be treated as invariant, it is often
convenient for other Constraints to be relaxed, for instance while a model is being
edited. While, the “evaluationPolicy” attribute is used to represent these two cases, this
information is at best advisory, since the MOF specification does not currently state
how and when Constraints should be enforced.

Note — A Constraint cannot over-ride structural integrity rules defined by other parts of
ameta-model (e.g., multiplicity specifications) or the integrity rules defined by a
particular mapping of the meta-model to implementation technology.

Super Classes

M odel Element

OMG-MOF V1.3 MOF Model Classes March 2000 3-59

3-60

Attributes

expression

The Constraint's expression attribute provides a representation of the constraint.
The MOF has no specific requirement to interpret this expression, or to validate it
against the language attribute. The specific handling of the expression will
necessarily vary with the language used. However, it is expected that for any
language an implementation accepts, it will enforce the constraints expressed in
that language. The expression can be represented in any format, including text or
a composition of objects.

type any
multiplicity: exactly one
language

The language representing this Constraint's expression is defined in this attribute.
Since it is a string, most any language can be represented, including format
variances in a language (e.g., OCL as text verses OCL as a parse tree).

type: string

multiplicity: exactly one

evaluationPolicy

Each constraint can be defined as immediate or deferred. For immediate
Constraints, the constraint violation will be detected and reported within an
operation in the chain of operations between the operation initiated by the M OF
user and the operation that caused the constraint violation. The effect of an
operation that violates an immediate constraint on the state of the object or objects
being altered is implementation specific, and possibly undefined. However, if
possible, an implementation should reverse the effects of the operation.

For deferred Constraints, the constraint violation can only be detected when the
Constraint is explicitly evaluated. The MOF defines an operation for such
constraint evaluation, the verify operation. When the verify operation is invoked
on a Constraint's container, the constraint is evaluated and a constraint violation is
detected, if present.

type: EvaluationKind
multiplicity: exactly one
OMG-MOF V1.3 March 2000

References

constrainedElements

The Constraint has access to the Model Elements it constrains, through this
reference. Note that the Constraint may depend on other M odel Elements not
represented in this reference. For instance, a Constraint may state that attribute
A::x cannot exceed Ay in magnitude. The Constraint ison A::x, although it also
depends on A::y. The link between the Constraint and A::x will be represented in
the meta-model, not the link between the Constraint and A::y.

class: M odel Element
defined by: Constrains::constrai nedElement
multiplicity: one or more

Constraints

[Constraints, Tags, Imports, TypeAliases and Constants cannot be constrained. [C-50]]

[A Constraint can only constrain Model Elements that are defined by or inherited by its
immediate container. [C-51]]

IDL

interface ConstraintClass : ModelElementClass {
readonly attribute ConstraintUList all_of_type_constraint;
readonly attribute ConstraintUList all_of_class_constraint;
const string CANNOT_CONSTRAIN_THIS_ELEMENT =
"org.omg.mof:constraint.model.constraint.cannot_constrain_this_element";
const string CONSTRAINTS_LIMITED_TO_CONTAINER =
"org.omg.mof:constraint.model.constraint.constraints_limited_to_container";

enum EvaluationKind {immediate, deferred};
Constraint create_constraint (

[* from ModelElement */ in ::Model::NameType name,
[* from ModelElement */in ::Model::AnnotationType annotation,

[* from Constraint */ in any expression,
[* from Constraint */ in string language,
[* from Constraint */ in ::Model::ConstraintClass::EvaluationKind

evaluation_policy)
raises (Reflective::MofError);
}; I end of interface ConstraintClass

interface Constraint : ConstraintClass, ModelElement {
any expression ()
raises (Reflective::MofError);
void set_expression (in any new_value)
raises (Reflective::MofError);
string language ()

OMG-MOF V1.3 MOF Model Classes March 2000 3-61

raises (Reflective::MofError);

void set_language (in string new_value)
raises (Reflective::MofError);

ConstraintClass::EvaluationKind evaluation_policy ()
raises (Reflective::MofError);

void set_evaluation_policy (in ConstraintClass::EvaluationKind new_value)
raises (Reflective::MofError);

ModelElementSet constrained_elements ()
raises (Reflective::MofError);

void set_constrained_elements (in ModelElementSet new_value)
raises (Reflective::MofError);

void add_constrained_elements (in ModelElement new_element)
raises (Reflective::MofError);

void modify_constrained_elements (in ModelElement old_element,

in ModelElement new_element)

raises (Reflective::NotFound, Reflective::MofError);

void remove_constrained_elements (in ModelElement old_element)
raises (Reflective::NotFound, Reflective::MofError);

b

3.4.22 Congtant Class

This Class provides a mechanism for defining constant values of simple datatypes, in
the support of model development.

SuperClasses

TypedElement

Attributes

value

This Attribute gives the value of the constant.

type Literal Type
multiplicity: exactly one
Constraints

[The type of a Constant and the type of its value must be the same. [C-52]]

[The type of a Constant must be a CORBA data type that is legal for a CORBA 2.3
constant declaration. [C-53]]

IDL

interface ConstantClass : TypedElementClass {
readonly attribute ConstantUList all_of_type_constant;

3-62 OMG-MOF V1.3 March 2000

readonly attribute ConstantUList all_of_class_constant;

const string CONSTANTS_VALUE_MUST_MATCH_TYPE =
"org.omg.mof:constraint.model.constant.constants_value_must_match_type";

const string CONSTANTS_TYPE_MUST_BE_SIMPLE_DATA_TYPE =
"org.omg.mof:constraint.model.constant.constants_type_must_be_simple_data_type";

Constant create_constant (
/* from ModelElement */
/* from ModelElement */
/* from Constant */

in ::Model::NameType name,
in ::Model::AnnotationType annotation,
in ::Model::LiteralType value)

raises (Reflective::MofError);
}; 1/ end of interface ConstantClass

interface Constant : ConstantClass, TypedElement {

LiteralType value ()

raises (Reflective::MofError);
void set_value (in LiteralType new_value)
raises (Reflective::MofError);

b

3.4.23 Tag

Tags provide a light-weight extension mechanism that allows mapping, vendor, and
even customer specific information to be added to or associated with a meta-model. In
essence, Tags are arbitrary name / value that can be attached to instances of most
Model Elements.

A Tag has an attribute called “tagld” that denotes a category of meaning, and another
attribute called “values’ that parameterizes that meaning. Each Tag is related to one or
more Model Elements by the AttachesTo Association. The Tag need not be contained
within the meta-model of the ModelElement it “tags.”

The MOF specification does not generally define the vaues for the “tagld” or the
application specific categories of meaning that they denote. The exception to thisis
Section 5.6, “ Standard Tags for the IDL Mapping,” on page 5-35, which defines some
Tags that can be used in a meta-model to “tune” the IDL produced for a meta-model by

the mapping.

Since “tagld” values are not standardized, there is arisk that different vendors or user
organizations will use the same values to denote different categories of meaning. If a
“tagld” value is used to mean different things, problems can arise when meta-models
using the value are exchanged.

To avoid such Tag collisions, it is recommended that “tagld” values should use the
following scheme based on Java package naming. Each value should start with a prefix
formed by reversing the Internet domain name of a “tagld” naming authority. This
should be followed by a locally unique component. For instance, this might be a
standard or product name followed by a name or hames that denotes the meaning. Here
are some examples:

"org.ong. nof . idl_prefix"
"org.ong. nof . some_t ag"

OMG-MOF V1.3 MOF Model Classes March 2000 3-63

3-64

"comrational.rose. screen_position"

"au. edu. dstc. el vin. event _type"

It isalso recommended that “tagld” values should be spelled in all lower case using the
) character as a word separator.

underscore (

Note — In defining new Tag categories, the meta-modeler should take account of the

fact that the MOF Model has no Reference for navigating from a ModelElement to its

attached Tags. This allows one to attach Tags to elements of a “frozen” meta-model.

On the other hand, makes it harder for a*“client” of the meta-model objectsto find the

Tags for an element. One option is to require relevant Tags to be Contained by the
elements they AttachTo, or their parents.

SuperClasses

Model Element

Attributes

tagld

Gives the category of meaning for the Tag. The values for this attribute and their
associated meanings are not standardized here. See discussion above.

type: string
multiplicity: exactly one
values

Carries additional information (e.g. “parameters”) associated with the Tag.

type: any
multiplicity: zero or more; not ordered; not unique
References
elements
The ModelElement or ModelElements that this Tag is attached to.
class: ModelElement
defined by: AttachesTo::model Element
multiplicity: one or more
OMG-MOF V1.3 March 2000

IDL

interface TagClass : ModelElementClass {
readonly attribute TagUList all_of_type_tag;
readonly attribute TagUList all_of_class_tag;

Tag create_tag (
[*from ModelElement */in ::Model::NameType name,
[*from ModelElement */in ::Model::AnnotationType annotation,
[* from Tag */ in string tag_id,
[* from Tag */ in AnyBag values)
raises (Reflective::MofError);
}; 1/ end of interfaceTagClass

interface Tag : TagClass, ModelElement {
string tag_id ()
raises (Reflective::MofError);
void set_tag_id (in string new_value)
raises (Reflective::MofError);
AnyBag values ()
raises (Reflective::MofError);
void set_values (in AnyBag new_value)
raises (Reflective::MofError);
void add_values (in any new_element)
raises (Reflective::MofError);
void modify_values (in any old_element, in any new_element)
raises (Reflective::NotFound, Reflective::MofError);
void remove_values (in any old_element)
raises (Reflective::NotFound, Reflective::MofError);
ModelElementUList elements ()
raises (Reflective::MofError);
void set_elements (in ModelElementUList new_value)
raises (Reflective::MofError);
void add_elements (in ModelElement new_element)
raises (Reflective::MofError);
void add_elements_before (in ModelElement new_element, in ModelElement before_element)
raises (Reflective::NotFound, Reflective::MofError);
void modify_elements (in ModelElement old_element, in ModelElement new_element)
raises (Reflective::NotFound, Reflective::MofError);
void remove_elements (in ModelElement old_element)
raises (Reflective::NotFound, Reflective::MofError);

I
3.5 MOF Modd Associations

3.5.1 Contains

A meta-model is defined through a composition of ModelElements. A Namespace
defines a Model Element which composes other Model Elements. Since Namespace has
several subclasses, there is a sizable combinatorial set of potential Namespace-
Model Element pairings. However, some of these pairings are not appropriate for
building an object-oriented meta-model, such as a Class containing a Package (see

OMG-MOF V1.3 MOF Model Associations March 2000 3-65

Section 3.3.4, “The MOF Model Containment Hierarchy,” on page3-15 . This approach
factors the container mechanisms into one abstraction, and allows the greatest
flexibility for future changes to the MOF Model.

Ends
container
Each Namespace is a composition of zero or more ModelElements.
class: Namespace
multiplicity: Zero or one
aggregation: Namespace forms a composite aggregation of ModelElements

containedElement

Each ModelElement, with the exception of top-level packages participates in the
association as a containedElement.

class: Model Element
multiplicity: zero or more; ordered
IDL

interface Contains : Reflective::RefAssociation {

b

3-66

ContainsLinkSet all_contains_links ();
boolean exists (in Namespace container, in ModelElement contained_element)

raises (Reflective::MofError);
Namespace container (in ModelElement contained_element)

raises (Reflective::MofError);
ModelElementUList contained_element (in Namespace container)

raises (Reflective::MofError);
void add (in Namespace container, in ModelElement contained_element)

raises (Reflective::MofError);
void add_before_contained_element (in Namespace container,

in ModelElement contained_element,
in ModelElement before)

raises (Reflective::NotFound, Reflective::MofError);

void modify_container (in Namespace container,
in ModelElement contained_element,
in Namespace new_container)

raises (Reflective::NotFound, Reflective::MofError);

void modify_contained_element (in Namespace container,
in ModelElement contained_element,
in ModelElement new_contained_element)

raises (Reflective::NotFound, Reflective::MofError);
void remove (in Namespace container, in ModelElement contained_element)

raises (Reflective::NotFound, Reflective::MofError);

OMG-MOF V1.3 March 2000

3.5.2 Generalizes

The Association defined on GeneralizableElement. A Link of this Association
represents a supertype/subtype relationship (or a generalizes/specializes relationship).

Ends
supertype
The GeneralizableElement that is more generd is the supertype.
class: Generalizabel Element
multiplicity: zero or more (a GeneralizableElement may have zero or
more supertypes); ordered
subtype

Generalizes the subtype.

The subtype is the GeneralizableElement that is more specific. The supertype

class: GeneralizableElement
multiplicity: zero or more (a GeneralizableElement may have zero
or more subtypes)
IDL

interface Generalizes : Reflective::RefAssociation {
GeneralizesLinkSet all_generalizes_links ();
boolean exists (in GeneralizableElement supertype,
in GeneralizableElement subtype)
raises (Reflective::MofError);

GeneralizableElementUList supertype (in GeneralizableElement subtype)

raises (Reflective::MofError);

GeneralizableElementSet subtype (in GeneralizableElement supertype)

raises (Reflective::MofError);
void add (in GeneralizableElement supertype,
in GeneralizableElement subtype)
raises (Reflective::MofError);

void add_before_supertype (in GeneralizableElement supertype,

in GeneralizableElement subtype,
in GeneralizableElement before)
raises (Reflective::NotFound, Reflective::MofError);

void modify_supertype (in GeneralizableElement supertype,

in GeneralizableElement subtype,
in GeneralizableElement new_supertype)
raises (Reflective::NotFound, Reflective::MofError);

void modify_subtype (in GeneralizableElement supertype,

in GeneralizableElement subtype,
in GeneralizableElement new_subtype)
raises (Reflective::NotFound, Reflective::MofError);

OMG-MOF V1.3

MOF Model Associations

March 2000

3-67

void remove (in GeneralizableElement supertype,
in GeneralizableElement subtype)
raises (Reflective::NotFound, Reflective::MofError);

b

3.5.3 RefersTo

A Reference derives most of its state from the AssociationEnd that it is linked to,
based on this Association. For a Class defined with a Reference, each of its instances
can be used to access the referenced object or objects. Those referenced objects will be
of the Class defined by this referencedEnd A ssociationEnd, playing the defined end.

Ends

referent

The Reference which is providing the reference through which instances playing
the end-defined by the AssociationEnd can be accessed.

class: Reference

multiplicity: zero or more; not ordered (an AssociationEnd may or
may not be used by any number of References).

referencedEnd

The AssociationEnd which provides the majority of information for the Reference,
including the LinkEnds which supply the referenced instances.

class: AssociationEnd
multiplicity: exactly one
IDL

interface RefersTo : Reflective::RefAssociation {
RefersToLinkSet all_refers_to_links ();
boolean exists (in Reference referent, in AssociationEnd referenced_end)
raises (Reflective::MofError);
ReferenceSet referent (in AssociationEnd referenced_end)
raises (Reflective::MofError);
AssociationEnd referenced_end (in Reference referent)
raises (Reflective::MofError);
void add (in Reference referent, in AssociationEnd referenced_end)
raises (Reflective::MofError);
void modify_referent (in Reference referent,
in AssociationEnd referenced_end,
in Reference new_referent)
raises (Reflective::NotFound, Reflective::MofError);
void modify_referenced_end (in Reference referent,

3-68 OMG-MOF V1.3 March 2000

in AssociationEnd referenced_end,
in AssociationEnd new_referenced_end)
raises (Reflective::NotFound, Reflective::MofError);
void remove (in Reference referent, in AssociationEnd referenced_end)
raises (Reflective::NotFound, Reflective::MofError);

3.5.4 Exposes derived

A Reference defines areference for a Class. For an instance of that class, which holds
one or more links to some object or objects conforming to the reference, the instance
will be playing the role (end) defined by the AssociationEnd in this Association.
Although this association can be derived in the current MOF, the use of n-ary
associations, where a single Class has multiple ends specification of this Association,
IS necessary.

Ends

referrer

The Reference that is providing the exposedEnd'’s class instances within the
Reference’s Classifier.

class: Reference
multiplicity: zero or more; not ordered (an AssociationEnd may or
may not be used by any number of References).
changeable: yes
exposedEnd
The AssociationEnd representing the Reference’s owning Classifier's end in the
Association.
class: AssociationEnd
multiplicity: exactly one
changeable: yes
Derivation

See [S-13]. For agiven Reference, the Link of this Association is derived as follows:
®* The referrer’s Reference is the given Reference.

® The exposedEnd’s AssociationEnd is the given Reference’s referent’s container
Association’s other AssociationEnd.

OMG-MOF V1.3 MOF Model Associations March 2000 3-69

IDL

interface Exposes : Reflective::RefAssociation {
ExposesLinkSet all_exposes_links ();
boolean exists (in Reference referrer, in AssociationEnd exposed_end)
raises (Reflective::MofError);
ReferenceSet referrer (in AssociationEnd exposed_end)
raises (Reflective::MofError);
AssociationEnd exposed_end (in Reference referrer)
raises (Reflective::MofError);
void add (in Reference referrer, in AssociationEnd exposed_end)
raises (Reflective::MofError);
void modify_referrer (in Reference referrer,
in AssociationEnd exposed_end,
in Reference new_referrer)
raises (Reflective::NotFound, Reflective::MofError);
void modify_exposed_end (in Reference referrer,
in AssociationEnd exposed_end,
in AssociationEnd new_exposed_end)
raises (Reflective::NotFound, Reflective::MofError);
void remove (in Reference referrer, in AssociationEnd exposed_end)
raises (Reflective::NotFound, Reflective::MofError);

b

3.5.5 IsOfType

A Link between a TypedElement subclass and a Classifier supports the definition of
the TypedElement.

Ends

type
The type defining the TypedElement.
class: Classifier
multiplicity: exactly one

typedElements

The set of typed elements supported by a Classifier.

class: TypedElement
multiplicity: Zero or more
IDL

interface IsOfType : Reflective::RefAssociation {
IsOfTypeLinkSet all_is_of_type_links ();

3-70 OMG-MOF V1.3 March 2000

boolean exists (in Classifier type, in TypedElement typed_elements)
raises (Reflective::MofError);
Classifier type (in TypedElement typed_elements)
raises (Reflective::MofError);
TypedElementSet typed_elements (in Classifier type)
raises (Reflective::MofError);
void add (in Classifier type, in TypedElement typed_elements)
raises (Reflective::MofError);
void modify_type (in Classifier type,
in TypedElement typed_elements,
in Classifier new_type)
raises (Reflective::NotFound, Reflective::MofError);
void modify_typed_elements (in Classifier type,
in TypedElement typed_elements,
in TypedElement new_typed_elements)
raises (Reflective::NotFound, Reflective::MofError);
void remove (in Classifier type, in TypedElement typed_elements)
raises (Reflective::NotFound, Reflective::MofError);

b

3.5.6 CanRaise

Relates Operations to the Exceptions that they can raise.

Ends

operation

Given an Exception, the set of Operations which can Raise that Exception.

class: Operation

multiplicity: zero or more (an Exception may be defined that is not
currently used by any Operation; an Exception may be
raised by multiple Operations).

except

The set of Exceptions for an Operation.

class: Exception

multiplicity: zero or more (an Operation may be defined to raise no
exception, or multiple exceptions); ordered (an
Operation's Exceptions are ordered).

IDL

interface CanRaise : Reflective::RefAssociation {
CanRaiseLinkSet all_can_raise_links ();
boolean exists (in ::Model::Operation operation, in MofException except)

OMG-MOF V1.3 MOF Model Associations March 2000 3-71

raises (Reflective::MofError);
OperationSet operation (in MofException except)
raises (Reflective::MofError);
MofExceptionUList except (in ::Model::Operation operation)
raises (Reflective::MofError);
void add (in ::Model::Operation operation, in MofException except)
raises (Reflective::MofError);
void add_before_except (in ::Model::Operation operation,
in MofException except,
in MofException before)
raises (Reflective::NotFound, Reflective::MofError);
void modify_operation (in Operation operation,
in MofException except,
in Operation new_operation)
raises (Reflective::NotFound, Reflective::MofError);
void modify_except (in ::Model::Operation operation,
in MofException except,
in MofException new_except)
raises (Reflective::NotFound, Reflective::MofError);
void remove (in ::Model::Operation operation, in MofException except)
raises (Reflective::NotFound, Reflective::MofError);

b

3.5.7 Aliases

An Import aliases or imports a single Namespace.

Ends

importer

A Namespace may be aliased by an Import, which is the importer.

class: Import

multiplicity: zero or more (a Namespace may not be aliased, or
may be aliased by multiple Imports).

imported
The Namespace that an Import imports or aliases.
class: Namespace
multiplicity: exactly one

IDL

interface Aliases : Reflective::RefAssociation {
AliasesLinkSet all_aliases_links ();
boolean exists (in Import importer, in Namespace imported)
raises (Reflective::MofError);

3-72 OMG-MOF V1.3 March 2000

ImportSet importer (in Namespace imported)
raises (Reflective::MofError);
Namespace imported (in Import importer)
raises (Reflective::MofError);
void add (in Import importer, in Namespace imported)
raises (Reflective::MofError);
void modify_importer (in Import importer,
in Namespace imported,
in Import new_importer)
raises (Reflective::NotFound, Reflective::MofError);
void modify_imported (in Import importer,
in Namespace imported,
in Namespace new_imported)
raises (Reflective::NotFound, Reflective::MofError);
void remove (in Import importer, in Namespace imported)
raises (Reflective::NotFound, Reflective::MofError);

b

3.5.8 Constrains

Each Constraint constrains one or more Model Elements.

Ends

constraint

A Constraint which constrains a Model Element.

class: Constraint

multiplicity: zero or more (a ModelElement need not be
constrained, but could be constrained by more than
one Constraint).

constrainedElement

The ModelElements that a Constraint holds its constraint against.

class: ModelElement

multiplicity: one or more (a Constraint must constrain at least one
M odel Element)

IDL

interface Constrains : Reflective::RefAssociation {
ConstrainsLinkSet all_constrains_links ();
boolean exists (in ::Model::Constraint constraint,
in ModelElement constrained_element)
raises (Reflective::MofError);
ConstraintSet constraint (in ModelElement constrained_element);

OMG-MOF V1.3 MOF Model Associations March 2000 3-73

raises (Reflective::MofError)
ModelElementSet constrained_element (in ::Model::Constraint constraint)
raises (Reflective::MofError);
void add (in ::Model::Constraint constraint,
in ModelElement constrained_element)
raises (Reflective::MofError);
void modify_constraint (in ::Model::Constraint constraint,
in ModelElement constrained_element,
in Constraint new_constraint)
raises (Reflective::NotFound, Reflective::MofError);
void modify_constrained_element (in ::Model::Constraint constraint,
in ModelElement constrained_element,
in ModelElement new_constrained_element)
raises (Reflective::NotFound, Reflective::MofError);
void remove (in ::Model::Constraint constraint,
in ModelElement constrained_element)
raises (Reflective::NotFound, Reflective::MofError);

b

3.5.9 DependsOn derived

DependsOn is a derived Association that allows a client to identify the collection of
M odel Elements on which a given Model Element structurally depends. The Association
is derived from a number of other Associations in the MOF Model, as described below.

Note — The model of dependency that is embodied in in this Association is based
solely on the structural relationships within a meta-model. In some cases, the structural
dependencies have clear semantic paralels (e.g., the meaning of an Attribute depends
on its type). In other cases the semantic parallel is more tenuous (e.g., a Datalype only
semantically depends on its container in the context of type identity).

Ends
dependent
This End is occupied by ModelElements that structurally depend on the
ModelElement at the other End.
class: ModelElement
multiplicity: zero or more (a ModelElement can have no
ModelElement depend on it, or many may depend on
it).
changeable: no

3-74 OMG-MOF V1.3 March 2000

provider

This End is occupied by ModelElements that have other Model Elements that
structurally depend on them.

class: ModelElement
multiplicity: zero or more (a ModelElement can depend on no
other M odel Elements or multiple M odel Elements).
changeable: no
Derivation

See [S-14]. A ModelElement (ME) depends on:

“container” - its container Namespace from Model Element::container
“constraint” - any Constraints from Model Element::constraints.
“contents’ - if ME is a Namespace, its contents from Namespace::contents.

“specialization” - if ME is a GeneralizableElement, its supertypes from
Generalizabl eElement::supertypes.

“import” if ME is an Import, the imported Package or Class from
I mport::importedNamespace

“signature” - if ME is an Operation, the Exceptions it raises from
Operation::exceptions.

“type definition” - if ME is a TypedElement, the Classifier from
TypedElement::type.

“referenced ends” - if ME is a Reference, the two AssociationEnds from
Reference::referencedEnd and Reference::exposedEnd

“constrained elements’ - if ME is a Constraint, the elements it constrains from
Constraint::constrainedElements.

“tagged elements” - if ME is a Tag, the elements it is attached to from
Tag::elements.

DL

interface DependsOn : Reflective::RefAssociation {
DependsOnLinkSet all_depends_on_links ();

boolean exists (in ModelEleme
raises (Reflective::MofError);
ModelElementSet dependent (i
raises (Reflective::MofError);

nt dependent, in ModelElement provider)

n ModelElement provider)

ModelElementSet provider (in ModelElement dependent)

raises (Reflective::MofError);

OMG-MOF V1.3 MOF Model Associations March 2000 3-75

3.5.10 AttachesTo

This association represents Tags attached to M odelElements. A Model Element's Tags
are ordered, although the ordering may not be of any significance, depending on the
meaning of the Tags. Ordering is preserved in case some Tags, in conjunction with
some defined semantics, requires an ordering.

Ends

model Element

The ModelElements that an attached Tag describes, modifies, or otherwise
associates.
class: M odel Element
multiplicity: one or more (a Tag must be attached to at least one
ModelElement).
tag
The set of Tags attached to a Model Element.
class: Tag
multiplicity: zero or more (a ModelElement need not have a Tag),
ordered.
IDL

interface AttachesTo : Reflective::RefAssociation {
AttachesToLinkSet all_attaches_to_links ();
boolean exists (in ModelElement model_element, in ::Model::Tag tag)
raises (Reflective::MofError);
ModelElementSet model_element (in ::Model::Tag tag)
raises (Reflective::MofError);
TagUList tag (in ModelElement model_element)
raises (Reflective::MofError);
void add (in ModelElement model_element, in ::Model::Tag tag)
raises (Reflective::MofError);
void add_before_tag (in ModelElement model_element,
in ::Model::Tag tag,
in Tag before)
raises (Reflective::NotFound, Reflective::MofError);
void modify_model_element (in ModelElement model_element,
in ::Model::Tag tag,
in ModelElement new_model_element)
raises (Reflective::NotFound, Reflective::MofError);
void modify_tag (in ModelElement model_element,
in ::Model::Tag tag,
in Tag new_tag)

3-76 OMG-MOF V1.3 March 2000

raises (Reflective::NotFound, Reflective::MofError);
void remove (in ModelElement model_element, in ::Model::Tag tag)
raises (Reflective::NotFound, Reflective::MofError);
b

3.6 MOF Modd Data Types

The following data types are part of the MOF Model . Each data type is represented in
the MOF Model as an instance of the DataType class with a typecode that corresponds
to the Data Type.

3.6.1 CORBA Basic Types

Each CORBA basic typeis potentially available as an instance of Datarype. The basic
types used in the MOF Model are boolean, long, unsigned long, any, string, and
TypeCode.

3.6.2 NameType
NameType is an unbounded string data type used to represent M odel Element names.
IDL
typedef string NameType;

3.6.3 AnnotationType

AnnotationType is an unbounded string data type used to represent Model Element
annotations.

IDL

typedef string AnnotationType;

3.6.4 TypeDescriptor
A TypeDescriptor value represents a particular type. By defining TypeDescriptor as a

CORBA TypeCode, the MOF makes use of CORBA's types and type definition
capabilities.

OMG-MOF V1.3 MOF Model Data Types March 2000 3-77

3-78

IDL

typedef CORBA::TypeCode TypeDescriptor;

3.6.5 MultiplicityType

MultiplicityType is a structure (record) type that is used to specify the multiplicity
properties of an Attribute, Parameter, Reference, or AssociationEnd.

Fields

|ower

This field gives the lower bounds on the number of elements allowed for the
Attribute, Parameter, Reference, or AssociationEnd.

type: long

upper

This field gives the upper bounds on the number of elements allowed for the
Attribute, Parameter, Reference or AssociationEnd. A value of Unbounded (see
Section 3.8.1, “Unbounded,” on page 3-85) indicates that there is no upper bound
on the number of elements.

type: long

isOrdered

This flag indicates whether the order of the elements corresponding to the
Attribute, Parameter, Reference, or AssociationEnd has any semantic significance.

type: boolean

isUnique

This flag indicates whether or not the elements corresponding to the Attribute,
Parameter, Reference, or AssociationEnd are required (or guaranteed) to be
unique.

type: boolean

Constraints
[The “lower” bound of an MultiplicityType to be “Unbounded”. [C-54]]

[The “lower” bound of a MultiplicityType cannot exceed the “upper” bound. [C-55]]

OMG-MOF V1.3 March 2000

[The “upper” bound of a Multiplicity Type cannot be less than 1. [C-56]]

[If a Multiplicity Type specifies bounds of [0..1] or [1..1]) the “is_ordered” and
“is_unique” values must be false. [C-57]]

IDL

struct Multiplicity Type {
long lower;
long upper;
boolean isOrdered;
boolean isUnique;

b

const string LOWER_CANNOT_BE_NEGATIVE_OR_UNBOUNDED =
"org.omg:constraint.model.multiplicity_type.lower_cannot_be_negative_or_unbounded";

const string LOWER_CANNOT_EXCEED_UPPER =
"org.omg:constraint.model.multiplicity_type.lower_cannot_exceed_upper";

const string UPPER_MUST_BE_POSITIVE =
"org.omg:constraint.model.multiplicity_type.upper_must_be_positive";

const string MUST_BE_UNORDERED_NONUNIQUE =
"org.omg:constraint.model.multiplicity_type.must_be_unordered_nonunique";

3.6.6 MishilityKind

This data type enumerates the three possible kinds of visibility for a ModelElement
outside of its container. These are:

1. “public_vis,” which allows anything that can use M odelElement’s container to also
use the M odel Element.

2. “protected vis,” which alows use of the Model Element within containers that
inherit from this one’s container.

3. “private_vis,” which denies all outside access to the M odel Element.

Note — The rules governing visibility of ModelElements in the MOF are yet to be
specified. As an interim measure, all ModelElements are deemed to be visible,
irrespective of the “visibility” attribute settings. The IDL mapping specification
includes minimal preconditions on visibility to ensure that generated IDL is compilable
(see Section 5.5, “Preconditions for IDL Generation,” on page 5-33).

IDL

enum VisibilityKind {public_vis, private_vis, protected_vis};

3.6.7 DepthKind

DepthKind enumerates the two choices of depth semantic for the “verify” operation.

OMG-MOF V1.3 MOF Model Data Types March 2000 3-79

Container

M odel Element

IDL

enum DepthKind {shallow, deep};

3.6.8 DirectionKind

DirectionKind enumerates the possible directions of information transfer for Operation
and Exception Parameters

IDL
enum DirectionKind {in_dir, out_dir, inout_dir, return_dir};
3.6.9 ScopeKind
ScopeKind enumerates the possible “scopes” for Attributes and Operations.
IDL
enum ScopeKind {instance_level, classifier_level};

3.6.10 AggregationKind

AggregationKind enumerates the possible aggregation semantics for Associations
(specified via AssociationEnds).

Note — Aggregation semantics in the MOF is intended to be aligned with UML.
Unfortunately, the OMG UML specification does not define the meaning of “shared”

aggregation for UML. As an interim measure, the use of “shared” aggregation in MOF
meta-models is discouraged.

IDL

enum AggregationKind {none, shared, composite};

3.6.11 EvaluationKind

EvaluationKind enumerates the possible models for Constraint evaluation.

3-80 OMG-MOF V1.3 March 2000

Container

Constraint

IDL

enum EvaluationKind {immediate, deferred};

3.6.12 DependencyKind

DependencyKind is a string that represents the “cause” for a particular dependency as
expressed by the DependsOn Association. The type declaration is accompanied by a
small number of predefined dependency types.

When a Model Element depends on a second model element under one kind of
dependency; and the second model element depends on a third under some other kind
of dependency; then the first Model Element depends on the third Model Element.
However, the kind of dependency cannot be specified, based on the other two
dependency kinds, except to categorize the dependency as indirect.

Container

M odel Element

IDL

typedef string DependencyKind;

3.6.13 FormatType

FormatType is a string type whose values denoted externalization formats.

Container

Package

IDL

typedef string FormatType;

3.6.14 Literal Type

Literal Type is the type used to represent the value of Constants.

OMG-MOF V1.3 MOF Model Data Types March 2000 3-81

IDL

typedef any LiteralType;

3.6.15 \erifyResultKind

VerifyResultKind enumerates the outcomes of the “verify” operation.

Container

M odel Element

IDL

enum VerifyResultKind {valid, invalid, published};

3.6.16 ViolationType

ViolationType is a structure (record) type that is used to return a description of an error
detected during Model Element verification. The fields have the same names and
meanings as for the Reflective MofError exception. Refer to Section 5.4, “Exception
Framework,” on page 5-24 for the complete description.

Fields

errorKind

This field will contain the kind string for the error being reported.

type: string

elementl nError

This field will give the ModelElement for the instance which the error is being
reported (e.g., the ModelElement to which a violated Constraint belongs, or
AssociationEnd that is underflowed).

type: Reflective::Ref Object

valueslinError

Thisfield gives a value or vaues that caused the error.

type: Reflective::NamedValueL ist

3-82 OMG-MOF V1.3 March 2000

struct Violation {

b

string error_kind;

errorDescription

This field gives a human intelligible textual description of the error

type: string

Container

M odel Element

IDL

Reflective::RefObject element_in_error;
Reflective::NamedValueList values_in_error;

string error_description;

3.7 MOF Modd Exceptions

The following exceptions are contained in the MOF Model Package. The generated
IDL interfaces for the MOF Model make use of more exceptions, which are defined in
the Reflective Package (see the Reflective Type Packages chapter) and assigned to
operations based on criteria determinable during generation.

3.7.1 NameNotFound

The NameNotFound exception is raised when a lookup of a simple name has failed.
parameters: name : out NameType

The name parameter gives the string value that could not be found in the Namespace or
extended Namespace searched by the operation.

Container

Namespace

3.7.2 NameNotResolved

The NameNotResolved exception is raised when resolution of a qualified name has
failed.

parameters: explanation : out string

restOfName : out NameType (multiplicity: zero or more; ordered;
not unique)

OMG-MOF V1.3 MOF Model Exceptions March 2000 3-83

3-84

The restOfName parameter contains that part of the qualified name that was not
resolved. The explanation parameter can have the following values with the
corresponding interpretation:

® “InvalidName’: the first name in restOfName was malformed.

® “MissingName’: the first name in restOfName could not be resolved as no name
binding exists for that name.

® “NotNameSpace’: the first name in restOfName did not resolve to a NameSpace
when a NameSpace was expected.

® “CannotProceed”: thefirst name in restOfName could not be resolved (for any other
reason).

Container

Namespace

3.7.3 ObjectNotExternalizable

An object cannot be externalized in the regquested format.

parameters: explanation : out string

Container

Package

3.7.4 FormatNotSupported

The requested format for internalize/externalize is not supported.

parameters: none

Container

Package

3.7.5 lllIformedExter nalizedObject

The externalized form of the object does not conform to the format expected.

parameters: explanation : out string

Container

Package

OMG-MOF V1.3 March 2000

3.8 MOF Modedl Constants

The following Constants form part of the MOF Model.

3.8.1 Unbounded

This constant is used in the context of MultiplicityType to represented an unlimited
upper bound on a cardinality (see Section 3.6.5, “MultiplicityType,” on page 3-78).

Container

Model

IDL

const unsigned long UNBOUNDED = -1;

3.8.2 The Sandard DependencyKinds

const DependencyKind
const DependencyKind
const DependencyKind
const DependencyKind
const DependencyKind
const DependencyKind
const DependencyKind
const DependencyKind
const DependencyKind
const DependencyKind
const DependencyKind
const DependencyKind

These constants (ContainerDep, ContentsDep, SignatureDep, ConstraintDep,
ConstrainedElementsDep, SpecializationDep, ImportDep, TypeDefinitionDep,
ReferencedEndsDep, TaggedElementsDep, IndirectDep, and AllDep) denote the
standard dependency categories and pseudo-categories. Refer to “Model Element” on
page 3-15 and Section 3.5.9, “DependsOn,” on page 3-74 for detailed explanations.

Container

M odel Element

IDL

CONTAINER_DEP ="container";
CONTENTS_DEP = "contents";
SIGNATURE_DEP = "signature";
CONSTRAINT_DEP = "constraint";
CONSTRAINED_ELEMENTS_DEP = "constrained elements";
SPECIALIZATION_DEP = "specialization";
IMPORT_DEP ="import";
TYPE_DEFINITION_DEP = "type definition";
REFERENCED_ENDS_DEP = "referenced ends";
TAGGED_ELEMENTS_DEP = "tagged elements";
INDIRECT_DEP = "indirect";

ALL_DEP ="all";

OMG-MOF V1.3 MOF Model Constants March 2000 3-85

3.9 MOF Modd Constraints

3-86

3.9.1 MOF Model Constraints and other M2 Level Semantics

This section defines the semantic constraints that apply to the MOF Model. These are
expressed as M2-level Constraints and are formally part of the MOF Model (i.e., they
are arequired part of a representation of the MOF Model as MOF meta-objects or in
the MOF Model / XMI interchange format).

The section also provides OCL semantic specifications for most M2-level Operations,
derived Attributes, and derived Associations in the MOF Model, and for a collection of
“helper” functions used by them and the Constraints. These semantic specifications
need not be present in a representation of the MOF Model. Indeed, this document does
not specify how they should be represented.

Note — The use of OCL in the MOF Model specification does not imply arequirement
to use OCL evaluation as part of an MOF Model server' simplementation. Furthermore,
if that approach is used, it is anticipated that the implementor may rewrite the OCL
rules to make evaluation more efficient. For example, the Constraint OCL could be
rewritten as pre-conditions on the appropriate mapped update operations.

3.9.2 Notational Conventions

3.9.2.1 Notationfor MOF Modd Constraints

The M2-level Constraints on the MOF Model are described in the following notation:

[C-xxx] ConstraintName
evaluation policy: immediate or deferred
description: brief english description

cont ext SoneCl assifi er Nane
inv:

The meaning of the above is as follows:

® “[C-xxx]" isthe cross reference tag for the Constraint used elsewhere in this
document.

® “ConstraintName’ is the name for the Constraint in the MOF Model. The IDL
mapping uses this name to produce the MofError “kind” string for the Constraint.
These strings appear in the generated IDL for the MOF Model, as described in
Section 5.8.17, “Constraint Template,” on page 5-90.

® The “evaluation policy” states whether the Constaint should be checked on any
relevant update operation, or whether checking should be deferred until full meta-
model validation is triggered. It defines the Constraint’s “evaluationPolicy” value.

® The “description” is a brief non-normative synopsis of the Constraint. It could be
used as the Constraint’s “annotation” value.

OMG-MOF V1.3 March 2000

3

3.9.2.2

® The OCL for the Constraint is defined using the OCL syntax defined in UML 1.3.

The OCL for the Constraints start with a“context” clause that names a Model Element
in the MOF Model. This serves two purposes:

1. It defines the context in which the OCL constraint should be evaluated (i.e., the M3-
level Class or DataType whose instances are constrained by the OCL).

2. It defines the “ constrainedElements’ and “container” for the Constraint.

While the OCL for the Constraints are mostly expressed as invariants, this should not
be taken literally. Instead, the Constraint OCL should be viewed as:

® apre-condition on the relevant IDL operations for “immediate” Constraints, or

® apart of the specification of ModelElement’s “verify” Operation for “deferred”
Constraints.

The Constraints in the MOF Model are expressed as restrictions on either Classes or
DataTypes. Each one applies to (“Constrains’) a single Classifier, and each one is
defined to be contained by the Classifier that it applies. The “language” attribute of
each Constraint is either “MOF-OCL” (for those with complete OCL specifications) or
“Other.” The “expression” attribute should be the normative OCL defined here, even if
different (but equivalent) OCL is used in an MOF Model server’s implementation.

Notation for Operations, derived Attributes and derived Association

The semantics of M 2-level Operations, derived Attributes, and derived Associations on
the MOF Model are described in the following notation:

[O-xxx] ModelElementName
kind: classification
description: brief english description

context Cl assifierNanme:: OperationName(...)
post: result = ...

or

context C assNane:: AttributeNane()
post: result = ...

or

cont ext O assNane:: ReferenceNane()
post: result = ...

The meaning of the above is as follows:

® “[O-xxx]" is the cross reference tag for the semantic description that may be used
elsewhere in this document.

* “ModelElementName” is the name of the Attribute, Operation, or Association in the
MOF Model whose semantics is described.

® The “classification” describes the kind of the ModelElement (e.g., “readonly
derived Attribute” or “query Operation”).

OMG-MOF V1.3 MOF Model Constraints March 2000 3-87

3-88

® The “description” is a brief non-normative synopsis of the semantics.

® The OCL is defined using the OCL syntax defined in UML 1.3. The “context”
clause names an “abstract” operation or method on an M1 level interface whose
semantics is specified. The name of the rea operation(s) or method(s) will depend
on the mapping. The semantics are expressed as post-conditions for these methods.

3.9.2.3 Notation for Helper Functions.

OCL Helper Functions are described in the following notation:
[S-xxx] HelperName
description: brief english description

context C assifierName:: Hel perName(...) :
post: result = ...

The meaning of the above is as follows:

® “[S-xxx]" is the cross reference tag for the helper function that may be used
elsewhere in this document.

® “HelperName” is the name of the Helper Function.
® The “description” is a brief non-normative synopsis of the Helper’'s semantics.

® The OCL for the Helper is defined using the OCL syntax defined in UML 1.3. The
“context” clause hames a notional helper function on a Model Element whose
semantic then specified. These notional functions are not intended to be callable by
client code.

3.9.3 OCL Usage in the MOF Model specification

3.9.3.1

The OCL language was designed as a part of the UML specification. As such, the OCL
semantics are specified in terms of UML concepts and constructs. Some of these
concepts do not match MOF concepts exactly. Accordingly, it is necessary to
reinterpret parts of the OCL specification so that it can be used in MOF Model’s
Constraints and other semantics aspects of the MOF Model.

UML Associ ationEnds ver sus MOF References

In the UML version of OCL, the dot (“.”) and arrow (“->") operators are used to access
Attribute values, and to navigate Associations. Consider an OCL expression of the
form:

<expr> <identifier>

Assuming that “<expr>" evaluates to an object, the value of the expression is either the
value of an Attribute named “<identifier>" for the object or another object obtained by
navigating a link in a binary Association which has “<identifier>" as an Association
End name.

OMG-MOF V1.3 March 2000

3

3.9.3.2

3.9.3.3

3.9.34

In this context (i.e., the definition of the MOF Model), the “<identifier>" is interpreted
differently. In the MOF Model, the interfaces for navigating Associations are specified
using References rather than AssociationEnds. Thus in the MOF version of OCL, link
navigation is expressed using the name of a Reference for the “<expr>" object as the
“<identifier>." However, the overall meaning is analogous to the UML case.

Helper functions are not MOF Operations

In the UML version of OCL, object behavior is invoked by an expression of the form:

<expr> “.” <identifier>*“("* ... “)”

where “<identifier>" names a UML Operation or Method on the object obtained by
evaluating “<expr>.”

In the MOF Model specification, the above expression invokes behavior defined by
either a MOF Operation, or a helper function. The distinction between conventional
UML and its usage here is that helper functions have no defined connection with any
internal or external interfaces in aMOF Model server. Indeed, they need not exist at all
as implementation artifacts.

Post-conditions on MOF Model objects

Rules [C-2], [C-3], and [C-4] are intended to define post-conditions on all operations
on Model Element objects. This is expressed in the MOF Model OCL by giving a Class
rather than an Operation as the “context” for the OCL rules. It is not clear that thisis
allowed by UML OCL.

OCL evaluation order

The UML OCL specification does not define an evaluation order for OCL expressions
in general, and for boolean operators in particular. Thisis OK when OCL is used as an
abstract specification language, as it is in the UML specification. However it causes
problems when OCL expressions may be directly evaluated. These problems arise in
OCL that traverses cyclic graphs (e.g., [O-1]) or raises exceptions (e.g., [S-6]).

The MOF Model semantic specification touches on some of these issues (e.g., when
traversing an cyclical Imports graph). Therefore, the MOF Model usage of OCL
makes the following assumptions about OCL expression evauation order:

® Ingeneral, a MOF OCL expression is assumed to be evaluated by evaluating its
sub-expressions in order, starting with the leftmost sub-expression and ending with
the rightmost. The sub-expressions are delimited according to the standard OCL
operator precedence rules. If evaluation of one of the sub-expressions raises an
exception, the remaining sub-expressions are not evaluated.

® The above does not apply to the boolean operators “and,” “or,
then-else.” These are evaluated with short-circuiting as follows:
* In the expression “<exprl> and <expr2>," “<expr2>" is only evaluated if
“<exprl>" evaluates to true.

implies,” and “if-

OMG-MOF V1.3 MOF Model Constraints March 2000 3-89

3-90

3.9.3.5

3.9.3.6

3.9.3.7

* In the expression “<exprl> or <expr2>," “<expr2>" is only evaluated if
“<exprl>" evaluates to fase.

¢ In the expression “<exprl> implies <expr2>,” “<expr2>" is only evaluated if
“<exprl>" evaluates to true.

* In the expression “if <exprl> then <expr2> else <expr3> endif,” “<expr2>" is
only evaduated if “<exprl>" evaluates to true, and “<expr3>" is only evaluated if
“<exprl>" evaluates to fase.

“ OclType: :allInstances”

In UML OCL, the type.allinstances() is defined to return:

“The set of al instances of type and all of its subtypes in existence at the
moment in time that the expression is evaluated”.

In the MOF Model OCL, this expression is used to refer to the set of all instances that
exist within a given outermost Package extent. (Any OCL expression that required the
enumeration of all instances in existence “anywhere” would be problematical, since a
MOF repository does not exist in a closed world.)

“ Ocl Type: :references’

The MOF Model OCL in rule Chapter [C-4] assumes that the signature of OclType (as
defined in the UML OCL specification) is extended to include an operation called
“references.” Thisis assumed to behave like the “attributes’ operation, except that it
returns the names of an (M3-level) Classes References.

Foreign types and operations

Some of the MOF Model OCL rules makes use of types and operations that are not
predefined in OCL, not defined as Operations in the MOF Model, and not defined as
Helper functions. Examples include:

® Some rules use operations on CORBA's built-in Any and TypeCode data types.
Indeed one rule uses a constructor for TypeCodes. In each case, the intended
meaning should be self-evident.

® Some rules use of the TypeKind enumeration type. The meaning should be self
evident.

® Rule[C-3] makes uses of the CORBA Object::non_existent operation to assert that
an object must continue to exist.

® Rules[C-2] and [C-4] use operations defined in the RefObject and RefBaseObject
interfaces to access the meta-objects that represent the MOF Model. It should be
understood that thisis not intended to imply that a MOF Model server isrequired to
make these objects available at runtime.

OMG-MOF V1.3 March 2000

3.9.4 The MOF Model Constraints

[C-1] M ustBeContai nedUnlessPackage

format1: MUST_BE_CONTAINED_UNLESS PACKAGE

format2: must_be_contained_unless_package

evaluation policy: deferred

description: A ModelElement that is not a Package must have acontainer.
cont ext Mddel El enent

1 nv:

not self.ocllsTypeOf (Package) inplies
self.container -> size =1

[C-2] FrozenA ttributesCannotBeChanged

formatl: FROZEN_ATTRIBUTES CANNOT_BE CHANGED

format2: frozen_attributes cannot_be changed

evaluation policy: immediate

description: The attribute values of a ModelElement which isfrozen cannot be
changed.

cont ext Mbdel El ement

inv:

self.isFrozen() inplies
let nyTypes = self.ocl Type() -> all Supertypes() ->
i ncl udes(sel f.ocl Type()) in
let nyAttrs : Set(Attribute) =
sel f. Ref Base(Obj ect: :ref MetaCbject() ->
asCcl Type(Cl ass) ->
fi ndEl ement sByTypeExt ended(Attri bute) in
nyAttrs -> forAll (a |
sel f. Ref Cbj ect::refValue@re(a) =
sel f. Ref Obj ect::refValue(a))

[C-3] FrozenElementsCannotBeDeleted
formatl: FROZEN_ELEMENTS CANNOT_BE DELETED
format2: frozen elements cannot_be deleted

evaluation policy: immediate
description: A frozen ModelElement which isin afrozen Namespace can only be
deleted, by deleting the Namespace.

cont ext Mbdel El ement
post :
(self.isFrozen@re() and
sel f. container@re -> notEnpty and
sel f.container.isFrozen@re()) inplies
(sel f.container.Object::non_existent() or
not sel f.Object::non_existent())

OMG-MOF V1.3 MOF Model Constraints March 2000 3-91

3-92

[C-4] FrozenDependenciesCannotBeChanged
formatl: FROZEN_ DEPENDENCIES CANNOT_BE CHANGED
format2: frozen_dependencies_cannot_be changed

evaluation policy: immediate

description: Thelink sets that express dependencies of afrozen Element on other

Elements cannot be explicitly changed.

cont ext Model El enent
post :
self.isFrozen() inplies
let nyd asses = sel f.ocl Type() -> all Supertypes() ->
i ncl udes(sel f.ocl Type()) in
let nmyRefs = Set(Reference) =
sel f. Ref Base(Obj ect: :ref MetaCbject() ->
asCcl Type(Cl ass) ->
fi ndEl ement sByTypeExt ended(Ref erence) in
| et nyDepRefs = nyRefs ->

select (r |
Set{“contents”, “constraints”, “supertypes”,
“type”, “referencedEnd”, “exceptions”,
“i nportedNanespace”, “elenents”} ->
includes(r.nane)) in
nmyDepRefs ->
forAll(r |

sel f. Ref Ooj ect: :ref Value@re(r) =
sel f. Ref oj ect: :refValue(r))

[C-5] ContentNamesM ustNotColllide
format1: CONTENT_NAMES MUST_NOT_COLLIDE
format2: content_names _must_not_collide

evaluation policy: immediate
description: The names of the contents of a Namespace must not collide.

cont ext Nanmespace
inv: self.contents.forAll(
el, e2 | el.name = e2.nanme inplies rl = r2)

[C-6] SupertypeM ustNotBeSelf

format1: SUPERTYPE_MUST _NOT_BE_SELF

format2: supertype_must_not_be self

evaluation policy: immediate

description: A Generalizable Element cannot be its own direct or indirect
supertype.

cont ext Generalizabl eEl enent
inv: self.all Supertypes() -> forAll(s | s <> self)

OMG-MOF V1.3 March 2000

[C-7] SupertypeKindM ustBeSame
format1: SUPERTYPE_KIND_MUST _BE_SAME
format2: supertype_kind_must_be same

evaluation policy: immediate

description: A supertypes of a GeneralizableElement must be of the same kind as
the GeneralizableElement itself.

cont ext General i zabl eEl enent
inv: self.supertypes -> forAll(s | s.ocl Type() = self.ocl Type())

[C-8] ContentsMustNotCollideWithSupertypes

format1: CONTENTS MUST_NOT_COLLIDE WITH_SUPERTYPES

format2: contents_ must_not_collide_with_supertypes

evaluation policy: immediate

description: The names of the contents of a GeneralizableElement should not
collide with the names of the contents of any direct or indirect
supertype.

cont ext General i zabl eEl enent

inv:

| et superContents = self.all Supertypes() ->
collect(s | s.contents) in
sel f.contents ->

forAll (mL |
super Contents ->
forAll (m |
ml. nane = nR.nanme inplies mL = nR))
[C-9] DiamondRuleM ustBeObeyed
format1: DIAMOND_RULE_MUST_BE_OBEYED
format2: diamond_rule_must_be obeyed

evaluation policy: immediate
description: Multiple inheritance must obey the “Diamond Rule”.
cont ext General i zabl eEl enent
inv:
| et superNanespaces =

sel f.supertypes -> collect(s | s.extendedNanespace) in
super Namespaces -> asSet -> isUnique(s | s.nane)

OMG-MOF V1.3 MOF Model Constraints March 2000 3-93

[C-10] NoSupertypesAllowedForRoot

format1: NO_SUPERTYPES ALLOWED _FOR_ROOT

format2: no_supertypes allowed for_root

evaluation policy: immediate

description: If aGeneralizable Element is marked asa “root”, it cannot have any
supertypes.

cont ext General i zabl eEl enent
inv: self.isRoot inplies self.supertypes -> isEnpty

[C-17] SupertypesMustBeVisible
formatl: SUPERTYPES MUST BE VISIBLE
format2: supertypes must_be visible

evaluation policy: deferred

description: A GenerdizableElement’ simmediate supertypes must all be visibleto
it.

cont ext General i zabl eEl enent
inv: self.supertypes -> forAll(s | self.isVisible(s))

[C-12] NoSubtypesAllowedForL eaf

format1: NO_SUBTYPES ALLOWED_FOR_LEAF

format2: no_subtypes allowed_for_leaf

evaluation policy: immediate

description: A GeneralizableElement cannot inherit from a GeneralizableElement
defined asa“leaf”.

context Generalizabl eEl ement
inv: self.supertypes -> forAll(s | not s.isLeaf)

[C-13] AssociationsCannotBeTypes

format1: ASSOCIATIONS CANNOT_BE_TYPES

format2: associations_cannot_be types

evaluation policy: immediate

description: An Association cannot be the type of a TypedElement.

context TypedEl enent
inv: not self.type.ocllsKindO (Association)

3-94 OMG-MOF V1.3 March 2000

[C-14] TypeMustBeVisible
format1: TYPE_MUST_BE_VISIBLE
format2: type_must_be visible

evaluation policy: deferred
description: A TypedElement can only have atype that isvisibletoit.

context TypedEl enent
inv: self.isVisible(self.type)

[C-15] ClassContainmentRules
formatl: CLASS CONTAINMENT_RULES
format2: class containment_rules

evaluation policy: immediate

description: A Class may contain only Classes, DataTypes, Attributes, References,
Operations, Exceptions, Constraints and Tags.

context C ass
inv:
Set{Cl ass, DataType, Attribute, Reference, Operation,
Exception, Constraint, Tag} ->
includesAl | (sel f.content Types())

[C-16] AbstractClassesCannotBeSingleton
formatl: ABSTRACT_CLASSES CANNOT_BE_SINGLETON
format2: abstract_classes cannot_be_singleton

evaluation policy: deferred
description: A Classthat is marked as abstract cannot also be marked as singleton.

context O ass
inv: self.isAbstract inplies not self.isSingleton

[C-17] DataTypeContainmentRules
formatl: DATA_TYPE CONTAINMENT_RULES
format2: data type containment_rules

evaluation policy: immediate
description: A DataType may contain only TypeAliases, Constraints and Tags.

cont ext DataType
inv:
Set{ TypeAlias, Constraint, Tag} ->
includesAl | (sel f.content Types())

OMG-MOF V1.3 MOF Model Constraints March 2000 3-95

[C-18] ThisTypecodeNotSupported
formatl: THIS TYPECODE_NOT_SUPPORTED
format2: this_typecode not_supported

evaluation policy: deferred

description: The typeCode of a DataType must denote a CORBA 2.2 compliant
object type or datatype.

cont ext DataType
inv:
sel f.typeCode. al | TypeKi nds() ->
excl udes(Set {#t k_void, #tk_Principal, #tk_null, #tk_except,
#t k_val ue, #tk_val ue_box, #tk_native,
#t k_abstract _interface})

[C-19] DataTypesHaveNoSupertypes
format1: DATA_TYPES HAVE_NO_SUPERTYPES
format2: data types have no_supertypes

evaluation policy: immediate
description: Inheritance / generalization is not applicable to DataTypes.

cont ext DataType
inv: self.supertypes -> isEnpty

[C-20] DataTypesCannotBeAbstract
format1: DATA_TYPES CANNOT_BE_ABSTRACT
format2: data_types cannot_be abstract

evaluation policy: immediate
description: A DataType cannot be abstract.

cont ext DataType
inv: not self.isAbstract

[C-21] ReferenceMultiplicityMustM atchEnd
format1: REFERENCE _MULTIPLICITY_MUST _MATCH_END
format2: reference_multiplicity_must_match_end

evaluation policy: deferred

description: The multiplicity for a Reference must be the same as the multiplicity
for the referenced AssociationEnd.

cont ext Reference
inv: self.multiplicity = self.referencedEnd. multiplicity

3-96 OMG-MOF V1.3 March 2000

[C-22] ReferenceM ustBel nstanceScoped
format1: REFERENCE_MUST _BE_INSTANCE_SCOPED
format2: reference_must_be_instance_scoped

evaluation policy: immediate

description: Classifier scoped References are not meaningful in the current M1
level computational model.

cont ext Reference
inv: self.scope = #instance_| evel

[C-23] Changeabl eReferenceM ustHaveChangeabl eEnd

format1: CHANGEABLE_REFERENCE_MUST_HAVE_CHANGEABLE E

ND

format2: changeable reference_must_have changeable end

evaluation policy: deferred

description: A Reference can be changeable only if the referenced AssociationEnd
is aso changeable.

cont ext Reference
inv: self.isChangeabl e = sel f.referencedEnd. i sChangeabl e

[C-24] ReferenceTypeM ustMatchEndType
format1: REFERENCE_TYPE_MUST _MATCH_END_TYPE
format2: reference_type must_match_end_type

evaluation policy: deferred

description: The type attribute of a Reference and its referenced AssociationEnd
must be the same.

cont ext Reference
inv: self.type = self.referencedEnd. type

[C-25] ReferencedEndM ustBeNavigable
format1: REFERENCED_END_MUST BE_NAVIGABLE
format2: referenced_end must_be navigable

evaluation policy: deferred
description: A Referenceisonly allowed for a navigable AssociationEnd

cont ext Reference
inv: self.referencedEnd.isNavi gabl e

OMG-MOF V1.3 MOF Model Constraints March 2000 3-97

[C-26] ContainerMustM atchExposedType
format1: CONTAINER_MUST_MATCH_EXPOSED_TYPE
format2: container_must_match_exposed_type

evaluation policy: deferred

description: The containing Class for a Reference must be equal to or a subtype of
the type of the Reference’ s exposed AssociationEnd.

cont ext Reference
inv:
sel f.contai ner. al | Supertypes() -> including(self) ->
i ncl udes(sel f.referencedEnd. ot her End. t ype)

[C-27] ReferencedEndM ustBeVisible
format1: REFERENCED_END_MUST BE_VISIBLE
format2: referenced_end_must_be visible

evaluation policy: deferred

description: The referenced AssociationEnd for a Reference must be visible from
the Reference.

cont ext Reference
inv: self.isVisible(self.referencedEnd)

[C-28] OperationContainmentRules

formatl: OPERATION_CONTAINMENT_RULES

format2: operation_containment_rules

evaluation policy: immediate

description: An Operation may only contain Parameters, Constraints and Tags.
context Operation

(A

Set{ Parameter, Constraint, Tag} ->
includesAl | (sel f.content Types())

[C-29] OperationsHaveAtM ostOneReturn

format1: OPERATIONS HAVE_AT_MOST _ONE_RETURN

format2: operations_have at_most_one return

evaluation policy: immediate

description: An Operation may haveat most one Parameter whose direction is
“return”.

context Operation
inv:
sel f.contents ->
select(c | c.ocll|sTypef(Paraneter)) ->
select(p : Paraneter | p.direction = #return_dir) ->
size < 2

3-98 OMG-MOF V1.3 March 2000

[C-30] OperationExceptionsMustBeVisible

format1: OPERATION_EXCEPTIONS MUST BE_VISIBLE

format2: operation_exceptions must_be visible

evaluation policy: deferred

description: The Exceptions raised by an Operation must be visible to the
Operation.

context Operation
inv: self.exceptions -> forAll(e | self.isVisible(e))

[C-31] ExceptionContainmentRules
formatl: EXCEPTION_CONTAINMENT_RULES
format2: exception_containment_rules

evaluation policy: immediate
description: An Exception may only contain Parameters and Tags.

cont ext Exception
inv: Set{Paranmeter, Tag}) -> includesAll(self.contentTypes())

[C-32] ExceptionsHaveOnlyOutParameters
format1: EXCEPTIONS HAVE_ONLY_OUT_PARAMETERS
format2: exceptions_have only _out_parameters

evaluation policy: immediate
description: An Exception’s Parameters must all have the direction “out”.

cont ext Exception
inv:
sel f.contents ->
select(c | c.ocll|sTypef(Paraneter)) ->
forAll (p : Paraneter | p.direction = #out_dir)

[C-33] AssociationContai nmentRul es
formatl: ASSOCIATIONS CONTAINMENT_RULES
format2: associations_containment_rules

evaluation policy: immediate

description: An Association may only contain AssociationEnds, Constraints and
Tags.

context Association

inv:

Set{ Associ ati onEnd, Constraint, Tag} ->
includesAl | (sel f.content Types())

OMG-MOF V1.3 MOF Model Constraints March 2000 3-99

[C-34] AssociationsHaveNoSupertypes
formatl: ASSOCIATIONS HAVE NO_SUPERTYPES
format2: associations_have no_supertypes

evaluation policy: immediate
description: Inheritance/ generalization is not applicable to Associations.

cont ext Associ ation
inv: self.supertypes -> isEnpty

[C-35] AssociationMustBeRootAndL eaf
format1: ASSOCIATIONS MUST_BE_ROOT_AND_LEAF
format2: associations_must_be root_and_leaf

evaluation policy: immediate
description: The valuesfor “isLeaf” and “isRoot” on an Association must be true.

cont ext Associ ation
inv: self.isRoot and self.islLeaf

[C-36] AssociationsCannotBeAbstract
format1: ASSOCIATIONS CANNOT_BE_ABSTRACT
format2: associations_cannot_be abstract

evaluation policy: immediate
description: An Association cannot be abstract.

cont ext Associ ation
inv: not self.isAbstract

[C-37] AssociationsMustBePublic
format1: ASSOCIATIONS MUST BE_PUBLIC
format2: associations_ must_be public

evaluation policy: immediate
description: Associations must have visibility of “public”.

cont ext Association
inv: self.visibility = #public_vis

3-100 OMG-MOF V1.3 March 2000

[C-38] AssociationsMustBeBinary
formatl: ASSOCIATIONS MUST_BE BINARY
format2: associations_ must_be binary

evaluation policy: immediate
description: An Association must be binary; i.e. it must have exactly two
AssociationEnds.

cont ext Association
inv: self.contents ->
select(c | c.ocllsTypeOr (Associati onEnd)) -> size = 2

[C-39] EndTypeMustBeClass
format1: END_TYPE _MUST_BE_CLASS
format2: end_type must_be class

evaluation policy: immediate
description: The type of an AssociationEnd must be Class.

cont ext Associ ati onEnd
inv: self.type.ocllsTypeCOf (Cl ass)

[C-40] EndsMustBeUnique
format1: ENDS MUST_BE_UNIQUE
format2: ends_must_be unique

evaluation policy: immediate
description: The “isUnique” flag in an AssociationEnd’s multiplicity must be true.

context Associ ati onEnd
inv:
(self.multiplicity.upper > 1 or
self.multiplicity.upper = UNBOUNDED) inplies
sel f.multiplicity.isUnique

[C-41] CannotHaveTwoOrderedEnds
formatl: CANNOT_HAVE_TWO_ORDERED_ENDS
format2: cannot_have two_ordered ends

evaluation policy: deferred

description: An Association cannot have two AssociationEnds marked as
“ordered”.

cont ext Associ ati onEnd

inv:

self.multiplicity.isOrdered inplies
not self.otherEnd. multiplicity.isOrdered

OMG-MOF V1.3 MOF Model Constraints March 2000 3-101

3-102

[C-42] CannotHaveTwoA ggregateEnds

formatl: CANNOT_HAVE_TWO_AGGREGATE_ENDS

format2: cannot_have two_aggregate_ends

evaluation policy: deferred

description: An Association cannot have an aggregation semantic specified for
both AssociationEnds.

cont ext Associ ati onEnd

inv:

sel f.aggregation <> #none inplies self.otherEnd = #none

[C-43] PackageContai nmentRules
format1: PACKAGE_CONTAINMENT_RULES
format2: package _containment_rules

evaluation policy: immediate

description: A Package may only contain Packages, Classes, DataTypes,
Associations, Exceptions, Constraints, Imports and Tags.

cont ext Package
inv:
Set { Package, Cl ass, DataType, Associ ation, Exception,
Constraint, Inport, Tag}) -> includesAll(self.contentTypes)

[C-44] PackagesCannotBeAbstract
format1: PACKAGES CANNOT_BE ABSTRACT
format2: packages cannot_be abstract

evaluation policy: immediate
description: Packages cannot be declared as abstract.

cont ext Package
inv: not self.isAbstract

[C-45] ImportedNamespaceMustBeVisible
format1: IMPORTED_NAMESPACE_MUST BE_VISIBLE
format2: imported_namespace _must_be visible

evaluation policy: deferred

description: The Namespace imported by an Import must be visibleto the Import’s
containing Package.

context |nport
inv: self.container.isVisible(self.inportedNamespace)

OMG-MOF V1.3 March 2000

[C-46] CanOnlylmportPackagesAndClasses
format1: CAN_ONLY_IMPORT_PACKAGES AND_CLASSES
format2: can_only_import_packages and_classes

evaluation policy: immediate
description: Itisonly legal for aPackageto import or cluster Packages or Classes.
cont ext | nport
inv:
sel f.inported. oclIsTypeOf (O ass) or
sel f.inmported. ocl I sTypeO (Package)

[C-47] Cannotl mportSelf
format1: CANNOT_IMPORT_SELF
format2: cannot_import_self

evaluation policy: deferred
description: Packages cannot import or cluster themselves.

cont ext | nport
inv: self.container <> self.inported

[C-48] Cannotl mportNestedComponents

formatl: CANNOT_IMPORT_NESTED_COMPONENTS

format2: cannot_import_nested_components

evaluation policy: deferred

description: Packages cannot import or cluster Packages or Classes that they
contain.

context | nport
inv: not self.container.allContents() -> includes(self.inported)

[C-49] NestedPackagesCannotl mport
format1: NESTED_PACKAGES CANNOT_IMPORT
format2: nested_packages cannot_import

evaluation policy: deferred
description: Nested Packages cannot import or cluster other Packages or Classes.

cont ext |nport
inv:
sel f.contai ner -> notEnpty inplies
sel f.contai ner -> asSequence -> first -> contai ner -> i sEnpty

OMG-MOF V1.3 MOF Model Constraints March 2000 3-103

[C-50] CannotConstrainThisElement

formatl: CANNOT_CONSTRAIN_THIS ELEMENT
format2: cannot_constrain_this element

evaluation policy: immediate

description: Constraints, Tags, Imports, TypeAliases and Constants cannot be
constrained.
cont ext Constraint
inv:
sel f. constrai nedEl enents ->
forAll (c
not Set{Constraint, Tag, |nports,
TypeAlias, Constant} ->
i ncl udes(c. ocl Type())
[C-51] ConsgtraintsLimitedToContainer
format1: CONSTRAINTS LIMITED_TO_CONTAINER
format2: constraints limited to _container

evaluation policy: deferred

description: A Constraint can only constrain Model Elementsthat are defined by or
inherited by itsimmediate container.

cont ext Constraint
inv:
sel f.constrai nedEl enments ->
forAll (c | self.container.extendedNanespace() ->
i ncl udes(c))

[C-52] ConstantsVaueMustMatchType
format1: CONSTANTS VALUE_MUST_MATCH_TYPE
format2: constants value_must_match_type

evaluation policy: deferred
description: The type of a Constant and the type of its value must be the same.

cont ext Const ant
inv: self.value.type -> equal s(self.type -> mapToTypecode())

OMG-MOF V1.3 March 2000

[C-53] ConstantsTypeMustBeSimpleDataType
format1: CONSTANTS TYPE_MUST BE_SIMPLE _DATA_TYPE
format2: constants_type must_be simple data type

evaluation policy: immediate

description: The type of a Constant must be a CORBA datatypethat islega for a
CORBA 2.3 constant declaration.

cont ext Const ant
inv:
sel f.type. ocl | skKi ndOFf (Dat aType) and
Set {#t k_short, #tk_ushort, #tk_long, #tk_ulong, #tk_char,
#tk_octet, #tk_float, #tk_double, #tk_boolean, #tk_string,
#t k_wchar, #tk_wstring, #tk_longlong, #tk_ulonglong,
#t k_| ongdoubl e, #tk_fixed} ->
i ncl udes(sel f.type. asType(DataType).typecode.
unwi ndAl i ases() . ki nd)

[C-54] L owerCannotBeNegativeOrUnbounded
format1: LOWER_CANNOT_BE_NEGATIVE_OR_UNBOUNDED
format2: lower_cannot_be negative_or_unbounded

evaluation policy: immediate
description: The “lower” bound of an MultiplicityTypeto be“Unbounded”.

context MiltiplicityType
inv: self.lower >= 0 and sel f.lower <> Unbounded

[C-55] L owerCannotExceedUpper

formatl: LOWER_CANNOT_EXCEED_UPPER

format2: lower_cannot_exceed upper

evaluation policy: immediate

description: The “lower” bound of a Multiplicity Type cannot exceed the “ upper”
bound.

context MiltiplicityType
inv: self.lower <= self.upper or self.upper = Unbounded

[C-56] UpperMustBePositive

format1: UPPER_MUST_BE_POSITIVE

format2: upper_must_be positive

evaluation policy: immediate

description: The “upper” bound of a Multiplicity Type cannot be less than 1.

context MiltiplicityType
inv: self.upper >= 1 or self.upper = Unbounded

OMG-MOF V1.3 MOF Model Constraints March 2000 3-105

3-106

[C-57] MustBeUnorderedNonunique
formatl: MUST_BE _UNORDERED_NONUNIQUE
format2: must_be_unordered_nonunique

evaluation policy: immediate

description: If aMultiplicity Type specifies bounds of [0..1] or [1..1]) the
“is_ordered” and “is_unique”’ values must befalse.

context MiltiplicityType
inv:
self.upper =1 inplies
(not self.isOrdered and not sel f.isUnique)

3.9.5 Semantic specifications for some Operations, derived Attributes and
Derived Associations

[S1] allSupertypes
kind: query Operation
description: The valueisthe closure of the ‘ Generalizes' Association from the

perspective of asubtype. Note that the sequence of all supertypes has
awell defined order.
cont ext Generalizabl eEl enent:: al | Supertypes()

Sequence(General i zabl eEl enent)
post: result = self.all Supertypes2(Set{})

[S2] otherEnd
kind: query Operation
description: The value of isthe other AssociationEnd for this Association.

cont ext Associ ati onEnd::otherEnd() : AssociationEnd
post: result = self.container.contents ->
select(c | c.ocllsKindO (Associ ati onEnd) and ¢ <> sel f)

[S-3] isVisible
kind: query Operation
description: Determines whether or not “ otherElement” isvisible for the definition

of thiselement. (NB: Asan interim measure, the OCL states that
everything isvisiblel)

cont ext Mbdel El ement: :i sVisi bl e(
ot her El enent : Mbdel El enent): bool ean
post: result = true

OMG-MOF V1.3 March 2000

[S4] findRequiredElements

kind: query Operation

description: Selects a subset of a ModelElements immediate or recursive
dependents.

cont ext Model El enent : : i sRequi r edBecause(
ki nds : Sequence(DependencyKi nd),
recursive : bool ean) : Sequence(Mdel El ement)
post: result =
if kinds -> includes(“all™)

t hen
sel f. findRequiredEl enment s(
Set{“constraint”, “container”, “constrained el ements”,
“speci alization”, “inmport”, “contents”, “signature”
“tagged el ements”, “type definition”
“referenced ends”})
el se
if recursive
t hen
sel f.recursiveFi ndDeps(ki nds, Set{self})
el se
kinds -> collect(k : self.findDepsOfKind(k)) -> asSet ()
endi f
endi f
[S5] isRequiredBecause
kind: query Operation
description: Returns the DependencyKind that describes the dependency between

this element and “ other”.

cont ext Model El enent: : fi ndRequi r edEl enent s(
ot her : Mbdel El enent,
reason : out DependencyKind) : bool ean

post: -- NB, if there is nore than one dependency between self
-- and ‘other’, the selection of the ‘reason’ is defined
-- to be non-deterministic ... not determnistic as a
-- left to right evaluation of the OCL inplies.
reason = (
if self -> isDepO>fKind(“constraint”, other)
t hen
“constraint”
el se
if self -> isDepOKind(“container”, other)
t hen
“contai ner”
el se
if self -> isDepOfKind(“constrained el ements”, other)
t hen
“constrai ned el ements”
el se
if self -> isDepOKind(“specialization”, other)
t hen

“speci al i zati on”

OMG-MOF V1.3 MOF Model Constraints March 2000 3-107

el se
if self -> isDepOfKind(“inport”, other)
t hen
“import”
el se
if self -> isDepOrKi nd(“contents”, other)
t hen
“contents”
el se
if self -> isDepOrKind(“signature”, other)
t hen
“si gnature”
el se
if self -> isDepOKind(“tagged el enents”, other)
t hen
“tagged el enents”
el se
if self -> isDepOfKind(“type definition”, other)
t hen
“type definition”
el se
if self -> isDepOKind(“referenced ends”, other)
t hen
“referenced ends”
el se
if self -> dependsOn() -> not Enpty()
t hen
“indirect”
el se
endi f
endi f
endi f
endi f
endi f
endi f
endi f
endi f
endi f
endi f
endi f) and

result = (reason <> “")

[S6] lookupElement
kind: query Operation
description: Returns the Model Element in the Namespace whose nameis equal to

“name”, or raises an exception.

cont ext Nanmespace: : | ookupEl enent (name : NanmeType) : Model El enent
post: result =
let elenms = self.contents -> select(m| mnanme = nane) in
if elens -> size = 0
t hen
-- Rai se exception NaneNot Found

3-108 OMG-MOF V1.3 March 2000

el se
elems -> first -- should only be one
endi f
[S7] resolveQualifiedName
kind: query Operation
description: Returns the Model Element that “ qualifiedName” resolvesto or raises

an exception

cont ext Namespace: :resol veQual i fi edName(
qual i fi edName : Sequence(NameType)) : Mbddel El enent
pre: qualifiedNane -> size >= 1
post: result =
let elenms = self.contents ->
select(m| mnane = qualifiedNane -> first) in
if elens -> size = 0

t hen
-- Rai se exception NanmeNot Resol ved ..
el se
if qualifiedNane -> size =1
t hen
elems -> first -- there should only be one
el se
if not elens -> first -> ocl|sOKi nd(Namespace)
t hen
-- Rai se exception NanmeNot Resol ved ..
el se
let rest = qualifiedNane ->
subSequence(2, qualifiedNane -> size) in
elems -> first -> resolveQualifiedNanme(rest)
endi f
endi f
endi f
[S8] namelsvalid
kind: query Operation
description: Returnstrueif “ proposedName” isavalid namethat could be used for

anew containedElement of this Namespace.

cont ext Nanespace: : nanel sVal i d(
proposedNane : NanmeType) : bool ean
post: result =
sel f. ext endedNanespace ->
forAll (e | not e.name = proposedNane)

OMG-MOF V1.3 MOF Model Constraints March 2000 3-109

3-110

[S9] findElementsByType
kind: query Operation
description: Returns a subset of the contained elements. If “includeSubtypes’ is

false, theresult consists of instances of “of Type”. If itistrue, instances
of subClasses are included.

cont ext Nanespace: : fi ndEl ement sByType(
of Type : d ass,
i ncl udeSubt ypes : bool ean) : Sequence(Model El enent)
post: result =
i f includeSubtypes

t hen
sel f.contents -> select(m | mocll|sOKi nd(of Type))
el se
self.contents -> select(m | mocll|sO Type(of Type))
endi f
[S10] lookupEl ementExtended
kind: query Operation
description: Returns the M odel Element whose nameis equal to “name” in the
extended namespace of this GeneralizableElement, or raisesan
exception.

cont ext Nanespace: : | ookupEl enent Ext ended(
nane : NameType) : Model El enent
post: result =
let elens = self -> extendedNanespace ->
select(m| mnane = nane) in
if elens -> size =0

t hen
-- Rai se exception NaneNot Found
el se
elems -> first -- should only be one
endi f
[S-11] findElementsBy TypeExtended
kind: query Operation
description: Returns a subset of the contained, inherited ot imported elements. If

“includeSubtypes’ isfalse, the result consists of instances of
“of Type”. If it istrue, instances of subClasses are included.

cont ext Generalizeabl eEl ement: : findEl enent sBy TypeExt ended(
of Type : d ass,
i ncl udeSubt ypes : bool ean) : Sequence(Model El enent)
post: result =
i f includeSubtypes

t hen
sel f. ext endedNanmespace -> select(m | mocllsOKi nd(of Type))
el se
sel f. ext endedNanmespace -> select(m | mocllsO Type(of Type))
endi f
OMG-MOF V1.3 March 2000

[S12] qualifiedName
kind: readonly derived Attribute
description: The qualified name gives the sequence of names of the containers of

this ModelElement starting with the outermost.

cont ext Model El enent: : qualifiedName() : Sequence(Mdel El enent)
post: result =
if self.container -> notEnpty

t hen
sel f.contai ner.qualifiedName() -> append(self.name)
el se
sel f. name
endi f
[S-13] Exposes
kind: derived Association
description: Thisassociation relates a Reference to the exposed A ssociationEnd of

an Association that corresponds to its referencedEnd.

cont ext Reference
inv: AssociationEnd. alllnstances ->
forAll(
a |
self.references = a inplies self.exposes = a.otherEnd and
not self.references = a inplies self.exposes <> a.other End)

[S14] DependsOn
kind: derived Association
description: This association relates a M odel Element to the other M odel Elements

whose definition it depends on.

cont ext Mbdel El enent
inv: self.findRequiredEl ements(“all”, true)

3.9.6 OCL Helper functions

[O-1] allSupertypes2
description: Helper function for the all Supertypes operation.

context Generalizabl eEl ement:: al | Supertypes2(
visited : Set(Generalizabl eEl enent))
Sequence(General i zabl eEl enent)
post: result =
if (visited -> includes(self))
t hen
Sequence{}
el se
I et nySupers : Sequence(Generalizabl eEl ement) =
sel f.supertypes ->

OMG-MOF V1.3 MOF Model Constraints March 2000 3-111

collect(s
s. al | Supertypes2(visited ->
i ncluding(self))) in
mySupers ->
iterate(s2 : Generalizabl eEl enent;
a : Sequence(CGeneralizabl eEl ement) = Sequence{}
if a ->includes(s2)

t hen
a
el se
a -> append(s2)
endi f)
[O-2] allTypeKinds
description: Return the TypeCode' s kind and the kinds of embedded TypeCodes

cont ext TypeCode: :all TypeKi nds() : Set (TCKi nd)
post: result =
| et nmenmberKinds = sel f. menber Typecodes ->
collect(m | nmt.all TypeKinds()) in
l et contentKinds =
if Set{tk_sequence, tk_array, tk_alias} ->
i ncl udes(sel f.kind())
t hen
sel f.content _type().all TypeKi nds()
el se
Set{}
endif in
let discrinKinds =
if self.kind() = tk_union
t hen
Set{sel f.discrimnator_type().kind}
el se
Set{}
endif in
Set{sel f.kind()) -> union(rmenberKi nds) ->
uni on(cont ent Ki nds) -> uni on(di scri nKi nds)

[O-3] member Typecodes
description: returnsthe set (possibly empty) of member TypeCodesfor aTypeCode

cont ext TypeCode: : nember Typecodes() : Set(TypeCode)
post: result =
if Set{tk_struct, tk_union, tk_except} ->
i ncl udes(sel f.kind())
t hen
Set {0..sel f.menber_count()} ->
collect(i | self.nmenber_type(i).all TypeKinds())
el se
Set{}
endi f

3-112 OMG-MOF V1.3 March 2000

[O-4] unwindAliases

description: dealiases a TypeCode

cont ext TypeCode: : unwi ndAl i ases() : TypeCode
post: result =

if self.kind() = tk_alias then
sel f.content _type().unw ndAl iases()

el se
sel f
endi f
[O-5] extendedNamespace
description: The extendedNamespace of a Namespace is its contents, the contents

of its supertypes and any Namespacesthat it imports.

cont ext Nanespace: : ext endedNanespace() : Set(Mdel El enent)
post: result =
sel f.contents

context GCeneralizabl eEl enent: : ext endedNanespace : Set (Mdel El ement)
post: result =
self.contents ->
uni on(sel f.all Supertypes() -> collect(s | s.contents))

cont ext Package: : ext endedNanespace : Set (Model El enent)
post: result =
let ens = self.contents ->
uni on(sel f.all Supertypes() -> collect(s | s.contents)) in
let inmports = ens -> select(e | e.oclKindOf(lnport)) ->
collect(i : Inport | i.inported) in
ens -> union(inports)

[O-6] contentTypes
description: The set of OCL typesfor aNamespace's contents.

cont ext Nanespace:: content Types() : Set(OCLType)
post: result = self.contents -> collect(m| mocl Type()) -> asSet

[O-7] mapToTypecode
description: The typecode corresponding to a Classifier.

context Cassifier::mpToTypecode() : TypeCode
post: result =
if self.ocllsTypeO (Dat aType)
t hen
sel f.typecode
el se
new TypeCode(tk_objref,
self -> fornmat1Nane,
self -> repositoryld)

OMG-MOF V1.3 MOF Model Constraints March 2000 3-113

3-114

[O-8] format1Name

description: The simple name of the element converted to words and reassembled
according to the “format1” rules; see“IDL Identifier Format 1" on
page 5-39.

cont ext Model El ement: : format IName() : string
post: result = ...

[O-9] repositoryld

description: The qualified name of the element converted into astandard CORBA
repositoryld string.

cont ext Model El enent: :repositoryld() : string

post: result = ...

[O-10] recursiveFindDeps
description: The set of ModelElements which recursively depend on this one.

cont ext Model El enent: :recursiveFi ndDeps(
ki nds : Sequence(DependencyKi nd),
seen : Set(Mdel El enent)) : Set(Model El enent)
post: result =
|l et seen2 = seen ->
collect(m| kinds ->
collect(k | mfindDepsOfKind(k)) -> asSet) in
if seen2 = seen

then
seen
el se
sel f.recursiveFi ndDeps(ki nds, seen2)
endi f
[O-11] isDepOfKind
description: Returns true if this element depends on ‘other’ with a dependency of

‘kind’.
cont ext Model El ement: : i sDepOf Ki nd(
ki nd : DependencyKi nd,
ot her : Model El enent) : bool ean
post: result = self -> findDepsOf Ki nd(kind) -> includes(other)

[0-12] findDepsOfKind
description: The set of ModelElements which this one Depends on with “kind”
dependency.

cont ext Model El enent: : fi ndDepsO Ki nd(
ki nd : DependencyKi nd) : Sequence(Model El errent)
post: result =
if kind = “constraint”
t hen
sel f.constraints()

OMG-MOF V1.3 March 2000

el se
if kind = “container”
t hen
sel f. cont ai ner ()
el se
if kind = “constrained el enents” and
sel f -> isCcl TypeOf (Constraint)
t hen
sel f -> ocl AsType(Constraint) -> constrainedEl enents()
el se
if kind = “specialization” and
self -> isCcl Ki ndOF (Gener al i zabl eEl enent)
t hen
sel f -> ocl AsType(General i zabl eEl ement) -> supertypes()
el se
if kind = “inport” and self -> isQOcl Type(lnport)
t hen
self -> ocl AsType(Inport) -> inportedNamespace()
el se
if kind = “contents” and self -> isCcl Ki ndOf (Nanespace)
t hen
sel f -> ocl AsType(Nanmespace) -> contents()
el se
if kind = “signature” and self -> isCOcl TypeCOf (Operation)
t hen
self -> ocl AsType(Operation) -> exceptions()
el se
if kind = “tagged el ements” and
self -> isCcl TypeO: (Tag)
t hen
self -> asCcl Type(Tag) -> el enents()
el se
if kind = “type definition” and
self -> isCcl Ki ndOf (TypedEl enent)
t hen
self -> asCcl Type(TypedEl enent) -> type()
if kind = “referenced ends” and
self -> isCcl Ki ndOf (Ref erence)
t hen
let ref = self -> asCcl Type(Reference) in
ref -> referencedEnd() ->
uni on(ref -> exposedEnd())
el se
Set {}
endi f
endi f
endi f
endi f
endi f
endi f
endi f
endi f
endi f
endi f

3-115

OMG-MOF V1.3 MOF Model Constraints March 2000

3-116 OMG-MOF V1.3 March 2000

4.1 Overview

TheMOF Abstract Mapping

Contents

This chapter contains the following topics.

Topic Page
“Overview” 4-1
“MOF Values’ 4-2
“Semantics of Class Instances’ 4-3
“Semantics of Attributes” 4-4
“Package Composition” 4-7
“Extents’ 4-9
“Semantics of Associations’ 4-12
“Aggregation Semantics” 4-17
“Closure Rules’ 4-18
“Recommended Copy Semantics” 4-21
“Computational Semantics” 4-22

This chapter describes the MOF's M1-level information model, and the common
principles underlying mapping specific M1-level computational models. Since it is

intended to be independent of any mapping to implementation technol ogy, the material

is rather abstract.

OMG-MOF V1.3 March 2000

4-1

4

4-2

4.2 MOF Values

A MOF meta-model is an abstract language for defining the types of meta-data. The
M2-level constructs used in a meta-model map onto M1-level representations as MOF
values. The types of these M1-level values can be defined using either M2-level
Classes or M2-level DataTypes.

An M2-level Class defines an M1-level Instance type with the following properties:

® |nstance typed objects have full object identity; i.e. it is always possible to reliably
distinguish one instance (object) from another. Object identity isintrinsic and
permanent, and is not dependent on other properties such as attribute values.

® |nstance typed objects can be linked via an Association.

By contrast, an M2-level DataType defines a type with the following properties:
® Data typed values do not have full object identity; see below.

® Data typed values cannot be linked via an Association.

DataTypes typically fall into two groups:

® MOF datatypes (i.e., datatypesthat are defined using the M OF primitive data types
and constructors):

« boolean, character types, string types, humeric types
e enumerations, arrays, sequences and records.

By definition, MOF data types do not have object identity. Ideally, they should be
available across all supported mappings with common computational semantics and
inter-convertible representations.

® Nativetypes (i.e., types that are defined in a type system that is (notionally) beyond
the scope of the core MOF type system). These types will typically be specific to a
given mapping, and hence should not be used where interoperability across middle-
ware technologies is a goal.

Native types may support object identity (in some sense). However, object identity
is not necessarily supported in the computational model of any given mapping.

DataTypes can also be classified as modeled types and external types. A modeled type
is one whose definition is expressed within the framework of the MOF Model. By
contrast, an external type is defined by some type definition mechanism outside of the
MOF Model. An example of the latter is a CORBA interface type whose definition is
held in a CORBA Interface Repository.

Note — The current version of the MOF specification is tied to the CORBA type
system, and represents DataTypes in a CORBA specific way. Some of the more
complicated CORBA data types do not have an equivalent in other type systems.

OMG-MOF V1.3 March 2000

4.2.1 Semantics of Equality for MOF Values

Much of the detail of the M OF computational model depends on a notion of equality of
values. For example, the precise formulation of the “no duplicates’ rule for link sets
depends on a definition for what it means for object type instances to be equal.

Equality of MOF Values is defined as follows:

1. Instances of Classes are equal if and only if they have the same identifier; i.e. it
does not take into account the values of Attributes for the instances or the links
involving the instances.

2. Values of MOF primitive data types are equal if and only if they have the same type
and same value.

3. Values of MOF enumeration data types are equal if and only if they have the same
type and the same enumerator.

4. Values of MOF array or sequence data types are equal if and only if they have the
same type, the same number of members and the corresponding components are
equal according to these rules.

5. Values of MOF record types are equal if and only if they have the same type and the
corresponding record fields are equal according to these rules.

6. The meaning of equality of external types and native types depends on the mapping.

Note — The meaning of equality for a particular externa or native type may vary
depending on the mapping. For example, equality may be undefined in some mappings.

4.3 Semanticsof Class|nstances

An M1-level Instance is a value whose type is described by an M2-level Class. An
Instance has the following properties in the MOF computational model:

® |t has object identity. This has different implications depending on the mapping, but
in general it means that many conceptually distinct Instance values can exist whose
component values are the same.

® |t has a definite lifetime. An Instance value is created in response to particular
events in the computational model, and continues to exist until it is deleted in
response to other events.

® |tiscreated in a computational context known as a Class extent, and remainsin that
extent for its lifetime; see Section 4.6, “Extents,” on page 4-9.

® |t can have component values defined using M2-level Attributes; see Section 4.4,
“Semantics of Attributes,” on page 4-4.

® |t can be linked to other Instances; Section 4.7, “ Semantics of Associations,” on
page 4-12.

OMG-MOF V1.3 Semantics of Class I nstances March 2000 4-3

4-4

Not all M2-level Classes can have corresponding M1-level Instances. In particular,
Instances can never be created for Classes which have “isAbstract” set to true. In
addition, if an M2-level Class has “isSingleton” set to true, only one Instance of the
class can exist within an extent for the Class.

4.4 Semantics of Attributes

Attributes are one of two mechanisms provided by the MOF Mode for defining
relationships between values at the M1-level. An Attribute of an M2-level Class
defines a relation between each M1-level Instance of the Class, and values of some
other type. The Attribute specification consists of the following properties:

the Attribute’s “name”,

the Attribute’s “type” which may be expressed using a Class or DataType,
a “scope” specification,

a“visibility” specification,

a “multiplicity” specification,

an “isChangeable” flag,

an “isDerived” flag, and

an (implicit) aggregation specification.

Many aspects of the M1-level computational semantics of Attributes depend on the
mapping used. The following subsections describe those aspects of the semantics that
are mapping independent.

4.4.1 Attribute name and type

The “name” and “type” of an Attribute define the basic signature of a notional binary
relationship between a Class instance and an attribute value or values. For example, an
Attribute declaration of the form:

class Cl assl {
attribute attr_1 AttrType;

b

defines a notional relation between an M1-level type corresponding to the Classl and
an M1-level type corresponding to the AttrType. The three main kinds of relation that
can exist between for a Class and an Attribute areillustrated below in Figure 4-1. The
figure shows cases where an Attribute’s “multiplicity” bounds are “[1..1]" (single-
valued), “[0..1]" (optional) and “[m..n]" (multi-valued) respectively. Each notional
relation is distinguishable from others for that Class by the Attribute’s “name.”

atr 1 atr_2 atr_3
Classl AttrType Class? AttrType Class3 AttrType
1 0.1 m..n
single-valued Attribute optional Attribute multi-valued Attribute

Figure4-1 Notiona Class — Attribute Relations

OMG-MOF V1.3 March 2000

4

An M2-level Attribute’s“type” can be either a Class or a DataType. In the former case,
the Class — AttrType relation relates M1-level Instances corresponding to the two
Classes. In the latter case, it relates M1-level Instances corresponding to the Class to
M1-level Instances corresponding to the DataType.

In the following sections, it is often necessary to talk about the type of the M 1-level
Instances on the AttrType end of a Class — AttrType relation. To make the text more
readable, we will use the phrase “the Attribute’'s M 1-level base type” for this type
rather than referring to it as “the M1-level type corresponding to the M2-level
Attribute’s “type”. As we shall see, the phrase “the Attribute’'s M1-level type” is best
used for another purpose.

4.4.2 Multiplicity

The “multiplicity” property defines the cardinality, uniqueness and orderedness of an
Attribute as follows:

® The “lower” and “upper” fields set the bounds on the number of elements (i.e.
cardinality) allowed in an Attribute value; i.e. the “(collection of) AttrType” in
Figure 4-1 and Figure 4-2 above. Discussion of multiplicity usually need to deal
with three cases:

« |If the “lower” and “upper” are both 1, the Attribute is single-valued; i.e. the
“value’ is a single instance belonging to the Attribute’s M 1-level base type.

« If the “lower” is 0 and “upper” is 1, the Attribute is optional; i.e. the “value” is
either an instance belonging to the Attribute’s M1-level base type, or nothing.

» Otherwise, the Attribute is multi-valued; i.e. its “value” is a collection of
instances belonging to the Attribute’'s M1-level base type.

® The“isUnique” flag specifies whether or not a multi-valued Attribute is allowed to
contain duplicates; i.e. elements that are equal according to the definition in
Section 4.2.1, “Semantics of Equality for MOF Values,” on page 4-3.

®* The “isOrdered” flag specifies whether or not the order of the elements in a multi-
valued Attribute are significant.

The “multiplicity” settings of an M2-level Attribute have considerable influence on the
M1-level Attributes values. In particular, it determines whether the M1-level type of
the Attribute is the M1-level base type, or a collection of that type. In addition, the
“multiplicity” may also cause:

® runtime checks to ensure that a multi-valued Attribute’s cardinality lies within a
given range,

® runtime checks to ensure that a multi-valued Attribute does not contain duplicate
members, and

® mechanisms which allow the user to specify the order of the elements of a multi-
valued Attribute.

The “multiplicity” may also have considerable impact on the APIs that a mapping
provides for accessing and updating Attribute values.

OMG-MOF V1.3 Semantics of Attributes March 2000 4-5

It should be noted that when an M 2-level Attribute has “isOrdered” set to true, the

corresponding Class — AttrType relation has an associated partial ordering when
viewed from the Class role.

4.4.3 Scope

The “scope”’ of an Attribute can be either “instance level” or “classifier_level”. For an
“instance_level” Attribute, independent relationships exist between instances of
MyClass and instances of AttrType. For a“classifier_level” Attribute, a single instance
of AttrType (or a collection of AttrType) isrelated to all instances of MyClass in the
extent. Thisisillustrated in Figure 4-2.

my_attr
) my_attr
MyClass AttrType single-valued MyClass [€] LAttrType
1 1 1
my_attr
my_attr
MyClass AttrType optional MyClass c] LAttrType
0.1 1 0.1
my_attr
) my_attr
MyClass AttrType multi-valued MyClass rc] AttrType
m..n 1 m..n
instance-level scoped attributes classifier-level scoped attributes
Figure4-2 Instance-level versus Classifier-level scoping
Note — For the classifier-level Attributes, the diagrams are intended to show that all
MyClass instances are related to a single instance or collection of instances of
AttrType.
4.4.4 |s derived

The “isDerived” flag indicates whether the notional relationship between a Class
instance and the Attribute type instances is stored or computed.

4.4.5 Aggregation

4-6

The possible aggregation semantics of an Attribute depend on its type:
® |f an Attribute’'s type is expressed as a DataType, it has “non-aggregate” semantics.

® |f an Attribute’'s type is expressed as a Class, it has “composite” semantics.

OMG-MOF V1.3 March 2000

4

In cases where an Attribute has “composite” semantics, the Class instance which is the
value of the Attribute is a component of the Class instance which contains the
Attribute, not vice-versa.

Note — The above description reflects the fact that the Attribute model element does
not have an “aggregation” attribute. A Class-valued Attribute with “non-aggregate”
semantics is currently expressed by making the Attribute’s type a DataType, where the
DataType's “typeCode” is an object reference type that is linked to the Class via a
TypeAlias.

4.4.6 Mishbility and is_changeable

The “visibility” property of an Attribute determines whether or not any operations for
the notional relation should be present. Similarly, the “isChangeable” property
determines whether update operations are present. The presence or absence of these
operations do not alter the semantics of the Attribute.

4.5 Package Composition

This section summarizes the meta-model composition mechanisms supported by the
MOF Model and discusses their impact on M1-level semantics.

4.5.1 Package Nesting

Package nesting is the simplest of the M OF's Package composition mechanisms. At the
M2-level, Package nesting is expressed by making the outer Package the “ container” of
the nested Package. The definition of the Contains association in the MOF Model
means than Package nesting is a strict composition relationship.

The main intended function of Package nesting is information hiding. Placing a Class
or DataType in an inner Package rather than an outer one notionally makes it less
visible to other meta-models. When the MOF visibility rules are defined (in a future
revision of this specification), this information hiding will be more strongly enforced.

Nesting of Packages also affects the M1-level interfaces and implementations. The
meaning of any element of a meta-model is potentially dependent on its context in a
variety of ways. Thus, when the element is defined in a nested Package, its meaning
may depend on the outer Package; e.g. on Constraints or Classifiers declared therein.
This means that anything that uses a nested element will also implicitly depend on the
context. To avoid potential M1-level anomalies caused by this kind of dependency, the
MOF Model does not allow a meta-model to import a nested Package or a Classifier
defined within a nested Package.

The M1-level semantics of Package nesting are as follows. The behavior of an M1-
level instance of a Classifier declared in a nested Package depend on state in both its
immediate Package, and its enclosing Packages. As a result, the M1-level instance of
the nested Classifier isinextricably tied to other instances within the outermost
enclosing Package extent; see Section 4.6.4, “Package Extents,” on page 4-11.

OMG-MOF V1.3 Package Composition March 2000 4-7

4.5.2 Package Generalization

Package generalization allows an M2-level Package to reuse all of the definitions of
another M2-level Package. Package generalization is expressed at the M2-level by
connecting the super-Package and sub-Package using a Generalizes link. (The MOF
Model’s Constraints mean that Generalization is effectively an aggregation in the UML
sense.)

The M1-level semantics of Package generalization are as follows. The behavior of M 1-
level instances of the elements of an M2-level Package typically depends on M1-level
behavior for M2-level super-Package elements. Indeed, an M 1-level Package
“instance” is substitutable for M1-level Package instances for M 2-level super-
Packages.

Package inheritance does not create any relationship between an instance of the super-
Package and an instance of the sub-Package. Therefore an M1-level Package extent is
not related to M1-level super- or sub-Package extents; see Section 4.6.4, “ Package
Extents,” on page 4-11.

4.5.3 Package Importation

Package importing allows an M2-level Package to selectively reuse definitions from
other M2-level Packages. Package importation is expressed at the M2-level by placing
an Import in the importing Package that is related to the imported Package by an
Aliases link. In this case, the M2-level Import object has its “isClustered” attribute set
to false. Since Package importation can be cyclic, it is neither an aggregation or a
composition in the UML sense.

Note — The MOF Model’'s Constraints make it illegal for a Package to import itself, or
for any Package to import a nested Package. Furthermore, while the MOF Model
allows Package importation to be cyclic, the preconditions for the MOF Model to IDL
mapping disallow most dependency cycles, including those between Packages that
result from cyclic importation.

The M1-level semantics of Package importation are minimal. No substitutability or
state relationships exist between the M 1-level instances of an importing or imported
Package, or between their respective extents. Indeed, an importing Package will
typically not even share implementation code with the imported Package.

4.5.4 Package Clustering

Package clustering allows an M2-level Package to selectively reuse definitions from
other M2-level Packages, and also share M1-level implementation infrastructure. The
M2-level expression of Package clustering is similar to that for Package importation;
see above. The difference is that the Import object has “isClustered” set to true.

OMG-MOF V1.3 March 2000

4

4.6 Extents

The M1-level semantics of Package clustering are similar to those of Package nesting
because a cluster Package instance has its clustered Package instances as its
components. However, unlike nested Packages, it is still possible to have a free-
standing M 1-level instance of such a Package whose extent is unrelated to any extent
of a cluster Package.

This section introduces the concept of an “extent” in more detail, and then gives the
formal definitions of the extent of a Class, an Association and a Package.

4.6.1 The Purpose of Extents

Current generation middleware systems typically aim to alow clients to use objects
without knowledge of their locations or context. However, groups of objects generally
exist in the context of a*“server” which has responsibility for managing them. The
implementation an object often uses knowledge of its shared context with other objects
to optimize performance, and so forth.

While statements about object location have no place in the MOF specification, the
MOF Computational Model assumes a notion of context in many areas:

® The classifier-scoped features of an M2-level Class are notionally common to “all
instances” of the Class.

®* Mappings typically alow a client to query over “al links’ in an Association
instance.

It isimpractical to define “all instances” or “all links” as meaning all instances or links
in the known universe. Therefore, MOF specification defines logical domains of M1-
level instances that are the basis of these and other “for all” quantifications. These
domains of M1-level instances are called extents.

OMG-MOF V1.3 Extents March 2000 4-9

Figure 4-3 shows the extents defined by two “instances” (on the right) of the example
meta-model on the left. Notice that the static nesting of Packages, Classes and
Associations inside other Packages is mirrored in the extents (i.e., the dotted ovals).

1] P1 extent
P2edtent
P2 ! : . . ' B X E
. Alinks' Cls @ 'C2s ' .

P1::C1 P1 extent
P1::A O
? A N L R oo
Py C2 . Alinks: | Cls . ! ' C2s: |
 Pledtent -

Figure4-3 Extents for two meta-model instances

Every Class instance or link belongs to precisely one Class or Association extent.
These extents are part of Package extents, depending on the “lexical” structure of the
meta-model. This means that extents are strictly hierarchical in nature. As we shall see
in Section 5.2.1, “Meta Object Type Overview,” on page 5-2, extents are related to the
intrinsic container semantics of meta-objects.

Note — There is no requirement that extents have any manifestation in the partitioning
of objects between physical MOF servers. However, there are clear performance
advantages in implementing such a partitioning.

4.6.2 Class Extents

The extent of a Class is defined to be the complete set of M1-level instances of the
Class that share classifier-scoped properties (e.g., Attribute values). A Class instanceis
created in the context of a Class extent and remains within that extent for its entire
lifetime (i.e., until the instance is explicitly deleted).

4.6.3 Association Extents

The extent of an Association is defined to be the complete set of M 1-level links for the
Association. A link is created in the context of an Association extent and remains
within that extent for its entire lifetime.

4-10 OMG-MOF V1.3 March 2000

4.6.4 Package Extents

The extent of a Package is a conglomeration of the extents of Classes, Associations
and other Packages according to the following rules:

1. When an M2-level Package contains a Class or Association, an extent for the
Package contains extents for the Classes and Associations.

2. When an M2-level Package contains nested Packages, an extent for the outer
Package contains extents for the inner Packages.

3. When an M2-level Package clusters one or more other Packages, an extent for the
cluster Package aggregates the extents for the clustered Packages.

4. When an M2-level Package inherits from another Package, an extent for the sub-
Package:

a. contains an extent for each nested Package, Class or Association in the super-
Package
b. aggregates an extent for each Package clustered by the super-Package, and

C. aggregates or contains extents by recursive application of rule Chapter 4. to the
super-Package's super-Packages.

When a Package inherits from another Package by more than one route, the sub-
Package extent will contain one extent for each directly or indirectly inherited Class,
Association or nested Package. This is illustrated in Figure 4-4. Notice that the extent
for Package P4 contains only one C1 extent.

OMG-MOF V1.3 Extents March 2000 4-11

W

P1:C1

P2::C2

i

W‘

P4::C4

P1 extent
' Cls
P2 extent P3extent
P3 | Cls' | C2s' . | Cls' | C3s'
P3.C3 .
Pdextent
ﬂx ' Cls; . C2s .
. | C3s' . C4s' |

Figure4-4 Extents for Multiply Inheriting Packages

When a Package clusters other Packages by more than one route, the outer cluster
Package will contain one extent for all directly or indirectly clustered Packages. Thisis
illustrated in Figure 4-5. Notice that the relationship between the extents of a cluster
Package and the extents of the clustered Packages is aggregation rather than strict
containment. In particular, in the P4 case, the extent for P1 is not fully contained by
either the P2 or P3 extents.

Note — The extent for an M2 Package that imports (rather than clusters) other Packages
does not contain extents for the imported Packages or their contents.

4.7 Semanticsof Associations

4-12

Associations are the MOF Model’s second mechanism for relating MOF values at the
M1-level. A MOF M2-level Association defines a binary relation between pairs of M1-
level Instances, where the relationships in the relation are called Links. The Links for
a given M2-level Association conceptually belong to a Link set.

Note — While the MOF Model appears to support N-ary Associations, this is not so.
Thereis a Constraint that states that an Association must have precisely 2 Association
Ends; see “AssociationsMustBeBinary” on page 3-101.

An M2-level Association definition specifies the following properties:

OMG-MOF V1.3 March 2000

«clusters»

2]/

/

P1]

P1::C1

P2::C2

\

\
«clusters»\

W‘

>
\ «clusters:

ﬁ‘\

P3::C3

7

/

P4..C4

/ «clusters»

.
’

Figure4-5 Extentsfor Clusters of Clusters

® an Association “name’,

® apair of AssociationEnds which each have:

e a“name”’,

«a “type” which must be a Class,
ea “multiplicity” specification,
«an “isNavigable’ flag, and

«an “isChangeable” flag.

P1 extent
. Cls |

P2 exent S P3 extent
Plextent ©T 7T~ Plextent
. C2s! . Cls) C3s'!
_____________________ Phedent T

P2edent -~~~ P3 extent

. Pledent o

C2s| Cls, ' C3s' . | Cds'

® an “isDerived” flag which determines whether the Association Links are stored
explicitly or derived from other state.

OMG-MOF V1.3

Semantics of Associations

March 2000

4-13

4-14

4.7.1 MOF Associations in UML notation

A MOF Association is represented in UML notation as shown in Figure 4-6 below.

<Association Name>

<Classl Name> <end1 name> <end2 name> | <Class2 Name>
<end1 multiplicity> <end2 multiplicity>
aggregation - none ——4@ 2ggregation - composite
aggregation - shared ——=> navigablein direction indicated

Figure4-6 An M2-level Association in UML notation

The connecting line denotes an Association between two Classes. The text of
<Association Name>, <endl name> and <end2 name> denote the “name” values for
the respective Association and AssociationEnds. If the Association hame is preceded
by a forward slash, the Association has “isDerived” set to true.

The Class boxes denote the respective types of the two ends. If the two ends of an
Association have the same type, the Association line loops around so that it connects a
Class box to itself.

The <endl1 multiplicity> and <end2 multiplicity> text give the multiplicity settings for
the respective ends of the Association. The text that can appear here consists of an
optional bounds specification with syntax:

<bounds>::= [<nunmber> *..’] (<nunber> | ‘*’)

and the optional keyword “ordered.”

Finally, the navigability and aggregation of the ends of the Association are (partially)
specified by the symbols at the respective ends of the line:

® An empty diamond indicates that the Instances at the labeled end “shares” the
Instances at other end.

® A filled diamond indicates that the Instances at the labelled end are “composed” of
Instances at the other end.

® An arrow head indicates that the Association is navigable from the Instance at the
other end to the Instance at the labelled end.

OMG-MOF V1.3 March 2000

Note — There are a couple of anomalies in the mapping of UML Association notation
to MOF Associations. First, while navigability and aggregation are orthogonal in the
MOF, it is not possible to put both a diamond and an arrow head on the same end of a
UML Association line. This means, for example, that it is not possible to express (the
lack of) navigability from a component end to a composite end. Second, UML is
imprecise about what an Association line with no arrowheads means. It can mean that
the Association is not navigable, or aternatively that its navigability is not shown.

4.7.2 Core Association Semantics

4.7.2.1

This section defines the core semantic model for M1-level Association instancesin a
rigorous, mapping independent fashion, and enumerates some important characteristics
that follow from the definition.

A Mathematical Model of Association Sate

Given an M2 Association labelled as in Figure 4-6, the mapping to M1-level Link sets
and Links can be modeled as follows:

1. The M1-level Instances of the M2-level Classes <Class1> and <Class2> belong to
sets Classl_Instances and Class2_Instances that represent the sets of al possible
instances of <Class1> and <Class2>. (Note these sets are not restricted to current
extant instances.)

2. The set All_Links s the Cartesian product of the sets Classl Instances and
Class2_Instances. Thus a Link, which is a member of All_Links, can be any tuple of
the form “<cl, ¢2>" where “cl” and “c2” are members of Classl_Instances and
Class2_|nstances respectively.

3. The Link_Set is a subset of the set All_Links which consists of those Links that
currently exist in the given M1-level Association.

4. 1f one or other of the AssociationEnds has “isOrdered” set to true, thereis a partia
ordering Before over the elements of Link_Set defined as follows. Assuming that
<End1> of the Association is the one that is flagged as ordered:

a For each Instance “i” in Class2_Instances, we can define a subset End2_Links;
of Link_Set consisting of those Links in Link_Set for which the second tuple
member is “i”.

b. Given the End2_Links; sets as defined in item a. above, the Before ordering is
defined between any pair of different Links in a End2_Links; set with 2 or more
members. In other words, for any distinct Link; and Link, in End2_Links;, we
can say either Link; Before Linky, or Link, Before Link;.

c. The Before ordering is NOT defined between any pair of Links that belong to
different End2_Links sets.

d. Where it is defined, the Before ordering is required to be:
. transitive; i.e. L; Before L; and L; Before Ly implies that L; Before L, and

OMG-MOF V1.3 Semantics of Associations March 2000 4-15

4-16

4.7.2.2

ii. anti-reflexive; i.e. L; Before L; implies not L; Before L;.

(If <End2> of the Association is ordered, substitute End2 for End1 and vice versain
the above.)

5. A Sate of an M1-level instance of an Association consists of the Link_Set and (if
the Association is ordered) the Before ordering

6. A Well-formed State is a Sate in which:

a. The Links set is a subset of Valid_Links, where Valid_Links is the subset of
All_Links where the connected Instances currently exist.

b. The End_Links; sets as defined in item a. above conform to their respective
Association End upper and lower bounds; i.e.

i. the number of Linksin each Endl_Links; set must be greater than or equal
to <End2.lower>, and less than or equal to <End2.upper>, and

ii. the number of Links in each End2_Links; set must be greater than or equal
to <Endl.lower>, and less than or equal to <End1.upper>.

Ideally, the computational semantics of M 1-level Associationsfor a particular mapping
should be describable as transformations from one Well-formed State to another.
However, some mappings must be defined such that the State of an Association
instancesis not always awell-formed. For example, in the IDL mapping, deletion of an
Instance may cause a End_Links set to contain too few Links.

The general model of an M 1-level Association’s State may be further constrained by
M2-level Constraints on the Association or other elements of the meta-model. Other
systematic restrictions may apply in some mappings (e.g., Section 4.9.1, “The
Reference Closure Rule,” on page 4-19 and Section 4.9.2, “The Composition Closure
Rule,” on page 4-20.

Characteristics of M1-level Associations.

The definitions of Links and Link_Sets above mean that M1-level Association instances
have the following characteristics:

® Links only exist between existing Instances in a Well-formed State. When an
Instance ceases to exist, any Links involving the Instance in any Link_Set cease to
be universally meaningful.

® A Link“<a, b>" isdistinct from a Link “<b, a". In other words, Links are directed.
(Whether or not the “direction” of aLink has a meaning depends on the underlying
semantics of the reality that the M2-level Association describes.)

® Linksdo not have object identity, but are uniquely identified by the Instances at both
ends.

® Since alink Set is defined to be a set, it cannot contain more than one copy of a
given Link. In other words, M1-level Associations cannot contain duplicate links.

® The Before ordering on the Links in an End_Links set (where defined) can be
represented by arranging the Links in a strictly linear sequence.

OMG-MOF V1.3 March 2000

4

® There can be multiple States for a given M2-level Association, each corresponding
to a different M1-level Association instance in separate Package instances. In this
scenario:
e agiven Link can be a member of multiple Link_Sets, and
« the Before orderings of different States will be independent.

4.7.3 AssociationEnd Changeability

The “isChangeable” flag for an AssociationEnd determines whether or not the APIs for
the Association should allow clients to change Links in an M1-level Association
instance. The precise interpretation of this flag is mapping specific.

4.7.4 AssociationEnd Navigability

The “isNavigable” flag for an AssociationEnd determines whether or not client should
be able to “navigate” the Links in an M1-level Association instance. The flag also
determines whether or not the AssociationEnd can be used as a “key.” This flag's
interpretation (i.e., its impact on APIs) will depend on the mapping used.

4.7.5 Association Aggregation

The “aggregation” attributes of an Association’s two ends determines the aggregation
semantics for the corresponding M1-level Association instances; see Section 4.8,
“Aggregation Semantics,” on page 4-17. The impact of aggregation semantics are
largely mapping specific. However, “composite” aggregation does place constraints on
the Link_Set of a Well-formed State.

4.7.6 Derived Associations

When an M2-level Association has “isDerived” set to true, the resulting M 1-level
Association’s Link_Set is calculated from other information in the M1-level model.
The M1-level semantics of derived Association instances is beyond the scope of the
M OF specification.

4.8 Aggregation Semantics

As noted previously, the MOF Model provides two ways of relating MOF values; i.e.
Associations and Attributes. In both cases, a relation has a property known as
aggregation that determines how strongly related values are tied together.

The MOF Model currently supports three aggregation semantics; i.e. “none”, “shared”
and “composite”, in order of increasing strength.

Note — In practice, the semantics of aggregation are mostly concerned with the life-
cycles of related values. Since different mappings will use different strategies for
managing the life-cycles of values, aggregation semantics are largely mapping specific.

OMG-MOF V1.3 Aggregation Semantics March 2000 4-17

4.8.1 Aggregation “ none”

An Attribute or Association with aggregation of “none” has the weakest form of
relation between values. This will typically correspond to independent life-cycles for
both parties and the use of shallow copy semantics in a mapping.

4.8.2 Aggregation “ composite”

An Attribute or Association with aggregation of “composite” has the strongest form of
relation between values. A “composite” relation involving two types is asymmetric,
with one “end” labelled as the “composition” type and the other end labelled the
“component” type. An instance of the first type is “composed of” instances of the
second type.

An M1-level “composite” relation is defined to have information model semantics that
can be loosely described as containment semantics:

1. If avalue “v1" is a component of some other value “v2” in a given composite
relation, “v1” may not be a component of any other value “v3” in any composite
relation. In short, a value can have at most one container in any “composite’
relation.

2. A value may not be related to itself in the closure of any “composite” relations. In
short, a value may not directly or indirectly contain itself.

Other restrictions may apply to “composite” relations in some mappings (e.g.,
Section 4.9.2, “The Composition Closure Rule,” on page 4-20.

4.8.3 Aggregation “ shared”

4.9 ClosureRules

4-18

An Attribute or Association with aggregation of “shared” corresponds to a relation
between values that is between “none” and “shared.”

Note — The semantics of “shared” aggregation should correspond to the semantics of
an Aggregate in UML. Unfortunately, the OMG UML specification gives no clear
guidance on what these semantics should be. As an interim measure, the use of
“shared” aggregation in the MOF is discouraged.

The MOF's support for multiple Package “instances” introduces some potential
anomalies into the computational model. These are resolved by three “closure” rules
based on the definitions of extents in Section 4.6, “Extents,” on page 4-9.

OMG-MOF V1.3 March 2000

4.9.1 The Reference Closure Rule

Recall that a Reference value is defined as a projection of an M1-level Class instance
in an Association. Given that Association link sets are not global, a reference’s value
must be a projection in a particular link set. There is an “obvious’ candidate link set
for typical M1-level Class instances, namely the link set belonging to the Package
“instance” that contains the Class instance. This is shown in Figure 4-7.

Package P instance #1

Package P D .
<XLyl> <xly2>" |
I Lo <X2y1> <x3y2> .
X A ' N L
ref:y | b——— T
Package P instance #2
Meta-moded T Lo)

Figure 4-7 References for multiple Package instances

Figure 4-7 shows the Y instances visible to each X instance in two Package instances.
Notice that the link set in the second Package instance contains alink to aY instance
belonging to the first Package instance (i.e., “<x5,y2>"). This presents no particular
problems, since the “x5” object can find the link to “y2” by looking in the A link set
for its containing Package instance.

However, suppose that the “<x5,y2>" had been in the A link set for the first Package
instance. Now an instance of the X Class has to look in the link sets of both (or in the
general case, all) Package instances to find all of the links. Alternatively, an X instance
might only look in the link set for its owning Package instance, leading to non-intuitive
computational semantics for Reference values. (Consider the case where there are
References for both Association Ends.)

To avoid such non-intuitive (and arguably anomalous) semantics, the computational
semantics for Associations includes a runtime restriction that prevents the problematic
links from being created. This restriction is called the Reference Closure Rule:

“If Class C has a Reference R that exposes an Association End E in an
Association A, then it isillegal to cause alink to be constructed such that
an instance of C (or a sub-class of C) at the exposed End belongs to a
different outermost extent to the A link set containing the link”.

The Reference Closure Rule is shown graphically by Figure 4-8 for the case of an
Association with a Reference to one end. The Reference Closure Rule is enforced by
runtime checks on M1-level operations that construct links (e.g., the link add and

OMG-MOF V1.3 ClosureRules March 2000 4-19

modify operations). This can be achieved by using the
“outermost_containing_package” operations on the respective meta-objects; see
Section 6.2, “The Reflective Interfaces,” on page 6-3.

4-20

- A - L
o X1 —»] y1 - <xL,yl> . OK
™ A v o A » <x1,y2> .. OK
o - A ©<x2,y1> .+ llegd
Iref 1Y o A L <X2,y2> - llegd
M eta-model oS Rt EEEEEREREPEEEP
X2 y2 | .

Figure4-8 The Reference Closure Rule

4.9.2 The Composition Closure Rule

The MOF Model provides constructs for declaring that the instances of one meta-
model element are “composed of” instances of another; see Section 4.8, “Aggregation
Semantics,” on page 4-17.

One of the key properties of composites is that a composite instance and its component
instances have the same lifetime; i.e. when a composite meta-object is deleted, all of its
components are also deleted. This is not difficult to implement when the composite
instance and its components all belong to the same Package instance. However, a range
of problems can arise when a composition crosses one or more outermost Package
extent boundaries. For instance:

® How do the server implementations for the respective extents ensure that deletion is
reliable in the face of server crash, network partition and so on?

® What are the access control implications of compositions? For example, should a
client of one server / extent be able to implicitly delete components held in another
server / extent?

To avoid having to deal with these difficult questions, the MOF computational model
restricts the situations in which compositions may be formed. This restriction is called
the Composition Closure Rule:

“The composite and component instances in acomposition a ong with any
links that form the composition must all belong to the same outermost
Package extent.”

OMG-MOF V1.3 March 2000

4

The Composition Closure Rule is shown graphically by Figur e4-3. This shows the rule

as it applies to both composite Attributes and composite Associations.

my_z: 21 XLy3> | lllega

eomy z:Z

Meta-model SRR EE PR R PPN -

Figure4-9 The Composition Closure Rule

The Composite Closure Rule is enforced by runtime checks on M1-level operations
that construct links in an Association with Composite semantics; e.g. the link add and
modify operations. Similar checks are required for operations that update composite
Attributes. The checks can be implemented by using the “immediate_container” and
“outermost_containing_package” operations on the relevant meta-objects; see
Section 6.2, “The Reflective Interfaces,” on page 6-3.

4.10 Recommended Copy Semantics

It is envisaged that some MOF mappings will provide APIs for copying metadata. The
purpose of this section is to recommend a semantic model for such copy operations.
Suggested semantics are given for “shallow” and “deep” copying. (A shallow copy is
one in which conceptual components of an object are copied and other connected
objects are not. A deep copy isonein which both components and more loosely related
objects are copied.)

OMG-MOF V1.3 Recommended Copy Semantics March 2000 4-21

The following table details what objects should and should not be copied. The
semantics are defined from the perspective of an object being copied.

Table 4-1 Copy semantics for different kinds of relationships.

Construct Target type Aggregation | Shallow Copy Deep Copy
The Attribute value in the copy The Attribute value in the copy will
Attribute Instance none will be the same Instance value as | be the same Instance value as in the
in the original. original.
The Attribute value in the copy . ; :
will be the same data value as in Eg?h'ztg%g%éaé%g Sér;ifg%gv il
Attribute MOF data type | none the original. Embedded Instance original. Embedded Instance values
values will be the same as in the will be the same as in the original.
original.
The Attribute value in the copy The Attribute value in the copy will
Attribute Instance composite will be a shallow copy of the be a deep copy of the Instance value
Instance value as in the original. in the original.
. S A link is created from the copy to
Association Instance none No link is created. the original link target.
. A link is created from the copy to a
Association Instance shared f[Ahé'gﬁ é?ngﬁeftgr%rgt_the copy to f[i:rt;petCOpy of the original link
A link is created from the copy to | A link is created from the copy to a
Association Instance composite ashallow copy of the origina link | deep copy of the original link
target. target.

Unless otherwise stated, copying of a group of Instances related by Association or
Attributes should give a 1-to-1 mapping between original Instances and copied
Instances, and their respective relationships.

Note — The above suggested semantics do not cover copying of MOF values whose
type is a native type. Those semantics will depend on whether or not the values in
question are copyable.

4.11 Computational Semantics

4-22

4.11.1 A Style Guide for Metadata Computational Semantics

While the MOF specification gives the required computational semantics for M 1-level
metadata, it does not (and should not) state that these semantics constitute the only
behavior. It is envisaged that vendor and end-user implementations of metadata servers
may support additional semantics. In addition, the computational semantics of M2-
level derived Attributes, derived Associations and Operations are not specified at al in
the standardized part of the MOF Model.

In theory, the complete computational semantics of a meta-model server can include
any behavior that the implementer chooses. The purpose of the section is to set down
some conventions to guide the implementer.

OMG-MOF V1.3

March 2000

4.11.2 Access operations should not change metadata

Many operations on Instance and Associations are provided to support access to the
public state of amodel; e.g. the “get” operations for Attributes, the “query” operations
for Associations. For normal (non-derived) Attributes and Associations, the standard
computational semantics of an access operations are to simply return the corresponding
value or collection. For derived Attributes and Associations, there are no standard
semantics at all.

In general, it is bad style for an access operation to have observable side-
effects on the primary metadata. Similarly, it is bad style for an Operation
with “isQuery” true to have such side-effects.

Therationale for thisrule is that the user would not expect an access operation to have
visible side-effects.

Note — It may be reasonable (for example) for an Attribute “get” operation to update a
private counter Attribute that records the number of accesses. The legitimacy of this
kind of behavior depends on whether or not the state modified can be classified as
“primary” metadata.

4.11.3 Update operations should only change the nominated metadata

The standard semantics of metadata update operations define which metadata is
expected to be modified by the operation. However, there is no explicit requirement
that other metadata should not be changed.

It is bad style for an update operation for a non-derived Attribute,
Reference or Association to change any primary metadata other than that
which isidentified by the standard semantics.

The rationale for this rule is that the user would not expect such changes to occur.

Note — This rule is not intended to apply to operations for derived Attributes,
References or Associations, or to Operations with “isQuery” false.

4.11.4 Derived Elements should behave like non-derived Elements

M2-level Attributes and Associations can be defined as being derived from other
information in a meta-model (i.e., by setting the respective “isDerived” flag to true).
The required M1-level behavior of derived Elements is identical to that for equivalent
non-derived Elements. Behavior that contradicts the semantics in this chapter and in
the relevant mapping specification is non-conformant.

However, since derived Attributes and Associations have to be implemented using
mechanisms that are beyond the scope of the MOF Model, conformance is ultimately
the responsibility of the meta-model implementer.

OMG-MOF V1.3 Computational Semantics March 2000 4-23

4-24

It is recommended that implementer defined M1-level operations for derived Elements
should have MOF conformant behavior. The alternative (hon-conformant behavior)
tends to break the illusion that the Attribute or Association is “real,” and should be
avoided. If the required semantics are unimplementable, the meta-model is incorrect.

4115 Congtraint evaluation should not have side-effects

The MOF specification does not define how Constraints defined in a meta-model
should be evaluated. In particular, it does not define whether Constraint evaluation can
change the metadata.

It is bad style for the evaluation of a Constraint to change metadata.

The rationale is two fold. First, Constraints are provided as mechanism for specifying
metadata correctness, not as a mechanism for defining behavior. Second, since the

M OF specification does not say when Constraint evaluation should occur (in all cases),
side-effects in Constraint evaluation could be a major source of interoperability
problems.

4.11.6 Access operations should avoid raising Constraint exceptions

The MOF specification does not define when deferred Constraint evaluation should
occur. In theory, it can occur at any time, including when the user invokes an access
operation.

It is bad style for an access operation on a non-derived Attribute,
Reference or Association to raise an exception to indicate that the
metadata is structurally inconsistent or that a Constraint has been violated.

The rationale is that an application program that is reading metadata (rather than
updating it) is typically not in a position to do anything about the violation of deferred
structural constraints or model specific Constraint. Alternatively, an application may
try to access the metadata, knowing that it is inconsistent, so that it can then correct it.

It isbad style for an access operation on a derived Attribute, Reference or
Association to raise a similar exception unless the inconsistency makes it
impossible to calculate the required derived value(s). The same rule
applies to Operations with “isQuery” true.

The rationale being less prescriptive about derived access operations is that the
formulae used to derive the value(s) will typically have certain assumptions about the
consistency of the metadata.

OMG-MOF V1.3 March 2000

5.1 Overview

MOF to| DL Mapping)

Contents

This chapter contains the following topics.

Topic Page
“Overview” 5-1
“Meta Objects and Interfaces” 5-2
“Computational Semantics for the IDL Mapping” 5-6
“Exception Framework” 5-23
“Preconditions for IDL Generation” 5-32
“Standard Tags for the IDL Mapping” 5-35
“Generated IDL |ssues” 5-38
“IDL Mapping Templates” 5-46

This chapter defines the standard mapping from a model defined using the MOF Model
onto CORBA IDL. The resulting interfaces are designed to allow a user to create,
update and access instances of the model using CORBA client programs. While the
standard IDL mapping implies detailed functional semantics for an object server for a
mapped model, it does not define the implementation.

Note that while the mapping specification is defined to be easy to automate, a
conformant MOF implementation is not required to support automatic IDL generation.

OMG-MOF V1.3 March 2000 5-1

5.2

5-2

Meta Objectsand Interfaces

This section describes the different kinds meta-objects that represent MOF-based meta-
datain a CORBA environment.

5.2.1 Meta Object Type Overview

The MOF to IDL mapping and the Reflective module share a common, object-centric
model of meta-datawith five kinds of M1-level meta-object; that is, “instance” objects,
“class proxy” objects, “association” objects, “package” objects and “package factory”
objects. The relationships between M2-level concepts and M1-level objects is
illustrated by the example in Figure 5-1.

P Factory | Package
. Yy Factory | P_Factory
Package P P Package «creaes> -y,
| =
C : A Association
A : ! 1 1
| C Class | Class ' & Class A
Proxy
— c
M2-level ! Instance
Conceptud ; ;
Meta-model ! M1-level Interfaces ! M1-level Instances

Figure5-1 Relationships between M1 and M2 level

The example shows how a simple M2-level meta-model (on the left) maps onto the five
kinds of M1-level meta-object (in the center). The right of the diagram shows the
intrinsic conglomeration relationshi ps that exist between the meta-objects in a Package
“instance.” (Asnoted, in Section 4.6, “Extents,” on page4-9 , these relationships do not
always have strict containment semantics.)

Note — These intrinsic conglomeration relationships exist for all M1-level meta-
objects. They have no explicit meaning in connection with the represented meta-data.
Rather, they are provided to assist the management of meta-objects. (The intrinsic
conglomeration relationships should not be confused with the M1-level composition
relationships that correspond to M2-level composite Associations and Attributes.)

5.2.1.1 Package objects and Package Factory objects

OMG-MOF V1.3 March 2000

5

5212

The instances of an M2-level Package are represented as Package objects. A Package
object is little more than a “directory” of read-only attributes that give access to a
collection of meta-objects described by a meta-model. The attributes of a Package
object refer to “static” objects. In particular, there is

® one Package attribute for each M2-level Packages that is nested or clustered by the
Package (none are present in the example above),

® one Class Proxy attribute for each M2-level Class in the Package, and

® one Association attribute for each M2-level Association in the Package.

The number and types of the static objects, and the corresponding attributes in an M1-
level Package interface is determined by the M2-level Package specification. The
objects cannot be directly created, destroyed, added or removed by a client.

While there is a usually a one-to-one correspondence between the Packages' reference
attributes and the static objects, this need not be the case. The correspondence is
actually determined by the extent relationships as described in Section 4.6.4, “Package
Extents,” on page 4-11. Thus, for example, when an M2-level Package is clustered by
more than one route, there should be one M1-level Package object that is accessed via
two attributes.

A Package object is typically obtained by invoking a “create” operation on a Package
Factory objects. This creates the Package object, and all of the necessary static objects.
The arguments to the “create” operation are used to initialize any classifier-scoped
Attributes defined within the M2-level Package.

Class Proxy objects

As stated above, a Package object contains one (and only one) Class Proxy object for
each M2-level Classin the M2-level Package. A Class Proxy object serves a number of
purposes:

® itisafactory object for producing Instance objects in the Package “instance,”
® itistheintrinsic container for Instance objects, and

® it holds the state of any classifier-scoped Attributes for the M2-level Class.

The interface of a Class Proxy object provides operations for accessing and updating
the classifier-scoped attribute state. Other operations allow a client to invoke classifier-
scoped Operations.

The interface also provides a factory operation allows the client to create I nstance
objects. It also gives read-only access to the set of extant Instance objects contained by
the Class Proxy object.

OMG-MOF V1.3 MetaObjectsand Interfaces ~ March 2000 5-3

5-4

5213

5214

Instance objects

The instances of an M2-level Class are represented by Instance objects. An Instance
object holds the state corresponding to the instance-scoped M2-level Attributes for the
Class, and any other “hidden” state implied by the Class specification. Generally
speaking, many Instance objects can exist within a given Package “instance.”

As described above, Instance objects are always contained by a Class Proxy object.
The Class Proxy provides a factory operation for creating Instance objects that takes
initial valuesfor the instance-scoped Attributes as parameters. When an I nstance object
is created, it is automatically added to the Class Proxy container. An Instance is
removed from the container when it is destroyed.

The interface for an Instance object inherits from the corresponding Class Proxy
interface. In addition it provides:

® operations to access and update the instance-scoped Attributes,
® operations to invoke the instance-scoped Operations,

® operations to access and update Associations via Reference,

® operations that support object identity for the Instance, and

® an operation for deleting the Instance object.

Association objects

Links that correspond to M2-level Associations are not represented as meta-objects.
Instead, an M1-level Association object holds a collection of links (i.e., the link set)
corresponding to an M2-level Association. The Association object is a “static” object
that is contained by a Package object, as described previously. Its interfaces provides:

® operations for querying the link set,
® operations for adding, modify and removing links from the set, and

® an operation that returns the entire link set.

5.2.2 The Meta Object Interface Hierarchy

This section describes the patterns of interface inheritance in the CORBA IDL
generated by the MOF to IDL mapping. The patterns are illustrated in Figure 5-2.

OMG-MOF V1.3 March 2000

' RefBaseObj ect
1 1 P ! RefPackage RefAssociation RefObject

Meta-model Definition

C1

[

Cc2

Package P1 -------------------- T ——————————— T ——————

cl ref : C1Class

A : c2 ref : C2Class
: aref: A / %
' ﬁl C2Class C1
2 T

Cc2

Inheritance in Generated Interfaces

Figure5-2 Generated IDL Inheritance Patterns

Figure 5-2 shows an example MOF meta-model expressed in UML (on the left) that
consists of two Packages P1 and P2. The first Package P1 contains Classes C1 and C2,
where C2 is a subclass of C1 and an Association A that connects C1 and C2. The
second Package P2 is then defined as a subpackage of P1.

The UML class diagram (on the right) shows the inheritance graph for the generated
interfaces corresponding to the example meta-model.

The root of the inheritance graph is a group of four predefined interfaces that make up
the Reflective module; see Section 6.2, “The Reflective Interfaces,” on page6-3 . These
interfaces collectively provide:

® operations that implement meta-object identity,
® operations for finding a meta-object’s containing package instance(s),
® an operation for finding a meta-object’s M2-level description, and

® operations for exercising the functionality of a meta-object independent of its
generated interface.

Note — The interfaces in the Reflective module are all designed to be “abstract;” that
is, it is not anticipated that they should be the “most derived” type of any meta-object.

OMG-MOF V1.3 MetaObjectsand Interfaces ~ March 2000 5-5

The interfaces for the Package objects, Association objects, Class Proxy objects and
Instance objects provide functionality as described previously. The inheritance patterns
are as follows:

® All Package object interfaces inherit (directly or indirectly) from RefPackage.
® All Association object interfaces inherit from RefAssociation.

® All Class Proxy interfaces inherit (directly or indirectly) from RefObject.

® All Instance interfaces inherit from the corresponding Class Proxy interfaces.

®* When an M2-level Package P2 inherits from another P1, the corresponding interface
P2 inherits from P1.

® When an M2-level Class C2 inherits from another C1:
« the Class Proxy interface for C2 inherits from the Class Proxy for C1, and
« the Instance interface for C2 inherits from the Instance for C1.

The diamond pattern of interface inheritance is virtually unavoidable. The C2's Class
Proxy needs to inherit the interface features for C1's classifier-scoped Attributes and
Operations. Similarly, C2’'s Instance interface needs to inherit the instance-scoped
interface features.

Note — The IDL mapping supports some Tags for specifying addition IDL supertypes
of various generated interfaces; see Section 5.6.3, “Tags for Specifying |DL
Inheritance,” on page5-37 . The effect of these Tags on the inheritance graph is defined
by the relevant IDL templates; see Section 5.8.4, “Package Template,” on page 5-50,
Section 5.8.6, “Class Template,” on page 5-53, Section 5.8.7, “Class Proxy Template,”
on page 5-54, and Section 5.8.10, “Association Template,” on page 5-58.

5.3 Computational Semanticsfor the IDL Mapping

This section specializes the MOF's general computational semantics (see Chapter 4,
“The MOF Abstract Mapping”) for the MOF to IDL mapping.

5.3.1 Value Types and Equality in the IDL Mapping

The IDL mapping defines all MOF Instance types as CORBA object types that are
descended from the “RefObject” interface; see Section 6.2.4,

“Reflective::Ref Association,” on page 6-22. Equality of Instance objects should be
implemented as follows:

® EXxisting Instance objects are equal if and only if the “refMofld” operation defined
by Section 6.2.3, “Reflective::RefObject,” on page 6-9 returns the same string for
both objects.

® Non-existent Instance objects are deemed to be equal if and only if they have the
same object reference; that is, when the “Object::_is_equivalent” operation returns
true.

OMG-MOF V1.3 March 2000

Note — An implementation must take care when comparing Instance object values to
distinguish between non-existent (i.e., deleted) Instance objects and objects that may
only be temporarily inaccessible. An operation should only raise an exception for a
non-existent Instance object when it cannot be performed. In particular, an operation
that replaces or removes defunct links or Instance values should not complain that the
Instance being removed is defunct.

The MOF data types supported in the IDL mapping are the following CORBA data
types:

® Primitive types - boolean, char, octet, wchar, short, unsigned short, long,
unsigned long, long long, unsigned long long, float, double, long double,
fixed, strings, and wide strings.

® Constructed types - arrays, sequences, enumerations and records.
® Type dliases - typedefs.

The native types supported in the IDL mapping are:

¢ CORBA union types.

® CORBA's Any and TypeCode data types.

® Ordinary CORBA object types (i.e., object types that are not descended from the
“RefObject” interface).

Note — The IDL mapping currently does not support CORBA 2.3 value types, box
types and abstract interface types.

Equality semantics for the standard MOF data values are as previously defined in
Section 4.2.1, “Semantics of Equality for MOF Values,” on page 4-3. The standard
rules are extended with the following rules for instances of IDL specific native types
and CORBA object references:

® CORBA TypeCode values are equal if and only if they are equal according to the
definition of TypeCode::equal in the CORBA Core specification.

® CORBA Any vaues are equal if and only they have equal types (according to the
definition of TypeCode::equal), and their embedded values are equal according to
the MOF definitions of data type eguality.

® Ordinary CORBA object references and embedded object references for Instance
objects are equal if and only if “Object::_is _equivalent” operation returns true.

The rule for CORBA object references applies both to “ordinary” object references and
to object references for Instance objects. Similarly, it applies equally whether the
object reference is the complete value, a component of a constructed value, or
embedded within an Any value.

OMG-MOF V1.3 Computational Semanticsfor thelDL Mapping ~ March 2000 5-7

5-8

5.3.2 Lifecycle Semantics for the IDL Mapping

53.2.1

This section defines the IDL mapping’s computational model for meta-object creation
and deletion. It also gives definitions of copy semantics, though these should currently
be viewed as indicative rather than normative.

Package object creation and del etion semantics

An M1-level Package object for a non-nested M 2-level Package is created by invoking
the create operation provided by the corresponding PackageFactory object. This create
operation requires the caller to supply the values for all non-derived classifier-scoped
Attributes. If the supplied initial values do not have the correct multiplicity or if they
individually or collectively violate immediate Constraints defined in the metamodel,
the create operation should raise an exception.

Instances of the following dependent M1-level objects are automatically created along
with each M 1-level Package object:

®* An M1-level Package object is created for each nested Package within the
outermost Package extent.

®* An M1-level Package object is created for each clustered Package within the
outermost Package extent.

® An M1-level Class Proxy object is created for each Class within the outermost
Package extent.

® An M1-level Association object is created for each Association within the
outermost Package extent.

The object references for the dependent Package and Class objects provide the “ref”
attributes in the respective Package objects. The objects are initialized so that the
outermost_package and enclosing_package operations return the appropriate M 1-level
Package objects.

Note — If an M2-level Package P2 clusters an existing top-level M2 Package P1, the
above rules mean that two kinds of M1-level P1 Package objects can exist. If the user
calls create on a P2 Package Factory object, the resulting P2 Package object will have
its own dependent P1 Package object. On the other hand, if the user calls create on a
P1 Package Factory, the resulting P1 Package object will be an outermost Package
object. These two kinds of P1 Package objects behave identically, apart from their
respective “refOutermostPackage” and “refOutermostPackage” operations; see
Section 6.2.3, “Reflective::RefObject,” on page 6-9.

When an M1-level Class Proxy objects is created, the values of the non-derived
classifier-level Attributes are initialized from the corresponding create operation
arguments. The “all_of _type” and “all_of_kind” collections will initially be empty,
since no M1-level Instance objects will have been created in the Class Proxy extent.

OMG-MOF V1.3 March 2000

5.3.2.2

Note — An implementation may support other mechanisms for creating or recreating
outermost M 1-level Package objects. Any such mechanism must also (re-)create and
initialize the necessary dependent objects as above.

An outermost M1-level Package object can be destroyed using the “refDelete”
operation; see Section 6.2.3, “Reflective::RefObject,” on page 6-9. The required
computationa semantics for deleting an outermost Package object are straightforward.
The following things must occur (in an unspecified order):

® The binding between the outermost Package object and its object reference(s) must
be revoked.

® The bindings between all dependent Package, Association and Class Proxy objects
and their object references must be revoked.

® All Instance objects within the extent of the outermost Package object must be
destroyed as described below.

Note — A typical implementation will delete the metadata and reclaim the space used
to store it. However, this behavior is not essential and in some situations it could be
undesirable.

Dependent M 1-level Package objects, M1-level Association objects and M1-level Class
Proxy objects cannot be directly destroyed by the user. An implementation of the
“refDelete” operation for these objects is required to raise an exception when called by
client code. (The operations may be used to implement outermost Package del etion, but
this is beyond the scope of this specification.)

Instance object lifecycle semantics

An M1-level Instance object can be created by invoking the appropriate create
operation. Suitable create operations are present on both M1-level Class Proxy objects
and M 1-level Instance objects, depending on the M2-level Class inheritance graph. A
create operation requires the caller to supply valuesfor all non-derived instance-scoped
Attributes for the Instance object. If any value does not conform to the Attribute’s
multiplicity or if they individually or collectively violate any immediate Constraints on
the meta-model, an exception is raised.

An Instance object is created within the extent of a Class Proxy object for the
Instance’s M2-level Class. The Class Proxy can be found as follows:

1. Find the outermost Package extent containing the object on which the create
operation was invoked.

2. Within that extent, find the one and only Class Proxy object for the M2 Class whose
instance is being created.

If no Class Proxy can be find by the above, the create request violates the Supertype
Closure Rule (see Section 5.3.8, “The Supertype Closure Rule,” on page 5-22) and an
exception is raised.

OMG-MOF V1.3 Computational Semanticsfor thelDL Mapping ~ March 2000 5-9

Creation of an Instance object will also fail if the corresponding M2-level Classis
abstract. Similarly, it will fail if the M2-level Classis a “singleton” Class and an
Instance object for that Class already exists within the Class Proxy’s extent. In either
case, an exception is raised.

When an Instance object is (successfully) created within the extent of a Class Proxy
object, it becomes part of collection returned by the Class Proxy object’s “all_of _kind”
operation. The Instance object remains a member of that collection for its lifetime; that
is, until it is deleted.

An Instance object will be deleted in the following three situations:

® when a client invokes the “refDelete” operation on the Instance object; see
Section 6.2.3, “Reflective::RefObject,” on page 6-9.

® when the Package object for the Instance object’s outermost Package extent is
deleted (see above), and

® when the Instance is a component of a “composite” Instance that is deleted. This
applies to composites formed by both Associations and Attributes.

When an Instance object is deleted the following things must occur:

® The binding between the Instance object and its object reference(s) must be
revoked.

® The Instance object must be removed from its Class Proxy object’s “all_of_type”
collection.

® Any Instance objects that are components of the object being deleted must aso be
deleted.

® Linksinvolving the deleted Instance object should be deleted as per the “Link
lifecycle semantics” specification below.

An implementation will typically delete the state of an Instance object that has been
deleted, and reclaim any associated space.

Note — When an Instance object is deleted, corresponding object reference values in
non-composite Attributes of other objects become “dangling” references. These
dangling references should not be automatically expunged or converted to nil object
references, since doing so potentially destroys information and creates new structural
errors. Instead, it is the user’s responsibility to ensure that dangling references in
Attributes are tidied up in the most appropriate way.

5.3.2.3 Linklifecycle semantics

Links can be created and deleted in various ways. These include:

® by the user operations on M1-level Association objects; see Section 5.3.3,
“Association Access and Update Semantics for the IDL Mapping,” on page 5-11,

5-10 OMG-MOF V1.3 March 2000

5

® by the user operations corresponding to References on M 1-level Instance objects;
see Section 5.3.4, “Attribute Access and Update Semantics for the IDL Mapping,”
on page 5-15,

® by the user copying metadata (using some vendor specific API); see Section 4.10,
“Recommended Copy Semantics,” on page 4-21,

® by the user deleting one or other linked Instance objects; see Section 5.3.2.2,
“Instance object lifecycle semantics,” on page 5-9, and

® when the server notices that a linked Instance object no longer exists.

A link is created within the extent of an Association object, and becomes part of the
collection returned by the Association object’s “links()” operation. A link remains
within the extent in which it was created for the lifetime of the link; that is, until it is
deleted. When alink is deleted, it is removed from the “links” collection. Removing a
link does not affect the lifecycle of the linked Instance objects.

According to Section 4.7.2.2, “ Characteristics of M1-level Associations.,” on

page 4-16, deletion of an Instance object causes any links for that object to become
meaningless. |deally, a well-formed M1-level Association instance should not contain
such links. In practice, the immediate removal of meaningless links from an M 1-level
Association instance cannot always be implemented, in particular in the case of links
that cross outermost Package extent boundaries.

Instead, a meta-object server is required to behave as follows. When an Instance
object is deleted:

¢ all links referring to the Instance object that belong to Association instances within
the same outermost Package extent as the Instance object must also be deleted, and

® any links referring to the Instance object that belong to Association instances in
another outermost Package extent as the Instance object may aso be deleted.

Note — The above semantics means that an Association instance can legally contain
links that refer to defunct Instance objects in other extents.

5.3.3 Association Access and Update Semantics for the IDL Mapping

This section describes the computational semantics of the Association object access
and update operations defined in the MOF to IDL Mapping and the Reflective
interfaces. With a couple of exceptions, these semantics transform one Well-formed
Sate (as defined in Section 4.7.2.1, “A Mathematical Model of Association State,” on
page 4-15) to another. The exceptions are as follows:

® Deletion of an Instance object in another outermost Package extent may cause an
Association instance to contain links that are not members of Valid_Links.

® Deletion of an Instance object can cause an End_Links set to contain fewer links
than is required.

OMG-MOF V1.3 Computational Semanticsfor thelDL Mapping ~ March 2000 5-11

5-12

5.3.3.1

5.3.3.2

M1-level Instance objects are passed as CORBA object reference values in IDL
mapped operations. However, since the Association State model requires that Links
connect Instances, it is not legal to pass the CORBA nil object reference value as a
parameter to any operation on an M1-level Association.

Note — While the semantics of Associations are described (below) in terms of sets of
pairs of M1-level Instance objects, this should not be read as implying any particular
implementation approach.

Access Operations

There are three kinds of link access operations in the M1-level Association interface
generated by the IDL mapping:

® The“al_links’ operation returns the current Link_Set for an Association object.

® The “<end_name>" operations return a projection of the corresponding End_Links
sets.

® The “exists’ operation tests for the existence of a given Link in the Link_Set.

These operations are defined to be side-effect free; that is, they do not modify the State
of the Association instance.

Link Addition Operations

The operations for adding links to an M1-level Association vary, depend on whether it
has an ordered M2-level AssociationEnd:

® For an unordered Association, the “add” operation adds a Link to the Link_Set.

® For an ordered Association, the “add” and “add_before” operations both add a Link
between a pair of Instances to the Link_Set. In the “add” case, the new Link is
added after existing Links. Inthe “add_before” case, the new Link is added
immediately before the link selected by the “before” argument.

More precisely, assuming that the first AssociationEnd is the ordered one and the

new Link connects Instances i and j. The Before mapping is updated as follows:

* For “add”, all Linksthat were in End2_Links; prior to the operation are Before the
new Link when it completes.

« For “add_before”, the Before_Link connects the “ before” and j Instances. For all
Links that were in End2_Links; and were Before the Before_Link prior to the
operation, the pre-existing Link is Before the new Link after the operation. For all
other Links that were in End2_Links; prior to the operation, the new Link is
Before the pre-existing Link after the operation.

« In both cases, the ordering of the other End2_Links sets are unchanged.

A number of constraints apply to the link addition operations:

® A new Link can only be added between extant Instances; i.e., the new Link must be
a member of Valid_Links.

OMG-MOF V1.3 March 2000

® An operation cannot add a Link that is already a member of the Link_Set.

® An operation cannot add a Link if it would make the number of members of either

End1_Links or End2_Links; greater than the respective AssociationEnd’s “ upper”
bound.

® An operation cannot add a Link that creates a Composition cycle, or that violates
the Composition or Reference Closure rules.

5.3.3.3 Link Modification Operations

There are two “modify” operations for replacing an existing Link in the Link_Set of an
M1-level Association. One operation (in effect) modifies the Instance at the first end of
a Link, and the second modifies the Instance at the second end. While the operation
signatures do not vary, the semantics of the “modify” operations depend on whether
the M2-level Association has an ordered A ssociationEnd.

® |n the non-ordered case, a “modify” operation is almost identical to a “remove’
operation followed by an “add” operation. The only difference is in the bounds
checking; see below.

® |n the ordered case, a “modify” operation can differ from an “add” followed by a
“remove” in the way that the Before ordering is handled. Specifically, if we assume
that the first AssociationEnd is the ordered one, the Before mapping is updated as
follows:

e For “modify_<endl name>(i, j, k)", the new Link (between k and j) occupies the
same position in the Before ordering of End2_Links; as the Link (between i and j)
that it replaces.

e For “modify_<end2_name>(i, j, k)", the new Link (between i and k) becomes the
last Link in the Before ordering of End2_Links.

* In both cases, the ordering of the other End2_Links sets are unchanged.

A number of constraints apply to the link modification operations:

® The Link that is replaced by the “modify” operation must be a member of Link_Set.
However, it need not be a member of Valid_Links.

® Thereplacement Link that is created by a“modify” operation must be a member of
Valid_Links.

® The replacement Link cannot already be a member of the Link_Set.

* A “modify” operation cannot produce a Link that would make the number of
members in either the Endl_Links, or End2_Links, sets greater than the respective
AssociationEnd’s “upper” bound.

* A “modify” operation cannot remove a Link if doing so would make the number of
members of End1_Links; or End2_Linksj less than the respective AssociationEnd’s
“lower” bound. (However, aLink can be produced in this situation.)

* A “modify” operations cannot produce a Link that creates a Composition cycle, or
that violates the Composition or Reference Closure rules.

OMG-MOF V1.3 Computational Semanticsfor thelDL Mapping ~ March 2000 5-13

5-14

5.3.34

5.3.3.5

Note — A modify operation of the form “modify_<endl_name>(i, j, i)” is treated as a
“no-op.” In particular, it does not trigger checking of “lower” or “upper” bounds.

Link Removal Operations

The “remove” operation can be used to delete an exist Link (between i and j) from the
Link_Set of an M1-level Association. The constraints that apply to the link removal
operation are:

® The operation cannot remove a Link if doing so would make the number of
members of End1_Links; or End2_Links; less than the respective AssociationEnd's
“lower” bound.

® The operation cannot remove a Link that is not a member of the Link_Set. However,
it should succeed if the Link is a member of Link_Set but not of Valid_Links.

Changeability, Navigability and Derivedness

The operation descriptions given above assume that the AssociationEnds of the M 2-
level Association have been defined with “isChangeable” and “isNavigable” set to true.
If thisis not so, the main impact is that certain operations are suppressed:

® |f an AssociationEnd of an Association is defined as non-changeable (i.e., when its
“isChangeable” flag is set to false), the IDL mapping suppresses various link update
operations. The “add,” “add_before,” and “remove” operations are suppressed if
either AssociationEnd is non-changeable. Furthermore, the “modify_<end name>"
operation is suppressed for any AssociationEnd that is hon-changeable, along with
any related Reference-based operations.

® |f an AssociationEnd of an Association is defined as non-navigable (i.e., when its
“isNavigable” flag is set to false) the IDL mapping suppresses any link operations
that depend on the ability to search based on that AssociationEnd. Specifically, it
suppresses the “<assoc_end>", “add_before_<end>", “modify_<end>" operations.

Setting “isDerived” to be true for an M2-level Association isa“hint” that an M1-level
Association’s Link_Set and Before mapping should be computed from other M1-level
information. Apart from this, the IDL mapping makes no distinction between derived
and non-derived Associations. Equivalent IDL interfaces are generated in each case,
and the semantics are defined to be equivalent. If a derived Association’'s operations
are coded by hand, it is the programmer’s responsibility to ensure that they implement
the required semantics.

Some combinations of the Association and AssociationEnd flags result in generated
interfaces that are of little use. For example:

® Setting “isChangeable” to be false on one AssociationEnd and not the other results
in an M1-level Association that supports one “modify” operation but no “add” or
“remove” operations.

® Setting “isChangeable” to be false on an Association which has “isDerived” set to
false results in a “stored” Association with no operations to update the Link_Set.

OMG-MOF V1.3 March 2000

5.3.4 Attribute Access and Update Semantics for the IDL Mapping

5341

The IDL mapping maps M2-level Attributes to a variety of operations, depending on
the Attribute’s “multiplicity” settings. There are three major cases:

® single-valued with bounds of [1..1]),
® optional with bounds of [0..1], and

®* multi-valued.

Unlike Associations, the CORBA “nil” object reference is alega (and logically
distinct) value for any Class or object reference-valued Attribute. When an accessor
operation returns a “nil” object reference, this does not necessarily mean that the
Attribute has no value(s). In addition, the lifecycle semantics for Attributes in the IDL
mapping mean that an accessor operation can return a reference for a non-existent
object.

Note — While the semantics of Attributes are described (below) in terms of notional
relations between M1-level values, this should not be read as implying any particular
implementation approach.

Sngle-valued Attributes

The interfaces and semantics for single-valued Attributes are the simplest to describe.
A single-valued Attribute (i.e., one whose “lower” and “upper” bounds are set to one)
is mapped to two IDL operations: 1) “<attr_name>" and 2) “set_<attr_name>.”

The “<attr_name>" operation returns the current value of the named Attribute for an
M1-level Instance object. In the single-valued case, thisis a single Instance of the
Attribute’s M1-level base type as mapped by the IDL mapping. In the terminology of
Section 4.4.1, “Attribute name and type,” on page 4-4, the operation returns the M 1-
level value that is related to the Instance object by the notional “<attr_name>" Class —
AttrType relation.

The “set_<attr_name>" operation replaces the current value of the named Attribute for
an M 1-level Instance with a new value. As before, the new value is a single Instance of
the Attribute’s M 1-level base type as mapped by the IDL mapping. The operation
replaces the existing Class — AttrType relationship with a new one between the
Instance object and the new value.

The behavior of “set_<attr_name>" for an Class-valued Attribute (i.e., one with
“composite” aggregation semantics) is constrained as follows:

® The new value supplied must be either areference to an existing Instance object or
anil object reference.

® The new value (i.e., the component Instance) must not already be a component of
another Instance object.

® The composite and component Instance objects must belong to the same outermost
M1-level Package extent (i.e., the Composition Closure rule must not be violated).

OMG-MOF V1.3 Computational Semanticsfor thelDL Mapping ~ March 2000 5-15

5-16

5.3.4.2

5.3.4.3

® Creating the new Class — AttrType relationship must not create a composition
cycle.

Optional Attributes

The interfaces and semantics for optional Attributes are also relatively straight-
forward. An optional Attribute (i.e., one whose “lower” bound is 0 and whose “upper”
bound is 1) maps to three operations:

® ‘“<attr_name>”
® “set_<attr_name>"
® “unset_<attr name>"

The IDL mapping treats an M1-level optional Attribute as having two states. In the
“set” state, the Attribute has a value which is an instance of the Attribute’'s M 1-level
base type. In the “unset” state, the Attribute has no value.

In the single-valued case, “<attr_name>" simply returns the current M1-level value for
the Attribute. In the optiona case, the semantics depend on whether the Attribute is
currently “set” or “unset.”

® |f the Attribute is “set” (i.e., there is a Class — AttrType relationship between the
Instance object and some other value), the “<attr_name>" operation returns the
related value.

® |f the Attribute is “unset” (i.e., there is no Class — AttrType relationship with the
Instance object in the “class’ role), the “<attr_name>" operation raises an
exception.

The “set_<attr_name>" operation behaves exactly as in the single-valued case; it
replaces the existing Class — AttrType relationship (if any) with a relationship with
the new value. As a consequence, the Attribute enters the “set” state. The structural
constraints for “set_<attr_name>" in the single-valued case apply here as well.

The “unset_<attr_name>" operation removes the Class — AttrType relationship, if it
exists, leaving the Attribute in the “unset” state.

Multi-valued Attributes

The interfaces and semantics for multi-valued Attributes are relatively complicated,
and depend to a considerable extent on the settings of the “isOrdered” and “isUnique”
fields of the M2-level Attribute’s “multiplicity” property.

M1-level operations on multi-valued Attributes can be divided into two groups. The
“<attr_name>" and “set_<attr_name>" operations access and update the Attribute's
state as a single value, transferring it as a CORBA sequence type. The other operations
treat the Attribute's state as a collection of values, and update it by adding, modifying
or removing individual elements of the collection.

OMG-MOF V1.3 March 2000

5

The “<attr_name>" and “set_<attr_name>" operations transfer an Attribute’s M 1-level
state using a “ collection” type. Thisis anamed IDL sequence type whose base type is
the Attribute’s M 1-level base type, and whose name is determined by the “name” of the
Attribute’s “type” and the settings of the “isOrdered” and “isUnique” flags; for details,
see Section 5.7.1.6, “Literal String Values,” on page 5-42.

The “<attr_name>" operation returns the multi-valued Attribute’s value as a sequence
using the IDL type described above. The contents of the result comprise the collection
of base type instances related to the Instance object by the Class — AttrType relation.
If “isOrdered” is true, the order of the Class — AttrType relationships determines the
order of the elementsin the sequence. If the collection is empty, the returned valueisa
zero length sequence.

The “set_<attr_name>" operation replaces the multi-valued Attribute’s value with a
new collection of base type instances. If the Attribute is ordered, the order of the
elements in the parameter value determines the order of the new Class — AttrType
relationships.

A number of restrictions apply to the “set_<attr_name>" operation for multi-valued
Attributes. These are as follows:

® |f the Attribute’s “multiplicity” has the “isUnique” flag set to true, no two base type
instances in the collection may be equal.

® |f the Attribute’s “multiplicity” has a“lower” value greater than zero, there must be
at least that many elements in the collection.

® |f the Attribute’s “multiplicity” hasa“upper” value other than the “UNBOUNDED”
value (i.e, -1), there can be at most that many elements in the collection.

If the Attribute has composite semantics (i.e., the Attribute’s “type” is expressed using
a Class) the following restrictions also apply:

® FEach element (i.e., Instance object) in the new value collection must be either a
reference to an existing Instance object or a nil object reference.

® No element of the new value collection can already be a component of another
Instance object.

®* The composite and every component Instance objects must belong to the same
outermost M 1-level Package extent (i.e., the Composition Closure rule must not be
violated).

® Creating the new Class — AttrType relationships must not create any composition
cycles.

The IDL mapping can define up to 7 additional operations for a multi-valued Attribute.
There are up to 3 operations for adding new element values to an Attribute collection,
up to 2 for modifying them and up to 2 for removing them. The subset that is available
for a given Attribute depends on the “isUnique” and “isOrdered” flags in the M2-level
Attribute’s “multiplicity.” Thisis shown in Table 5-1 on page 5-18.

OMG-MOF V1.3 Computational Semanticsfor thelDL Mapping ~ March 2000 5-17

5-18

Table5-1 Element Update Operations for Multi-valued Attributes

isOrdered isUnique Operations available

false false add_<attr_name>, modify_<attr_name>,
remove_<attr_name>

false true add_<attr_name>, modify_<attr _name>,
remove_<attr_name>

true false add <attr name>, add_<attr name>_ before,
add_<attr_name>_at, modify_<attr_name>,
modify <attr_name>_at, remove_<attr_name>,
remove_<attr_name>_at

true true add <attr name>, add_<attr name>_ before,
modify_<attr_name>, remove_<attr_name>

When “isOrdered” is set to false, the operations provided are the basic ones for adding,
modifying, or removing element values. Given that the collection is unordered, there is
no need to specify the position at which a new element value is added, or (in the false,
false case) which of a number of equal element values should be modified or removed.
The semantics of the operations for an unordered Attribute are as follows:

The “add_<attr_name>" operation creates a new Class — AttrType relationship
between the Instance object and the M 1-level base type instance being added to the
Attribute collection.

The “modify_<attr_name>" operation replaces the Class — AttrType relationship
between the Instance object and the M1-level base type instance being modified
with another for the new element value.

The “remove_<attr_name>" operation removes the Class — AttrType relationship
between the Instance object and the M1-level base type instance being removed
from the Attribute collection. Removing the instance decreases the Attribute
collection’s length rather than leaving a “hole.”

These three operations must also respect the restrictions listed above for the multi-

Vv

alued “set_<attr_name>" operation.

When “isOrdered” is set to true, the “add_<attr_name>,” “modify_<attr_name>,” and

remove_<attr_name>" operations take on additional semantics:

The “add_<attr_name>" operation must ensure that the newly added element
appears as the last element in the Attribute collection.

The “modify_<attr_name>" operation must ensure that the replacement M 1-level
base type instance appears in the same position in the Attribute collection as the
value that it replaces. When “isUnique” is set to false, the collection may contain
duplicates. In this case, the operation should replace the first example of the
instance in the ordered Attribute collection.

When “isUnique” is set to false, the “remove_<attr_name>" operation should
removes the first example of the instance in the ordered Attribute collection.

OMG-MOF V1.3 March 2000

5344

5.3.4.5

In addition, the client is provided with extra operations for order sensitive element
update:

® The “add_<attr name>_before” operation is similar to the “add_<attr_name>"
operation, except that the new instance is added to the Attribute collection before an
existing element designated by the caller. When “isUnique” is false, the operation is
defined to replace the first example of the instance in the Attribute collection.

® When “isOrdered” is true and “isUnique” is fase, the “add_<attr_name>_at,”

“modify_<attr_name>_at,” and “remove_<attr_name>_at” are provided to allow the

client to update the collection in the presence of duplicates. These operations

specify an element insertion point or an element to be modified to be removed by
giving an position index. For the purposes of these operations, the elements in an

Attribute collection are numbered starting from zero according to the defined order

of the members of the collection. The operations are as follows:

e add_<attr_name>_at - inserts the new M 1-level base type instance so that it
appears at the position given. The instance originally at that position, and all
instances will have their position indexes increased by one.

« modify_<attr_name>_at - replaces the M1-level base type instance at the
position.

e remove <attr_name>_at - removes the M 1-level base type instance at the
position given. Any instances in the collection that follow the removed instance
will have their position indexes decreased by one (i.e., the operation does not
leave a “hole” in the Attribute collection).

These five additional operations must also respect the restrictions listed above for the
multi-valued “set_<attr_name>" operation.

Changeability and Derivedness

The previous semantic descriptions assume the M2-level Attribute has “isChangeable”
set to true and “isDerived” set to false. This subsection describes what happens if this
is not the case.

If an Attribute has “isChangeable” set to false, the effect on the IDL mapping is that all
generated operations for updating the Attribute's state are suppressed. This does not
preclude the existence of other mechanisms for updating the Attribute’s state.

Setting an Attribute’s “isDerived” flag to true, has no effect on the IDL mapping. The
operations generated for the derived and non-derived cases are equivalent and they are
defined to have equivalent semantics. If a derived Attribute's operations are coded by
hand, it is the programmer’s responsibility to ensure that they implement the required
semantics.

Classifier scoped Attributes

The previous semantic descriptions assume the M2-level Attribute has “scope” set to
“instance_level.” When an Attribute’s “scope” is “classifier_level,” we can model the
notional relation that defines the M1-level Attribute state as a relation between the

OMG-MOF V1.3 Computational Semanticsfor thelDL Mapping ~ March 2000 5-19

5-20

5.3.4.6

5347

Class extent and the AttrType; see Section 4.4.3, “Scope,” on page 4-6. In the IDL
mapping, this translates to a notional relation between a Class Proxy object and
instances of the Attribute’s M1-level base type.

On this basis, an Attribute whose “scope” is “classifier_level” differs from one whose
“scope” is “instance _level” in the following respects:

®* Thenotiona Class Proxy — AttrType relation supplies the value or values accessed
and updated by “classifier_level” scoped Attribute operations.

® When the Attribute has aggregation semantics of “composite”:
* the Composition Closure rule means that the Class Proxy object and M 1-level
Attribute value Instances must belong to the same extent, and
« checking for composition cyclesis unnecessary. The Class Proxy object that holds
the Attribute value(s) is not an Instance, and thus cannot be a“component” in this
sense.

Inherited Attributes

The previous semantic descriptions apply equally to Attributes defined within an M2-
level Class, and Attribute inherited from supertypes of the Class.

Life-cycle Semanticsfor Attributes

The previous semantic descriptions say nothing about how an Attribute gets its initial
value or values. (With the exception of the single-valued case of the “<attr_name>"
operation, the semantic descriptions would “work” if no notional relationships existed
initially.) In fact, the IDL mapping ensures that al M1-level Attributes get a client-
supplied initial value:

® All “instance_level” scoped Attribute values for a M1-level Instance object are
initialized from the parameters to the “create <class name>" operation.

® All “classifier_level” scoped Attribute values within the extent of an outermost M1-
level Package are initialized from the parameters to the “create_<package name>"
operation.

An M1-level Attribute only exists while the M1-level Instance object or Class Proxy
object that it belongs to exists. When the object is deleted, the notional relationships
disappear as well.

Attributes with “composite” aggregation semantics have special life-cycle. When an
object with a composite Attribute is deleted, the Instance object or objects that form its
value are also deleted.

Note that unlike Associations, when an Instance object is deleted, the delete operation
should make no attempt to tidy up “dangling references’ to it.

OMG-MOF V1.3 March 2000

5.3.5 Reference Semantics for the IDL Mapping

The IDL mapping maps References into a hybrid that combines an Attribute style
interface with Association access and update semantics. In each case, a Reference
operation maps fairly directly onto an Association operation as shown in Figure 5-2

below.

Table 5-2 Semantic mapping of Reference operations to Association Operations

Multiplicity

Reference Operation

Association Operation(s)
(assuming that the referenced AssociationEnd is the 2nd one)

optiona

i.<reference_name>()

temp = a.<referenced_end_name>(i)
if temp.size > 0 then

temp[0]
else

raise NotSet

single- and
multi-valued

i.<reference_name>()

a<referenced_end_name>(i)

optional

i.set_<reference_name>(new)

old = a.<reference_end_name>(i)
if old.size > 0 then
amodify_<reference_end_name>(i, old[0], new)
else
a.add(i, new)

optional

i.unset_<reference_name>()

old = a.<reference_end_name>(i)
if old.size > 0 then
aremove(i, old[0])

single-valued

i.set_<reference_name>(new)

old = a.<ref_end_name>(i)
amodify_<ref_end name>(i, old, new)

multi-val ued

i.set_<reference_name>(new)

old = a.<ref_end_name>(i)

forjinO .. (old.size - 1) do
aremove(i, old[j])

forjinO.. (old.size - 1) do
a.add(i, new[j])

multi-valued

i.add_<reference_name>(new)

a.add(i, new)

multi-valued

i.add_before <reference_name>(new,
before)

a.add_before_<referenced_end_name>(i, new, before)

multi-valued

i.modify_<reference_name>(old, new)

amodify_<referenced_end_name>(i, old, new)

multi-valued

i.remove_<reference_name>(old)

aremove_<referenced_end_name>(i, old)

In practice, an implementation also needs to transform exceptions reported for the

Association operations into exceptions that apply from the Reference perspective. In
addition, a “quality” implementation would ensure that Reference operations did not
leave the Association object in a half way state following an exception.

OMG-MOF V1.3 Computational Semanticsfor thelDL Mapping ~ March 2000 5-21

5-22

Note — The above semantic mapping description is not intended as implying any
particular implementation approach.

5.3.6 Cluster Semantics for the IDL Mapping

The impact of clusters on the IDL mapping semantics are largely described elsewhere.
At the M 1-level, a clustered Package behaves identically to a nested Package in terms
of life-cycle and extent rules. The only significant difference is that clustering is not
always a strict composition relationship at the M1-level; see Section 4.6.4, “Package
Extents,” on page 4-11. In the IDL mapping, this means that two or more Package
“ref” attributes to point at the same clustered Package instance.

5.3.7 Atomicity Semantics for the IDL Mapping

All operations defined by the IDL mapping (including the Reflective versions) are
required to be atomic and idempotent:

® |f an operation succeeds, state changes required by the specification should be
made, except as noted below:
* When an Instance object is deleted, deletion of any component Instance objects
may occur asynchronously.

* When an Instance object is deleted, removal of linksto the deleted I nstance object
may occur asynchronously.

® |f an operation fails (e.g., by raising an exception), no externaly visible changes
should be caused by the failed operation.

® When the invocation of two or more operations overlaps in time, the resultant
behavior should be semantically equivalent to the sequential invocation of the
operations in some order.

Note — The IDL mapping specification does not require a transactional or persistent
implementation of a meta-data server.

5.3.8 The Supertype Closure Rule

The inheritance pattern for Instance and Class Proxy interfaces has an important
consequence when one M2-level Class is a sub-Class of a second one.

Recall that each Class Proxy interface defines afactory operation for the corresponding
Instance object, and that it also inherits from the Class Proxy interfaces for any M2-
level super-Classes. Taken together, this means that any Class Proxy object has
operations for creating Instance objects for both the M2-level Class, and all of its M2-
level super-Classes.

Normally, this artifact of the IDL inheritance hierarchy isjust a convenience. However,
problems arise when an M2-level Class (e.g., P2::C2) has a super-Class that is
imported from another M2-level Package (e.g., P1::C1); see Figure 5-3 on page 5-23.

OMG-MOF V1.3 March 2000

5

The Class Proxy interface corresponding to the C2 Class now has a factory operation
to create instances of a Class from another Package, and therefore would appear to
require all of the mechanisms for creating, accessing, updating and deleting these
instances. This is not what Package importing is defined to mean.

The adopted solution to this problem is to add an extra restriction to the MOF
computational semantics. This restriction is known as the Supertype Closure Rule.

Supertype Closure Rule

Suppose that the Package extent for a non-nested M 2-level Package P contains a Class
Proxy object which has a create operation for instances of Class C. This create
operation can be used if and only if the M2-level closure of the Package P under
generalization and clustering includes the M2-level Class C.

In other words, a factory operation for instances of an M2-level Class will only work
within a Package instance with the machinery for supporting the Class. The Supertype
Closure Rule isillustrated in Figure 5-3.

P1 Instance P2 Instance
) . ..
«imports» | :) S N
_ - P2 A Ao B et J VY
= | Proxy | o | Proxy | | Lo
P1 . C2 C
< L el : . extent | |
~ Lo o v C2 ! '
«clusters» P3 A O R " Pre . .
. extent! | Poyy L
P1:C1 _____ P3 Instance
// \ : : ,/ g \\. ’, ______ *l :
.| Proxy| : .
P2::C2 P3::C3 S : C3 . C3 v
L Proxy | ' extent .
I o | L . '
Meta-model Definition . extent) .

Figure 5-3 Supertype Closure Rule

5.3.9 Copy Semantics for the IDL Mapping

The IDL mapping currently defines no APIs for copying meta-data. Copy semantics
are therefore beyond the scope of this chapter.

OMG-MOF V1.3 Computational Semanticsfor thelDL Mapping ~ March 2000 5-23

5.4 Exception Framework

5-24

This section describes the way that Exceptions are organized in the MOF to IDL
mapping. These exceptions are raised in a variety of CORBA interfaces, including:

* Reflective interfaces: (see Section 6.2.2, “Reflective::RefBaseObject,” on page 6-5,
Section 6.2.3, “Reflective::RefObject,” on page 6-9, Section 6.2.4,
“Reflective::RefAssociation,” on page 6-22, Section 6.2.5,
“Reflective::RefPackage,” on page 6-28, and

®* Model interfaces (see Section 3.4, “MOF Model Classes,” on page 3-15 and
Section 3.5, “MOF Model Associations,” on page 3-65).

® Specific interfaces produced by the mapping templates (see Section 5.8, “IDL
Mapping Templates,” on page 5-44).

The exceptional conditions that arise in the context of the MOF to IDL mapping are
classified into 5 groups:

1. Structural errors - this group covers those situations where the basic structural
consistency rules for the metadata are (or would be) violated. For example, when
there are too many or too few elements in a collection value.

2. Constraint errors - this group covers violations of metadata consistency rules
specified in the metamodel using Constraints.

3. Usage errors - this group covers those situations where a client tries to use the MOF
interfaces in a meaningless way. For example, giving a ‘position’ for a collection
element that is outside of the collection bounds.

4. Reflective errors - this group covers errors that can only occur when using the
Reflective interfaces. For example, calling “reflnvokeOperation” on an Attribute.
These errors are the notiona equivalent of runtime type errors.

5. Semantic errors - this group covers errors not covered above (i.e., implementation
specific errors).

The complexity of the MOF means that the number of exceptional conditions is (at
least in theory) unbounded. The precise set of possible exceptional conditions for just
one operation in the mapped interfaces can be very hard to define. Constraint and
Semantic errors are particularly difficult to tie down. Furthermore, including lots of
exceptions in an IDL operation signature can make client code inordinately complex.

To solve these problems, the MOF IDL mapping defines the MofError exception that
covers most of the exceptional conditions that might arise.

struct NamedValueType {
string name;
ValueType value;
5
typedef sequence < NamedValueType > NamedValueList;
exception MofError {
string error_Kkind;
RefBaseObject element_in_error;

OMG-MOF V1.3 March 2000

NamedValuelList extra_info;
string error_description;

¥
The fields of the MofError exception are defined as follows:

® error_kind isastring that denotes the particular kind of exceptional condition that
is being raised. The formation of values for this field is discussed below.

® element_in_error isthe DesignatorType for the object or feature that is deemed to
be in error for this error condition. The detailed specifications of the error
conditions below define which meta-object should be returned in each case. In
situations where no M2-level meta-objects are available, this field may contain anil
object reference.

® extra_info isalist of name / value pairs that provides the client with extra
information about the error condition.

The list consists of zero or more standardized name / value pairs, followed by any
implementation specific pairs. For the standardized part of the list, the sequence of
the pairs and the values (including casing) of the names are mandatory. This allows
clients to extract list elements by position or by matching names. It is recommended
that implementers take the same approach for the implementation specific part of
the list.

® error_description is a human readable diagnostic message. The contents of this
field are not specified by this document.

Note — The standardized name / value pairs for the extra_info field represent a
compromise between the anticipated cost of implementation and the provision of
useful information to the caller. Implementers are encouraged to provide additional
information. Similarly, implementers are encouraged to provide detailed and
informative diagnostics in the error_description field.

5.4.1 Error_kind string values

The values of the error_kind field or MofError are structured using Java’s reversed
domain name syntax:

“org.omg.mof:structural.composition_cycle”

“au.edu.dstc.mofamatic:botched_assertion”

The values for each group of errors are as follows:

¢ Structural and Reflective errors: the prefix “org.omg.mof:” followed by either
“structural.” or “reflective.” and then the specific error name in lowercase with
underscores between words. These values are defined as constants in the IDL for
the Reflective module.

OMG-MOF V1.3 Exception Framework March 2000 5-25

® Constraint errors: the IDL prefix for the metamodel (if any), followed by
“:constraint.” followed by the qualified constraint name using the Format2
convention. For example, a Constraint named “MyConstraint” declared in
“PackageA::ClassB,” the error kind string value is:

“:constraint.package_a.class_b.my_constraint”
or with an IDL prefix of “com.acme”, itis:
“com.acme:constraint.package_a.class_b.my_constraint”

See Section 5.8.17, “Constraint Template,” on page 5-90 for the definitive
specification.

® Usage errors: not applicable. None of these error conditions are signalled using
MofError.

® Semantic errors. an implementation specific prefix, followed by “:semantic.”
followed by an implementation specific string. It is strongly recommended that the
implementation specific part follow the conventions above (i.e., reverse domain
names, all lowercase, periods for qualification and underscores between words).

5.4.2 Structural Errors

All structural errors are signalled using MofError. With the exception of “Underflow,”
the consistency rules covered by the structural errors are either pre- or post-conditions
on operations.

The MOF IDL mapping defines the structural errors as defined in Table 5-3.

Table 5-3 Structural Errors signalled using MofError

Structural error “Element_in_error” Standard “extra_info” Description

Underflow Attribute, Parameter, or none "Underflow" arises when a collection or
Association End defining projection contains fewer values than is
the Multiplicity that is required by the corresponding
violated. Multiplicity.lower.

Note that the evaluation “underflow” is
context dependent. For an operation
which takes a collection value as a
parameter, or whose net effect is to
decrease the number of elementsin a
multi-valued Attribute or a projection of a
Link set, “underflow” is treated as an
immediate constraint. In other cases,
“underflow” istreated as a deferred
constraint.

5-26 OMG-MOF V1.3 March 2000

Table 5-3 Structural Errors signalled using MofError (continued)

Structural error

“Element_in_error”

Standard “extra_info”

Description

Overflow Attribute, Parameter, or none "Overflow" arises when a collection or
Association End defining projection contains more values than is
the Multiplicity that is allowed by the corresponding
violated. Multiplicity.upper.

Duplicate Attribute, Parameter, or “duplicate” : Any(<Value>) "Duplicate" arises when a collection or

Association End defining
the Multiplicity that is
violated.

A value that appears more
than once in the unique
collection / projection.

projection whose corresponding
Multiplicity.is_unique is true contains
duplicate values. For example, when two
or more values at different positionsin
the collection or projection that are
“equal” according to the definitions in
Section 4.2.1, “Semantics of Equality for
MOF Values,” on page 4-3.

Reference Closure

Reference for which the
closure rule is violated.

“external” : Any(<Instance>)
An Instance that violates a
closure rule with respect to
the Association being
updated.

"Reference Closure" can arise when an
Association extent contains a link for an
Instance object belonging to another
outermost Package extent. More
particularly, this happens when the
Instance object's M2-level Class (or a
super-Class ancestor) has a Reference to
the M2-level Association. See

Section 4.9.1, “The Reference Closure
Rule,” on page 4-19.

Composition Closure

Attribute or Association for
which the closure rule is
violated.

“external” : Any(<Instance>)
An Instance that was passed
as or within in an operation
parameter that violates the
closure rule.

"Composition Closure" arises when an
Instance object is member of a composite
which crosses an outermost Package
extent boundary. See Section 4.9.2, “The
Composition Closure Rule,” on page 4-20

Supertype Closure

Class of the object that
cannot be created.

none

"Supertype Closure" arises when a client
attempts to create an Instance object in a
Package extent that does not support its
M2-level Class. See Section 5.3.8, “The
Supertype Closure Rule,” on page 5-22.

Composition Cycle

Attribute, Reference or
Association that is being
updated to form the cycle..

“cyclic” : Any(<Instance>)
A composite Instance passed
as or within a parameter that
would become cyclic as a
result of this operation.

"Composition Cycle" arises when an
Instance object is a component of itself
via one or more relationships defined by
composite Associations or composite
Attributes.

Nil Object

Reference or Association
End for which the nil object
reference was supplied.

none

"Nil Object" arises when a Association
operation is passed a CORBA nil object
reference.

OMG-MOF V1.3

Exception Framework

March 2000

5-27

Table 5-3 Structural Errors signalled using MofError (continued)

Structural error

“Element_in_error”

Standard “extra_info”

Description

Inaccessible Object

Attribute, Parameter,
Reference or Association
End for which the
inaccessible object was
detected.

“inaccessible” :
Any(<RefObject>)

An Instance object that was
inaccessible.

"Inaccessible Object" arises when an
operation tries to use an Instance object
only to find that it is currently
inaccessible.

Invalid Object

Attribute, Parameter,
Reference or Association
End for which the invalid
object was detected.

“invalid” :
Any(<RefBaseObject>)
An object reference for a
M OF meta-object that does
not exist.

"Invalid Object" can arise when an object
operation detects a reference for a non-
existent (i.e.,deleted) object.

Already Exists

Class of the object that
already exists

“existing” : Any(<Instance>)
The pre-existing singleton

Instance object for the extent.

“Already Exists’ arises when a client
attempts create a second Instance object
for an M2-level Class with “isSingleton”
of true.

5-28

Note — There are no mandatory ‘extra_info’ pairs for "Overflow" and "Underflow"
because the error conditions occur in such a wide range of contexts that it isdifficult to
come up with a set that is universally applicable. Vendors are encouraged to innovate
by defining non-standard pairs.

The following IDL constants define the corresponding error_kind strings.

const string UNDERFLOW_VIOLATION =
"org.omg.mof:structural.underflow";

const string OVERFLOW_VIOLATION =
"org.omg.mof:structural.overflow";

const string DUPLICATE_VIOLATION =
"org.omg.mof:structural.duplicate"”;

const string REFERENCE_CLOSURE_VIOLATION =
"org.omg.mof:structural.reference_closure";

const string SUPERTYPE_CLOSURE_VIOLATION =
"org.omg.mof:structural.supertype_closure";

const string COMPOSITION_CYCLE_VIOLATION =
"org.omg.mof:structural.composition_cycle";

const string COMPOSITION_CLOSURE_VIOLATION =
"org.omg.mof:structural.composition_closure";

const string NIL_OBJECT_VIOLATION =
"org.omg.mof:structural.nil_object";

const string INACCESSIBLE_OBJECT_VIOLATION =
"org.omg.mof:structural.inaccessible_object";

const string INVALID_OBJECT_VIOLATION =
"org.omg.mof:structural.invalid_object";

const string ALREADY_EXISTS_VIOLATION =
"org.omg.mof:structural.already_exists";

OMG-MOF V1.3

March 2000

5.4.3 Constraint Errors

Constraint errors occur when a consistency rule is defined as a Constraint in the
metamodel.

All Constraint errors are signalled by raising MofError. The fields of the MofError
exception are defined as follows:

® The error_kind string is defined by the IDL mapping rules (see Section 5.8.17,
“Constraint Template,” on page 5-90).

® The element_in_error is the designator for the Constraint that has been violated.

® The value of the extra_info field is implementation specific. Where possible, the
implementation should provide the constrained object(s) or value(s) for which the
constraint is violated.

Constraints can be defined with an “evaluationPolicy” of “immediate” or “deferred.” In
the former case, violations of the rule are likely to be reported when a constrained
object is created or updated. In the |atter case, violations are likely to be reported when
deferred Constraint checking is triggered.

Note — The above statements assume that constraint checking is implemented
according to the spirit of Section 4.6, “Extents,” on page 4-9.

5.4.4 Semantic Errors

The Semantic error group is the “catch all” for otherwise unclassified implementation
specific errors. Semantic errors are signaled by raising the MofError exception with
appropriate. Possible sources of this error include:

® additional metadata consistency rules that are not specified in the metamodel,
® implementation specific access control violations,
® resource limitations in a metadata server, and

® internal errorsin a metadata server.

The values of the MofError exception fields for a Semantic error are implementation
specific:

® Implementors should define a unique strings for the error_kind field to distinguish
the different kinds of Semantic error. These values should conform to the pattern
described in Section 5.4.1, “Error_kind string values,” on page 5-25.”

® The values and meanings of the element_in_error and extra_info fields should
be defined as appropriate.

OMG-MOF V1.3 Exception Framework March 2000 5-29

5-30

5.4.5 Usage Errors

The Usage error group indicate inappropriate use of the MOF IDL interfaces. They can
arise when a client is using either the Reflective interfaces, or the interfaces generated
by the IDL mapping.

The Usage errors are signalled using their own exceptions,

Table 5-4 Usage Exceptions

Usage Exception

Arguments Description

NotFound

none NotFound is raised by modify and remove operations on multi-
valued Attributes, References and Associations when the argument
that should identify the member or link to be removed does not
match any value that is currently there.

NotSet

none NotSet is raised when a client attempts to read the element value of
an optional collection (i.e., one with bounds of [0..1]) when the
collection is empty.

BadPosition

none BadPosition is raised by a positional add, modify or remove
operation is supplied with a ‘posi ti on’ argument whose value is
out of range. The collection’s current size is returned in the
exception’s* current_size’ field. Thiswill be 0 if the collection is
empty, 1 if it contains a single member and so on.

Note — The members of a collection value containing size elements are numbered {0,
1,... size - 1} for the purposes of the positional update operations. The positional
modify / remove operations are defined to modify or remove the member indexed by
the position (i.e., position values in the range 0 to size - 1 inclusive are valid). The
positional add operation is defined to insert a member before the member indicated by
the position. In this case, position values in the range 0 to size inclusive are valid,
with size meaning "insert at the end."

The IDL declarations for the Usage error exception are as follows:

exception NotFound {};

exception NotSet {};

exception BadPosition {
unsigned long current_size;

b

5.4.6 Reflective Errors

Reflective error conditions occur exclusively in operations in the Reflective interfaces.
They occur when a Reflective operation is invoked with parameters that contradict the
target object's description in the metamodel. When the client uses interfaces generated
by the IDL mapping, the static type checking based on the specific IDL signatures
should prevent the equivalent errors from occurring.

OMG-MOF V1.3 March 2000

In most cases, the MofError exception is used to signal reflective errors. Table 5-5
lists the Reflective errors that are signalled using MofError, along with the MofError
field specifications and descriptions. All are pre-conditions for the respective

operations.

Table 5-5 Reflective Errors signalled using MofError

Reflective “Element_in_error” Standard “extra_info” Description

error

Invalid ModelElement that is none "Invalid Designator" arises when a "feature"

Designator invalid parameter:

* isnot a Model::ModelElement, or
* does not denote an accessible CORBA object.

Wrong ModelElement that hasthe | none "Wrong Designator Kind" arises when the

Designator wrong kind supplied designator has an inappropriate most-

Kind derived type. For example, when a
Model::Attribute is supplied where a
Model::Operation is required.

Unknown ModelElement that is not none "Unknown Designator" arises when the supplied

Designator known. designator does not belong in this context. For
example, when a Model::Attribute is not a
member of this Instance’s Class or its
superClasses.

Abstract Class Class that is abstract. none “Abstract Class’ arises when a client calls
“refCreatel nstance” for a Class that is defined as
abstract.

Not Changeable | ModelElement that has none "Not Changeable" arises when an update

“isChangeable” = false operation is attempted on something that is
defined by the metamodel to be not changeable.

Not Navigable AssociationEnd that has none "Not Navigable" arises when RefAssociation
“isNavigable” = false operations are attempted for an AssociationEnd

that is defined by the meta-model to be not
navigable.

Not Public ModelElement that has none "Not Public" arises when an operation is
“visibility” = "private_vis' attempted for a "private" or "protected” feature.
or "protected_vis"

Wrong Scope Attribute or Operation none "Wrong Scope" arises when an attempt is made
with “scope” = to use an instance-level Attribute or Operation
“instance_level” from a Class proxy object.

Wrong Reference or Attribute none "Wrong Multiplicity" arises when a reflective

Multiplicity used in error operation is requested where the corresponding
specific operation does not exist for this feature' s
multiplicity. For example:

e amember update on a[0..1] or [1..1] feature,

* aunset on afeature that is not [0..1],

* an add_value_at on an unordered feature.
OMG-MOF V1.3 Exception Framework March 2000 5-31

Table 5-5 Reflective Errors signalled using MofError

Reflective “Element_in_error” Standard “extra_info” Description
error
Wrong Type Attribute, Reference, “invalid_value” : Any “Wrong Type” arises when a RefObject or an
AssociationEnd, or Any value has the wrong type for context in
Parameter for the value The value or object whose which it was supplied. For example;
that isin error. type isincorrect in this * A RefObject whose most derived type is
context. (The first version is incorrect; e.g., has the wrong M2-level Class
used when the value in error or isa Class proxy instead of Instance, or vice
was passed as an Any, and the versa.
second when it was passed as | « An Any value that contains an single value
a RefObject.) where a sequence is required, or vice versa
* An Any value that contains a single value or
“expected_type” : sequence of values of the wrong CORBA
Any(TypeCode) type.

The CORBA TypeCode that
the value should have been.

Wrong Number | Class or Operation for “number_expected” : “Wrong Number Parameters’ arises when a
Parameters which the wrong number Any(Unsigned Long) client calls “refCreatel nstance” or
of actual parameters was The expected number of “reflnvokeOperation” with too few or too many
supplied. actual parameters. parameters.
Invalid Deletion | A nil object reference none “Invalid Deletion” arises when a client calls

“refDelete” on a meta-object that cannot be
deleted this way; i.e., an Association object, a
Class Proxy object or a dependent Package
object.

The following IDL defines the error_kind strings for the above Reflective errors:

const string INVALID_DESIGNATOR_VIOLATION =
"org.omg.mof:reflective.invalid_designator";

const string WRONG_DESIGNATOR_DESIGNATOR_VIOLATION =
"org.omg.mof:reflective.wrong_designator_kind";

const string UNKNOWN_DESIGNATOR_VIOLATION =
"org.omg.mof:reflective.unknown_designator";

const string ABSTRACT_CLASS_VIOLATION =
"org.omg.mof:reflective.abstract_class";

const string NOT_CHANGEABLE_VIOLATION =
"org.omg.mof:reflective.not_changeable";

const string NOT_NAVIGABLE_VIOLATION =
"org.omg.mof:reflective.not_navigable";

const string NOT_PUBLIC_VIOLATION =
"org.omg.mof:reflective.not_public";

const string WRONG_SCOPE_VIOLATION =
"org.omg.mof:reflective.wrong_scope";

const string WRONG_MULTIPLICITY_VIOLATION =
"org.omg.mof:reflective.wrong_multiplicity";

const string WRONG_TYPE_VIOLATION =
"org.omg.mof:reflective.wrong_type";

const string WRONG_NUMBER_PARAMETERS_VIOLATION =
"org.omg.mof:reflective.wrong_number_parameters";

5-32 OMG-MOF V1.3 March 2000

const string INVALID_DELETION_VIOLATION =
“org.omg.mof:reflective.invalid_deletion”;

Other Exception

There is one exception to this. When an Operation defined in the metamodel raises an
Exception that is also defined in the metamodel; see below.

The OtherException exception is raised when acall to “reflnvokeOperation” results
in an error condition that correspond to an M2-level Exception defined for the
Operation in the metamodel.

exception OtherException {
DesignatorType exception_designator;
ValuesType exception_args;

¥
The arguments to the OtherException exception are as follows:
® exception_designator gives the designator for the M2-level Exception raised.

® exception_args is an ordered list of CORBA Any values that represent the
arguments of the Exception raised. The encoding of this field is defined in the
specification of the “reflnvokeOperation” on page 6-20.

Note — When an error condition could be expressed as either a Reflective error a
Structural error, the latter takes precedence. For example, if one end of Link in acall to
“refAddLink” is a nil object reference, this should be signalled as “Nil Object” rather
than “Wrong Type”

5.5 Preconditionsfor IDL Generation

The IDL mapping may not produce valid CORBA IDL if any of the following
preconditions on the input meta-model is not satisfied:

® The MOF Model constraints, as defined above, must all be satisfied for the input
meta-model.

® The input meta-model must be structurally consistent.

® The visible Names within a NameSpace must conform to the standard CORBA IDL
identifier syntax. The original Names of Model Elementsthat have avalid substitute
Name are excepted from this precondition; (see Section 5.6.2.1, “ Substitute Name,”
on page 5-37). No such requirement applies to Model Elements such as Tags,
TypeAliases and some DataTypes whose names are not visible in the IDL mapping.
However, for these “invisible’ elements it is advisable to use a haming convention
that minimizes the risk of name collision.

® The visible Names within a NameSpace must be unique after name substitution (see
Section 5.6.2.1, “Substitute Name,” on page 5-37) application of the Format1 or
Format2 name rewriting algorithms and other name mangling specified in the

mapping.

OMG-MOF V1.3 Preconditionsfor IDL Generation March 2000 5-33

® A DataType's “typeCode’ must not be an anonymous non-primitive type. It cannot
have a kind of tk_array, tk_sequence, tk_string, tk_wstring or tk_fixed (with the
exception of the TypeCodes for the IDL “string” and “wstring” types).

® A DataType's “typeCode’ must follow the conventions for expressing types and
linking them to their definitions that are described in Section 3.4.7, “DataType,” on
page 3-33 and Section 3.4.8, “TypeAlias,” on page 3-35. In addition:

« When DataType's “name” does not start with “*”, its Format 1 rendering must be
identical to the type name in the DataType's “typeCode.”

* Whenever some embedded type in a DataType's “typeCode’ is linked (via a
TypeAlias) to a defining Classifier, the Format 1 rendering of the Classifier's
“name” must be identical to the embedded type’s name in the TypeCode.

« If the Classifier in the previous case is a DataType, the Classifier's “typeCode”
value must be identical to the embedded type's TypeCode.

® A nested Package may not be used as a subtype or supertype.
® A nested Package may not import or be imported by another Package.

® The following interim visibility definitions and constraints apply to the IDL
mapping:
« A ModelElement is visible to another ModelElement only if the former has
visibility of “public_vis.”
« A ModelElement declared within another top-level Package is visible within a
top-level Package only if the former Package is imported, clustered or inherited
by the latter Package.

* One ModelElement can only depend on another (in the sense of the M2-level
DependsOn Association) if the latter is visible from the former within the
definition of visibility immediately above.

» After name substitution (see Section 5.6.2.1, “ Substitute Name,” on page 5-37),
the name of an Import must equal the name of its “importedNamespace.”

® A Class may not be nested within another Class.
® A Class may not be imported.

® |f aConstraint is contained by a DataType or Operation, its name must also be
unique in the DataType or Operation’s container Namespace.
® Model Elementsin a meta-model cannot be cyclically dependent except as follows:
< A dependency cycle consisting of one or more Classes is legal, provided they all
have the same container.
* A dependency cycle consisting of one or more Classes and one or more
DataTypes or Exceptions, is legal provided they all have the same container.

Note — This precludes circular importing and circular clustering. It also precludes
recursion between “pure” DataTypes. (The two exceptions correspond to cases that can
be expressed in OMG IDL using forward interface declarations.)

5-34 OMG-MOF V1.3 March 2000

5

CORBA 2.3 adds an additional IDL constraint: “The name of an interface or a module
may not be redefined within the immediate scope of the interface of the module.” For
example:

module M {
typedef short M; // Error: M is the name of the module
/I in the scope of which the typedef is
interface | {
void i (in short j);
/I Error: i clashes with the interface
¥
3

The IDL templates in this specification do not contain any patterns of this form.
However, poor choice of names in a meta-model may generate IDL that violates this
constraint. In particular, the same name should not be used for both a container and its
contents. For example, a Package should not have the same name as one of its Classes,
DataTypes, or Associations. A Class should not have the same name as one of its
Attributes or References. An Association should not have the same name as one of its
AssociationEnds.

5.6 Sandard Tagsfor thelDL Mapping

This section defines the standard Tags that apply to the Model to IDL mapping. Other
Tags may be attached to the elements of a meta-model, but the meaning of these Tags
is not specified. Similarly, this section does not specify the meaning of the Tags below
in contexts apart from the Model to IDL mapping.

All standard Tag identifiers for the IDL mapping start with the prefix string:

“org.omg.mof.idl_"

Table 5-6 shows the conventions used to describe the standard Tags and their
properties.

Table 5-6 Notation for Describing Standard Tags

tag id: A string that denotes the semantic category for the tag.

attaches to: Gives the kind(s) of Model::Model Element that this category of
tag can be meaningfully attached to.

values: Gives the number and types of the tag's values (i.e.,
parameters), if any. (Tag parameters are expressed as an
unordered sequence of CORBA “any” values.)

meaning: Describes the meaning of the tag in this context.

OMG-MOF V1.3 Sandard Tagsfor theIDL Mapping ~ March 2000 5-35

Table 5-6 Notation for Describing Standard Tags

tag id: A string that denotes the semantic category for the tag.

idl generation: Defines the tag’s impact on the generated IDL.

restrictions: Tag usage restrictions - for example: “at most one tag of this
kind per element,” or “tag must be contained by the meta-
model.”

Note — Many of these Tags significantly alter the interface signatures of the generated
IDL. It is prudent for an IDL generator to only respect IDL mapping Tags when they
are contained within the respective meta-model. Otherwise, it may not be possible to
determine which Tags were in effect when the meta-data server was generated. This
would make it hard for a client to infer the meaning of generated IDL at runtime. It
would also make problems for automatic server and client generators.

5.6.1 Tags for Specifying IDL #pragma prefix

This tag allows the meta-modeler to specify the CORBA Interface Repository
Identifier prefix for the generated IDL. This is essential when a MOF meta-model is
used as the authoritative source for IDL for some other OMG standard.

5.6.1.1 IDL Prefix

tag id: “org.omg.mof.idl_prefix”

attaches to: Moded::Package

values: a String

meaning: Thistag supplies a Repositoryld prefix that is used for the entire
module generated for the Package.

idl generation: A #pragma prefix isinserted into the IDL before the “module”
declaration for the Package.

restrictions: [1] A Prefix tag should only be attached to a non-nested
Package.

[2] A Prefix tag contained by a Package takes precedence over
one that is not contained.

5.6.2 Tags for Providing Substitute Identifiers

There are some situations when the IDL identifiers produced by the IDL mapping
templates will result in name collisions. The following tag allows a meta-modeler to
provide a substitute for a model element’s name that will be used in IDL generation.

5-36 OMG-MOF V1.3 March 2000

5.6.2.1 Substitute Name

tag id: “org.omg.mof.idl_substitute_name”

attaches to: Model::ModelElement

values: a String

meaning: The String is the substitute name to be used in place of the

model element’s name.

idl generation:

Wherever the IDL mapping makes use of a model element’s
name, the substitute name should be used in its place. This
substitution occurs before application of formatl, format2, and
other name mangling.

restrictions:

The preconditions described in Section 5.5, “Preconditions for
IDL Generation,” on page 5-33 apply to the substitute name.
For example:

[1] it must be a syntactically valid IDL identifier, and

[2] al identifiers produced from it must be unique in their
respective scopes after formatting and name mangling, as per
the IDL mapping specification.

[3] in addition, there should be at most one Substitute Name
tag per Model Element.

5.6.3 Tags for Specifying IDL Inheritance

The following tags allow the meta-modeler to specify that a generated interface inherits
from one or more additional IDL interfaces. These tags allow the definition of MOF-
based meta-models that are upwards compatible with pre-existing meta-data interfaces

expressed in CORBA

IDL.

5.6.3.1 Instance Supertypes

tag id: “org.omg.mof.idl_instance_supertypes”

attaches to: Model::Class

values: one or more TypeCodes (order is significant)

meaning: The TypeCodes identify one or more IDL interfaces that the

“instance” interface for this Class should inherit from.

idl generation:

The specified interfaces are added to the “instance” interface’s
inheritance list following the other supertypes defined by the
templates. They appear in the order given.

restrictions:

[1] The TypeCodes must have kind of ‘tk_objref’.
[2] There should be at most one Instance Supertypes tag per
Class.

OMG-MOF V1.3 Sandard Tagsfor theIDL Mapping ~ March 2000 5-37

5.6.3.2 ClassProxy Supertypes

tag id: “org.omg.mof.idl_class_proxy_supertypes’

attaches to: Model::Class

values: one or more TypeCodes (order is significant)

meaning: The TypeCodes identify one or more IDL interfaces that the

“class proxy” interface for this Class should inherit from.

idl generation:

The specified interfaces are added to the “class proxy”
interface’s inheritance list following the other supertypes
defined by the templates. They appear in the order given.

restrictions:

[1] The TypeCodes must have kind of ‘tk_objref.
[2] There should be at most one Class Proxy Supertypes tag
per Class.

5.6.3.3 Association Supertypes

tag id: “org.omg.mof.idl_association_supertypes’

attaches to: M odel::Association

values: one or more TypeCodes (order is significant)

meaning: The TypeCodes identify one or more IDL interfaces that the

interface for this Association should inherit from.

idl generation:

The specified interfaces are added to the “association”
interface’s inheritance list following the other supertypes
defined by the templates. They appear in the order given.

restrictions:

[1] The TypeCodes must have kind of ‘tk_objref.
[2] There should be at most one Association Supertypes tag
per Association.

5.6.3.4 Package Supertypes

tag id: “org.omg.mof.idl_package supertypes’
attaches to: M odel::Package
values: one or more TypeCodes (order is significant)

OMG-MOF V1.3

March 2000

meaning: The TypeCodes identify one or more IDL interfaces that the
interface for this Package should inherit from.

idl generation: The specified interfaces are added to the “ package” interface’s
inheritance list following the other supertypes defined by the
templates. They appear in the order given.

restrictions: [1] The TypeCodes must have kind of ‘tk_objref.
[2] There should be at most one Package Supertypes tag per
Package.

5.7 Generated IDL Issues

During the design of the MOF Model to IDL mapping, several design decisions were
made which are explained in this section.

5.7.1 Generated IDL Identifiers

5.7.1.1

Identifier naming is an important issue for automatically generated IDL, especialy
when that IDL is intended to be used by applications written by human programmers.
The mapping has to reach a balance between conflicting requirements:

® Syntactic correctness - al identifiers in the mapped IDL must conform to the
defined CORBA IDL syntax, and they must all conform to the CORBA scoping and
upper/lower casing restrictions.

® User friendliness - identifiers should convey as much information as possible
without being overly long.

® Conformance to existing conventions - identifiers should conform to existing
stylistic conventions.

The OMG conventions for IDL identifiers (see“OMG IDL Style Guide: ab/98-06-03")
are based on the notion that an identifier is formed from one or more words in some
natural language. The conventions allow digitsto be used in words and take account of
acronyms. The Style Guide then specifies three different styles for putting some words
together as an identifier. In particular:

® |dentifiers for IDL module, interface and types are capitalized. If the name consists
of multiple words, each word is capitalized in the identifier.

® |dentifiers for IDL operations, attributes, formal parameters, struct and exception
members, and union branches are all lower-case. If the name consists of multiple
words, the words are separated by underscores (“_") in the identifier.

® |dentifiers for IDL constant and enumerator names are all upper-case. If the name
consists of multiple words, the words are separated by underscores (“_") in the
identifier.

Rulesfor splitting MOF Model: : Model Element namesinto “words"

OMG-MOF V1.3 Generated IDL Issues March 2000 5-39

According to the MOF Model, the “name” of a ModelElement is an instance of the
NameType (i.e,, a CORBA string). With a small nhumber of exceptions, the IDL
mapping needs to be able to convert these NameType instances into CORBA IDL
identifiers for use in a variety of contexts.

Since the MOF Model (like the UML meta-model) does not restrict the strings that can
be used as ModelElement “name,” mapping them to meaningful IDL identifiersis not
possible in the most general case. For example, names that include graphic characters
or accented letters do not map to IDL identifiers.

The IDL mapping requires that those names needing to be mapped consist only of
unaccented upper- and lower-case Latin letters, the digits ‘0’ to ‘9, hyphens (*-'),
underscores (*_"), and white-space characters. In addition, it must be possible to split a
name into “words’ according to the following specification.

A "word" is defined to be an upper-case letter, followed optionally by more upper-case
letters and digits and then optionally by lower-case letters and digits. An underscore
(“_"), hyphen (“-") or white space character will terminate a word. This is expressed
more formally by the following mini-grammar:

wor d = [A-Z][A-Z0-9] *[a- z0-9] *
| [a-z][a-z0-9]*
whi t espace ::= SP, CR, NL, HT, VT, etc
term = { " | “-" | whitespace }*
identifier ::= [term} word { [tern] word }* [term

The sequence of “words” for a name can then be formed into OMG IDL identifiers
according to the 3 formats bel ow.

5.7.1.2 IDL Identifier Format 1

In Format 1, the first letter of each word is converted into upper case, and other letters
remain the same case as input. The words are not separated by other characters.
Table 5-7 lists some examples of Format 1 identifiers.

Table 5-7 Format 1 Identifiers

Name Name split into words Identifier in Format 1
foo “foo" Foo

foo_bar "foo" "bar" FooBar

ALPHAbetica Order "ALPHADbetical" "Order" | ALPHADbeticalOrder
-alB2c3-d4- "al" "B2c3" "d4" A1B2c3D4

DSTC pty Itd "DSTC" "pty" "Itd" DSTCPtyLtd

Format 1 isused by the IDL mapping to produce the names of modules and interfaces.

5-40 OMG-MOF V1.3

March 2000

57.13

IDL Identifier Format 2

In Format 2, all letters in each word are converted into lower case. Each word is
separated by an underscore "_". Table 5-8lists some examples of Format 2 identifiers.

Table 5-8 Format 2 Identifiers

Name Name split into words Identifier in Format 2
foo “foo" foo

foo_bar "foo" "bar" foo_bar

ALPHAbetica Order "ALPHADbetical" "Order" | alphabetical_order
-alB2c3 d4 "al" "B2c3" "d4" al b2c3 d4

DSTC pty Itd "DSTC" "pty" "ltd" dstc_pty _Itd

5.7.1.4

Format 2 is used by the IDL mapping for identifiers for IDL operations, exceptions,
attributes, formal parameters, exception members and members of generated struct

types.

IDL Identifier Format 3

In Format 3, al letters in each word are converted into upper case. Each word is
separated by an underscore " _". Table 5-9lists some examples of Format 3 identifiers.

Table 5-9 Format 3 Identifiers

Name Name split into words I dentifier in Format 3

foo “foo" FOO

foo_bar "foo" "bar" FOO BAR

ALPHAbetica Order "ALPHADbetical" "Order" ALPHABETICAL_ORDER
-alB2c3 d4 "al" "B2c3" "d4" Al B2C3 D4

DSTC pty ltd "DSTC" "pty" "Itd" DSTC _PTY_LTD

Format 3 is used by the IDL mapping for identifiers for IDL constants.

5.7.1.5 ldentifiersin TypeCodes

DataTypes are used to specify various kinds of types for use in Attribute and Parameter
definitions. These types are encoded using the CORBA TypeCode type, and contain
embedded names of types, struct members, union arms and enumerators.

Unlike Model Element names, the names embedded in TypeCodes are constrained by
the CORBA Core specification to be valid identifiers. For this reason alone, they are
not reformatted by the IDL mapping. (If the IDL mapping did reformat these names,

OMG-MOF V1.3 Generated IDL Issues March 2000 5-41

5-42

5.7.1.6

the resulting IDL would declare types that do not match the TypeCode. Among other
things, areflective client would need to reinterpret the DatalType' s “typeCode’ field in
order to produce an Any value of the correct type. This is clearly undesirable.)

There are a couple of cases that require further specification:

® When the IDL mapping produces a qualified name for an external type encoded as
a DataType, the components of the name are not subject to reformatting.

®* When the IDL mapping produces collections types corresponding to a DataType,
the corresponding identifiers are formatted according to the Format 1 rules.

Literal Sring Values

Literal string values (in string valued Constants) are not re-formatted and appear in the
generated IDL exactly as specified by the Constant’s “vaue” attribute.

5.7.2 Generation Rules for Collection Types

The MOF Model alows Attributes, AssociationEnds, References and Parameters to
being single-, optional- or multi-valued depending on the ModelElement’s base type
and its multiplicity.

At various places in the mapped interfaces, it is necessary to pass collections that
represent values for the optional- or multi-valued cases. The IDL types for such a
collection is atypedef alias for an unbounded CORBA sequence of the collection
base type. The name of the typedef depends on the corresponding ModelElement’s
multiplicity specification.

For example, if the ModelElement is ordered and unique, then the collection type is a
unique list (or UList). The typedef name for a unique list takes the form
<ClassifierType>UList (i.e., the name of the collection base type followed by the
characters “UList”). For example, if an M2-level Operation returns an ordered, unique
list of Class "Foo," then IDL result type for the corresponding operation to be called
“FooUList” with the declaration:

typedef sequence <Foo> FooUList;

There are four distinct collection type suffixes corresponding to the combinations of
the "isOrdered" and "isUnique" flags for an element’s “multiplicity” attribute. The
appropriate suffix should be generated whenever <CollectionKind> appears in the IDL
templates below.

Table 5-10 Collection Kinds

Multiplicity Flags Collection Kind Suffix

none bag Bag

OMG-MOF V1.3 March 2000

Table 5-10 Collection Kinds

ordered list List
unique set Set
ordered, unique unique list (ordered set) UList

Note that the MOF Model specification includes a relevant Constraint on multiplicity
values; see the “MustBeUnorderedNonunique” constraint in Section 3.9.4, “The MOF
Model Constraints,” on pag €3-91. This states that when a feature’s multiplicity bounds
are[0..1], both the “isOrdered” and “isUnique” are set to false. As a consequence, the
<CollectionKind> suffix for a[0..1] collection type is always “Bag”.

Similar collection kind naming conventions are used for DataTypes. Thus for a set of
some enumeration type, the mapping would produce the following:

enum SomeEnum {el, e2};
typedef sequence <SomeEnum> SomeEnumSet;

When the DataType is a built-in CORBA type, the base name for the type is defined as
follows:

Table 5-11 Base Names for Built-in CORBA Types

Built-in CORBA type Base name
short Short
long Long
unsigned short UsShort
unsigned long ULong
float Float
double Double
boolean Boolean
char Char
string String
octet Octet
any Any
TypeCode TypeCode
Object Object

The declarations for collection types will appear in one of three places.

® |f the collection’s base type is defined somewhere within the top-level Package
being generated, collection type declarations appear immediately following the base
type's introduction; see Section 5.8.16, “DataType Template,” on page 5-89 or
SSection 5.8.5, “Class Forward Declaration Template,” on page 5-53.

OMG-MOF V1.3 Generated IDL Issues March 2000 5-43

® |f the base type is imported or inherited from another Package, the collection type
declarations at the beginning of the IDL module for the Package that imports or
inherits the type's Package; see Section 5.8.2, “Package Module Template,” on
page 5-46.

® |f the base typeis a CORBA built-in type, or a CORBA type with an external (non-
MOF) declaration, the collection type declarations appear at the beginning of the
IDL module for the outermost Package; see Section 5.8.2, “Package Module
Template,” on page 5-46.

Since CORBA sequence types require considerable run-time support code in some
language bindings, collection type declarations must only be generated if they are
needed within the IDL for the current outermost Package.

Operations produced by the IDL mapping with collection parameters must ensure that
the sequence values supplied and returned have an appropriate number of elements.
When collection parameters are sets or unique lists, operations must also ensure that
the sequence values contains no duplicates.

5.7.3 IDL ldentifier Qualification

To avoid scoping errors within the mapped IDL, identifier names must be either fully
qualified, or partially qualified to an appropriate level. This specification |eaves the
choice between the use of fully or partially qualified identifiers to the implementer.

5.7.4 File Organization and #include statements

This specification does not prescribe how the generated IDL is organized into files.
Therefore, the generation rules do not contain any “#include” statements. An
implementer must decide how to organize the generated IDL into files, and must
generate appropriate “#include” statements to ensure that the resultant IDL can
compile. Similarly, the implementer must generate “#ifndef” guards asrequired by the
OMG style rules.

5.8 IDL Mapping Templates

5-44

Model specific IDL is produced by traversing the containment hierarchy of a top-level
M2-level Package. The CORBA module structure of the resulting IDL directly reflects
the containment hierarchy of the source Package. If element X contains element Y in
the source model, then the IDL corresponding to X will have the IDL corresponding to
Y embedded in it (assuming that IDL is produced for Y).

The IDL mapping supports the containment hierarchy for Model Elements as described
in Section 3.3.4, “The MOF Model Containment Hierarchy,” on page 3-15, except as
stated in Section 5.5, “Preconditions for IDL Generation,” on page 5-33. Further
restrictions on meta-models that can be successfully mapped are described in the same
section.

OMG-MOF V1.3 March 2000

5

The mapping rules are described in terms of IDL templates. Each Template describes
the maximum IDL which could be generated when mapping MOF Model objects. In
any specific case, the actual IDL generated will depend on the properties of the
corresponding MOF Model object.

Throughout the following Template descriptions, the IDL is said to be "generated by"
the Templates. Clearly the Templates do not generate IDL in aliteral sense. Instead,

the reader should imagine that each Template is a parameter to a hypothetica generator
function. When it is called with the appropriate kind of MOF Model Element object as
a second parameter, the function "elaborates" the template to produce an appropriate

fragment of CORBA IDL. A similar “elaboration” process gives the required semantics
for the IDL from the descriptions following the templates and the specifications given
earlier in Section 5.3, “Computational Semantics for the IDL Mapping,” on page 5-6.

Note — The Template approach used here is a notational convenience, not a required or
suggested implementation strategy.

5.8.1 Template Notation
The following table is a guide to interpreting the IDL generation templates.

Table 5-12 IDL Generation Templates Guide

Appearance (by

example) M eaning

t ypedef The literal characters in bold font should be generated.

<AttributeType> The characters should be substituted for the described
identifier using ldentifier Format 1. The <> do not appear
in the generated IDL.

<attribute_name> The characters should be substituted for the described

identifier using the Identifier Format 2. The <> do not
appear in the generated IDL.

<CONSTANT _NAME | The characters should be substituted for the described
> identifier using the Identifier Format 3. The <> do not
appear in the generated IDL.

<CONSTANTVALUE> | The characters should be substituted for the described
identifier without formatting (i.e., asis). Typically, these
are litera values. The <> do not appear in the generated
IDL.

<<XYZ TEMPLATE>> | Apply the named template. The <<>> do not appear in the
generated IDL.

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-45

5-46

Table 5-12 IDL Generation Templates Guide

some phrase, . .. The dlipsis characters “. . .” following the “,” indicate that

this generates a comma separated list of “some phrase”. It
is implicit that there is no comma at the end of the list.

[some phrase] The square bracket characters “[]” surrounding a phrase in
a template indicate that the phrase may or may not be
required, depending on context.

/[for each parameter | Gives the rules on when and how to perform the IDL
generation, or some general commentary on the process.
The rules themselves do not appear in the generated IDL.

5.8.2 Package Module Template

This section describes the rules for mapping an M OF Package object to a CORBA IDL
module as expressed in the Package M odule Template.

The Package Module Template generates a CORBA IDL module that contains the IDL
for each of the M2-level Constants, DataTypes, Exceptions, Constraints, |mports,
Classes, and Associations in an M 2-level Package. It also contains the IDL for the M1-
level Package and Package Factory interfaces, and type declarations for various
collection types. Most of this is defined in subsidiary templates. IDL generation is
suppressed if the Package “visibility” is not “public_vis.”

5.8.2.1 Template

<<ANNOTATI ON TEMPLATE>>

[/l if this Package has visibility of private or protected, no IDL is
/1 generated for it

nmodul e <PackageNane> {

/1 if this Package is a “top-level” Package, generate any collection types
[/l for built-in types that are required by the IDL for this Package and

/] its contents

typedef sequence < <BuiltinType> > <BuiltinTypeNane><Col | ecti onKi nd>;

/1 if the Package has superPackages, generate any collection

/'l types for inherited types that are required by the IDL for this Package
// and its contents

typedef sequence < <lnheritedType> > <lnheritedType><Coll ecti onKi nd>;

/1 if the Package has Inmports, generate any collection types for

/1 inmported or clustered types that are required by the IDL for this Package
/1 and its contents

OMG-MOF V1.3 March 2000

typedef sequence < <l nportedType> > <| nportedType><Col | ecti onKi nd>
i nterface <PackageNanme>Package; /1 forward decl aration

/1 for each Class contained in the Package
<<CLASS FORWARD DECLARATI ON TEMPLATE>>

/1 for each Package, DataType, Exception, Class, Association, Constraint,
// and Constant contained by the Package, generate the appropriate |DL
<<PACKAGE MODULE TEMPLATE>>

<<DATATYPE TEMPLATE>>

<<EXCEPTI ON TEMPLATE>>

<<CLASS TEMPLATE>>

<<ASSOCI ATl ON TEMPLATE>>

<<CONSTRAI NT TEMPLATE>>

<<CONSTANT TEMPLATE>>

/1 Generate the Package Factory interface
<<PACKAGE FACTORY TEMPLATE>>

/1 Cenerate the Package interface
<<PACKAGE TEMPLATE>>

}; // end of nmodul e <PackageNane>

Description

The Package Module Template starts by rendering the M 2-level Package's “annotation”
attribute as a comment using the Annotation Template. This is followed by the IDL
module header for the Package’s module. The module name is <PackageName>.

The first group of declarations within the module are the sequence type declarations
for collection types:

* |f the M2-level Package is a top-level Package, the template generates collection
types for the MOF built-in types as required.

* |f the M2-level Package has superPackages, the template generates collection types
for inherited Classes and DataTypes as required.

* |f the M2-level Package has Imports, the template generates collection types for any
Classes and DataTypes in the imported or clustered Packages.

Note — Collection types should only be generated if they are going to be used within
the current outermost module.

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-47

5-48

After the collection types, the template generates forward declarations for some IDL
interfaces. First, it forward declares the M1-level Package interface, giving it the name
<PackageName>Package. Then, it forward declares the Class proxy and Instance
interfaces for all M2-level Classes in the current M2-level Package's “contents” using
the template defined in Section 5.8.5, “Class Forward Declaration Template,” on

page 5-53.

Next, IDL must be generated for the current M2-level Package's “contents” as follows:

® For nested Packages, use the template defined in Section 5.8.2, “Package Module
Template,” on page 5-46.

® For Classes, use the template defined in Section 5.8.6, “Class Template,” on
page 5-53.

® For Associations, use the template defined in Section 5.8.10, “Association
Template,” on page 5-58.

® For Constants, use the template defined in Section 5.8.13, “Operation Template,” on
page 5-85.

® For Exceptions, use the template defined in Section 5.8.14, “Exception Template,”
on page 5-88.

® For DataTypes, use the template defined in Section 5.8.16, “DataType Template,”
on page 5-89.

® For Constraints, use the template defined in Section 5.8.17, “Constraint Template,”
on page 5-90.

The IDL for the contained Model Elements must be generated in an order that reflects
their dependencies. For example, the IDL for a DataType should appear before the IDL
for other Model Elements that use it.

Finally, the Package Module Template generates the Package Factory and Package
interfaces for the current M2-level Package using the templates respectively defined in
Section 5.8.3, “Package Factory Template,” on page 5-48 and Section 5.8.4, “Package
Template,” on page 5-50.

5.8.3 Package Factory Template

11

The Package Factory Template defines the IDL generation rules for the Package
Factory interface; see Section 5.2.1.1, “Package objects and Package Factory objects,”
on page 5-2 and Section 5.2.2, “The Meta Object Interface Hierarchy,” on page 5-4.

A Package Factory interface is generated for top-level M2 Packages only. The interface
is named <PackageName>PackageFactory and it contains a single "factory"
operation, as described below.

Template

if the this Package is top-Ievel

i nterface <PackageNanme>PackageFact ory

OMG-MOF V1.3 March 2000

<PackageName>Package creat e_<package_name>_package (
/'l for each non-derived class-level Attribute of any directly or
// indirectly contained Class within this Package and its closure
/1 under Package generalization and clustering.
in <AttributeType>[<Col | ecti onKi nd>]
<qual i fied_attribute_nane>,

)

rai ses (Reflective::MfError);

IDL Supertypes

none

Operations

create_<package _name>_package

The“create_<package _name>_package” operation creates a new Package object that
is an instance of this M2-level Package.

reflective analog: none
return type: <PackageName>Package
parameters: <qualified_attribute_name> :

in <AttributeType>[<CollectionKind>],

exceptions: MofError (Overflow, Underflow, Duplicate)

The parameters for “create_<package name>_package’ give the initial values for any
non-derived classifier-scoped Attributes for al Classes that belong to this M 2-level
Package’s extent.

As Attributes in different Classes can have the same name, the parameter name
<qualified_attribute_name> is qualified relative to the Package (e.g.,
“classl_attributel”).

When the Attribute multiplicity is not [1..1], the <AttributeType> has an appropriate
CollectionKind suffix appended; see Section 5.7.1.6, “Literal String Values,” on
page 5-42.

The parameters are declared in a sequence defined by a recursive depth-first traversal
of the Package's ancestors clusters and components, visiting a Package's supertypes
before its contents. The following ordering rules apply:

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-49

5-50

1. A Package's supertype Packages are processed before the “contents’ of the
Package.

2. The supertype Packages are processed in the order defined by the “ Generalizes’
association.

3. Classes, Imports (with “isClustered” set to true) and nested Packages within a
Package are processed in the order of the “Contains”’ association.

4. A Class's superclasses are processed before the “contents’ of the Class.
5. Any Class superclasses are processed in the order of the “Generalizes” association.

6. An Import with “isClustered” set to true is processed by processing the clustered
Package.

7. Attributes within a Class are processed in the order of the “Contains” association.

8. When an Attribute is encountered that has already been encountered during the
traversal, generation of another initialization parameter is suppressed.

The MofError exception can be raised if thereis an Structural, Constraint or Semantic
errors. In particular, “Overflow,” “Underflow,” and “Duplicate” occur if an Attribute
initialization parameter does not conform to the respective Attribute’s multiplicity
specification.

5.8.4 Package Template

The Package Factory Template defines the IDL generation rules for the Package
interface; see Section 5.2.1.1, “Package objects and Package Factory objects,” on
page 5-2 and Section 5.2.2, “The Meta Object Interface Hierarchy,” on page 5-4.

A Package interface is named <PackageName>Package and it contains read-only IDL
attributes giving the dependent Package, Association and Class proxy objects for a
Package object.

Template

interface <PackageNane>Package :

/1 if Package has no super-Packages

Refl ecti ve: : Ref Package

/] else for each public super-Package (in order)

<Super Package>Package,

/1 if Package has a “Package Supertypes” Tag

I for each supertype defined by the Tag (in order)
, <PackageSupertypeNanme>,

I/l for each Package for an Inport where:
I is_clustered == true and

OMG-MOF V1.3 March 2000

I Inport.visibility == public and
I i npor t edNanmespace.visibility == public
readonly attribute <ClusteredPackageName>Package
<cl ust er ed_package_nane>_ref;
[/l for each public contained Package
readonly attribute <NestedPackageName>Package
<nest ed_package_nane>_ref;
/Il for each public contained O ass
readonly attribute <Cl assName>C ass <cl ass_nane>_ref;
/1 for each public contai ned Associ ation
readonly attribute <Associati onName> <associ ati on_name> ref;

Supertypes

If the M2-level Package inherits from other M2-level Packages with “visibility” of
“public_vis,” the Package interface inherits from the interfaces corresponding super-
Packages. Otherwise, the Package interface inherits from Reflective::RefPackage.

If the M2-level Package has a “Package Supertypes’ Tag (see Section 5.6.3, “Tags for
Specifying IDL Inheritance,” on page 5-37), the generated Package interface also
inherits from the IDL interfaces specified by the Tag.

Attributes

clustered_package name>_ref

An attribute of this form is generated for each public clustered Package of the current
M2-level Package. The attribute is generated if and only if

1. the Import’s “isClustered” flag is true,

2. the Import’s “visibility” is “public_vis”,

3. the Import’s “importedNamespace” is a Package, and
4. the clustered Package has “visibility” of “public_vis.”

The attribute holds the object reference for the M1-level Package s M1-level clustered
Package object.

reflective analog: ref_package ref(<clustered_package designator>);
Section 6.2.5, “Reflective::RefPackage,” on page 6-28.

type: <ClusteredPackageName>Package

multiplicity: exactly one

changeable: no

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-51

<nested_package name>_ref

An attribute of this form is generated for each nested Package in the current M2-level
Package whose “visibility” is “public_vis’. The attribute holds the object reference for
the M1-level Package's M 1-level nested Package object.

reflective analog: ref_package ref(<nested_package designator>);
Section 6.2.5, “Reflective::RefPackage,” on page 6-28.

type: <NestedPackageName>Package

multiplicity: exactly one

changeable: no

<class name>_ref

An attribute of this form is generated for each Class in the current Package whose
“visibility” is“public_vis.” The attribute holds the object reference for the M1-level
Package’'s M 1-level Class Proxy object.

reflective analog: ref_class ref(<class_designator>)
type: <ClassName>Class

multiplicity: exactly one

changeable: no

<association_name>_ref

An attribute of this form is generated for each Association in the current Package
whose “visibility” is “public_vis.” The attribute holds the object reference for the M 1-
level Package's M 1-level Association object.

reflective analog: ref_package ref(<association_desi
gnator>);
type: <AssociationName>
multiplicity: exactly one
changeable: no
Operations
none

5-52 OMG-MOF V1.3 March 2000

5.8.5 Class Forward Declaration Template

The Class Forward Declaration Template defines the IDL generation rules for the
forward interface declarations for an M2-level Classwhose “visibility” is“public_vis.”
It also produces any Class collection type declarations required by the IDL of the
containing Package(s).

Template

/1 if the Class has visibility of protected or private, no IDL
/1 is generated.

interface <d assName>C ass;
interface <d assNanme>;

/1 generate type declarations for any collections of this O ass that

/1 will be used by the IDL bei ng generated

typedef sequence < <Cl assNane> > <O assNane>Set ;

typedef sequence < <Cl assNane> > <O assNane>Bag;

typedef sequence < <Cl assNane> > <O assNane>Li st;
>

typedef sequence < <Cl assNane> <d assNanme>ULi st ;

Description

The Class Forward Declaration Template generates a forward declaration for the
Instance and Class proxy interfaces for an M2-level Class. These have IDL identifiers
<ClassName> and <ClassName> Class respectively. If any collection types for this
Class are required, their declarations should follow the forward declarations.

Note — Collection types should only be generated if they are going to be used within
the current outermost module.

5.8.6 Class Template

The Class Template defines the IDL generation rules for an M2-level Class whose
“visibility” is “public_vis.” The IDL is generated within the module for the Class's
containing Package and consists of a comment followed by the complete Classes Class
Proxy and Instance interfaces.

Template

/1 if the Class has visibility of protected or private, no IDL
/1 is generated

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-53

<<ANNOTATI ON TEMPLATE>>
<<CLASS PROXY TEMPLATE>>
<<I NSTANCE TEMPLATE>>

Description

See Section 5.8.7, “Class Proxy Template,” on page 5-54 and Section 5.8.6, “Class
Template,” on page 5-53.

5.8.7 Class Proxy Template

The Class Proxy Template defines the IDL generation rules for the <ClassName>Class
interface for an M2-level Class whose “visibility” is “public_vis.” This interface has
operations for any classifier-scoped Attributes and Operations, along with a factory
operation and IDL attributes that give access to the extant Instance objects. It aso
contains IDL declarations corresponding to any DataTypes, Exceptions, Constants, and
Constraints in the M2-level Class.

Template

interface <O assName>d ass :
/1 if Cass has no super-Cl asses
Refl ecti ve: : Ref Obj ect
/1 else for each super-C ass
<Super d ass>Cl ass,
/1 if Cass has a “d ass Proxy Supertypes” Tag
I for each supertype defined by the Tag (in order)
, <Cl assProxySupertypeNane>,

/1 all <d assNane> including subcl asses of <Cl assNane>
readonly attribute <ClassName>Set al |l _of _type_<cl ass_nanme>;

/1 if the Class is not abstract
/1 all <d assNane> excl udi ng subcl asses of <Cl assNane>
readonly attribute <ClassName>Set all_of cl ass_<cl ass_nanme>;

/1 for each Constant, DataType, Exception, Constraint,

/1 classifier-scoped Attribute and classifier-scoped Operation
/1 in the Class, generate the appropriate IDL

<<DATATYPE TEMPLATE>>

<<CONSTRAI NT TEMPLATE>>

<<CONSTANT TEMPLATE>>

<<EXCEPTI ON TEMPLATE>>

5-54 OMG-MOF V1.3 March 2000

<<ATTRI BUTE TEMPLATE>> [/ public classifier-level only
<<OPERATI ON TEMPLATE>> [/ public classifier-level only

/1l if the Class is not abstract
<<CLASS CREATE TEMPLATE>>

}; /1 end of interface <Cl assNane>d ass

Supertypes

If the M2-level Class inherits from other M2-level Classes, the generated Class Proxy
interface inherits from the corresponding supertype Class Proxy interfaces. Otherwise,
the Class Proxy interface inherits from Reflective::RefObject.

If the M2-level Class has a“Class Proxy Supertypes’ Tag (see Section 5.6.3, “Tags for
Specifying IDL Inheritance,” on page 5-37), the generated Class Proxy interface also
inherits from the IDL interfaces specified by the Tag.

Attributes

all_of class <class name>

The “all_of_class <class name>" attribute gives all Instance objects in the current
extent for the corresponding M2-level Class. The attribute is only generated if
“isAbstract” is false for the Class.

reflective analog: ref_all_objects(<class_designator>, false)

type: <ClassName> (multiplicity zero or more, unique, non
ordered)

multiplicity: exactly one

changeable: no

The value of this attribute mirrors the definition of Instance object lifetimes; see
Section 5.3.2.2, “Instance object lifecycle semantics,” on page 5-9. It does not include
any deleted Instance objects.

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-55

5-56

all_of_type <class name>

The “all_of_type <class name>" attribute gives all Instance objects in the current
extent for the corresponding M2-level Class or for any M2-level subClasses.

reflective analog: ref_all_objects(<class_designator>, true)

type: <ClassName> (multiplicity zero or more, unique, hon
ordered)

multiplicity: exactly one

changeable: no

The value of this attribute mirrors the definition of Instance object lifetimes; see
Section 5.3.2.2, “Instance object lifecycle semantics,” on page 5-9. It does not include
any deleted Instance objects.

Operations

The operations for a <ClassName>Class interface are produced by the Attribute,
Operation and Class Create Templates. Note that the operations for the M2-level
Classes instance-scoped features do not appear in this interface.

5.8.8 Instance Template

The Instance Template defines the IDL generation rules for the < ClassName> interface
for an M2-level Class whose “visibility” is “public_vis.” This interface contains
operations for the M2-level Classes instance-scoped Attributes and Operations, along
with any References.

Template

interface <O assName> :
/1 (The Instance interface inherits the Cl ass Proxy interface
/1 for the Class and Instance interfaces for any super-d asses)
<Cl assName>C ass
/Il for each super-Class of this Class (in order)
, <Super d assNane>,
/1 if Cass has an “Instance Supertypes” Tag
I for each supertype defined by the Tag (in order)
, <l nstanceSupert ypeNane>,

/Il for each Attribute, Reference, Operation contained in
/1 this dass, generate the appropriate |IDL

<<ATTRI BUTE TEMPLATE>> // public instance-Ilevel only
<<REFERENCE TEMPLATE>> // public only

OMG-MOF V1.3 March 2000

<<OPERATI ON TEMPLATE>> // public instance-level only

}; /1 end of interface <Cl assNane>

Supertypes

The Instance interface for an M2-level Class inherits from the Class' es Class Proxy
interface, along with the Instance interfaces for all of its M2-level super-Classes.

If the M2-level Class has an “Instance Supertypes’ Tag (see Section 5.6.3, “Tags for
Specifying IDL Inheritance,” on page 5-37), the generated Instance interface also
inherits from the IDL interfaces specified by the Tag.

Attributes

none

Operations

The operations for an Instance interface are generated by the Attribute, Reference, and
Operation Templates. Note that the operations for instance-scoped Attributes and
Operations only appear here.

5.8.9 Class Create Template

The Class Create Template defines the IDL generation rules for the Instance factory
operation for a non-abstract M2-level Class whose “visibility” is “public_vis.”

Template

<Cl assNanme> creat e_<cl ass_nane> (
/1 for each non-derived direct or inherited attribute
in <AttributeType>[<Col | ecti onKi nd>] <attribute_name>,

)

rai ses (Reflective::MfError);

Operations

create <class_name>

The “create_<class_name>" operation creates new Instance objects for the M2-level
Class (i.e., instances of the Class's <ClassName> interface).

reflective analog: ref_create_instance(<class_designator>, <attr_name>,...)

return type: <ClassName>

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-57

5-58

parameters: in <AttrTypeName>[<CollectionType>] <attr_name>, ...

exceptions: MofError (Overflow, Underflow, Duplicate, Composition
Closure, Supertype Closure, Already Created)

The parameters to “create_<class_name>" provide initial values for the M2-level
Class's non-derived attributes. Parameter declarations are generated in an order defined
by a recursive depth-first traversal of the inheritance graph. More precisely,

1. aClasses' super-Classes are processed before the Classes’ Attributes,
2. super-Classes are processed in the order of the “Generalizes” association,

3. the Attributes of each Class or super-Class are processed in the order of the
“Contains” association,

4. when an Attribute is encountered with a “scope” value of “classifier_level” or an
“isDerived” value of true no parameter is generated, and

5. when an Attribute is encountered a second or subsequent time, no additional
parameter is generated.

When an Attribute has multiplicity bounds other than [1..1], the type of the
corresponding initial value parameter’s type will be a collection type; see
Section 5.7.1.6, “Literal String Values,” on page 5-42.

“Overflow,” “Underflow,” and “Duplicate” occur if an argument that gives the initial
value for an Attribute does not match the Attribute’s multiplicity specification.

“Composition Closure” occurs if the initial value for a “composite” Attribute contains
an Instance object in another extent; see Section 4.9.2, “The Composition Closure
Rule,” on page 4-20.

“Supertype Closure” occurs if the extent for the current object cannot create I nstance
objects for this super-Class; see Section 5.3.8, “The Supertype Closure Rule,” on
page 5-22.

“Already Created” occurs if the M2-level Class has “isSingleton” set to true, and this
object’s extent already includes an Instance object for the Class.

5.8.10 Association Template

The Association Template defines the generation rules for the Association interface
corresponding to an M2-level Association whose “visibility” is “public_vis.” This
interface contains the IDL operations for accessing and updating the Association's M1-
level link set.

Template

I/l 1f the Association has visibility of protected or private,
// no IDL is generated

OMG-MOF V1.3 March 2000

/1 data types for Association <Associ ati onName>
struct <Associati onNanme>Li nk {
<Associ ati onEnd1Cl assNanme> <associ ati onendl_name>;
<Associ ati onEnd2Cl assNanme> <associ ati onend2_nane>;
s
typedef sequence < <Associ ati onName>Li nk >
<Associ ati onNane>Li nkSet ;

<<ANNOTATI ON TEMPLATE>>

interface <Associ ati onName> : Refl ective:: Ref Associ ation
/1 if Association has an “Association Supertypes” Tag
/1 for each supertype defined by the Tag (in order)
, <Associ ati onSupertypeNanme>,

/1 list of associated elenents
<Associ ati onNane>Li nkSet all _<associ ati on_nane>_Ilinks ()
raises (Reflective:: MfError);

bool ean exists (
in <Associ ati onEnd1C ass> <associ ati on_endl1_name>,
in <Associ ati onEnd2C ass> <associ ati on_end2_nane>)
raises (Reflective:: MfError);

/1 if association_endl is_navigable

<Associ ati onEnd1Cl ass>[<Col | ecti onKi nd>] <associ ati on_endl_nane> (
in <Associ ati onEnd2Cl ass> <associ ati on_end2_nane>)
rai ses (Reflective::MfError);

/1 if association_end2 is_navigable

<Associ ati onEnd2Cl ass>[<Col | ecti onKi nd>] <associ ati on_end2_nanme> (
in <Associ ati onEnd1C ass> <associ ati on_end1_nane>)
rai ses (Reflective:: MfError);

/1 if association_endl is_changeable

/1 and associ ation_end2 is_changeabl e

voi d add (
in <Associ ati onEnd1C ass> <associ ati on_endl1_name>,
in <Associ ati onEnd2Cl ass> <associ ati on_end2_nane>)
rai ses (Reflective::MfError);

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-59

5-60

/1 if association_endl is_changeabl e and i s_navi gable
/1 and associ ation_end2 is_changeabl e
/1 and associ ation_endl has upper > 1 and is_ordered
voi d add_bef ore _<associ ati on_end1_nane> (
in <Associ ati onEnd1C ass> <associ ati on_end1_nane>,
in <Associ ati onEnd2C ass> <associ ati on_end2_nane>,
in <Associ ati onEnd1C ass> before)
rai ses (Reflective::Not Found, Reflective::MfError);

/1 if association_endl is_changeable
/1 and associ ati on_end2 is_changeabl e and i s_navi gabl e
/1 and associ ation_end2 has upper > 1 and is_ordered
voi d add_before_<associ ati on_end2_nanme> (
in <Associ ati onEnd1C ass> <associ ati on_endl1_name>,
in <Associ ati onEnd2C ass> <associ ati on_end2_name>,
in <Associ ati onEnd2Cl ass> before)
rai ses (Reflective::Not Found, Reflective::MfError);

/1 if association_endl is_navigable and i s_changeabl e
voi d nodi fy_<associ ati on_end1l_nanme> (
in <Associ ati onEnd1C ass> <associ ati on_endl1_name>,
in <Associ ati onEnd2C ass> <associ ati on_end2_name>,
in <Associ ati onEnd1C ass> new_<associ ati on_endl_nane>)
rai ses (Reflective::Not Found, Reflective::MfError);
/1 if association_end2 is_navigable and i s_changeabl e
voi d nodi fy_<associ ati on_end2_nanme> (
in <Associ ati onEnd1C ass> <associ ati on_endl1_name>,
in <Associ ati onEnd2C ass> <associ ati on_end2_name>,
in <Associ ati onEnd2Cl ass> new_<associ ati on_end2_nane>)
rai ses (Reflective::Not Found, Reflective::MfError);

/1 if association_endl is_changeable

/1 and associ ation_end2 is_changeabl e

void renove (
in <Associ ati onEnd1C ass> <associ ati on_end1_name>,
in <Associ ati onEnd2C ass> <associ ati on_end2_nane>)
rai ses (Reflective::Not Found, Reflective:: MfError);

b

OMG-MOF V1.3 March 2000

DataTypes

The Association Template generates data type declarations to that are used to pass a
link set for the M2-level Association. The <AssociationName>Link and
<AssociationName> L ink Set type declarations precede the Association interface
declaration.

Supertypes

Every generated Association interface inherits from Reflective:: RefAssociation. If the
M2-level Association has an “Association Supertypes’ Tag (see Section 5.6.3, “Tags
for Specifying IDL Inheritance,” on page 5-37), the generated Association interface
also inherits from the IDL interfaces specified by the Tag.

Attributes

none

Operations

all_<association_name>_links

The “all_<association_name>_links” operation creates new Instance objects for the
M2-level Class (i.e., instances of the Class's <ClassName> interface).

reflective analog: ref_all_links()

return type: <AssociationName>L ink Set
parameters: none

query: yes

exceptions: MofError()

The “all_<association_name>_links” operation returns the current link set for this
Association expressed using the <AssociationName>L ink Set type.

While the definitionsin Section 4.7.2.1, “A Mathematical Model of Association State,”
on page 4-15 state that an ordered Association implies a partial ordering over the

LinkSet, the result of the “all_<association_name>_links" operation is defined to be a
Set. A client should not draw any conclusions from the ordering of the returned links.

The operation’s signature raises Reflective::Mof Error to allow Constraint error and
Semantic error conditions to be signalled.

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-61

5-62

exists

The “exists’ operation queries whether a link currently exists between a given pair of
Instance objects in the current M1-level Association extent.

reflective analog: ref_link_exists(

Link{ <assoc_endl_name>, <assoc_end2_name>})
return type: boolean
parameters: in <AssocEndlClassName> <assoc_endl name>

in <AssocEnd2ClassName> <assoc_end2 name>

query: yes

exceptions: MofError (Invalid Object, Nil Object, Inaccessible Object)

The parametersto the “exists’ operation are a pair of Instance values of the appropriate
type for the Association. Since MOF link relationships are implicitly directional, the
order of the parameters is significant.

“Invalid Object”, “Nil Object” and “Inaccessible Object” occurs if either of the
parameters is a non-existent, nil or inaccessible Instance object.

<association_endl name>

The “<association_endl _name>" operation queries the Instance object or objects that
arerelated to a particular Instance object by alink in the current M1-level Association
extent. When “isNavigable” is set to false for the AssociationEnd, the
“<association_endl_name>" operation is suppressed.

reflective analog: ref_query(
<assoc_endl_designator>, <assoc_endl_name>)
return type: < AssocEnd2ClassName>[< CollectionType>]
parameters: in <AssocEnd1ClassName> <assoc_endl name>
query: yes
exceptions: MofError (Invalid Object, Nil Object, Inaccessible Object,
Underflow)

The <association_endl_name> parameter is the Instance object from which the caller
wants to “navigate.” “Invalid Object,” “Nil Object,” and “Inaccessible Object” occur
when the parameter is a hon-existent, nil object or inaccessible Instance object.

The result type of the operation depends on the multiplicity of <AssociationEnd2>. If
it has bounds of [1..1], the result type is the Instance type corresponding to the
AssociationEnd’s “type.” Otherwise, it is a collection of the same Instance type, as
described in Section 5.7.1.6, “Literal String Values,” on page 5-42.

OMG-MOF V1.3 March 2000

“Underflow” occurs when <AssociationEnd2> has bounds [1..1] and the Instance
object given by the parameter is not related in the current Association extent. It should
not occur in other cases where the result type is a collection type. (If thereis a
multiplicity underflow, it is signalled by returning a collection value with too few
elements as opposed to raising an exception.)

<association_end2_name>

This operation is the equivalent of “<association_end1l_name>,” with the “end1” and
“end2” interchanged.

add

The “add” operation creates a link in this Association between a pair of Instance
objects. When “isChangeable” is set to false for either of the M2-level Association’s
AssociationEnd, the “add” operation is suppressed.

reflective analog: | ref_add_link(
Link{<assoc_endl name>, <assoc_end2_name>})

return type: none

parameters: in <AssocEndlClassName> <assoc_endl name>
in <AssocEnd2ClassName> <assoc_end2 name>

exceptions: MofError (Invalid Object, Nil Object, Inaccessible Object,
Overflow, Duplicate, Reference Closure, Composition Closure,
Composition Cycle)

The two parameters to the “add” operation give the Instance objects at the two ends of
the new link. “Invalid Object,” “Nil Object,” and “Inaccessible Object” occur if either
of the parameter values is a non-existent, nil or inaccessible Instance object.

If one or other end of the A ssociation has “isOrdered” set to true, the new link must be
added so that it is the last member of the projection for the ordered A ssociationEnd.
The operation must also preserve ordering of the existing members of the ordered
projection.

“Overflow” occurs when adding the new link would cause the size of the projection of
either the first or second parameter object to exceed the upper bound for the opposite
AssociationEnd. “Duplicate” occurs when the link set for the current Association
extent already contains the link whose creation is requested.

“Reference Closure” occurs when either (or both) of the AssociationEnds has
References, and the corresponding Instance object parameter does not belong to the
same outermost Package extent as the Association object; see Section 4.9.1, “The
Reference Closure Rule,” on page 4-19.

“Composition Closure” occurs when either AssociationEnd has “aggregation” set to
“composite”, and either of the Instance object parameters does not belong to the same
outermost Package extent as this Association object; see Section 4.9.2, “The
Composition Closure Rule,” on page 4-20.

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-63

5-64

“Composition Cycle” occurs when adding the new link would create a cycle of
composite / component relationships such that one of the Instance object parametersis

a (ultimately) component of itself; see Section 4.8.2, “Aggregation “composite”’,” on
page 4-18.

add_before_<association_endl name>

The “add_before_<association_end1_name>" operation creates a link between a pair of
Instance objects at a given place in this Association. This operation is only generated
when “isChangeable” atrue for both AssociationEnds, and when the first
AssociationEnd is multi-valued, ordered and navigable.

reflective analog: | ref_add_link_before(

Link{<assoc_endl name>, <assoc_end2_name>},
<assoc_endl_designator>,
before);

(See Section 6.2.4, “Reflective::RefAssociation,” on page 6-22).

return type: none

parameters: in <AssocEndlClassName> <assoc_endl name>

in <AssocEnd2ClassName> <assoc_end2 name>
in <AssociationEnd1ClassName> before

exceptions: NotFound, MofError (Invalid Object, Nil Object, Inaccessible

Object, Overflow, Duplicate, Reference Closure, Composition
Closure, Composition Cycle)

Thefirst two parameters to the “add_before_<association_endl name>" operation give
the Instance objects at the two ends of the new link. “Invalid Object”, “Nil Object” and
“Inaccessible Object” occur if either of the parameter values is a non-existent, nil or
inaccessible Instance object.

The third parameter (“before”) gives an Instance object that determines the point at
which the new link isinserted. “Invalid Object”, “Nil Object” and “Inaccessible
Object” also apply to the “before” parameter value.

The “before” value should be present in the projection of the “<assoc_end2_name>"
parameter value. If this so, the insertion point for the new link is immediately before
the “before” value, otherwise the “NotFound” error occurs.

“Overflow,” “Duplicate,” “Reference Closure,” “Composition Closure,” and
“Composition Cycle” occur as described for the “add” operation above.

add_before_<association_end2_name>

This operation is the equivalent of “add_before_<association_endl name>,” with the
“endl” and “end2” interchanged.

OMG-MOF V1.3 March 2000

Note — The preconditions for generating the “add_before_<association_endl name>"
and “add_before_<association_end2_name>" operations are such that at most one of
them may appear in an Association interface.

modify_<association_endl_name>

The “modify_<association_endl name>"operation updates a link between a pair of
Instance objects, replacing the Instance at AssociationEnd1 with a new I nstance object.
When AssociationEndl has “isChangeable” or “isNavigable” set to false, this operation
is suppressed.

reflective analog: ref_modify_link(

Link{<assoc_endl name>, <assoc_end2_name>},
<assoc_endl_designator>
new_<assoc_endl_name>);

(see Section 6.2.4, “Reflective::RefAssociation,” on page 6-22).

return type: none

parameters: in <AssocEndl1ClassName> <assoc_endl name>

in <AssocEnd2ClassName> <assoc_end2 name>
in <AssocEnd2ClassName> new_<assoc_endl_name>

exceptions: NotFound, MofError (Invalid Object, Nil Object, Inaccessible

Object, Overflow, Underflow, Duplicate, Reference Closure,
Composition Closure, Composition Cycle)

The first two parameters to the “modify_<association_end1l_name>" operation should
give the Instance objects at the ends of an existing link. “Invalid Object,” “Nil Object,”
and “Inaccessible Object” occur if either of the parameter values are non-existent, nil
or inaccessible Instance objects. “NotFound” occurs if the link does not exist in the
current extent.

The third parameter (“new_<assoc_endl _name>") gives the Instance object that is to
replace the Instance at AssociationEnd1l for the selected link. “Invalid Object,” “Nil
Object,” and “Inaccessible Object” also occurs if this parameter’s value is a hon-
existent, nil or inaccessible Instance object.

If the “<assoc_endl name>" and “new_<assoc_endl name>" parameters give the
same Instance object, this operation is required to have no effect on the Association’'s
link set.

Note — The following error conditions apply to the state of the M1-level Association
after the completion of the operation, not to any intermediate states.

“Underflow” occurs if completion of the operation would leave the M 1-level
Association in a state where

si ze(Proj ection(<assoc_endl_name>)) |ess than <AssocEnd2>.| ower

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-65

“Overflow” occurs if completion of the operation would leave the M1-level
Association in a state where

si ze(Proj ecti on(new_<assoc_endl_nane>)) greater than
<AssocEnd2>. upper

Note that the “Underflow” condition for the “new_<assoc_endl name>" Instance
should be treated as a deferred constraint.

“Duplicate” occurs if the operation would create a duplicate link in this M 1-level
Association extent. Similarly, “Composition Cycle” occurs if the operation creates a
link that (on completion of the operation) would make the “<assoc_end2_name>" or
“new_<assoc_endl name>" objects components of themselves.

“Reference Closure” and “Composition Closure” occur if the operation would create a
link that violates the corresponding closure rules; see Section 4.9.1, “The Reference
Closure Rule,” on page 4-19 and Section 4.9.2, “The Composition Closure Rule,” on
page 4-20.

If either AssociationEnd has “isOrdered” set to true, this operation must preserve
ordering of the remaining members in the relevant projections of the ordered end. In
addition:

® |f AssociationEndl is ordered, the projection of “<assoc_end2 _name>" must have
“new_<assoc_endl name>" in the position taken by “<assoc_endl_name>".

® |f AssociationEnd?2 is ordered, the projection of “new_<assoc_endl_name>" must
have “<assoc_end2 _name>" as the last member.

modify_<association_end2_name>

This operation is the equivalent of “modify_<association_end1_name>", with the
“endl” and “end2” interchanged.

remove

The “remove” operation removes a link between a pair of Instance objects in the
current Association extent. When either AssociationEnd or AssociationEnd2 has
“isChangeable” set to false, the “remove” operation is suppressed.

reflective analog: ref_remove_link(
Link{<assoc_endl name>, <assoc_end2_name>});
(see Section 6.2.4, “Reflective::RefAssociation,” on page 6-22).

return type: none

parameters: in <AssocEnd1ClassName> <assoc_endl_name>
in <AssocEnd2ClassName> <assoc_end2 name>

exceptions: NotFound, MofError (Nil Object, Underflow)

The two parameters to this operation give the Instance objects at both ends of the link
that is to be removed from the current Association object’s link set. “Nil Object”
occurs if either parameter value is a nil object reference.

5-66 OMG-MOF V1.3 March 2000

5

“NotFound” occurs if the link to be deleted does not exist in the current Association
extent.

Note — “Invalid Object” and “Inaccessible Object” does occur here. The “remove”
operation needs to be capable of deleting links that involve Instance objects that have
been deleted or that are inaccessible In the latter case, an implementation can usually
fall back on local comparison of object references. If that fails (e.g., because there are
multiple references for an Instance object) the implementation will typically be unable
to distinguish the case from “NotFound”.

“Underflow” occurs if deleting the link would cause the size of the projection of either
the “<assoc_endl_name>" or “<assoc_end2_name>" parameter value to be less than
the corresponding “lower” bound.

If either AssociationEndl or AssociationEnd?2 has “isOrdered” set to true, the
“remove’ operation must preserve the ordering of the remaining members of the
corresponding projection.

5.8.11 Attribute Template

The Attribute Template defines the generation rules for M2-level Attributes whose
“visibility” is “public_vis.” The Attribute Template declares operations to query and
update the value of an Attribute. These operations appear on different interfaces,
depending on the Attribute’s “scope”:

® |DL operations for instance-scoped Attributes appear in the Instance
(“<ClassName>") interface for the Attribute’s containing Class.

® |DL operations for classifier-scoped Attributes appear in the Class Proxy
(“<ClassName>Class") interface for the Attribute’s containing Class, and are
inherited by the Instance interface.

The operations generated for an Attribute and their signatures depend heavily on the
Attribute’s properties. For the purposes of defining the generated IDL, Attribute
multiplicities fall into three groups:

® single-valued Attributes: multiplicity bounds are [1..1],
® optional-valued Attributes: multiplicity bounds are [0..1], and
® multi-valued Attributes: any other multiplicity.

Template

/[l if Attribute visibility is private or protected no IDL
Il is generated
<<ANNOTATI ON TEMPLATE>>

/[l if lower = 0 and upper =1
<AttributeType> <attribute_name> ()

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-67

rai ses (Reflective::NotSet, Reflective::MfError);

[/ if lower = 1 and upper =1
<AttributeType> <attribute_name> ()
rai ses (Reflective::MfError);

[l if upper > 1
<Attri buteType><Col | ecti onKi nd> <attribute_name> ()
rai ses (Reflective::MfError);

[/l if upper = 1 and is_changeabl e
void set_<attribute_name> (in <AttributeType> new_val ue)
rai ses (Reflective::MfError);

/1 if upper > 1 and is_changeabl e

voi d set_<attribute_nanme> (
in <AttributeType><Col | ecti onKi nd> new_val ue)

rai ses (Reflective::MfError);
/[l if lower = 0 and upper = 1 and is_changeabl e
voi d unset _<attri bute_name> ()
rai ses (Reflective::MfError);
/1 if upper > 1 and is_changeabl e
void add_<attribute_name> (in <AttributeType> new_el enent)
rai ses (Reflective::MfError);
/1 if upper > 1 and is_changeabl e and is_ordered
voi d add_<attri bute_name>_before (
in <AttributeType> new_ el enent,
in <AttributeType> before_el enent)
rai ses (Reflective::Not Found, Reflective:: MfError);

/1 if upper > 1 and is_changeabl e and is_ordered and not is_unique
voi d add_<attribute_nane>_at (
in <AttributeType> new_ el enent,
in unsigned | ong position)
rai ses (Reflective::BadPosition, Reflective::MfError);
[/l if upper > 1 and is_changeabl e
void nodi fy_<attribute_nanme> (
in <AttributeType> ol d_el enent,
in <AttributeType> new_el enent)
rai ses (Reflective::Not Found, Reflective::MfError);
/1 if upper > 1 and is_changeabl e and is_ordered and not is_unique

5-68 OMG-MOF V1.3 March 2000

void nodify_<attribute_nane>_at (
in <AttributeType> new_ el ement,
in unsigned | ong position)
rai ses (Reflective::BadPosition, Reflective::MfError);
/1 if upper > 1 and upper != lower and is_changeabl e
voi d renove_<attribute_name> (
in <AttributeType> ol d_el ement)
rai ses (Reflective::Not Found, Reflective::MfError);
/1 if upper > 1 and upper != lower and is_changeabl e and
/1 is_ordered and not is_unique
void renove_<attribute_nane>_at (in unsigned | ong position)
rai ses (Reflective::BadPosition, Reflective::MfError) ;

Operations

<attribute_name>
The “<attribute_name>" operation returns the value of the named Attribute.

reflective ref_value(<attribute designator>);
analog: (see Section 6.2.3, “Reflective::RefObject,” on page 6-9).
return type: [0..1] - <AttributeType>

[1..1] - <AttributeType>
other - <AttributeType>< CollectionKind>

parameters: none
query: yes
exceptions: [0..1] - Unset, MofError

[1..1] - MofError
other - MofError

The signature of the “<attribute_name>" operation depends on the Attribute's
multiplicity as indicated above. Its behavior is as follows:

® Inthe[0..1] case, the operation either returns the Attribute’s optional value, or
raises the NotSet exception to indicate that the optional value is not present.

® Inthe[1..1] case, the operation simply returns the Attribute’'s single value.

® |n other cases, the operations returns the Attribute’s collection value. In the case
where the collection is empty the result value will be a sequence with length zero.
No exception is raised in this case.

If the Attribute is instance-scoped, the operation is only available on Instance objects,
and invoking it returns avalue that is related to this Instance object. If the Attribute is
classifier-scoped the operation can be invoked on both Class Proxy and Instance

objects. In both cases, the operation returns a value that is related to all Instances for

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-69

5-70

the Attribute’s Class in the current extent. For a more detailed comparison of classifier
versus instance-scoped Attributes, see Section 4.4, “ Semantics of Attributes,” on

page 4-4.

The MofError exception may be raised to signal meta-model defined Constraint errors
and implementation specific Semantic errors. However, an implementation generally
should avoid doing this, for the reasons given in Section 4.11.6, “Access operations
should avoid raising Constraint exceptions,” on page 4-24.

set_<attribute_name>
The “set_<attribute_name>" operation sets the value of the named Attribute.

reflective analog: | ref_set value(<attribute_designator>, new_value);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none

parameters: [0..1] - in <AttributeType> new_value
[1..1] - in <AttributeType> new_value
other - in <AttributeType><CaollectionKind> new_vaue

exceptions: [0..1] - MofError (Invalid Object, Inaccessible Object,
Composition Closure, Composition Cycle)

[1..1] - MofError (Invalid Object, Inaccessible Object,
Composition Closure, Composition Cycle)

other - MofError (Overflow, Underflow, Duplicate,
Invalid Object, Inaccessible Object,
Composition Closure, Composition Cycle)

The signature of the “set_<attribute_name>" operation depends on the Attribute’s
multiplicity as indicated above. Its behavior is as follows:

® |nthe single and optional-valued cases, the operation assigns the single value given
by “new_value’ to the named Attribute.

® |n the multi-valued case, the operation assigns the collection value given by
“new_value” parameter to the named Attribute.

When the Attribute has a lower bound of 0, its value can legally be empty:

® |n the optional-valued case, the Attribute’s value is set to “empty” by invoking the
“unset_<attribute_name>" operation described below.

® |nthe[0..N] case (where N is not 1), the Attribute’s value is set to empty by
invoking “set_<attribute_name>" with a zero length sequence as the parameter.

“Composition Closure” and “Composition Cycle” are only possible when the type of
the Attribute is a Class, and the Attribute has “composite” aggregation semantics:

® “Composition Closure” occurs when “new_value” or one of its members (in the
multi-valued case) belongs to a different outermost Package extent to this object.

OMG-MOF V1.3 March 2000

5

® “Composition Cycle” occurs when the operation would result in this object having
itself as a direct or indirect component.

“Overflow,” “Underflow,” and “Duplicate” can only occur in the case of a multi-valued
Attribute:

® “Qverflow” occursif the number of members in the “new_value” collection is
greater than the Attribute’s upper bound.

® “Underflow” occurs if the number of membersin the “new_value” collection isless
than the Attribute’s lower bound.

® “Duplicate” occurs if the Attribute has “isUnique” set to true and the “new_value”
collection contains duplicate values.

“Invalid Object” and “Inaccessible Object” occur when some Instance object is found
to be non-existent or inaccessible. An implementation should only signal one these
conditions when it prevents other consistency checking (e.g., testing for composition

cycles).

unset_<attribute name>

The “unset_<attribute_name>" operation sets the value of an optional-valued Attribute
to empty. This operation is suppressed in the single-valued and multi-valued cases.

reflective analog: | ref_unset_value(<attribute designator>);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none
parameters: none
exceptions: MofError

The “unset_<attribute_name>" operation is the only way to update an optional-valued
Attribute to the “empty” state.

The MofError exception may be raised to signal meta-model defined Constraint errors
and implementation specific Semantic errors.

add_<attribute_name>

The “add_<attribute_name>" operation updates a multi-valued Attribute by adding a
new member value to its collection value. This operation is suppressed for optional and
single-valued Attributes and for Attributes with “isChangeable” set to false.

reflective analog: ref_add value(<attribute_designator>, new_element);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none
parameters: in <AttributeType> new_element
exceptions: MofError (Overflow, Duplicate, Invalid Object, Inaccessible

Object, Composition Closure, Composition Cycle)

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-71

5-72

The “add_<attribute_name>" operation adds “new_element” to the collection of a
changeable multi-valued Attribute. If the Attribute’s “multiplicity” has “isOrdered” set
to true, the “new_element” is added after that current last element of the collection.

“Overflow” occurs if adding another element to the collection makes the number of
elements it contains greater than the Attribute’s upper bound.

“Duplicate” occurs if the Attribute’s “multiplicity” has “isOrdered” set to true, and the
“new_element” value is equal to an element of the Attribute's current value.

“Composition Closure” and “Composition Cycle” are only possible when the type of
the Attribute is a Class, and the Attribute has “composite” aggregation semantics:

® “Composition Closure” occurs when “new_element” belongs to a different
outermost Package extent to this object.

® “Composition Cycle” occurs when the operation would result in this object being a
direct or indirect component of itself.

“Invalid Object” and “Inaccessible Object” occur when some Instance Object is found
to be non-existent or inaccessible. An implementation should only signal one these
conditions when it prevents other consistency checking (e.g., testing for composition

cycles).

add_<attribute_name>_before

The “add_<attribute_name>_before” operation updates a multi-valued Attribute by
adding anew element at given position in its current collection value. The operation is
suppressed for optional and single-valued Attributes, and for Attributes with
“isChangeable” or “isOrdered” set to false.

reflective analog: ref_add value_before(

<attribute_designator>, new_element, before_element);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none
parameters: in <AttributeType> new_element
in <AttributeType> before_element
exceptions: NotFound, MofError (Overflow, Duplicate, Invalid Object,

Inaccessible Object, Composition Closure, Composition Cycle)

The“add_<attribute_name>_before” operation adds “new_element” to the collection at
a given place within the collection value of an ordered, changeable, multi-valued
Attribute. Insertion is required to preserve theinitia order of the collection’s elements.

The “new_element” is inserted before the first occurrence in the Attribute’s collection
of the value supplied as the “before_element” parameter (i.e., the occurrence with the
smallest index). “NotFound” occurs when the “before_element” valueis not present in
the collection.

“Overflow,” “Duplicate,” “Composition Closure,” and “Composition Cycle” occur in
equivalent situations to those for “add_<attribute_name>" above.

OMG-MOF V1.3 March 2000

5

“Invalid Object” and “Inaccessible Object” occur when some Instance object is found
to be non-existent or inaccessible. An implementation should only signal one these
conditions when it prevents other consistency checking (e.g., testing for composition
cycles).

add_<attribute name>_at

The“add_<attribute_name>_at” operation updates a multi-valued Attribute by adding a
new element at given position in its current collection value. It is provided for non-
unique Attributes where an insertion point must be specified using an index. The
operation is suppressed for optional and single-valued Attributes, for Attributes with
“isChangeable” or “isOrdered” set to false, and for Attributes with “isUnique” set to
true.

reflective analog: ref_add value_at(
<attribute_designator>, new_element, position);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none

parameters: in <AttributeType> new_element
in unsigned long position

exceptions: BadPosition, MofError (Overflow, Duplicate, Invalid Object,
Inaccessible Object, Composition Closure, Composition Cycle)

The “add_<attribute_name>_at” operation adds “new_element” at a given point within
the collection value of an ordered, non-unique changeable, multi-valued Attribute.
Insertion is required to preserve the initial order of the collection’s elements.

The insertion point is given by the value of the “position” parameter. Thisis the index
of the collection member before which “new_element” should be inserted, with zero
being the index for the first member. A “position” value equal to the current number of
€lements means that “new_element” should be added to the end of the collection.
“BadPosition” occurs when the “position” value is greater than the number of elements
in the collection. (It is not possible to create a collection value with “gaps”’ by adding
elements with “position” values larger that the collection size.)

“Overflow,” “Duplicate,” “Composition Closure,” and “Composition Cycle” occur in
equivalent situations to those described for “add_<attribute_name>" above.

“Invalid Object” and “Inaccessible Object” occur when some Instance object is found
to be non-existent or inaccessible. An implementation should only signal one these
conditions when it prevents other consistency checking (e.g., testing for composition
cycles).

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-73

5-74

modify_<attribute_name>

The “modify_<attribute_name>" operation updates a multi-valued Attribute by
replacing an existing member of its collection value. This operation is suppressed for
optional and single-valued Attributes and for Attributes with “isChangeable’ set to
false.

reflective ref_modify_value(
analog: <attribute_designator>,
old_element, new_element);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none

parameters: in <AttributeType> old_element
in <AttributeType> new_element

exceptions: NotFound, MofError (Duplicate, Invalid Object, Inaccessible
Object, Composition Closure, Composition Cycle)

The “modify_<attribute_name>" operation replaces an occurrence of the value passed
in the “old_element” parameter with the value of “new_element.” “NotFound” occurs
if the “old_element” value is not present in the Attribute’'s initial collection value.

If the Attribute has “isOrdered” set to true, the operation is required to preserve the
initial order of the collection’s elements. If it also has “isUnique” set to false, then the
operation is defined to replace the first occurrence (i.e., the one with the smallest
index).

“Duplicate,” “Composition Closure,” and “Composition Cycle” occur in similar
situations to those described for “add_<attribute_name>" above.

“Invalid Object” and “Inaccessible Object” occur when some Instance object is found
to be non-existent or inaccessible. An implementation should only signal one these
conditions when it prevents other consistency checking (e.g., testing for composition

cycles).

modify_<attribute_name>_at

The “modify_<attribute_name>_at” operation updates a multi-valued Attribute by
replacing a member of its collection value at a given position. It is provided for non-
unique Attributes where the member to be modified must be specified using an index.
This operation is suppressed for optional and single-valued Attributes and for
Attributes with “isChangeable” set to false.

reflective analog: | ref_modify_value_at(
<attribute_designator>,
new_element, position);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none

OMG-MOF V1.3 March 2000

parameters: in <AttributeType> new_element
in unsigned long position

exceptions: BadPosition, MofError (Duplicate, Invalid Object, Inaccessible
Object, Composition Closure, Composition Cycle)

The “modify_<attribute_name>_at” operation replaces the value whose index in the
collection is given by the “position” parameter. “BadPosition” occurs if the “position”
parameter is greater than or equal to the number of elementsin the Attribute collection.

The replacement value is given by the “new_value” parameter. The operation is
required to preserve the order of the collection’s elements.

“Duplicate,” “Composition Closure,” and “Composition Cycle” occur in similar
situations to those described for “add_<attribute_name>" above.

“Invalid Object” and “Inaccessible Object” occur when some Instance object is found
to be non-existent or inaccessible. An implementation should only signal one these
conditions when it prevents other consistency checking (e.g., testing for composition
cycles).

remove <attribute name>

The “remove_<attribute_name>" operation removes an existing member from a multi-
valued Attribute. This operation is suppressed for optional and single-valued Attributes
and for Attributes with “isChangeable” set to false. It is also suppressed when the
lower and upper bounds are equal.

reflective analog: ref_remove_value(<attribute_designator>, old_element);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none
parameters: in <AttributeType> old_element
exceptions: NotFound, MofError(Underflow)

The “remove_<attribute_name>" operation removes an occurrence of the value passed
in the “old_element” parameter. “NotFound” occurs if the “old_element” value is not
present in the Attribute’s collection value.

If the Attribute has “isOrdered” set to true, the operation is required to preserve the
initial order of the collection’s elements. If it also has “isUnique” set to false, then the
operation is defined to remove the first occurrence (i.e., the one with the smallest
index).

“Underflow” occurs if removing an element makes the number of elements in the
collection less than the Attribute’s lower bound.

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-75

5-76

Note — The “remove_<attribute_name>" operation should not signal an exception if it
finds that some Instance object is non-existent or inaccessible. If the object in question
is the object to be removed from the Attribute, it should be removed. Otherwise, the
condition should be silently ignored.

remove <attribute name>_at

The “remove_<attribute_name>_at” operation removes the member at a given position
from a multi-valued Attribute. This operation is suppressed for optional and single-
valued Attributes, and for Attributes with “isChangeable” or “isOrdered” set to false or
“isUnique” set to true. It is also suppressed when the lower and upper bounds are

equal.

reflective analog: ref_remove_value at(<attribute_designator>, position);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none

parameters: in unsigned long position

exceptions: BadPosition, MofError(Underflow)

The “remove_<attribute_name>_at” operation removes the element of an Attribute's
collection value whose (zero based) index is given by the “position” parameter.
“BadPosition” occurs if the “position” value is greater than or equal to the number of
elements in the Attribute’s collection value.

“Underflow” occurs if removing an element makes the number of elements in the
collection less than the Attribute’s lower bound.

5.8.12 Reference Template

The Reference Template defines the IDL generation rules for a Reference whose
“visibility” is“public_vis’. The IDL generated for a Reference is declared within the
scope of <ClassName> Class interface definition. The IDL generated by the Reference
Template provides the operations to return the value of the Reference as well as
operations to modify it. The IDL generated is dependent upon the multiplicity,
mutability, and ordering of the specified Reference.

The Reference Template defines the IDL generation rules for References. It declares
operations on the Instance interface to query and update links in the Association object
for the current extent.

The operations generated for a Reference and their signatures depend heavily on the
properties of the referenced AssociationEnd which are also mirrored on the Reference
itself. For the purposes of defining the generated IDL, Reference multiplicitiesfall into
three groups:

¢ single-valued References: multiplicity bounds are [1..1],

® optional-valued References: multiplicity bounds are [0..1], and

OMG-MOF V1.3 March 2000

® multi-valued References: any other multiplicity.

The generated operations for a Reference are designed to have similar signatures and
behaviors to those for an instance-scoped Attribute with the same multiplicity and
changeability settings.

Note — Recall that Reference is only well formed if the referenced AssociationEnd has
“isNavigable” set to true. Similarly, a Reference’s “isChangeable” can only be true if
the referenced AssociationEnd's “isChangeable” is also true.

Template

/1 1f the Reference has visibility of protected or private, no |DL
/1 is generated

<<ANNOTATI ON TEMPLATE>>

/1 operations to return the Reference val ue
[/ if lower = 0 and upper =1
<Ref erenceCl ass> <reference_nane> ()
rai ses (Reflective::NotSet, Reflective::MfError);

[/ if lower = 1 and upper =1
<Ref erenceCl ass> <reference_nane> ()
rai ses (Reflective::MfError);

[l if upper > 1
<Ref erenceCl ass><Mul tiplicity> <reference_nane> ()
rai ses (Reflective::MfError);

/1 operations to nodify the Reference val ue
[/l if upper = 1 and is_changeabl e
voi d set_<reference_nane> (

in <Referenced ass> new_val ue)

rai ses (Reflective::MfError);

[/l if upper > 1 and is_changeabl e
voi d set_<reference_nane> (
in <Referenced ass><Mul tiplicity> new val ue)

rai ses (Reflective::MfError);

/[l if lower = 0 and upper = 1 and is_changeabl e

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-77

voi d unset _<reference_name> ()

rai ses (Reflective::MfError);

/1 if upper > 1 and is_changeabl e
voi d add_<reference_name> (
in <Referenced ass> new_el ement)
rai ses (Reflective::MfError);

/1 if upper > 1 and is_changeabl e and is_ordered
voi d add_<ref erence_nanme>_before (
in <Referenced ass> new_el enent,
in <Referenced ass> before_el enent)
rai ses (Reflective::Not Found, Reflective:: MfError);

[/ if upper > 1 and is_changeabl e
voi d nodi fy_<reference_nane> (
in <Referenced ass> ol d_el enent,
in <Referenced ass> new_el enent)
rai ses (Reflective::Not Found, Reflective:: MfError);

[/ if upper > 1 and | ower != upper and is_changeble
voi d renove_<reference_nanme> (
in <Referenced ass> ol d_el enent)
rai ses (Reflective::Not Found, Reflective::MfError);

<reference_name>

The “<reference_name>" operation reads the value of Reference. The signature of the
operation depends on the multiplicity of the Reference.

reflective analog: ref_value(<reference_designator>);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: [0..1] - <ReferenceClass>
[1..1] - <ReferenceClass>
other - <ReferenceClass><CollectionKind>

parameters: none

exceptions: [0..1] - NotSet, MofError
[1..1] - MofError (Underflow)
other - MofError

The “<reference_name>" operation’s signature is determined by the multiplicity of the
Reference, and hence the referenced AssociationEnd, as shown above.

5-78 OMG-MOF V1.3 March 2000

5

In each case, the operation calculates and returns the projection of “this” object in the
link set of the referenced AssociationEnd’s Association for the current outermost
extent:

® |nthe[0..1] case, the operation returns the projected | nstance object if thereis one,
and raises the Reflective::NotSet exception if there is not.

® Inthe[1..1] case, the operation normally returns a single Instance object. However,
if the projection contains no elements, thisis signalled as aReflective::MofError
exception with “error_kind” of “Underflow.”

® |n other cases, the operation returns the projection using a sequence value. If the
projection is empty the result is a sequence of length zero. If it contains fewer
elements than the Reference’s lower bound, those that it does contain are returned.

Note — Under no circumstances should the “<reference_name>" operation return a nil
object reference or a sequence that includes a nil object reference.

set_<reference_name>

The “set_<reference_name>" operation assigns a new value to a Reference. The
signature of the operation depends on the multiplicity of the Reference. If
“isChangeable” is set to false for the Reference, this operation is suppressed.

reflective analog: ref_set value(<reference_designator>, new_value);

(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).
return type: none
parameters: [0..1] - in <ReferenceClass> new_value

[1..1] - in <ReferenceClass> new_value
other - in <ReferenceClass><CollectionKind> new_value

exceptions: [0..1] - MofError (Overflow, Underflow, Invalid Object,
Nil Object, Inaccessible Object,
Composition Closure, Composition Cycle,
Reference Closure)

[1..1] - MofError (Overflow, Underflow, Invalid Object,
Nil Object, Inaccessible Object,
Composition Closure, Composition Cycle,
Reference Closure)

other - MofError (Overflow, Underflow, Duplicate,
Nil Object, Inaccessible Object,
Invalid Object, Composition Closure,
Composition Cycle, Reference Closure)

The “set_<reference_name>" operation's signature is determined by the multiplicity of
the Reference, and hence the referenced AssociationEnd, as shown above.

In each case, the operation replaces the set of links in the extent for the referenced
AssociationEnd’s Association. The behavior is as follows:

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-79

5-80

In the [0..1] and [1..1] case, the caller passes a single Instance object in the
“new_value” parameter that is used to create the replacement link.

In other cases, the “new_value” parameter is a sequence of Instance objects that are
used to create the replacement links. If the sequence is empty, no replacement links
will be created.

The projection for an optional-valued Reference can only be set to “empty” using the
“unset_<reference_name>" operation; see below.

The ordering semantics of the “set_<reference_name>" operation depend on the setting
of “isOrdered” in the “multiplicity” for the Reference’s “referencedEnd” and
“exposedEnd” AssociationEnds:

If neither of the AssociationEnds has “isOrdered” set to true, the Association has no
ordering semantics.

If the “referencedEnd” AssociationEnd has “isOrdered” set to true, the order of the
elements of the projection of “this’ Instance after the operation has completed must
be the same as the order of the elements of the “new_value” parameter.

If the “exposedEnd” AssociationEnd has “isOrdered” set to true, the order of the
elements of the “new_value” parameter (if it is multi-valued) are irrelevant. Instead,
the operation is required to preserve the ordering of the projections that contained
“this” object, both before and after the update, as follows:

« If “this” object isin a projection of some other Instance object before the
operation but not afterwards, the order of the projection must be preserved, with
“this” object removed.

« If “this’ object isin a projection of some other Instance object after the operation
but not before, the order of the projection must be preserved, and “this” object
must be added at the end of the projection.

« If “this” object isin a projection of some other Instance object both before and
after the operation, the “before” and “after” versions of the projection must be
identical.

® |t isimpossible for both of the AssociationEnds to have “isOrdered” set to true.

A large number of error conditions can occur, depending on “new_value,” the current
state of the Association and the multiplicity of the Reference’s “referencedEnd” and
“exposedEnd” AssociationEnds:

® “Invalid Object,” “Nil Object,” and “Inaccessible Object” occur if any of the

supplied Instance objects is a non-existent, nil or inaccessible Instance object.

“Overflow” can occur in two cases. First, it occurs when the “new_value” parameter
contains more elements than is allowed by the “referencedEnd”’s upper bound.
Second, it occurs when the projection of an element of “new_value’ after
completion of the operation would have more elements than is alowed by the
“exposedEnd”’s upper bound.

“Duplicate” occurs for a multi-valued Reference when the “new_value” parameter
collection contains two or more occurrences of the same Instance object.

OMG-MOF V1.3 March 2000

® “Underflow” can also occur in two cases. First it occurs when the “new_value”
parameter contains fewer elements that is allowed by the “referencedEnd”’s lower
bound. Second, it occurs when the projection of an element of “new_value” after
completion of the operation would have fewer elements than is allowed by the
“exposedEnd”’s lower bound, and fewer elements than it had before the operation
commenced.

* “Reference Closure” occurs when “new_value” (in the [0..1], [1..1] case) or one of
its elements (in the “other” case) belongs in a different outermost extent to “this”
object.

® “Composition Closure” occurs in the same situation as “ Reference Closure,” where
the referenced Association has composite aggregation semantics.

® “Composition Cycle” occurs when the referenced Association has composite
aggregation semantics, and the update would make “this’ object a component of
itself.

unset_<reference_name>

The “unset_<reference_name>" operation sets an optional-valued Reference to empty.
If “isChangeable” is set to false for the Reference, or if the bounds are not [0..1], this
operation is suppressed.

reflective analog: ref_reset_value(<reference_designator>);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).
return type: none
parameters: none
exceptions: MofError

The “unset_<reference_name>" operation removes the link for this object from the link
set of the referenced Association, should it exist. If no such link exists, the operation
does nothing.

If the “exposedEnd” AssociationEnd has “isOrdered” set to true, the operation
preserves the ordering of the projection that initially contains “this” Instance object.

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-81

5-82

add_<reference_name>

The “add_<reference_name>" operation adds an Instance object to a Reference
collection. If “isChangeable” is set to false for the Reference, or the Reference’s
upper bound is 1, this operation is suppressed.

reflective analog: ref_add value(<reference_designator>, new_element);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none

parameters: in <ReferenceClass> new_element

exceptions: MofError (Overflow, Duplicate, Invalid Object, Nil Object,

Inaccessible Object, Reference Closure, Composition

Closure, Composition Cycle)

The “add_<reference_name>" operation adds the “new_element” Instance to a multi-
valued Reference collection by creating a link in the corresponding Association’s link
set. “Invalid Object,” “Nil Object,” or “Inaccessible Object” occur if the
“new_element” parameter is a non-existent, nil or inaccessible Instance object.

If the “referencedEnd” AssociationEnd has “isOrdered” set to true, the new link should
be created so that “ new_element” is the last element of the projection of “this’ object.
Alternatively, if the “exposedEnd” AssociationEnd has “isOrdered” set to true, the new
link should be created so that “this” object is the last element of the projection of the
“new_element” object. In either case, the operation should preserve the order of other
elements in the respective ordered projections.

“Overflow” occurs if the number of elements in the projections of either the “this’
object or the “new_element” object already equals the respective AssociationEnd’'s
upper bound.

“Duplicate” occurs if the operation would create a duplicate link in the link set for the
referenced Association. For example, when the “new_element” value is a duplicate of
avalue in the current Reference collection.

“Reference Closure,” “Composition Closure,” and “Composition Cycle” all occur in
similar situations to those described above for the “set_<reference_name>" operation.

OMG-MOF V1.3 March 2000

add_<reference_name>_before

The “add_<reference_name>_before” operation adds an Instance object at a
particular place in an ordered Reference collection. If “isChangeable” or
“isOrdered” is set to fase for the Reference, this operation is suppressed.

reflective analog: ref_add_value_before(
<reference_designator>,
new_element, before_element);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none

parameters: in <ReferenceClass> new_element
in <ReferenceClass> before_element

exceptions: NotFound, MofError (Overflow, Duplicate, Invalid Object,
Nil Object, Inaccessible Object, Reference Closure,
Composition Closure, Composition Cycle)

The “add_<reference_name>_before” operation is a more specialized version of the
“add_<reference_name>" operation described previously. It creates a link between
“this” object and the “new_element” Instance object so that it appears in a designated
place in “this” object’s projection.

The “before_element” parameter gives the Instance object in the projection of “this”
before which the “new_element” object should be inserted. “Invalid Object,” “Nil
Object,” and “Inaccessible Object” occur if either “new_element” or “before_element”
is a non-existent, nil or inaccessible Instance object. “Not Found” occurs if
“before_element” is not present in the projection of “this’ object.

The new link is created such that the “new_element” object appears immediately
before the “before_element” value in the projection of “this’ object. Apart from this,
the order of the projection’s elements is unchanged.

“Overflow,” “Duplicate,” “Reference Closure,” “Composition Closure” and
“Composition Cycle” all occur in equivalent situations to those described above for the
“add_<reference_name>" and “set_<reference_name>" operations.

modify_<reference_name>

The “modify_<reference_name>" operation updates a Reference collection, replacing
one element with another. If the Reference is not multi-valued or its “isChangeable”
multiplicity flag is set to false, this operation is suppressed.

reflective analog: | ref_modify value(
<reference_designator>,
old_element, new_element);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-83

5-84

parameters: in <ReferenceClass> old_element
in <ReferenceClass> new_element

exceptions: NotFound, MofError (Underflow, Overflow, Duplicate, Invalid
Object, Nil Object, Inaccessible Object, Reference Closure,
Composition Closure, Composition Cycle)

The “modify_<reference_name>" operation updates the link set so that the projection
of “this” object has “new_element” in place of “old_element.” The operation is
notionally equivalent to either

<t he_associ ati on>. nodi f y_<associ ati on_end1>(
ol d_el ement, <this>, new_ el enent)

or
<t he_associ ati on>. nodi f y_<associ ati on_end2>(
<t hi s>, old_elenent, new_ el enent)

where <the_association> is the current outermost extent's M 1-level Association object
for the referenced M2-level Association.

The “old_element” and “new_element” parameters must both give usable Instance
objects. “Invalid Object”, “Nil Object” or “Inaccessible Object” occur if either isa
non-existent, nil or inaccessible object.

The “old_element” object must be an element of the projection of “this” object; that is,
alink must already exist between “this” and “old_element.” “NotFound” occurs if this
is not the case. If “old_element” and “new_element” are the same Instance object, the
operation is required to do nothing at all.

If the referenced Association is ordered, the operation is required to preserve ordering
as follows:

® |f the “referencedEnd” AssociationEnd has “isOrdered” set to true, the order of the
elements in the projection of “this’ abject should be preserved, with “new_element”
occupying the same position as “old_element” did before the update.

® |f the “exposedEnd” AssociationEnd has “isOrdered” set to true, the order of the
elements in the projections of “old_element” and “new_element” should be
preserved, except that “this” is removed from the former projection and added to the
end of the latter projection.

“Overflow” occurs when the number of elements in the projection of “new_element”
would be greater than the upper bound for the “exposedEnd” AssociationEnd.

“Underflow” occur when the number of elements in the projection of “old_element”
would be decreased, and it would be less than the lower bound of the “exposedEnd”
AssociationEnd. (In the case where “old_element” and “new_element” are the same
object, the operation does not alter the number of elements in the projection. Hence
“Overflow” cannot be signalled, even if the number of elementsisless than the bound.)

OMG-MOF V1.3 March 2000

“Duplicate” occurs if the “modify_<reference_name>" operation would introduce a
duplicate into the projection. (Care should be taken to avoid signalling “Duplicate” in
the case where “old_element” and “new_element” are the same object.)

“Reference Closure”, “Composition Closure” and “Composition Cycle” all occur in
equivalent situations to those described above for the “add_<reference_name>" and
“set_<reference_name>" operations.

remove_<reference _name>

The “remove_<reference_name>" operation updates a Reference collection by
removing an element. If the Reference is not multi-valued or its “isChangeable”
multiplicity flag is set to false, this operation is suppressed. It is also suppressed if the
Reference’s lower and upper bounds are equal.

reflective analog: ref_remove_value(
<reference_designator>, old_element);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none
parameters: in <ReferenceClass> old_element
exceptions: NotFound, MofError (Underflow)

The “remove_<reference_name>" operation updates the link set (i.e., by removing a
link) so that the projection of “this” object no longer contains “old_element.”
“NotFound” occurs if there is no link to be deleted.

Note — The “remove_<reference_name>" operation should be able to cope with
removal of alink when the object at the other end of alink is non-existent or
inaccessible.

If the referenced Association is ordered, the operation is required to preserve the
ordering of the projection with the ordered collection value.

“Underflow” occur when the number of elements in the projections of “old_element”
and “this” would be less than the lower bounds of the respective AssociationEnds.

5.8.13 Operation Template

The Operation Template defines the IDL generation rules for M2-level Operations
whose “visibility” is“public_vis.” It generates an IDL operation within the scope of an
Instance or Class Proxy interface, depending on the scope of the M2-level Operation.

Template

[/l 1f the Operation has visibility of protected or private, no |DL
/1 is generated

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-85

5-86

<<ANNOTATI ON TEMPLATE>>

/1 if Qperation contains no “return” Paraneter

voi d <operation_name>(

Il else

<Ret ur nPar aniType>[<Col | ecti onKi nd>] <operation_nanme>(
/Il for each contained “in”, “out” or “inout” Paraneter
<direction> <Paranilype>[<Col | ecti onKi nd>] <param nane>,
)
raises (
/] for each Exception raised by the Operation
<ExceptionName>, ... // (a trailing comma is required)
Refl ective: : Mof Error);

/'l for each Constraint contained by this Operation
<<CONSTRAI NT_TEMPLATE>>

<operation_name>

An “<operation_name>" operation invokes an implementation specific method to
perform the behavior implied by the M2-level Operation model element.

reflective analog: ref_invoke_operation(
<reference_designator>, old_element);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: no return param - void

[0..1] return param - <ParamType>Bag <param_name>

[1..1] return param - <ParamType> <param_hame>

other return param - <ParamType><CollectionKind>
<param_name>

parameters: <direction> <ParamType>[<CollectionKind>], ...

exceptions: <ExceptionName>, ...
MofError (Overflow, Underflow, Duplicate, Invalid Object)

An “<operation_name>" operation invokes an implementation specific method. While
the behavior of the method itself is beyond the scope of the IDL mapping, the
signature of the IDL operation is defined by the mapping, along with some parameter
checking semantics.

The return type for an “<operation_name>" operation is generated from the M2-level
Operation’s (optional) return Parameter. For example, the contained Parameter object
whose “direction” attribute has the value “return_dir”. The return type is as follows:

® |f there is no return Parameter, the return type is “void”.

OMG-MOF V1.3 March 2000

5

® |f the return Parameter has “multiplicity” bounds of “[1..1]", the return type is the
“type” of the Parameter; i.e., <Parameter Type>.

® |f the return Parameter some other “multiplicity” bounds, the return type is a
collection type determined by the bounds. For example,
<Parameter Type><CollectionKind>, as described in Section 5.7.1.6, “Litera String
Values,” on page 5-42.

The parameter declarations for an “<operation_name>" operation are generated from
the M2-level Operation’s Parameter, excluding the return Parameter (if any). For each
non-return Parameter of the Operation, in the defined order, the “<operation_name>"
declaration has a parameter declaration consisting of the following:

® The “<direction>" is produced by rendering the Parameter’s “direction” as “in,”
“out,” or “inout” as appropriate.

® The “<Parameter Type>[<CollectionKind>]" is produced from the Parameter’s
“type” and “multiplicity” as follows:
* |f the Parameter has “multiplicity” bounds of “[1..1]", the <CollectionKind> is
omitted.
* |f the Parameter has “multiplicity” bounds other than “[1..1]", <CollectionKind>
is generated according to Section 5.7.1.6, “Literal String Values,” on page 5-42.

® The “<parameter_name>" is produced by rendering the Parameter’s name.

The list of exceptions raised by an “<operation_name>" operation is generated from
the M2-level Operation’s “exceptions’. The generated “raises’ list consists of an
appropriately qualified identifier for each M2-level Exception in the Operation’s
“exceptions’ list, followed by the qualified identifier for the MofError exception. The
“raises’ list should of course be comma separated as required by the syntax for OMG
IDL.

While meta-model specific error conditions should be signalled by raising exceptions
corresponding to the Operation’s “exceptions” list, MofError is used to signal the
following structural errors relating to the values supplied by the caller for “in” and

“inout” parameters.

® “OQverflow” occurs when the supplied collection value for a multi-valued parameter
has more elements than is allowed by the M2-level Parameter’s upper bound.

® “Underflow” occurs when the supplied collection value for a multi-valued
parameter has fewer elements than is allowed by the M2-level Parameter’s lower
bound.

® “Duplicate” occurs when a multi-valued M 2-level Parameter has “isUnique” set to
true, and the supplied collection value contains members that are equal according to
the definitions in Section 4.9, “Closure Rules,” on page 4-18.

® “Invalid Object” can occur if an Instance object typed parameter value or element is
a reference to a non-existent (i.e., deleted) or inaccessible object. This condition
will occur if duplicate checking finds an Instance object that it cannot test for
equality. It can also occur if the semantics of the Operation require an Instance
object reference to be usable.

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-87

5-88

Like all other operations that have MofError in their signature, an “<operation_name>"
operation can use MofError to signal Constraint errors and Semantic errors.

5.8.14 Exception Template

The Exception template defines the IDL generation rules for M2-level Exceptions
whose “visibility” is “public_vis.”

Template

[/l 1f the Exception has visibility of protected or private, no |DL
/1 is generated

<<ANNOTATI ON TEMPLATE>>
exception <Excepti onNanme> {
[/ for each Paraneter
<Par amet er Type>[<Col | ecti onKi nd>] <par anet er _nane>;

}s

Description

The generated IDL for an M2-level Exception isan IDL exception. The declaration
appears within an IDL interface or module corresponding to the Exception's M2-level
container. In the case of an M2-level Class, thisisthe Class Proxy interface so that the
IDL exception is available to be raised by classifier-scoped Operations.

The fields of the IDL exception are generated from the Exception’s Parameters in a
way that is similar to Operation Parameters:

® An Exception Parameter whose multiplicity has a “[1..1]” bound is mapped to a
field whose type is “<Parameter Type>".

® An Exception Parameter whose multiplicity has any other bound is mapped to a
field whose type is of the form “<Parameter Type><CollectionKind>,” generated
according to the rules in Section 5.7.1.6, “Literal String Values,” on page 5-42.

5.8.15 Constant Template

The Constant Template defines the rules for generating IDL constant declarations from
M2-level Constants.

Template

<<ANNOTATI ON TEMPLATE>>
const <Constant Type> <CONSTANT_NAME> = <CONSTANTVALUE>;

OMG-MOF V1.3 March 2000

5

The generated IDL for an M2-level Constant is an IDL constant declaration. The IDL
appears an interface or module corresponding to the Constant's M2-level container. In
the container is a Class, the declaration appears within the Class Proxy interface.

The IDL generation process needs to produce a valid IDL literal value of the
appropriate type from the Constant’s “value.”

5.8.16 DataType Template

The DataType Template defines the rules for generating IDL for an M2-level DataType
whose “visibility” is “public_vis.” This typically consists of an IDL type declaration
for the data type, followed by one or more collection type declarations, as required.

Note — If the IDL mapping preconditions are strictly observed, the template will only
generate IDL declarations for the DataType's type in cases where this is appropriate.

Template

/1 If the DataType’'s nane does not a map to a valid IDL identifier,
/1 valid nane, no IDL is generated

/1 1f the DataType’'s visibility is protected or private, no |IDL

/1 is generated

<<ANNOTATI ON TEMPLATE>>

/1 generate the DataType's type declaration

/1 if the DataType’s typecode kind is tk_alias
typedef <TYPECODE. CONTENTS. TYPESPEC> <dat at ype_nane>;

Il else
I the Dat aType’'s typecode kind is for a named | DL data type
I (i.e., a struct, union or enuneration type)

<TYPECODE. TYPESPEC>;

/1 For each Constraint contained by this DataType
<<CONSTRAI NT_TEMPLATE>>

[/l if collection types for the DataType are used within the

/'l current outernpbst Package, for each collection type:
typedef sequence < <DataTypeNane> > <Dat aTypeNane><Col | ecti onKi nd>;

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-89

5-90

Description

A DataType template only generates IDL type declarations for named M2-level
DataTypes that represent CORBA data types:

® A DataType whose name does not map to a valid identifier represents a use of an
anonymous data type. This does not require an IDL data type declaration, or any
collection type declarations at this point. If they are required, the collection type
declarations will appear at the beginning of the outermost module.

® A DataType whose “typeCode” kind is “tk_objref” represents a use of either a Class
or an externally defined CORBA interface. In either case, the DataType template
generates nothing.

The generation process is effectively a “reverse compilation” of the DataType's
“typeCode” into OMG IDL text. The process is not spelled out in detail here, but can
be inferred from the syntax of type declarations in IDL, the structure of TypeCodes and
the restrictions that the MOF Model and the IDL mapping place on them.

If a DataType is used in an M2-level Attribute, Reference, AssociationEnd or
Parameter with amultiplicity other than “[1..1]", it is likely that the generated IDL for
the current meta-model will contain areference to one or more collection types for the
DataType's mapped type. If thisis so, the template also generates sequence type
declarations for the required collection types; see Section 5.7.2, “ Generation Rules for
Collection Types,” on page 5-42.

Note — In the interests of IDL footprint size, the DataType template should only
generate collection type declarations if they are needed.

Findly, if a DataType contains any Constraints, the corresponding constraint name
strings need to be generated.

5.8.17 Constraint Template

The Constraint template defines the rules for generating the requisite error kind string
declaration for an M2-level Constraint.

Template

<<ANNOTATI ON TEMPLATE>>
const string <CONSTRAINT_NAME> = "<constraint.string>";

Description

The Constraint template generates an IDL string constant whose name is based on the
M2-level Constraint name. If the Constraint is contained by an M2-level DataType or
Operation, the constant declaration is generated within the scope of the Constraint

OMG-MOF V1.3 March 2000

5

container’s container. If this results in a name collision, the meta-modeler can solve the
problem using a substitute name tag as described in Section 5.6.2.1, “ Substitute
Name,” on page 5-37.

The “<congtraint. string>" value is generated to match the following syntax (expressed
in EBNF):

<constraint.string> ::=[<IDL prefix>] ‘:constraint.’
(<container_name> ‘.’)* <constraint_name>
The components of the error kind string value are as follows:

® |f the meta-model has an IDL prefix (see Section 5.6.1.1, “IDL Prefix,” on
page 5-36), the string starts with the value of this prefix.

® Next thereisacolon (“:") to separate the prefix from the rest of the string.

® Next thereisthefixed string “constraint” to indicate that the class of error, followed

by a period (“.”).

® Next there are a series of Format 2 renderings of the names of the Constraint’'s

enclosing containers. These are separated by period (“.”) characters, and followed
another period.

® The value ends with the Format 2 rendering of the name of the Constraint itself.

5.8.18 Annotation Template

The Annotation template optionally generates IDL comments for an M2-level
ModelElement’s “annotation”. This template should be regarded as indicative rather
than normative.

Template

/1 Annotation comments may optionally be suppressed by the IDL
/1 generator

/] Annotation comments may use the "/*.*/" style

/* <line 1 of the ANNOTATI O\>
<line 2 of the ANNOTATI O\>

<line N of the ANNOTATI ON> */
/1 or the "//" style
/1 <line 1 of ANNOTATI ON\>

/1 <line 2 of ANNOTATI ON>
Il

OMG-MOF V1.3 IDL Mapping Templates March 2000 5-91

5-92

/1 <line N of the ANNOTATI O\>

Description

The Annotation template optionally includes the “annotation” for a ModelElement in
the generated IDL as an IDL comment. It is anticipated that a vendor's IDL generator
would give some control over the way that these comments are generated. For example,
allowing the user to

® suppressing the comments completely,
® choose between the two styles of comments, and

¢ choose whether or not to respect embedded line breaks and other markup.

OMG-MOF V1.3 March 2000

6.1

I ntroduction

TheRefl ectiveModule

Note — See page 6-8 for errata, marked with changebar.

Contents

This chapter contains the following topics.

Topic Page
“Introduction” 6-1
“The Reflective Interfaces’ 6-3
“The CORBA IDL for the Reflective Interfaces’ 6-29

One of the advantages of meta-objects (in the general sense) is that they allow a
program to use objects without prior knowledge of the objects interfaces. In the MOF
context, an object's M 2-level meta-object allows a program to “discover” the nature of
any M1-level MOF object, both at a syntactic level and at a deeper level. With this
information in hand, the MOF’s Reflective interfaces allow a program to:

® create, update, access, navigate and invoke operations on M 1-level Instance objects,

® query and update links using M1-level Association objects, and

® navigate an M1-level Package structure

without using meta-model specific interfaces.

OMG-MOF V1.3 - errata October 2001

6-2

Note — The functionality above is all available through the "model specific" interfaces
defined by the IDL mapping described in this chapter. The Reflective interfaces do not
allow a program to access or update M OF objects contrary to their meta-object
descriptions. For example, they cannot be used to create, access or update Attributes
that do not exist, or to bypass Constraint checking.

In addition, the Reflective interfaces allow the program to:

* find an M1-level object's M2-level meta-object,

® find a MOF object’s container(s) and enclosing Package(s),
® test for MOF object identity, and

* delete a MOF object.

Note — While many of these capabilities are correctly described as reflective, the MOF
does not offer the full repertoire of reflective programming features. Since it does not
define object behavior, the MOF does not define interfaces for reflective behavior
modification. Even if it did, these interfaces could not be implemented in many
CORBA contexts.

The CORBA Interface Repository (IR) and the Dynamic Invocation Interface (DII),
provide similar capabilities in the context of a CORBA object's Interface. However,
using the IR and DI for this purpose means that the user cannot make use of the richer
semantic information in models defined using the MOF meta-model. For example, the
IR can tell the user that the “Model::Contains” IDL interface has an operation called
“exists;” however, it is only by using MOF meta-objects that the user knows that the
“exists’ operation tests whether one object “contains’ another one.

The MOF Reflective module contains four "abstract” interfaces that are inherited by
the M1-level interfaces for a model that are generated from a meta-model by the IDL

mapping.

1. The Reflective::RefObject interface provides common operations for M 1-level
Instance objects and Class Proxy objects.

2. The Reflective::RefAssociation interface provides common operations for M1-level
Association objects.

3. The Reflective::RefPackage interface provides a common operations for M1-level
Package objects.

4. The Reflective::RefBaseObject interface provides common operations for all MOF
objects.

Since the M2-level interfaces for the MOF Model are generated by this means, they
also inherit from the Reflective interfaces.

OMG-MOF V1.3 - errata October 2001

6.2 TheReflective Interfaces

This section describes the interfaces defined in the "Reflective" module. These
interfaces are modeled on the interfaces that are produced by the IDL mapping.
However, there are some important differences:

® Reflective operations pass the values of Attributes and References, and of the
Parameters to Operations and Exceptions as CORBA Any values. The mapped
versions of these operations pass the values using precise types according to the
meta-model.

® Reflective operations on Associations pass Instance objects with the type
RefObject. The mapped versions of these operations pass Instance objects using
their true types.

®* The "target" feature for a Reflective operation is passed as a "designator" parameter
whose type is a MOF meta-object. In the mapped case, the target is implicit in the
mapped operation name.

As stated previously, the Reflective versions of operations which are defined in the
mapped IDL do not allow a program to violate the information and computational
models implied by the meta-model definition. This includes not allowing operations
that, while meaningful for a model, are not possible using the mapped interfaces. For
example, while it might be meaningful to call “refSetValue” on an optional Attribute
passing an "empty" argument (encoded appropriately), thisis not allowed: the program
must use “refSetValue.”

This section consists of a subsection that explains some common patterns that are used
for encoding parameters used by many Reflective operations. The remaining four
subsections describe each Reflective interface in turn.

6.2.1 Reflective Argument Encoding Patterns.

The Reflective module make heavy use of the CORBA Any type to provide meta-
model independent interfaces. This section defines some common patterns used
throughout the Reflective interfaces for encoding parameter values in Anys.

Note — It is important that the type information (expressed as CORBA TypeCodes) in
the encoded Anys be precisely as specified below. In particular, collection type aliases
and their names are mandatory.

If the base type of the value-defining feature is a DataType, the TypeCode in the
encoded Any must be the full TypeCode for the base type. Type aiases must not be
optimized away, and all optional names (e.g., of struct types, fields, and so on) must be
present. (Optimization of type information in Anys should done at the ORB level if at
all.)

OMG-MOF V1.3 - errata The Reflective Interfaces October 2001 6-3

6.2.1.1

Note — The IDL templates can cause multiple copies of acollection type to be declared
in the generated IDL for a composite meta-model. Since the copies are logically
identical, MOF client and server code needs to take care when extracting collection
values from Anys. In particular, if the stub-generated extraction operations will fail if
the "wrong" copy of a collection type is used, the code may need to use DynAny
instead.

The Standard Value Encoding Pattern

This pattern is used for encoding complete values as ValueTypes. It is used in most
cases where a reflective operation requires or provides a complete value for an element
that may be collection valued (depending on the multiplicity). Examples that use this
pattern are values for Operation arguments and results, values for Exception fields and
Attribute initial values in a create operation.

Table 6-1 Standard Value Encoding Pattern

Bounds | ValueType Encoding Notes

[0..1] Any(alias(seq(<type>, 0))) An "optional" feature value with no elements is
where the alias name is <typeName>Bag encoded as zero length sequence.

[1..1] Any(<type>)

others | Any(alias(seq(<type>, 0))) A "multi-valued" feature value with no elements
where the adlias name is is encoded as a zero length sequence.
<typeName><CollectionKind>

6-4

6.2.1.2 TheAlternate Value Encoding Pattern

The standard pattern for encoding complete values (above) does not fit well with the
IDL templates for the specific "get" and "set" operations. To improve the alignment
between the reflective and specific interfaces, the following aternative pattern is used
for the “The “The operation fetches the current value of the Attribute or Reference
denoted by the "feature" argument. If this object is a Class proxy, only classifier
scoped Attributes can be fetched.” operation fetches the current value of the Attribute
or Reference denoted by the "feature" argument. If this object is a Class proxy, only
classifier scoped Attributes can be fetched.” and “The “refSetValue” operation assigns
a new value to an Attribute or Reference for an object. The assignhed value must be a
single value or a collection value depending on the feature’s multiplicity.” operations
for Attributes and References.

OMG-MOF V1.3 - errata October 2001

Table 6-2 Alternate Value Encoding Pattern

Bounds | ValueType Encoding Notes

[0..1] Any(<type>) An "optiona" feature value with no elements is handled
as follows:
* theref_get value() raises Unset when the value is empty
* theref_unset_value() is used to set value to no elements

[1..1] Any(<type>)

others | Any(alias(seq(<type>, 0))) A "multi-valued" feature value with no elementsis

where the alias name is encoded as a zero length sequence.

<typeName><CollectionKind>

6.2.1.3 TheValue Member Encoding Pattern

6.

2.1.4

6.2.2

The following pattern is used in the reflective versions of the add, modify and remove
operations that operate on the individual members of a multi-valued Attribute or
Reference. The pattern is simply to encode the member as an Any containing an
instance of the feature's base type. For example:

Any(<type>)

The Link Encoding Pattern

Some of the operations in the RefAssociation interface use the "generic" Link type to
pass link values; see Section 6.3.2, “Data Types,” on page 6-30. While the Link type
uses RefObject rather than Any, a pattern is still required to describe the encoding.

The "generic" Link type is declared as a sequence of RefObject values with an upper
bound of 2. The standard encoding of alink for a given Association is:

Li nk(<assocEnd1Type>, <assocEnd2Type>)

In other words, the sequence value contains precisely two elements, and the elements
appear in the order of the corresponding AssociationEnds in the Association.

Reflective: : RefBaseObject abstract

The RefBaseObject interface is inherited by the other three reflective interfaces. It
provides common operations for testing for object identity, returning an object's meta-
object, and returning its "repository container" as required for implementing structural
constraints such as the MOF's type closure rule and composition restrictions.
Supertypes

none (root object)

OMG-MOF V1.3 - errata The Reflective Interfaces October 2001 6-5

6-6

Operations

refMofld
The “refMofld” operation returns this object’s permanent unique identifier string.

specific analog: none
return type: string
isQuery: yes

parameters: none
exceptions: none

Every MOF object has a permanent, unique M OF identifier associated with it. This
identifier is generated and bound to the object when it is created and cannot be
changed for the lifetime of the object. The primary purpose of the MOF identifier isto
serve as a label that can be compared to definitively establish an object’s identity.

An MOF implementation must ensure that no two distinct MOF objects within the
extent of an outermost Package object ever have the same MOF identifier. This
invariant must hold for the lifetime of the extent.

A group of outermost Package extents can only be safely federated if the respective
implementations can ensure the above invariant applies across the entire federation. A
federation of extents in which the invariant does not hold is not MOF compliant.

The MOF specification does not mandate a scheme for achieving this. Instead, the
following approach is recommended:

1. Choose an appropriate scheme (or schemes) for allocating unique identifiers. This
will depend on the nature of the federation.
2. Define atextual syntax for MOF identifier strings of the form:
<scheme-prefi x> ":" <schene-specific-part>

where <scheme- pr ef i x> is either standardized elsewhere, or a vendor or user
specific string that is unlikely to clash with other prefixes.

In the absence of a more appropriate identifier generation scheme, it is recommended
that the following scheme based on the DCE UUID algorithm and textual encoding be
used. The recommended DCE UUID-based identifier syntax is:

"DCE" ":" <printable-formof-dce-uuid> [":" <deci mal -di gits>]

For example:
"DCE: d62207a2-011le- 11ce- 88b4- 0800090b5d3e"
"DCE: d62207a2-011e- 11ce- 88b4- 0800090b5d3e: 1234"

OMG-MOF V1.3 - errata October 2001

6

The first case would be used when it is acceptable to generate a new DCE UUID for
each MOF abject. The second case might be used when the overheads of doing this are
too large, or the required rate of UUID generation is too high. In this case, the UUID
would denote an extent incarnation, and the suffix would be a local object sequence
number for the extent incarnation does not repeat during the latter’s lifetime.

refM etaObject

The “refMetaObject” operation returns the Model::Model Element object that describes
this object in its metamodel specification.

specific analog: none

return type: Designator Type
isQuery: yes

parameters: none
exceptions: none

If the object’s meta-object is unavailable, the return value may be a CORBA nil object
reference.

refltself

The “refltself” operation tests whether this object and another Ref BaseObject provided
as an argument are the same CORBA object.

specific analog: none

return type: boolean

isQuery: yes

parameters: otherObject : in RefBaseObject
exceptions: MofError (Invalid Object)

"Invalid Object" occurs if the "otherObject” is not avalid object, or if it isinaccessible.

refl mmediatePackage

The “ReflImmediatePackage” operation returns the RefPackage object for the Package
that most immediately contains or aggregates this object.

specific analog: none

return type: RefPackage
isQuery: yes
parameters: none
exceptions: none

OMG-MOF V1.3 - errata The Reflective Interfaces October 2001 6-7

6-8

If this object has no containing or aggregating Package (i.e., it is the RefPackage object
for an outermost Package), then the return value is a CORBA nil object reference. In
complex cases where there is more than one immediate aggregating Package (see
Section 4.6, “Extents,” on page 4-9 and Section 5.2.1, “Meta Object Type Overview,”
on page 5-2, the return value may be any of them.

refOutermostPackage

The “refOutermostPackage” operation returns the RefPackage object for the Package
that ultimately contains this object.

specific analog: none

return type: RefPackage
isQuery: yes
parameters: none
exceptions: none

If this object is the RefPackage object for an outermost Package, then the return value
is this object.

refDelete

The“refDelete” operation destroys this object, including the objects it contains directly
or transitively (see Section 5.3.2, “Lifecycle Semantics for the IDL Mapping,” on
page 5-8 and Section 4.8, “Aggregation Semantics,” on page 4-17).

specific analog: none
return type: none
parameters: none
exceptions: MofError (Invalid Deletion)

The semantics of this operation depend on this Ref BaseObject’s most derived type; see
Section 5.2.1, “Meta Object Type Overview,” on page 5-2. Five sub-cases of
RefBaseObject need to be considered here:

® outermost (i.e., non-nested, non-dependent) Package objects,
® nested or dependent Package objects,

® Association objects,

® (Class proxy objects, and

® [nstance objects.

Ordinary clients may only use “refDelete” to delete instances of outermost Package
objects and Instance objects.

OMG-MOF V1.3 - errata October 2001

6

6.2.3

® Deletion of an outermost Package causes all objects within its extent to be deleted;
see Section 5.3.2.1, “Package object creation and deletion semantics,” on page 5-8.

® Deletion of an Instance object deletes it and its component closure; see
Section 5.3.2.2, “Instance object lifecycle semantics,” on page 5-9.

"Invalid Deletion" occurs if an ordinary client invokes “refDelete” on a nested or
dependent Package object, an Association object, or a Class proxy object.

As part of the deletion of an outermost Package, a Package object’s implementation
may use the “refDelete” operation to delete nested or dependent Package objects,
Association objects and Class proxy objects as well as Instance objects.

Interface

interface RefBaseObject {
string ref_mof_id ();
DesignatorType ref_meta_object ();
boolean ref_itself (in RefBaseObject other_object);
RefPackage ref_immediate_package ();
RefPackage ref_outermost_package ();
void ref_delete ()
raises (MofError);
}; I/ end of RefBaseObject

Reflective: : RefObj ect abstract

The RefObject interface provides the meta-object description of an object that inherits
from it, provides generic operations for testing for object identity and type
membership, and a range of operations for accessing and updating the object in a
model independent way.

The model assumed by the interface is that an object has structural features and
operations. The model allows structural features to have single values or collection
values. In the latter case, the collection values may have ordering or unigueness
semantics. There is provision for creation of new object instances, and for obtaining
the set of objects that exist in a context.

Supertypes
RefBaseObject

Operations

refl sl nstanceOf

OMG-MOF V1.3 - errata The Reflective Interfaces October 2001 6-9

6-10

This operation tests whether this RefObject is an instance of the Class described by the
"someClass" meta-object. If the "considerSubtypes" argument is true, an object whose
Class is a subclass of the Class described by "someClass" will be considered as an
instance of the Class.

specific analog: none
return type: boolean
isQuery: yes
parameters: someClass : in DesignatorType
considerSubtypes : in boolean
exceptions: MofError (Invalid Designator, Wrong Designator Kind)

refCreatel nstance

This operation creates a new instance of the Class for the RefObject's most derived
interface. The operation can be called on a Class proxy object or an Instance object.
The "args’ list gives the initial values for the new Instance object’s instance scoped,
non-derived Attributes.

specific analog: create_<class_name>(...); (see Section 5.8.9, “Class Create
Template,” on page 5-57).

return type: RefObject

parameters: args : in ValueType (multiplicity: zero or more; ordered)

exceptions: MofError (Overflow, Underflow, Duplicate, Composition

Closure, Supertype Closure, Already Created, Abstract Class,
Wrong Type, Wrong Number Parameters)

The members of the "args" list correspond 1-to-1 to the parameters for the specific
create operation. They must be encoded as per Section 6.2.1.1, “The Standard Value
Encoding Pattern,” on page6-4 . "Wrong Type" and "Wrong Number Parameters' when
the "args" list has the wrong length or is incorrectly encoded.

"Abstract Class" occurs when “refCreatelnstance” is called to create an instance of an
"abstract Class. The remaining error conditions are directly equivalent to error
conditions for the specific "create" operation.

refAllObjects

The “refAllObjects” operation returns the set of al Instances in the current extent
whose type is given by this object’s Class. The operation can be called on a Class
proxy object or an Instance object.

OMG-MOF V1.3 - errata October 2001

specific analog: attribute all_of_type <class name>;
attribute all_of class <class name>;
(See Section 5.8.6, “Class Template,” on page 5-53).

return type: RefObject (multiplicity zero or more; unique; unordered)
isQuery: yes

parameters: includeSubtypes : in boolean

exceptions: none

If "includeSubtypes' is true, the Instance objects for any subClasses of the M2 level
Class are also included in the result set. This case is equivalent to the specific
"all_of type <class name>".

If the M2 level Class has “isAbstract” set to true, the result of
ref_all_objects(false)

isan empty set.

refValue

The “refValue” operation fetches the current value of the Attribute or Reference
denoted by the "feature" argument. If this object is a Class proxy, only classifier
scoped Attributes can be fetched.

specific analog: <reference_name>(); (see Section 5.8.13, “Operation
Template,” on page 5-85).
<attribute_name>(); (see Section 5.8.11, “Attribute Template,”
on page 5-67).

return type: ValueType

isQuery: yes

parameters: feature : in DesignatorType

exceptions: NotSet, MofError (Invalid Designator, Wrong Designator
Kind, Unknown Designator, Not Public, Wrong Scope,
Underflow)

The result for the “refValue” operation is encoded as per Section 6.2.1.2, “The
Alternate Value Encoding Pattern,” on page 6-4.

"NotSet" occurs when the feature’s multiplicity is [0..1] and its valueis unset (i.e., an
empty collection). This should not occur with other multiplicities.

OMG-MOF V1.3 - errata The Reflective Interfaces October 2001 6-11

6-12

"Invalid Designator,” "Wrong Designator Kind," "Unknown Designator,” "Not Public,"
and "Wrong Scope" all occur in cases where the "feature" argument does not denote an
Attribute or Reference accessible from this object.

"Underflow" occurs when the feature is a Reference with multiplicity is [1..1] and its
value has not been initialized. This should not occur for an Attribute or with other
multiplicities.

refSetValue

The “refSetValue” operation assigns a new value to an Attribute or Reference for an
object. The assigned value must be a single value or a collection value depending on
the feature’s multiplicity.

specific analog: set_<reference_name>(newVaue); (see Section 5.8.12,
“Reference Template,” on page 5-76).

set_<attribute_name>(newValue); (see Section 5.8.11,
“Attribute Template,” on page 5-67).

return type: none

parameters: feature : in DesignatorType
newValue : in VaueType

exceptions: MofError (Invalid Designator, Wrong Designator Kind,
Unknown Designator, Not Public, Wrong Scope, Not
Changeable, Underflow, Overflow, Duplicate, Reference
Closure, Composition Closure, Composition Cycle, Invalid
Object, Nil Object, Inaccessible Object, Wrong Type)

The "newValue" parameter must be encoded as per Section 6.2.1.2, “The Alternate
Value Encoding Pattern,” on page 6-4. "Wrong Type" occurs when this parameter is
incorrectly encoded.

"Invalid Designator,” "Wrong Designator Kind," "Unknown Designator,” "Not Public,"
"Wrong Scope," and "Not Changeable" all occur in situations where the "feature"
parameter does not denote a changeable Attribute or Reference that is accessible from
this object.

The remaining error conditions are directly equivalent to error conditions for the
"set_<feature_name>" operation.

refUnsetValue

The “refUnsetValue” operation resets an optional Attribute or Reference to contain no
elements. This operation can only be used when the feature’s multiplicity is [0..1].

OMG-MOF V1.3 - errata October 2001

specific analog: unset_<reference_name>(); (see Section 5.8.12, “Reference
Template,” on page 5-76).

unset_<attribute_name>(); (see Section 5.8.11, “Attribute
Template,” on page 5-67).

return type: none
parameters: feature : in DesignatorType
exceptions: MofError (Invalid Designator, Wrong Designator Kind,

Unknown Designator, Not Public, Wrong Scope, Not
Changeable, Wrong Multiplicity, Underflow)

"Invalid Designator,” "Wrong Designator Kind," "Unknown Designator,” "Not Public,"
"Wrong Scope," "Not Changeable," and "Wrong Multiplicity" all occur in situations
where the "feature" parameter does not denote an Attribute or Reference for which
"unset_<feature name>" is alowed.

"Underflow" occursin the same situation as for the "unset_<feature_name>" operation.
For example, when "feature" is a Reference whose exposed Association End has a non-
zero lower bound.

refAddValue

The “refAddVvalue’ operation adds a new element to the current value of an Attribute
or Reference with multiplicity that allows multiple values. If the Attribute or Reference
is ordered, the new element is added at the end of the current value.

specific analog: add_<reference_name>(newElement); (see Section 5.8.12,
“Reference Template,” on page 5-76).

add_<attribute_name>(newElement); (see Section 5.8.11,
“Attribute Template,” on page 5-67).

return type: none

parameters: feature : in DesignatorType
newElement : in ValueType

exceptions: MofError (Invalid Designator, Wrong Designator Kind,
Unknown Designator, Not Public, Wrong Scope, Not
Changeable, Wrong Multiplicity, Overflow, Duplicate, Invalid
Object, Nil Object, Inaccessible Object, Reference Closure,
Composition Closure, Composition Cycle, Wrong Type)

The "newElement" parameter should contain a single value of the feature's base type.
"Wrong Type" occurs when it does not.

OMG-MOF V1.3 - errata The Reflective Interfaces October 2001 6-13

6-14

"Invalid Designator,” "Wrong Designator Kind," "Unknown Designator,” "Not Public,"
"Wrong Scope," "Not Changeable," and "Wrong Multiplicity" all occur when the
"feature" parameter does not designate a Reference or Attribute for which the
"add_<feature_name>" operation is allowed.

The remaining error conditions are directly equivalent to error conditions for the
"add_<feature_name>" operation.

refAddValueBefore

The “refAddValueBefore” operation is similar to “refAddValue” except that the caller
specifies an existing element before which the new element is to be added. This
operation can only be used for Attributes and References that are multi-valued and
ordered. If the feature is non-unique (and therefore an Attribute), the insertion is made
before the first element that matches, starting from the beginning of the collection.

specific analog: add_<ref _name>_before(newElement, beforeElement);

(see Section 5.8.12, “Reference Template,” on page 5-76)

add_<attr_name>_before(newElement, beforeElement);
(see Section 5.8.11, “Attribute Template,” on page 5-67)

return type: none

parameters: feature : in DesignatorType

newElement : in ValueType
beforeElement : in ValueType

exceptions: NotFound, MofError (Invalid Designator, Wrong Designator Kind,

Unknown Designator, Not Public, Wrong Scope, Not Changeable,
Wrong Multiplicity, Overflow, Duplicate, Invalid Object, Nil Object,
Inaccessible Object, Reference Closure, Composition Closure,
Composition Cycle, Wrong Type)

The "newElement" and "beforeElement” parameters should each contain a single value
of the feature's base type. "Wrong Type" occurs when it does not.

"Invalid Designator,” "Wrong Designator Kind," "Unknown Designator,” "Not Public,"
"Wrong Scope,”, "Not Changeable," and "Wrong Multiplicity" all occur when the
"feature" parameter does not designate a Reference or Attribute for which the

"add_<feature_name>_before" operation is allowed.

The remaining error conditions are directly equivalent to error conditions for the
"add_<feature_name>_before" operation.

ref AddValueAt

The “refAddValueAt” operation is similar to “refAddValueBefore” except that the
caller explicitly gives the position of the insertion. The operation is only applicable to
multi-valued ordered, non-unique Attributes.

OMG-MOF V1.3 - errata October 2001

specific analog: add_<ref name>_at(newElement, position);

(see Section 5.8.12, “Reference Template,” on page 5-76)

add_<attr_name>_at(newElement, position);
(see Section 5.8.11, “Attribute Template,” on page 5-67

return type: none

parameters: feature : in DesignatorType

newElement : in ValueType
position : in unsigned long

exceptions: BadPosition, MofError (Invalid Designator, Wrong Designator Kind,

Unknown Designator, Not Public, Wrong Scope, Not Changeable,
Wrong Multiplicity, Overflow, Duplicate, Invalid Object, Nil Object,
Inaccessible Object, Reference Closure, Composition Closure,
Composition Cycle, Wrong Type)

The "newElement" parameter should contain a single value of the Attribute’s base type.
"Wrong Type" occurs if it is not.

The "position" parameter is interpreted the same way as for the corresponding specific
operation. "Bad Position" occurs if the position parameter’s value is out of range, as
defined for the "add_<feature_name>_at" operation (i.e., if it isgreater than the size of
the collection before the operation is invoke).

"Invalid Designator,” "Wrong Designator Kind," "Unknown Designator,” "Not Public,"
"Wrong Scope,” "Not Changeable," and "Wrong Multiplicity" all occur when "feature"
does not designate an Attribute for which the "add_<feature_name>_at" operation is
allowed.

The remaining error conditions are directly equivalent to error conditions for the
specific "add_<feature name>_at" operation.

refModifyValue

The “refModifyValue” operation replaces one element of a multi-valued Attribute or
Reference with a new value. If the feature is an ordered and non-unique (and therefore
an Attribute), the element modified is the first one that matches, starting from the
beginning of the collection.

OMG-MOF V1.3 - errata The Reflective Interfaces October 2001 6-15

specific analog: modify _<ref_name>(oldElement, newElement);
(see Section 5.8.12, “Reference Template,” on page 5-76)

modify_<attr_name>(oldElement, newElement);
(see Section 5.8.11, “Attribute Template,” on page 5-67)

return type: none

parameters: feature : in DesignatorType
oldElement : in ValueType
newElement : in ValueType

exceptions: NotFound, MofError (Invalid Designator, Wrong Designator Kind,
Unknown Designator, Not Public, Wrong Scope, Not Changeable,
Wrong Multiplicity, Underflow, Overflow, Duplicate, Invalid Object,
Nil Object, Inaccessible Object, Reference Closure, Composition
Closure, Composition Cycle, Wrong Type)

The "newElement" and "oldElement" parameters should contain a single value of the
feature's base type. "Wrong Type" occurs if it is not.

The "oldElement" parameter should be an existing element of the collection being
updated. "Not Found" occurs if it is not.

"Invalid Designator,” "Wrong Designator Kind," "Unknown Designator,” "Not Public,"
"Wrong Scope," "Not Changeable," and "Wrong Multiplicity" all occur when the
"feature" parameter does not designate a Reference or Attribute that supports the
"modify_<feature_name>" operation.

The remaining error conditions are directly equivalent to error conditions for the
"modify_<feature_name>" operation.

refModifyValueAt

The “refModifyValueAt” operation is similar to the “refModifyValue” operation,
except that the element to be modified is specified by position. The operation is only
applicable to multi-valued, ordered, non-unique Attributes.

6-16 OMG-MOF V1.3 - errata October 2001

specific analog: modify_<ref _name>_at(newElement, position);

(see Section 5.8.12, “Reference Template,” on page 5-76)

modify_<attr_name>_at(newElement, position);
(see Section 5.8.11, “Attribute Template,” on page 5-67)

return type: none

parameters: feature : in DesignatorType

newElement : in ValueType
position : in unsigned long

exceptions: BadPosition, MofError (Invalid Designator, Wrong Designator Kind,

Unknown Designator, Not Public, Wrong Scope, Not Changeable,
Wrong Multiplicity, Underflow, Overflow, Duplicate, Invalid Object,
Nil Object, Inaccessible Object, Reference Closure, Composition
Closure, Composition Cycle, Wrong Type)

The "newElement" parameter should contain a single value of the Attribute’s base type.
"Wrong Type" occurs if it is not.

The "position" parameter is interpreted in the same way as for the corresponding
specific operation. "Bad Position" occurs if the position parameter’s value is out of
range, as defined for the "modify_<feature_name>_at" operation (i.e., if it is greater
than or equal to the size of the collection).

"Invalid Designator,” "Wrong Designator Kind," "Unknown Designator,” "Not Public,"
"Wrong Scope,” "Not Changeable," and "Wrong Multiplicity" all occur when "feature"
does not designate an Attribute for which the "modify _<feature name>_at" operation
is allowed.

The remaining error conditions are directly equivalent to error conditions for the
specific "modify_<feature_name>_at" operation.

refRemoveValue

The “refRemoveValue’ operation removes an element of a multi-valued Attribute or
Reference. The operation is only applicable when the upper bound is not equal to the
lower bound. When the feature is ordered and non-unique (and therefore an Attribute)
the element removed is the first one in the collection that matches, starting from the
beginning of the collection.

OMG-MOF V1.3 - errata The Reflective Interfaces October 2001 6-17

specific analog: remove_<reference_name>(oldElement); (see Section 5.8.12,

“Reference Template,” on page 5-76)

remove_<attribute_name>(oldElement); (see Section 5.8.11, “Attribute
Template,” on page 5-67)

return type: none

parameters: feature : in DesignatorType

oldElement : in ValueType

exceptions: NotFound, MofError (Invalid Designator, Wrong Designator Kind,

Unknown Designator, Not Public, Wrong Scope, Not Changeable,
Wrong Multiplicity, Underflow, Duplicate, Invaid Object, Nil Object,
Inaccessible Object, Reference Closure, Composition Closure,
Composition Cycle, Wrong Type)

The "oldElement" parameter should contain a single value of the Attribute's base type.
"Wrong Type" occurs if it is not.

"Not Found" occurs if the value in the "oldElement” parameter is not a member of the
collection.

"Invalid Designator,” "Wrong Designator Kind," "Unknown Designator,” "Not Public,"
"Wrong Scope,” "Not Changeable," and "Wrong Multiplicity" all occur when "feature"
does not designate an Attribute or Reference for which the "remove_<feature_name>"
operation is allowed.

The remaining error conditions are directly equivalent to error conditions for the
specific "remove_<feature_name>" operation.

refRemoveValueAt

The “refRemoveValueAt” operation is similar to the “refRemoveValue”’ operation
except that the element to be modified is specified by position. Furthermore, the
operation is only applicable to ordered, non-unique Attributes.

specific analog: remove_<reference name>_at(position); (see Section 5.8.12,

“Reference Template,” on page 5-76)

remove_<attribute_name>_at(position); (see Section 5.8.11, “Attribute
Template,” on page 5-67)

OMG-MOF V1.3 - errata October 2001

return type: none

parameters: feature : in DesignatorType
position : in unsigned long

exceptions: BadPosition, MofError (Invalid Designator, Wrong Designator Kind,
Unknown Designator, Not Public, Wrong Scope, Not Changeable,
Wrong Multiplicity, Underflow, Duplicate, Invalid Object, Nil Object,
Inaccessible Object, Reference Closure, Composition Closure,
Composition Cycle, Wrong Type)

The "position" parameter is interpreted in the same way as for the corresponding
specific operation. "Bad Position" occurs if the position parameter’s value is out of
range, as defined for the "remove_<feature_name>_at" operation (i.e., if it is greater
than or equal to the size of the collection before the operation is called).

"Invalid Designator,” "Wrong Designator Kind," "Unknown Designator,” "Not Public,"
"Wrong Scope,” "Not Changeable," and "Wrong Multiplicity" all occur when "feature"
does not designate an Attribute for which the "remove <feature name>_at" operation
is allowed.

The remaining error conditions are directly equivalent to error conditions for the
specific "remove_<feature_name>_at" operation.

refl mmediateComposite

The “refImmediateComposite” operation returns the "immediate composite" object for
this Instance as specified below.

specific analog: none
return type: RefObject
isQuery: yes
exceptions: none

The immediate composite object C returned by this operation is an Instance object
such that:

® Cisrelated to this object via a relation R defined by an Attribute or Association,
® the aggregation semantics of the relation R are "composite", and

® this object fills the role of "component" in its relationship with C.

If the immediate object C does not exist, or if "this" object is a Class proxy object
rather than an Instance object, a CORBA nil object reference is returned.

Note — If the composite relationship R corresponds to a "classifier-level" scoped M 2-
level Attribute, the immediate composite object C will be the Class Proxy object that
holds the Attribute value.

OMG-MOF V1.3 - errata The Reflective Interfaces October 2001 6-19

refOutermostComposite

The “refOutermostComposite” operation returns the "outermost composite” for this
object as defined below.

specific analog: none
return type: RefObject
isQuery: yes
exceptions: none

The outermost composite object C returned by this operation is an Instance object such
that:

® Thereis achain of zero or more immediate composite relationships (as described
for “The “reflmmediateComposite” operation returns the "immediate composite”
object for this Instance as specified below.” above) connecting "this" object to C,
and

® C does not have an immediate composite.

The above definition is such that if "this' object is not a component of any other
object, it will be returned.

If "this" object is a Class proxy object, a CORBA nil object reference is returned.

Note — As with “reflmmediateComposite” if the last composite relationship in the
chain corresponds to a "classifier-level" scoped M2 level Attribute, the outermost
composite object C will be the Class Proxy object that holds the Attribute value.

refl nvokeOperation

The “refInvokeOperation” operation invokes a metamodel defined Operation on the
Instance or Class proxy object with the arguments supplied.

specific analog: none

return type: ValueType (multiplicity: zero or more; ordered; not unique)

parameters: requestedOperation : in DesignatorType
args : inout ValueType (multiplicity: zero or more; ordered;
non-unique)

exceptions: OtherException, MofError (Invalid Designator, Wrong
Designator Kind, Unknown Designator, Not Public, Wrong
Scope, Overflow, Underflow, Duplicate, Wrong Number
Parameters, Wrong Type)

6-20 OMG-MOF V1.3 - errata October 2001

The "args' parameter is used to pass the values of all of the Operation’s Parameters
which have directions "in," "out," or "inout" but not the "return" Parameter. There must

be a distinct parameter value (real or dummy) in the "args" list for every "in," "out,"
and "inout" Parameter. "Wrong Number Parameters' occurs if thisis not so.
The parameter values in "args" must appear in the order of the Operation’s "in," "out,"

and "inout" Parameters as defined in the metamodel.

The "args' member values provided by the caller for "in" and "inout" Parameter
positions must be encoded depending on the Parameter’s type and multiplicity as per
the Section 6.2.1.1, “The Standard Value Encoding Pattern,” on page 6-4. "Wrong
Type" occurs if any of these values have the wrong type for the corresponding
Parameter. "Underflow," "Overflow," or "Duplicate" occur when one of the supplied
values does not fit the multiplicity specified by the corresponding Parameter.

The caller must provide a dummy "args" member value in each "out" Parameter
position. This value may be any legal CORBA Any value.

The "args' member values passed back to the caller for "out" and "inout" Parameter
positions are likewise encoded depending on the Parameter’s type and multiplicity as
per Section 6.2.1.1, “The Standard Value Encoding Pattern,” on page6-4 . Note that the
values passed back to the caler the "in" Parameter positions of the "args' list are
dummies whose content is undefined.

If the Operation defines a result (i.e., a Parameter with direction "return™), the result
for a “The “reflnvokeOperation” operation invokes a metamodel defined Operation on
the Instance or Class proxy object with the arguments supplied.” call gives the result
value. Thisis encoded depending on the "return” Parameter’s type and multiplicity as
per Section 6.2.1.1, “The Standard Value Encoding Pattern,” on page 6-4. When the
Operation does not define aresult, the result of a“The “refInvokeOperation” operation
invokes a metamodel defined Operation on the Instance or Class proxy object with the
arguments supplied.” call is a dummy value whose content is undefined.

Note — In the cases above where dummy values are used, it isrecommended that "light
weight" Any values are used. (We would recommend the use of an Any value whose

type kind is tk_null. However, there is currently some question as to whether the CDR
standard defines an encoding for this value.)

"OtherException” occurs when a “refl nvokeOperation” invocation needs to signal an
Operation specific Exception. The "exception_designator” field of "OtherException”
will denote the Exception raised, and the "exception_args' list will give the values for
any Exception fields. The "exception_args" list will have one member value for each
Parameter of the Exception in the order defined by the meta-model. The member
values will be encoded depending on the corresponding Exception Parameter’s type
and multiplicity as per Section 6.2.1.1, “The Standard Value Encoding Pattern,” on

page 6-4.

"Invalid Designator,” "Wrong Designator Kind," "Unknown Designator,” "Not Public,"
and "Wrong Scope" all occur when "requestedOperation” does not designate an
Operation that can be invoked using this object.

OMG-MOF V1.3 - errata The Reflective Interfaces October 2001 6-21

Interface

interface RefObject : RefBaseObject {
boolean ref_is_instance_of (in DesignatorType some_class,
in boolean consider_subtypes);
RefObject ref_create_instance (in ValueTypelList args)
raises (MofError);
RefObjectSet ref_all_objects (in boolean include_subtypes);
void ref_set_value (in DesignatorType feature,
in ValueType new_value)
raises (MofError);
ValueType ref_value (in DesignatorType feature)
raises (NotSet, MofError);
void ref_unset_value ()
raises (MofError);
void ref_add_value (in DesignatorType feature,
in ValueType new_element)
raises (MofError);
void ref_add_value_before (in DesignatorType feature,
in ValueType new_element,
in ValueType before_element)
raises (NotFound, MofError);
void ref_add_value_at (in DesignatorType feature,
in ValueType new_element,
in unsigned long position)
raises (BadPosition, MofError);
void ref_modify_value (in DesignatorType feature,
in ValueType old_element,
in ValueType new_element)
raises (NotFound, MofError);
void ref_modify_value_at (in DesignatorType feature,
in ValueType new_element,
in unsigned long position)
raises (BadPosition, MofError);
void ref_remove_value (in DesignatorType feature,
in ValueType old_element)
raises (NotFound, MofError);
void ref_remove_value_at (in DesignatorType feature,
in unsigned long position)
raises (BadPosition, MofError);
RefObject ref_immediate_composite ();
RefObject ref_outermost_composite ();
ValueType ref_invoke_operation (
in DesignatorType requested_operation,
inout ValueTypelList args)
raises (OtherException, MofError);
}; 1/ end of interface RefObject

6.2.4 Reflective:: RefAssociation abstract

The RefAssociation interface provides the meta-object description of an association
that inherits from it. It also provides generic operations querying and updating the links
that belong to the association.

6-22 OMG-MOF V1.3 - errata October 2001

The model of association supported by this interface is of collection of two ended
asymmetric links between objects. The links may be viewed as ordered on one or other
of the ends, and there may be some form of cardinality constraints on either end.

The RefAssociation interface is designed to be used with associations that contain no
duplicate links, though thisis not an absolute requirement. There is no assumption that
different association objects for a given association type are mutually aware. Links are
modeled as having no object identity.

A data model that required "heavy weight" links with object identity (e.g., so that
attributes could be attached to them) would need to represent them as RefObject
instances.The RefAssociation interface could be used to manage light weight links
between heavy weight link objects and the objects they connect. Similar techniques
could be used to represent N-ary associations. However, in both cases better
performance would be achieved using a purpose built reflective layer.

Supertypes
RefBaseObject

Operations

refAllLinks
The “refAllILinks” operation returns al links in the link set for this Association object.

specific analog: all_links(); (see Section 5.8.10, “Association Template,”
on page 5-58)

return type: Link (multiplicity zero or more, unordered, unique)

isQuery: yes

parameters: none

exceptions: none

This operation returns the current link set for the current Association extent as defined
for the specific version of this operation. The links are encoded as per Sectio n6.2.1.4,
“The Link Encoding Pattern,” on page 6-5.

refLinkEXxists

The “refLinkExists” operation returns true if and only if the supplied link is a member
of the link set for this Association object.

specific analog: link_exists(someLink); (see Section 5.8.10,
“Association Template,” on page 5-58)

return type: boolean

OMG-MOF V1.3 - errata The Reflective Interfaces October 2001 6-23

6-24

isQuery: yes
parameters: someLink : in Link
exceptions: MofError(WrongType)

The "someLink" parameter should be encoded as per Section 6.2.1.4, “The Link
Encoding Pattern,” on page 6-5. "Wrong Type" occurs if the link encoding is not
correct.

refQuery

The “refQuery” operation returns alist containing all Instance objects that are linked to
the supplied "queryObject” by links in the extent of this Association object, where the
links all have the "queryObject” at the "queryEnd."

specific analog: <endName> (queryObject); (see Section 5.8.10, “Association
Template,” on page 5-58)

return type: RefObject (Multiplicity zero or more; ordered; unique)

isQuery: yes

parameters: queryEnd : in DesignatorType

queryObject : in RefObject

exceptions: MofError (Invalid Designator, Wrong Designator Kind,
Unknown Designator, Wrong Type, Invalid Object, Nil Object,
Inaccessible Object)

The "queryEnd" parameter must designate an AssociationEnd for this Association
object. "Invalid Designator,” "Wrong Designator Kind," and "Unknown Designator"
occur in cases where thisis not so.

The "queryObject" parameter must be an Instance object whose type is compatible
with the type of the "queryEnd" of the Association. "Wrong Type" is raised if it the
parameter has the wrong type.

"Invalid Object,” "Nil Object,” or "Inaccessible Object" israised if the "queryObject"
parameter it is a non-existent, nil or inaccessible Instance object.

While the result of thisoperation is declared as a ordered set of links, the ordering only
has meaning if the other AssociationEnd (i.e., not the "queryEnd") is defined ordered.

refAddLink

The “refAddLink” operation adds "newLink" into the set of links in the extent of this
Association object. If one or other of the Association’s Ends is ordered, the link is
inserted after the last link with respect to that ordering.

OMG-MOF V1.3 - errata October 2001

specific analog: add(newLink[0], newLink[1]); (see Section 5.8.10,
“Association Template,” on page 5-58)

return type: none
parameters: newLink : in Link
exceptions: MofError (Not Changeable, Overflow, Duplicate, Reference

Closure, Composition Closure, Composition Cycle, Wrong
Type, Invalid Object, Nil Object, Inaccessible Object)

The "newLink" parameter should be encoded as per Section 6.2.1.4, “The Link
Encoding Pattern,” on page 6-5. "Wrong Type" occurs if the link encoding is not
correct.

Both RefObject members of the "newLink" parameter should be valid Instance objects.
"Invalid Object," "Nil Object," or "Inaccessible Object" is raised if either one is a non-
existent, nil or inaccessible Instance object.

"Not Changeable" occurs if this operation is invoked on an Association that has
“isChangeable” set to fase on either Association End.

"Overflow," "Duplicate," "Reference Closure," "Composition Closure," and
"Composition Cycle" are directly equivaent to error conditions for the corresponding
specific "add" operation.

refAddLinkBefore

The “refAddLinkBefore” operation adds "newLink" into the link set of an ordered
Association object. The link insertion point is immediately before the link whose
"positionEnd" matches the "before" Instance.

specific analog: add_before_<endName>(newLink[0], newLink[1], before);

(see Section 5.8.10, “Association Template,” on page 5-58)

return type: none

parameters: newLink : in Link

positionEnd : in DesignatorType
before : in RefObject

exceptions: NotFound, MofError (Invalid Designator, Wrong Designator Kind,

Unknown Designator, Not Changeable, Not Navigable, Overflow,
Duplicate, Reference Closure, Composition Closure, Wrong Type,
Invalid Object, Nil Object, Inaccessible Object)

The "newLink" parameter should be encoded as per Section 6.2.1.4, “The Link
Encoding Pattern,” on page 6-5. "Wrong Type" occurs if the link’s encoding is not
correct.

OMG-MOF V1.3 - errata The Reflective Interfaces October 2001 6-25

6-26

The "positionEnd" parameter should denote an AssociationEnd of this object’s
Assaciation. One of "Invalid Designator,” "Wrong Designator Kind," or "Unknown
Designator" occurs if thus is not the case.

"Not Changeable" occurs if this operation is invoked on an Association that has
“isChangeable” set to false on either Association End. "Not Navigable" occurs if the
"positionEnd" AssociationEnd has “isNavigable” set to fase.

The "before" parameter should be an Instance object that is type compatible with the
type of the AssociationEnd denoted by "positionEnd.” "Wrong Type" occurs if this is
not the case.

The remaining error conditions are directly equivalent to error conditions for the
corresponding "add_before_<endName>" operation.

refModifyLink

The “refModifyLink” operation updates the "oldLink" in the Association object’s link
set, replacing the Instance object at "positionEnd" with "newObject.”

specific analog: modify _<endName>(oldLink[0], oldLink[1], newObject);

(see Section 5.8.10, “Association Template,” on page 5-58)

return type: none

parameters: oldLink : in Link

positionEnd : in DesignatorType
newObject : in RefObject

exceptions: NotFound, MofError (Invalid Designator, Wrong Designator Kind,

Unknown Designator, Not Changeable, Underflow, Overflow,
Duplicate, Reference Closure, Composition Closure, Wrong Type,
Invalid Object, Nil Object, Inaccessible Object)

The "oldLink" parameter should be encoded as per Section 6.2.1.4, “The Link
Encoding Pattern,” on page 6-5. "Wrong Type" occurs if the link’s encoding is not
correct.

The "positionEnd" parameter should denote an AssociationEnd of this object’s
Association. One of "Invalid Designator,” "Wrong Designator Kind," or "Unknown
Designator" occurs if thus is not the case.

"Not Changeable" occurs if the "positionEnd" AssociationEnd that has “isChangeable”
set to false. "Not Navigable" occurs if it has “isNavigable” set to false.

The "newObject” parameter should be an Instance object that is type compatible with
the type of the AssociationEnd denoted by "positionEnd." "Wrong Type" occurs if this
is not the case.

The remaining error conditions are directly equivalent to error conditions for the
corresponding "modify_<endName>" operation. Note that any structural constraints
notionally apply to the final state following the operation, and not to any intermediate
states.

OMG-MOF V1.3 - errata October 2001

refRemovelLink
The “refRemoveLink”

operation removes the "oldLink" from the association.

specific analog:

remove(oldLink[0], oldLink[1]); (see Section 5.8.11,
“Attribute Template,” on page 5-67)

return type: none
parameters: oldLink : in Link
exceptions: NotFound, MofError (Not Changeable, Underflow, Wrong

Type, Nil Object)

"Not Changeable" occurs if this operation is invoked on an Association that has
“isChangeable” set to fase for either AssociationEnd.

The "oldLink" parameter should be encoded as per Section 6.2.1.4, “The Link
Encoding Pattern,” on page 6-5. "Wrong Type" occurs if the link’s encoding is not

correct.

"NotFound,"” "Nil Object,” and Underflow" are directly equivalent to error conditions
for the corresponding specific "remove" operation. "Invalid Object”" and "Inaccessible
Object" cannot occur, as in the specific operation.

Interface

interface RefAssociation : RefBaseObject {
LinkSet ref_all_links ();
boolean ref_link_exists (in Link some_link)

raises (MofError);

RefObjectUList ref_query (in DesignatorType query_end,
in RefObject query_object)

raises (MofError);

void ref_add_link (in Link new_link)

raises (MofError);

void ref_add_link_before (in Link new_link,
in DesignatorType position_end,
in RefObject before)
raises (NotFound, MofError);
void ref_modify_link (in Link old_link,
in DesignatorType position_end,
in RefObject new_object)
raises (NotFound, MofError);
void ref_remove_link (in Link old_link)
raises (NotFound, MofError);
}; Il end of interface RefAssociation

OMG-MOF V1.3 - errata

The Reflective Interfaces October 2001 6-27

6-28

6.2.5 Reflective:: RefPackage abstract

The RefPackage interface is an abstraction for accessing a collection of objects and
their associations. The interface provides an operation to access the meta-object
description for the package, and operations to access the package instance's class proxy
objects (one for each Class) and its association objects.

Supertypes
RefBaseObject

Operations

ref ClassRef
The “refClassRef” operation returns the Class proxy object for a given Class.

specific analog: readonly attribute <ClassName>_class_ref; (see
Section 5.8.10, “Association Template,” on page 5-58)

return type: RefObject

isQuery: yes

parameters: class : in DesignatorType

exceptions: MofError (Invalid Designator, Wrong Designator Kind,

Unknown Designator)

The "class" parameter should designate the M2 level Class whose Class proxy object is
to be returned. "Invalid Designator,” "Wrong Designator Kind," "Unknown
Designator" occur in various situations where this is not the case.

ref AssociationRef

The “refAssociationRef” operation returns an Association object for a given
Association.

specific analog: readonly attribute <AssociationName>_ref; (see
Section 5.8.10, “Association Template,” on page 5-58)

return type: Ref Association

isQuery: yes

parameters: association : DesignatorType

exceptions: MofError (Invalid Designator, Wrong Designator Kind,

Unknown Designator)

OMG-MOF V1.3 - errata October 2001

The "association" parameter should designate the M2 level Association whose
Association object is to be returned. "Invalid Designator,” "Wrong Designator Kind,"
"Unknown Designator" occur in various situations where this is not the case.

refPackageRef
The “refPackageRef” operation returns a Package object for a nested or clustered
Package.
specific analog: readonly attribute <PackageName>_ref; (see Section 5.8.10,
“Association Template,” on page 5-58)
return type: Ref Package
isQuery: yes
parameters: package : DesignatorType
exceptions: MofError (Invalid Designator, Wrong Designator Kind,
Unknown Designator)

The "package" parameter should designate the M2 level Package whose Package object
isto bereturned. It must either be nested within the Package for this Package object, or
imported with “isClustered” set to true. "Invalid Designator," "Wrong Designator
Kind," "Unknown Designator" occur in the situations where this is not the case.

Interface

interface RefPackage : RefBaseObject {

RefObject ref_class_ref (in DesignatorType type)
raises (MofError);

RefAssociation ref_association_ref (
in DesignatorType association)
raises (MofError);

RefPackage ref_package_ref (in DesignatorType package)
raises (InvalidDesignator)

}; Il end of interface RefPackage

6.3 The CORBA IDL for the Reflective Interfaces

This section describes the relevant excerpts of the CORBA IDL for the Reflective
module.

6.3.1 Introduction

The Reflective module starts with forward declarations of the three object types
RefObject, RefAssociation, and RefPackage.

OMG-MOF V1.3 - errata The CORBA IDL for the Reflective Interfaces October 2001 6-29

6-30

module Reflective {
interface RefBaseObject;

interface RefObject;
typedef sequence < RefObject > RefObjectUList;

interface RefAssociation;

interface RefPackage;

6.3.2 Data Types

Operations on the Reflective interfaces need to identify the elements (e.g., attributes,
operations, roles, classes, etc.) that they apply to. Some exceptions have similar
requirements. The type DesignatorType is used to denote uses of RefObject with this
meaning.

typedef RefObject DesignatorType;
Values of attributes, operation parameters, and results etc. are passed using the
CORBA "any" data type. The type ValueType is used to denote uses of "any" with this
meaning. The encoding of values using the "any" type is model specific.

typedef any ValueType;
Links are expressed as bounded sequences of (two) RefObject values.

typedef sequence <RefObject, 2> Link;
typedef sequence <Link> LinkSet;

OMG-MOF V1.3 - errata October 2001

Glossary

This glossary defines the terms that are used to describe the Unified Modeling
Language (UML) and the Meta Object Facility (MOF). In addition to UML and MOF
specific terminology, it includes related terms from OMG standards and object-
oriented analysis and design methods, as well as the domain of object repositories and
meta data managers. Glossary entries are organized alphabetically and MOF specific
entries are identified as ‘[MOF]'.

Notation Conventions

The entries in the glossary usually begin with a lowercase letter. An initial uppercase
letter is used when aword is usually capitalized in standard practice. Acronyms are all
capitalized, unless they traditionally appear in all lowercase.

When one or more words in a multi-word term is enclosed in brackets, it indicates that
those words are optional when referring to the term. For example, use case [class] may
be referred to as simply use case.

The following conventions are used in this glossary:

® Contrast: <term>
Refers to a term that has an opposed or substantively different meaning.

® See: <term>
Refers to a related term that has a similar, but not synonymous meaning.

® Synonym: <term>
Indicates that the term has the same meaning as another term, which is referenced.

® Acronym: <term>
Indicates that the term is an acronym. The reader is usually referred to the spelled-
out term for the definition, unless the spelled-out term is rarely used.

OMG-MOF V1.3 March 2000 1

Glossary Terms

abstract class

abstraction

action

action sequence

action state

activation

active class

active object

activity graph

actor [class]

actual parameter

OMG-MOF V1.3

A class that cannot be directly instantiated. Contrast:
concrete class.

The essential characteristics of an entity that
distinguish it from all other kinds of entities. An
abstraction defines a boundary relative to the
perspective of the viewer.

The specification of an executable statement that
forms an abstraction of a computationa procedure.
An action typically results in a change in the state of
the system, and can be realized by sending a message
to an object or modifying a link or a value of an
attribute.

An expression that resolves to a sequence of actions.

A state that represents the execution of an atomic
action, typically the invocation of an operation.

The execution of an action.

A class whose instances are active objects. See: active
object.

An object that owns a thread and can initiate control
activity. An instance of active class. See: active class,
thread.

A special case of a state machine that is used to
model processes involving one or more classifiers.
Contrast: statechart diagram.

A coherent set of roles that users of use cases play
when interacting with these use cases. An actor has
one role for each use case with which it
communicates.

Synonym: argument.

March 2000

aggregate [class]

aggregation

analysis

analysis time

architecture

argument

artifact

association

association class

association end

OMG-MOF V1.3

A class that represents the “whole” in an aggregation
(whole-part) relationship. See: aggregation.

A special form of association that specifies a whole-
part relationship between the aggregate (whol€e) and a
component part. See: composition.

The part of the software development process whose
primary purpose is to formulate a model of the
problem domain. Analysis focuses what to do, design
focuses on how to do it. Contrast: design.

Refers to something that occurs during an analysis
phase of the software development process. See:
design time, modeling time.

The organizational structure and associated behavior
of a system. An architecture can be recursively
decomposed into parts that interact through interfaces
relationships that connect parts, and constraints for
assembling parts. Parts that interact through interfaces
include classes, components and subsystems.

A binding for a parameter that resolves to a run-time
instance. Synonym: actual parameter. Contrast:
parameter.

A piece of information that is used or produced by a
software development process. An artifact can be a
model, a description, or software. Synonym: product.

The semantic relationship between two or more
classifiers that specifies connections among their
instances.

A model element that has both association and class
properties. An association class can be seen as an
association that also has class properties, or as a class
that also has association properties.

The endpoint of an association, which connects the
association to a classifier.

March 2000

attribute

behavior

behavioral feature

behavioral model
aspect

binary association

binding

boolean

boolean expression

cardinality

child

call

class

classifier

OMG-MOF V1.3

A feature within a classifier that describes a range of
values that instances of the classifier may hold.

The observable effects of an operation or event,
including its results.

A dynamic feature of amodel element, such as an
operation or method.

A model aspect that emphasizes the behavior of the
instances in a system, including their methods,
collaborations, and state histories.

An association between two classes. A specia case of
an n-ary association.

The creation of a model element from a template by
supplying arguments for the parameters of the
template.

An enumeration whose values are true and false.

An expression that evaluates to a boolean value.

The number of elementsin a set. Contrast:
multiplicity.

In a generalization relationship, the specialization of
another element, the parent. See: subclass, subtype.
Contrast: parent.

An action state that invokes an operation on a
classifier.

A description of a set of objects that share the same
attributes, operations, methods, relationships, and
semantics. A class may use a set of interfaces to
specify collections of operations it provides to its
environment. See: interface.

A mechanism that describes behavioral and structural
features. Classifiers include interfaces, classes,
datatypes, and components.

March 2000

classification

class diagram

client

collaboration

collaboration diagram

comment

compile time

component

The assignment of an object to a classifier. See
dynamic classification, multiple classification and
static classification.

A diagram that shows a collection of declarative
(static) model elements, such as classes, types, and
their contents and relationships.

A classifier that requests a service from another
classifier. Contrast: supplier.

The specification of how an operation or classifier,
such as a use case, is realized by a set of classifiers
and associations playing specific roles used in a
specific way. The collaboration defines an interaction.
See: interaction.

A diagram that shows interactions organized around
the structure of a model, using either classifiers and
associations or instances and links. Unlike a sequence
diagram, a collaboration diagram shows the

rel ationships among the instances. Sequence diagrams
and collaboration diagrams express similar
information, but show it in different ways. See:
sequence diagram.

An annotation attached to an element or a collection
of elements. A note has no semantics. Contrast:
constraint.

Refers to something that occurs during the
compilation of a software module. See: modeling
time, run time.

A physical, replaceable part of a system that packages
implementation and provides the realization of a set
of interfaces. A component represents a physical
piece of implementation of a system, including
software code (source, binary or executable) or
equivalents such as scripts or command files.

OMG-MOF V1.3 March 2000

component diagram

composite [class]

composite
aggregation

composite state

composition

concrete class

concurrency

concurrent substate

constraint

container

OMG-MOF V1.3

A diagram that shows the organizations and
dependencies among components.

A class that is related to one or more classes by a
composition relationship. See: composition.

Synonym: composition.

A state that consists of either concurrent (orthogonal)
substates or sequential (digjoint) substates. See:
substate.

A form of aggregation association with strong
ownership and coincident lifetime as part of the
whole. Parts with non-fixed multiplicity may be
created after the composite itself, but once created
they live and die with it (i.e., they share lifetimes).
Such parts can also be explicitly removed before the
death of the composite. Composition may be
recursive. Synonym: composite aggregation.

A class that can be directly instantiated. Contrast:
abstract class.

The occurrence of two or more activities during the
same time interval. Concurrency can be achieved by
interleaving or simultaneously executing two or more
threads. See: thread.

A substate that can be held simultaneously with other
substates contained in the same composite state. See:
composite state. Contrast: disjoint substate.

A semantic condition or restriction. Certain
constraints are predefined in the UML, others may be
user defined. Constraints are one of three extensibility
mechanisms in UML. See: tagged value, stereotype.

1. An instance that exists to contain other instances,
and that provides operations to access or iterate over
its contents. (for example, arrays, lists, sets). 2. A
component that exists to contain other components.

March 2000

containment
hierarchy

context

datatype

defining model [MOF]

delegation

dependency

deployment diagram

derived element

A namespace hierarchy consisting of model elements,
and the containment relationships that exist between
them. A containment hierarchy forms a graph.

A view of a set of related modeling elements for a
particular purpose, such as specifying an operation.

A descriptor of a set of values that lack identity and
whose operations do not have side effects. Datatypes
include primitive pre-defined types and user-definable
types. Pre-defined types include numbers, string and
time. User-definable types include enumerations.

The model on which arepository is based. Any
number of repositories can have the same defining
model.

The ability of an object to issue a message to another
object in response to a message. Delegation can be
used as an alternative to inheritance. Contrast:
inheritance.

A relationship between two modeling elements, in
which a change to one modeling element (the
independent element) will affect the other modeling
element (the dependent element).

A diagram that shows the configuration of run-time
processing hodes and the components, processes, and
objects that live on them. Components represent run-
time manifestations of code units. See: component
diagrams.

A model element that can be computed from another
element, but that is shown for clarity or that is
included for design purposes even though it adds no
semantic information.

OMG-MOF V1.3 March 2000

design

design time

development process

diagram

disjoint substate

distribution unit

domain

dynamic
classification

element

OMG-MOF V1.3

The part of the software development process whose
primary purpose is to decide how the system will be
implemented. During design strategic and tactical
decisions are made to meet the required functiona
and quality requirements of a system.

Refers to something that occurs during a design phase
of the software development process. See: modeling
time. Contrast: analysis time.

A set of partially ordered steps performed for a given
purpose during software development, such as
constructing models or implementing models.

A graphical presentation of a collection of model
elements, most often rendered as a connected graph of
arcs (relationships) and vertices (other model
elements). UML supports the following diagrams:
class diagram, object diagram, use case diagram,
sequence diagram, collaboration diagram, state
diagram, activity diagram, component diagram, and
deployment diagram.

A substate that cannot be held simultaneously with
other substates contained in the same composite state.
See: composite state. Contrast: concurrent substate.

A set of objects or components that are allocated to a
process or a processor as a group. A distribution unit
can be represented by a run-time composite or an

aggregate.

An area of knowledge or activity characterized by a
set of concepts and terminology understood by
practitioners in that area.

A semantic variation of generalization in which an
object may change its classifier. Contrast: static
classification.

An atomic constituent of a model.

March 2000

entry action

enumeration

event

exit action

export

expression

extend

facade

feature

OMG-MOF V1.3

An action executed upon entering a state in a state
machine
regardless of the transition taken to reach that state.

A list of named values used as the range of a
particular attribute type. For example, RGBColor =
{red, green, blue}. Boolean is a predefined
enumeration with values from the set {false, true}.

The specification of a significant occurrence that has
alocation in time and space. In the context of state
diagrams, an event is an occurrence that can trigger a
transition.

An action executed upon exiting a state in a state
machine
regardless of the transition taken to exit that state.

In the context of packages, to make an element visible
outside its enclosing namespace. See: visibility.
Contrast: export [OMA], import.

A string that evaluates to avaue of a particular type.
For example, the expression “(7 + 5 * 3)” evaluates to
a value of type number.

A relationship from an extension use case to a base
use case, specifying how the behavior defined for the
extension use case augments (subject to conditions
specified in the extension) the behavior defined for
the base use case. The behavior is inserted at the
location defined by the extension point in the base use
case. The base use case does not depend on
performing the behavior of the extension use case.
See extension point, include.

A stereotyped package containing only references to
model elements owned by another package. It is used
to provide a ‘ public view’ of some of the contents of
a package.

A property, like operation or attribute, which is
encapsulated within a classifier, such as an interface, a
class, or a datatype.

March 2000

final state

fire

focus of control

formal parameter

framework

generalizable element

generalization

guard condition

implementation

implementation
inheritance

10 OMG-MOF V1.3

A special kind of state signifying that the enclosing
composite state or the entire state machineis
completed.

To execute a state transition. See: transition.

A symbol on a sequence diagram that shows the
period of time during which an object is performing
an action, either directly or through a subordinate
procedure.

Synonym: parameter.

1. A stereotyped package consisting mainly of
patterns. See: pattern.

2. An architectural pattern that provides an extensible
template for for applications within a specific domain.

A model element that may participate in a
generalization relationship. See: generalization.

A taxonomic relationship between a more general
element and a more specific element. The more
specific element is fully consistent with the more
general element and contains additional information.
An instance of the more specific element may be used
where the more general element is allowed. See:
inheritance.

A condition that must be satisfied in order to enable
an associated transition to fire.

A definition of how something is constructed or
computed. For example, aclass is an implementation
of atype, a method is an implementation of an
operation.

The inheritance of the implementation of a more
specific element. Includes inheritance of the interface.
Contrast: interface inheritance.

March 2000

import

include

inheritance

instance

interaction

interaction diagram

interface

interface inheritance

internal transition

In the context of packages, a dependency that shows
the packages whose classes may be referenced within
a given package (including packages recursively
embedded within it). Contrast: export.

A relationship from a base use case to an inclusion
use case, specifying how the behavior for the base use
case contains the behavior of the inclusion use case.
The behavior is included at the location which is
defined in the base use case. The base use case
depends on performing the behavior of the inclusion
use case, but not on its structure (i.e., attributes or
operations). See extend.

The mechanism by which more specific elements
incorporate structure and behavior of more general
elements related by behavior. See generalization.

An entity to which a set of operations can be applied
and which has a state that stores the effects of the
operations. See: object.

A specification of how stimuli are sent between
instances to perform aspecific task. The interaction is
defined in the context of a collaboration. See
collaboration.

A generic term that applies to several types of
diagrams that emphasize object interactions. These
include collaboration diagrams and sequence
diagrams.

A named set of operations that characterize the
behavior of an element.

The inheritance of the interface of a more specific
element. Does not include inheritance of the
implementation. Contrast: implementation
inheritance.

A transition signifying a response to an event without
changing the state of an object.

OMG-MOF V1.3 March 2000

11

layer

link

link end

message

metaclass

meta-metamodel

metamodel

metaobject

method

model

[MOF]

OMG-MOF V1.3

The organization of classifiers or packages at the
same level of abstraction. A layer represents a
horizontal slice through an architecture, whereas a
partition represents a vertical slice. Contrast:
partition.

A semantic connection among a tuple of objects. An
instance of an association. See: association.

An instance of an association end. See: association
end.

A specification of the conveyance of information from
one instance to another, with the expectation that
activity will ensue. A message may specify theraising
of asignal or the call of an operation.

A class whose instances are classes. Metaclasses are
typically used to construct metamodels.

A model that defines the language for expressing a
metamodel. The relationship between a meta-
metamodel and a metamodel is analogous to the
relationship between a metamodel and a model.

A model that defines the language for expressing a
model.

A generic term for all metaentities in a metamodeling
language. For example, metatypes, metaclasses,
metaattributes, and metaassociations.

The implementation of an operation. It specifies the
algorithm or procedure associated with an operation.

An abstraction of a physical system, with a certain
purpose.. See: physical system.

Usage note: In the context of the MOF specification,

which describes a meta-metamodel, for brevity the
meta-metamode is frequently to as simply the model.

March 2000

model aspect

model elaboration

model element

[MOF]

modeling time

module

multiple classification

multiple inheritance

A dimension of modeling that emphasizes particular
qualities of the metamodel. For example, the
structural model aspect emphasizes the structural
qualities of the metamodel.

The process of generating a repository type from a
published model. Includes the generation of interfaces
and implementations which allows repositories to be
instantiated and populated based on, and in
compliance with, the model elaborated.

An element that is an abstraction drawn from the
system being modeled. Contrast: view element.

In the M OF specification model elements are
considered to be metaobjects.

Refers to something that occurs during a modeling
phase of the software development process. It
includes analysis time and design time. Usage note:
When discussing object systems, it is often important
to distinguish between modeling-time and run-time
concerns. See: analysis time, design time. Contrast:
run time.

A software unit of storage and manipulation. Modules
include source code modules, binary code modules,
and executable code modules. See: component.

A semantic variation of generalization in which an
object may belong directly to more than one classifier.
See: static classification, dynamic classification.

A semantic variation of generalization in which atype
may have more than one supertype. Contrast: single
inheritance.

OMG-MOF V1.3 March 2000

13

multiplicity

multi-valued [MOF]

n-ary association

name

namespace

node

object

object diagram

14 OMG-MOF V1.3

A specification of the range of allowable cardinalities
that a set may assume. Multiplicity specifications may
be given for roles within associations, parts within
composites, repetitions, and other purposes.
Essentially amultiplicity isa (possibly infinite) subset
of the non-negative integers. Contrast: cardinality.

A model element with multiplicity defined whose
Multiplicity Type:: upper attribute is set to a number
greater than one. The term multi-valued does not
pertain to the number of values held by an attribute,
parameter, etc. at any point in time. Contrast: single-
valued.

An association among three or more classes. Each
instance of the association is an n-tuple of values
from the respective classes. Contrast: binary
association.

A string used to identify a model element.

A part of the model in which the names may be
defined and used. Within a namespace, each hame has
a unique meaning. See: name.

A node is classifier that represents a run-time
computational resource, which generally has at least a
memory and often processing capability. Run-time
objects and components may reside on nodes.

An entity with a well-defined boundary and identity
that encapsulates state and behavior. State is
represented by attributes and relationships, behavior is
represented by operations, methods, and state
machines. An object is an instance of a class. See:
class, instance.

A diagram that encompasses objects and their
relationships at a point in time. An object diagram
may be considered a special case of a class diagram
or a collaboration diagram. See: class diagram,
collaboration diagram.

March 2000

object flow state

object lifeline

operation

package

parameter

parameterized
element

parent

participate

partition

pattern

OMG-MOF V1.3

A state in an activity graph that represents the passing
of an object from the output of actionsin one state to
the input of actions in another state.

A line in a sequence diagram that represents the
existence of an object over a period of time. See:
sequence diagram.

A service that can be requested from an object to
effect behavior. An operation has a signature, which
may restrict the actual parameters that are possible.

A general purpose mechanism for organizing
elements into groups. Packages may be nested within
other packages.

The specification of a variable that can be changed,
passed, or returned. A parameter may include a name,
type, and direction. Parameters are used for
operations, messages, and events. Synonyms: formal
parameter. Contrast: argument.

The descriptor for a class with one or more unbound
parameters. Synonym: template.

In a generalization relationship, the generalization of
another element, the child. See: subclass, subtype.
Contrast: child.

The connection of a model element to a relationship
or to areified relationship. For example, a class
participates in an association, an actor participates in
a use case.

1. activity graphs: A portion of an activity graphs that
organizes the responsibilities for actions. See:
swimlane.

2. architecture: A set of related classifiers or packages
at the same level of abstraction or across layersin a
layered architecture. A partition represents a vertical
slice through an architecture, whereas a layer
represents a horizontal dlice. Contrast: layer.

A template collaboration.

March 2000 15

persistent object

postcondition

precondition

primitive type

process

projection

property

pseudo-state

physical system

16 OMG-MOF V1.3

An object that exists after the process or thread that
created it has ceased to exist.

A constraint that must be true at the completion of an
operation.

A constraint that must be true when an operation is
invoked.

A pre-defined basic datatype without any
substructure, such as an integer or a string.

1. A heavyweight unit of concurrency and execution
in an operating system. Contrast: thread, which
includes heavyweight and lightweight processes. If
necessary, an implementation distinction can be made
using stereotypes.

2. A software development process—the steps and
guidelines by which to develop a system.

3. To execute an algorithm or otherwise handle
something dynamically.

A mapping from a set to a subset of it.

A named value denoting a characteristic of an
element. A property has semantic impact. Certain
properties are predefined in the UML; others may be
user defined. See: tagged value.

A vertex in a state machine that has the form of a
state, but doesn’t behave as a state. Pseudo-states
include initial and history vertices.

1. The subject of a model.

2. A collection of connected physical units, which can
include software, hardware and people, that are
organized to accomplish a specific purpose. A
physical system can be described by one or more
models, possibly from different viewpoints. Contrast:
system.

March 2000

published model
[MOF]

qualifier

receive [a message]

receiver [object]

reception

reference

refinement

relationship

repository

requirement

responsibility

reuse

A model which has been frozen, and becomes
available for instantiating repositories and for the
support in defining other models. A frozen model’s
model elements cannot be changed.

An association attribute or tuple of attributes whose
values partition the set of objects related to an object
across an association.

The handling of a stimulus passed from a sender
instance. See: sender, receiver.

The object handling a stimulus passed from a sender
object. Contrast: sender.

A declaration that a classifier is prepared to react to
the receipt of asignal.

1. A denotation of a model element.
2. A named slot within a classifier that facilitates
navigation to other classifiers. Synonym: pointer.

A relationship that represents a fuller specification of
something that has already been specified at a certain
level of detail. For example, adesign classis a
refinement of an analysis class.

A semantic connection among model elements.
Examples of relationships include associations and
generalizations.

A facility for storing object models, interfaces, and
implementations.

A desired feature, property, or behavior of a system.

A contract or obligation of a classifier.

The use of a pre-existing artifact.

OMG-MOF V1.3 March 2000

17

role

run time

scenario

schema [MOF]

semantic variation
point

send [a message]

sender [object]

sequence diagram

18 OMG-MOF V1.3

The named specific behavior of an entity participating
in a particular context. A role may be static (e.g., an
association end) or dynamic (e.g., a collaboration
role).

The period of time during which a computer program
executes. Contrast: modeling time.

A specific sequence of actions that illustrates
behaviors. A scenario may be used to illustrate an
interaction or the execution of a use case instance.
See: interaction.

In the context of the MOF, a schema is analogous to a
package which is a container of model elements.
Schema corresponds to an M OF package. Contrast:
metamodel, package.

A point of variation in the semantics of a metamodel.
It provides an intentional degree of freedom for the
interpretation of the metamodel semantics.

The passing of a stimulus from a sender instance to a
receiver instance. See: sender, receiver.

The object passing a stimulus to a receiver object.
Contrast: receiver.

A diagram that shows object interactions arranged in
time sequence. In particular, it shows the objects
participating in the interaction and the sequence of
messages exchanged. Unlike a collaboration diagram,
a sequence diagram includes time sequences but does
not include object relationships. A sequence diagram
can exist in a generic form (describes all possible
scenarios) and in an instance form (describes one
actual scenario). Sequence diagrams and collaboration
diagrams express similar information, but show it in
different ways. See: collaboration diagram.

March 2000

signal

signature

single inheritance

single valued [MOF]

specification

state

statechart diagram

state machine

static classification

The specification of an asynchronous stimulus
communicated between instances. Signals may have
parameters.

The name and parameters of a behavioral feature. A

signature may include an optional returned parameter.

A semantic variation of generalization in which atype
may have only one supertype. Synonym: multiple
inheritance [OMA]. Contrast: multiple inheritance.

A model element with multiplicity defined is single
valued when its Multiplicity Type:: upper attribute is
set to one. The term single-valued does not pertain to
the number of values held by an attribute, parameter,
etc., at any point in time, since a single-valued
attribute (for instance, with amultiplicity lower bound
of zero) may have no value. Contrast: multi-valued.

A declarative description of what something is or
does. Contrast: implementation.

A condition or situation during the life of an object
during which it satisfies some condition, performs
some activity, or waits for someevent. Contrast: state
[OMA].

A diagram that shows a state machine. See: state
machine.

A behavior that specifies the sequences of states that
an object or an interaction goes through during its life
in response to events, together with its responses and
actions.

A semantic variation of generalization in which an
object may not change classifier. Contrast: dynamic
classification.

OMG-MOF V1.3 March 2000

19

20

stereotype

stimulus

string

structural feature

structural model
aspect

subactivity state

subclass

submachine state

substate

subpackage

OMG-MOF V1.3

A new type of modeling element that extends the
semantics of the metamodel. Stereotypes must be
based on certain existing types or classes in the
metamodel. Stereotypes may extend the semantics,
but not the structure of pre-existing types and classes.
Certain stereotypes are predefined in the UML, others
may be user defined. Stereotypes are one of three
extensibility mechanisms in UML. See: constraint,
tagged value.

The passing of information from one instance to
another, such as raising a signal or invoking an
operation. The receipt of a signal is normally
considered an event. See: message.

A seguence of text characters. The details of string
representation depend on implementation, and may
include character sets that support international
characters and graphics.

A static feature of a model element, such as an
attribute.

A model aspect that emphasizes the structure of the
objects in a system, including their types, classes,
relationships, attributes, and operations.

A state in an activity graph that represents the
execution of a non-atomic sequence of steps that has
some duration.

In a generalization relationship, the specialization of
another class; the superclass. See: generalization.
Contrast: superclass.

A state in a state machine which is equivalent to a
composite state but its contents is described by
another state machine.

A state that is part of a composite state. See:
concurrent state, disjoint state.

A package that is contained in another package.

March 2000

subsystem

subtype

superclass

supertype

supplier

swimlane

synch state

system

tagged value

template

OMG-MOF V1.3

A grouping of model elements that represents a
behavioral unit in a physical system. A subsystem
offers interfaces and has operations. In addition, the
model elements of a subsystem can be partitioned into
specification and realization elements. See package.
See: physical system.

In a generalization relationship, the specialization of
another type; the supertype. See: generalization.
Contrast: supertype.

In a generalization relationship, the generalization of
another class; the subclass. See: generalization.
Contrast: subclass.

In a generalization relationship, the generalization of
another type; the subtype. See: generalization.
Contrast: subtype.

A classifier that provides services that can be invoked
by others. Contrast: client.

A partition on a activity diagram for organizing the
responsibilities for actions. Swimlanes typically
correspond to organizational units in a business
model. See: partition.

A vertex in a state machine used for synchronizing
the
concurrent regions of a state machine.

A top-level subsystem in a model. Contrast: physical
system.

The explicit definition of a property as a name-value
pair. In atagged value, the name isreferred as the tag.
Certain tags are predefined in the UML; others may
be user defined. Tagged values are one of three
extensibility mechanisms in UML. See: constraint,
stereotype.

Synonym: parameterized element.

March 2000

21

thread [of control]

time event

time expression

timing mark

top level

trace

transient object

transition

type

22 OMG-MOF V1.3

A single path of execution through a program, a
dynamic model, or some other representation of
control flow. Also, a stereotype for the
implementation of an active object as lightweight
process. See process.

An event that denotes the time elapsed since the
current state was entered. See: event.

An expression that resolves to an absolute or relative
value of time.

A denotation for the time at which an event or
message occurs. Timing marks may be used in
constraints.

A stereotype of package denoting the top-most
package in a containment hierarchy. The topLevel
stereotype defines the outer limit for looking up
names, as namespaces “see” outwards. For example,
opLevel subsystem represents the top of the
subsystem containment hierarchy.

A dependency that indicates a historical or process
relationship between two elements that represent the
same concept without specific rules for deriving one
from the other.

An object that exists only during the execution of the
process or thread that created it.

A relationship between two states indicating that an
object in the first state will perform certain specified
actions and enter the second state when a specified
event occurs and specified conditions are satisfied. On
such a change of state, the transition is said to fire.

A stereotype of classthat is used to specify a domain
of instances (objects) together with the operations
applicable to the objects. A type may not contain any
methods. See: class, instance. Contrast: interface.

March 2000

type expression

uninterpreted

usage

use case [class]

use case diagram

use case instance

use case model

utility

value

vertex

An expression that evaluates to a reference to one or
more types.

A placeholder for atype or types whose
implementation is not specified by the UML. Every
uninterpreted value has a corresponding string
representation. See: any [CORBA].

A dependency in which one element (the client)
requires the presence of another element (the
supplier) for its correct functioning or
implementation.

The specification of a sequence of actions, including
variants, that a system (or other entity) can perform,
interacting with actors of the system. See: use case
instances.

A diagram that shows the relationships among actors
and use cases within a system.

The performance of a sequence of actions being
specified in a use case. An instance of ause case. See:
use case class.

A model that describes a system’s functional
requirements in terms of use cases.

A stereotype that groups global variables and
procedures in the form of a class declaration. The
utility attributes and operations become global
variables and global procedures, respectively. A utility
is not a fundamental modeling construct, but a
programming convenience.

An element of atype domain.

A source or atarget for atransition in a state machine.
A vertex can be either a state or a pseudo-state. See:
state, pseudo-state.

OMG-MOF V1.3 March 2000 23

24

view

view element

view projection

visibility

OMG-MOF V1.3

A projection of a model, which is seen from a given
perspective or vantage point and omits entities that are
not relevant to this perspective.

A view element is a textual and/or graphical
projection of a collection of model elements.

A projection of model elements onto view elements.
A view projection provides a location and a style for
each view element.

An enumeration whose value (public, protected, or
private) denotes how the model element to which it
refers may be seen outside its enclosing hamespace.

March 2000

XMI for the MOF

A

Note — The copyright information was added as comments to the XML document.

The first section of this Appendix gives a rendering of the MOF Model as an XML
document encoded using the XML production rules defined in the OMG XMI

specification. This XML document is an encoding of the normative MOF Model. The
second section of this Appendix gives the normative XM DTD for MOF meta-model

interchange.

The XML document and the DTD were produced automatically using XMI compliant

tools.

Al TheMOF Model in XML

<?xm version = '1.0" encoding = '1S0O 8859-1" ?>
<I DOCTYPE XM SYSTEM ' nof.dtd >
<XM xm .version="1.0" >

<l
<l
<l
<l
<l

<l
<l
<l
<l
<l
<l
<l
<l

Meta Object Facility (MOF) Specification
Version 1.3.1

Noverber 2001

bj ect Management Group, Inc.

Appendi x A: XM for the MOF

Copyright 1997-1999, DSTC (Cooperative Research Centre for
Enterprise Distributed Systens Technol ogy)

Copyright 1997-1999, Electronic Data Systens

Copyri ght 1997-1999, |BM Corporation

Copyright 1997-1999, International Conputers Linited

Copyright 1997-1999, nbjectivity Inc.

Copyright 2000, Object Managenment G oup

Copyright 1997-1999, O acle Corporation

OMG-MOF, v1.3.1 November 2001

A

<l'-- Copyright 1997-1999, Pl atinum Technol ogy Inc. -->
<l-- Copyright 1997-1999, Rational Software Corporation -->
<l'-- Copyright 1997-1999, System Software Associ ates -->
<l-- Copyright 1997-1999, Unisys Corporation -->
<l-- The conpanies listed above have granted to the Object -->
<l-- Managenent Group, Inc. (OM5 a nonexclusive, royalty-free, -->
<l-- paid up, worldwide license to copy and distribute this -->
<l-- docunent and to nodify this document and distribute copies -->
<l-- of the nodified version. Each of the copyright hol ders -->
<l-- listed above has agreed that no person shall be deenmed to -->
<l-- have infringed the copyright in the included material of -->
<l'-- any such copyright holder by reason of having used the -->
<!-- specification set forth herein or having conforned any -->
<l-- conputer software to the specification. -->
<XM . header >
<XM . et anodel xmi .nanme=’org. ong. nof. Model’ xmi .version="1.1/>
</ XM . header >
<XM . cont ent >
<I-- -->
<l-- -->
<!-- Contents of Package: Model -->
<I-- -->
<l-- -->
<Mbdel . Package xmi.id="al" >
<Mbdel . Model El enent . name>Model </ Model . Model El erent . name>
<Mbdel . Mbdel El enent . annot ati on></ Mbdel . Model El enent . annot ati on>
<Mbdel . General i zabl eEl enent . visibility xm .value="public_vis' />
<Mbdel . Gener al i zabl eEl enent . i sAbstract xm .value="false />
<Mbdel . Gener al i zabl eEl enent . i sRoot xni.value="false' />
<Mbdel . Gener al i zabl eEl enent . i sLeaf xni.value="false'/>
<Mbdel . Nanespace. cont ent s>
<l-- -->
<l-- -->
<!-- Contents of DataType: NaneType -->
<l-- -->
<l-- -->

<Mbdel . Dat aType xmi .id="a97’ >

<Model
<Model
. Ceneralizabl eElement.visibility
<Model

<Mode

<Mode
<Mode
<Model

. Gener al i zabl eEl enent
. Gener al i zabl eEl enent

Mbdel El enent . name>NaneType</ Model . Mbdel El enent . name>

Model El emrent . annot at i on></ Mbdel

Gener al i zabl eEl enent . i sAbst ract
.1 sRoot xm .
.isLeaf xm.
Dat aType. t ypeCode>

<XM . Cor baTypeCode>

A-2

OMG-MOF, v1.3.1

Model El enent . annot ati on>
xm . val ue="public_vis' />
xm . val ue='fal se' />

val ue="fal se’'/ >

val ue="fal se’' />

November 2001

<XM . Cor baTcAl i as xm .tcNanme=" NaneType’
xm .tcld="1DL: org. ong. nof / Model / NaneType: 1. 0’ >
<XM . Cor baTypeCode>
<XM . CorbaTcString xm .tcLength="0"/>
</ XM . Cor baTypeCode>
</ XM . Cor baTcAl i as>
</ XM . Cor baTypeCode>
</ Mbdel . Dat aType. t ypeCode>
</ Model . Dat aType>

<l-- -->
<l-- -->
<!-- Contents of DataType: AnnotationType -->
<l-- -->
<l-- -->

<Mbdel . Dat aType xm .id="al09 >
<Mbdel . Mbdel El erent . nane>Annot ati onType</ Mbdel . Model El enent . name>
<Mbdel . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xmni.val ue="fal se' />
<Mbdel . General i zabl eEl ement . i sRoot xm .val ue='false'/>
<Model . General i zabl eEl ement . i sLeaf xm .value="false' />
<Mbdel . Dat aType. t ypeCode>
<XM . Cor baTypeCode>
<XM . Cor baTcAl i as xm .tcName=" Annot ati onType’
xm . tcld="1DL: org. ong. nof / Model / Annot ati onType: 1. 0’ >
<XM . Cor baTypeCode>
<XM . CorbaTcString xm .tcLength="0"/>
</ XM . Cor baTypeCode>
</ XM . Cor baTcAl i as>
</ XM . Cor baTypeCode>
</ Mbdel . Dat aType. t ypeCode>
</ Model . Dat aType>

<l-- -->
<l-- -->
<!-- Contents of Cl ass: Model El enent -->
<l-- -->
<l-- -->

<Mbdel . C ass xm .id="a29 >
<Mbdel . Mbdel El enent . nane>Mbodel El enent </ Model . Model El enent . nane>
<Model . Mbdel El enent . annot at i on></ Model . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xm .value="true' />
<Model . Gener al i zabl eEl enent . i sRoot xm .val ue='false' />
<Model . Gener al i zabl eEl enent . i sLeaf xm .value="false />
<Model . d ass. i sSingl eton xm .val ue="fal se’ />
<Mbdel . Model El enent . constrai nt s>
<Mbdel . Constraint xm.idref="cl'/>

OMG-MOF, v1.3.1 November 2001 A-3

<Mbdel . Constraint xm .idref="¢c2'/>
<Mbdel . Constraint xm .idref="¢c3 />
<Mbdel . Constraint xm .idref="c4' />
</ Model . Model El enent. constrai nt s>
<Mbdel . Nanespace. cont ent s>
<Model . Constraint xm.id="cl’ >

<Mbdel . Mbdel El enent . name>Muist BeCont ai nedUnl essPackage</ Mbdel . Model El enent . nane>

<Mbdel . Mbdel El errent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv:
not self.ocl|sTypeOf (Package) inplies
sel f.container -> size =1
</ XM . any>
</ Mbdel . Constrai nt. expressi on>
<Model . Constrai nt. | anguage>0CL</ Model . Constrai nt. | anguage>
<Model . Constrai nt. eval uati onPolicy xm .val ue="deferred />
<Mbdel . Const r ai nt. constrai nedEl enent s>
<Model . d ass xni.idref="a29 /> <!-- Mdel.Mdel El enent -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="c2 >

<Mbdel . Mbdel El enent . nanme>Fr ozenAt t ri but esCannot BeChanged</ Model . Model El enent . nanme>

<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM.any xm .type="string" xm.name="">
inv:
sel f.isFrozen() inplies
l et myTypes = sel f.ocl Type() -> all Supertypes() ->
i ncl udes(sel f.ocl Type()) in
let myAttrs : Set(Attribute) =
sel f. Ref Base(bj ect: :ref MetaObj ect () ->
asCcl Type(d ass) - >
fi ndEl enent sByTypeExt ended(Attribute) in
nyAttrs -> forAll(a |
sel f. Ref Qbj ect::refValue@re(a) =
sel f. Ref Obj ect::refValue(a))
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Model . Constrai nt. eval uati onPolicy xm .value="imedi ate' />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Mbdel . d ass xni.idref="a29’ /> <!-- Mdel.Mdel El enent -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Model . Const r ai nt >
<Mbdel . Constraint xm.id="c3 >

<Mbdel . Model El ement . nane>Fr ozenEl enent sCannot BeDel et ed</ Model . Model El emrent . nane>

<Mbdel . Model El enent . annot at i on></ Mbdel . Model El enent . annot ati on>

A-4 OMG-MOF, v1.3.1 November 2001

<Model . Const rai nt . expr essi on>
<XM.any xm .type="string" xm.name="">
post :
(self.isFrozen@re() and
sel f. contai ner@re -> notEnpty and
sel f.contai ner.isFrozen@re()) inplies
(sel f.container.bject::non_existent() or
not sel f.Cbject::non_existent())
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xn.value="inmedi ate’ />
<Model . Constrai nt. constrai nedEl enent s>
<Model . Cl ass xmi.idref="a29'/> <!-- Mdel.Mdel El ement -->
</ Model . Constrai nt. constrai nedEl enent s>
</ Model . Constr ai nt >
<Mbdel . Constraint xm.id="c4 >

<Mbdel . Mbdel El enent . nanme>Fr ozenDependenci esCannot BeChanged</ Mbdel . Model El enent . nane>

<Mbdel . Model El enent . annot at i on></ Mbdel . Model El enent . annot ati on>

<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
post:
sel f.isFrozen() inplies

et myClasses = self.ocl Type() -> all Supertypes() ->

i ncl udes(sel f.ocl Type()) in

et myRefs = Set(Reference) =

sel f. Ref Base(bj ect: :ref MetaObj ect () ->
asCcl Type(d ass) - >

fi ndEl enent sBy TypeExt ended(Ref erence) in
| et myDepRefs = nyRefs ->

select(r |

Set{"contents", "constraints", "supertypes"
"type", "referencedEnd", "exceptions"

"i nport edNanespace", "el enents"} ->

i ncludes(r.nanme)) in

nyDepRefs - > ;

forAll (r |

sel f. Ref Obj ect::refValue@re(r) =

sel f. Ref Obj ect::refValue(r))

</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt .| anguage>0OCL</ Model . Constrai nt. | anguage>
<Model . Constrai nt. eval uati onPolicy xm .value="imedi ate' />
<Mbdel . Const rai nt. constrai nedEl enent s>

<Model . C ass xni.idref="a29' /> <!-- Mdel.Mdel El enent -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Model . Const r ai nt >
<Mbdel . Attri but e>
<Mbdel . Mbdel El enrent . nane>nane</ Mbdel . Model El enent . nane>

<Mbdel . Model El enent . annot at i on></ Mbdel . Model El enent . annot ati on>

OMG-MOF, v1.3.1 November 2001

A-6

<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM .field>1</ XM .field>
<XM .field>1</ XM .field>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xnm .value="false' />
<Mbdel . TypedEl enent . t ype>
<Mbdel . Dat aType xmni .idref="a97' /> <l-- Model . NaneType -->
</ Mbdel . TypedE!l enent . t ype>
</ Model . Attri bute>
<Model . Attri but e>
<Mbdel . Mbdel El erent . nane>qual i f i edNane</ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM .field>1</ XM .fiel d>
<XM .field>-1</ XM .fiel d>
<XM . field>true</ XM .field>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm . val ue="fal se’ />
<Mbdel . Attribute.isDerived xni.value="true' />
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xmni .idref="a97' /> <l-- Model . NaneType -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Attri bute>
<Mbdel . Attri but e>
<Mbdel . Mbdel El erent . nane>annot at i on</ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM .field>1</ XM .fiel d>
<XM .field>1</ XM .fiel d>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xn .value="fal se' />
<Model . TypedEl enent . t ype>
<Model . Dat aType xmi .idref="al109" /> <!-- MNodel.Annotati onType -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Attri bute>
<Mbdel . Ref er ence>
<Mbdel . Mbdel El errent . nane>r equi r edEl enent s</ Model . Mbdel El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Model . Mbdel El enent . annot ati on>

OMG-MOF, v1.3.1 November 2001

xm

<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM .field>0</XM .field>
<XM .field>-1</ XM .fiel d>
<XM . field>fal se</ XM . fiel d>
<XM . field>true</ XM .field>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm . val ue="fal se’ />
<Mbdel . TypedEl enent . t ype>
<Model . Class xni.idref="a29 /> <!--
</ Mbdel . TypedE!l enent . t ype>
<Mbdel . Ref erence. r ef er encedEnd>
<Mbdel . Associ ati onEnd xm .idref="2al31"/> <!--
</ Mbdel . Ref er ence. r ef er encedEnd>
</ Mbdel . Ref erence>

Model . Model El enent -->

Model . DependsOn. provi der -->

<l-- -
<l-- -->
<!-- Contents of DataType: DependencyKind -->
<l-- -->
<l-- -->

<Model . Dat aType xm .id="all6’ >

<Mbdel . Mbdel El errent . nanme>DependencyKi nd</ Mbdel . Mbdel El enent . nane>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xni.value="public_vis' />
<Mbdel . Gener al i zabl eEl enent . i sAbstract xm .value="false />

<Mbdel . Gener al i zabl eEl enrent . i sRoot xmi .val ue="fal se’ />

<Mbdel . Gener al i zabl eEl enrent . i sLeaf xm .value="false />

<Mbdel . Dat aType. t ypeCode>
<XM . Cor baTypeCode>
<XM . Cor baTcAl i as xm .t cNane=" DependencyKi nd’
xm . tcld="1DL: org. ong. nof / Model / Model El ement Cl ass/ DependencyKind: 1. 0’ >
<XM . Cor baTypeCode>
<XM . CorbaTcString xm .tcLength="0"/>
</ XM . Cor baTypeCode>
</ XM . Cor baTcAl i as>
</ XM . Cor baTypeCode>
</ Mbdel . Dat aType. t ypeCode>
</ Mbdel . Dat aType>

<Mbdel . Const ant >
<Mbdel . Mbdel El erent . nane>Cont ai ner Dep</ Model . Model El enent . nane>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Mbdel . Const ant . val ue>
<XM .any xm .type="string"

. hame="Model . Model El enment . DependencyKi nd" >cont ai ner </ XM . any>

</ Mbdel . Const ant . val ue>
<Model . TypedEl enent . t ype>

<Mbodel . Dat aType xmi .idref="all16’/> <!-- Model El ement. DependencyKi nd -->

OMG-MOF, v1.3.1 November 2001

xm

Xxm .

xm

xm

A-8

</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Const ant >
<Model . Const ant >

<Mbdel . Mbdel El errent . nane>Cont ent sDep</ Mbdel . Mbdel El erent . nanme>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Mbdel . Const ant . val ue>

<XM .any xm .type="string"

. hame="Model . Mbdel El ement . DependencyKi nd" >cont ent s</ XM . any>

</ Mbdel . Const ant . val ue>
<Mbdel . TypedEl enent . t ype>
<Model . Dat aType xm .idref="al1ll16’/> <!-- Model El ement. DependencyKi nd -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Const ant >
<Model . Const ant >
<Mbdel . Mbdel El erent . nane>Si gnat ur eDep</ Model . Model El enent . nane>
<Mbdel . Mbdel El errent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Mbdel . Const ant . val ue>
<XM .any xm .type="string"
nane="Model . Model El enent . DependencyKi nd" >si gnat ur e</ XM . any>
</ Mbdel . Const ant . val ue>
<Model . TypedEl enent . t ype>
<Model . Dat aType xm .idref="all16’/> <!-- MNodel El ement. DependencyKi nd -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Const ant >
<Mbdel . Const ant >
<Mbdel . Mbdel El erent . nane>Const r ai nt Dep</ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Mbdel . Const ant . val ue>
<XM . any xm .type="string"

. hame="Model . Model El enent . DependencyKi nd" >const rai nt </ XM . any>

</ Mbdel . Const ant . val ue>
<Model . TypedEl enent . t ype>
<Model . Dat aType xm .idref="al1ll16’/> <!-- MNodel El ement. DependencyKi nd -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Const ant >
<Mbdel . Const ant >
<Mbdel . Mbdel El emrent . name>Const r ai nedEl ement sDep</ Mbdel . Model El enent . name>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Mbdel . Const ant . val ue>
<XM . any xm .type="string"

. nanme="Model . Mbdel El emrent . DependencyKi nd" >constrai ned el enent s</ XM . any>

</ Model . Const ant . val ue>
<Model . TypedEl enent . t ype>
<Model . Dat aType xmi .idref="al1l16’/> <!-- Model El ement. DependencyKi nd -->
</ Mbdel . TypedE!l enent . t ype>
</ Model . Const ant >
<Mbdel . Const ant >
<Mbdel . Mbdel El erent . nane>Speci al i zat i onDep</ Model . Model El enent . nane>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Mbdel . Const ant . val ue>

OMG-MOF, v1.3.1 November 2001

<XM .any xm .type="string"
xm . nanme="Mdel . Model El ement . DependencyKi nd" >speci al i zati on</ XM . any>
</ Model . Const ant . val ue>
<Mbdel . TypedEl enent . t ype>
<Model . Dat aType xm .idref="al1l16’/> <!-- Model El ement. DependencyKi nd -->
</ Mbdel . TypedE!l enent . t ype>
</ Model . Const ant >
<Model . Const ant >
<Mbdel . Mbdel El errent . nane>| npor t Dep</ Mbdel . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const ant . val ue>
<XM .any xm .type="string"
xm . nanme="Mdel . Model El ement . DependencyKi nd" >i nport </ XM . any>
</ Model . Const ant . val ue>
<Mbdel . TypedEl enent . t ype>
<Model . Dat aType xm .idref="all16’/> <!-- Model El ement. DependencyKi nd -->
</ Mbdel . TypedE!l enent . t ype>
</ Model . Const ant >
<Model . Const ant >
<Mbdel . Mbdel El errent . nanme>TypeDefi ni ti onDep</ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const ant . val ue>
<XM . any xm .type="string" xm.nanme="NModel . Model El enent. DependencyKi nd" >t ype
definition</XM.any>
</ Model . Const ant . val ue>
<Model . TypedEl enent . t ype>
<Model . Dat aType xm .idref="al1l16’/> <!-- MNodel El ement. DependencyKi nd -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Const ant >
<Model . Const ant >
<Mbdel . Mbdel El errent . nane>Ref er encedEndsDep</ Model . Mbdel El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const ant . val ue>
<XM .any xm .type="string"
xm . nane="Model . Mbdel El enent . DependencyKi nd" >r ef erenced ends</ XM . any>
</ Mbdel . Const ant . val ue>
<Model . TypedEl enent . t ype>
<Mbodel . Dat aType xm .idref="al1l16’/> <!-- Model El ement. DependencyKi nd -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Const ant >
<Model . Const ant >
<Mbdel . Mbdel El erent . nane>TaggedEl enent sDep</ Model . Model El enent . nane>
<Mbdel . Mbdel El errent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const ant . val ue>
<XM . any xm .type="string"
xm . nane="Model . Model El enent . DependencyKi nd" >t agged el enent s</ XM . any>
</ Mbdel . Const ant . val ue>
<Model . TypedEl enent . t ype>
<Model . Dat aType xm .idref="al1l16’/> <!-- Model El ement. DependencyKi nd -->
</ Model . TypedE!l enent . t ype>
</ Model . Const ant >

OMG-MOF, v1.3.1 November 2001 A-9

<Model . Const ant >
<Mbdel . Mbdel El erent . nane>I ndi r ect Dep</ Mbdel . Mbdel El erent . name>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Mbdel . Const ant . val ue>
<XM .any xm .type="string"
xm . nane="Mdel . Model El ement . DependencyKi nd" >i ndi rect </ XM . any>
</ Mbdel . Const ant . val ue>
<Mbdel . TypedEl enent . t ype>
<Model . Dat aType xm .idref="all16’/> <!-- Model El ement. DependencyKi nd -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Const ant >
<Model . Const ant >
<Mbdel . Mbdel El enrent . nane>Al | Dep</ Mbdel . Mbdel El ement . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Mbdel . Const ant . val ue>
<XM .any xm .type="string"
xm . nane="Model . Model El ement . DependencyKi nd" >al | </ XM . any>
</ Mbdel . Const ant . val ue>
<Model . TypedEl enent . t ype>
<Model . Dat aType xmi .idref="all16’/> <!-- MNodel El ement. DependencyKi nd -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Const ant >
<Mbdel . Qper ati on>
<NMbdel . Mbdel El erent . name>f i ndRequi r edEl enent s</ Model . Model El ement . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_level’ />
<Mbdel . Operation.isQuery xm .value="true'/>
<Mbdel . Namespace. cont ent s>
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>*r et ur n</ Model . Model El enent . nanme>
<Mbdel . Mbdel El ement . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xnm.value="return_dir’'/>
<Model . Paranmeter. multiplicity>
<XM . field>0</XM.field>
<XM . field>1</ XM .fiel d>
<XM . field>fal se</ XM .field>
<XM . field>true</ XM .field>
</ Model . Paranmeter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Mbdel . C ass xm .idref="a29' /> <!-- Mdel.Mdel El enent -->
</ Model . TypedEl enment . t ype>
</ Mbdel . Par anet er >
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>ki nds</ Model . Mbdel El enent . nane>
<Mbdel . Mbdel El ement . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xm .value="in_dir'/>
<Model . Paranmeter. multiplicity>
<XM . field>1</XM . field>
<XM .field>1</ XM .fiel d>
<XM . field>fal se</ XM .field>

A-10 OMG-MOF, v1.3.1 November 2001

<XM . field>true</XM.field>
</ Mbdel . Parameter. multiplicity>
<Mbdel . TypedEl enent . t ype>
<Model . Dat aType xm .idref="al116"/> <!-- MNodel El enent. DependencyKi nd -->
</ Mbdel . TypedEl ermrent . t ype>
</ Mbdel . Par anet er >
<Mbdel . Par anet er >
<Mbdel . Mbdel El ement . name>r ecur si ve</ Model . Model El enent . nanme>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Mbdel El enent . annot ati on>
<Mbdel . Paraneter.direction xm.value="in_dir'/>
<Model . Paranmeter. multiplicity>
<XM . field>1</XM . field>
<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Mbdel . Parameter. multiplicity>
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xm .idref="a98 /> <!-- Mdel.bool ean -->
</ Mbdel . TypedE!l erment . t ype>
</ Mbdel . Par anet er >
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . Oper ati on>
<Mbdel . Qper ati on>
<NMbdel . Mbdel El errent . nane>i sRequi r edBecause</ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Operation.isQuery xm .value="true'/>
<Mbdel . Namespace. cont ent s>
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>*r et ur n</ Model . Model El enent . nanme>
<Mbdel . Mbdel El ement . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xnm.value="return_dir’'/>
<Model . Paranmeter. multiplicity>
<XM . field>1</ XM . fiel d>
<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Model . Paranmeter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xm .idref="a98 /> <!-- Mddel.bool ean -->
</ Model . TypedEl enment . t ype>
</ Mbdel . Par anet er >
<Mbdel . Par anet er >
<Mbdel . Mbdel El emrent . nanme>ot her El enent </ Model . Model El enent . name>
<Mbdel . Mbdel El ement . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xm .value="in_dir'/>
<Model . Paranmeter. multiplicity>
<XM . field>1</XM . field>
<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>

OMG-MOF, v1.3.1 November 2001 A-11

<XM .field>fal se</ XM .field>
</ Mbdel . Parameter. multiplicity>
<Mbdel . TypedEl enent . t ype>
<Mbdel . C ass xm .idref="a29' /> <!-- Mdel.Mdel El enent -->
</ Mbdel . TypedEl ermrent . t ype>
</ Mbdel . Par anet er >
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>r eason</ Mbdel . Model El enent . name>
<Mbdel . Mbdel El enent . annot at i on></ Mbdel . Mbdel El erent . annot at i on>
<Mbdel . Paraneter.direction xm .value="out _dir’'/>
<Model . Paranmeter. multiplicity>
<XM .field>1</ XM .field>
<XM .field>1</ XM .field>
<XM .field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Mbdel . Parameter. multiplicity>
<Model . TypedEl enent . t ype>
<Model . Dat aType xm .idref="a116"/> <!-- MNodel El enent. DependencyKi nd -->
</ Mbdel . TypedE!l erment . t ype>
</ Mbdel . Par anet er >
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . Oper ati on>
<Mbdel . Ref er ence>
<Mbdel . Mbdel El erent . nane>cont ai ner </ Mbdel . Model El enent . nane>
<Mbdel . Mbdel El enent . annot at i on></ Model . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. multiplicity>
<XM . field>0</XM .field>
<XM . field>1</ XM .fiel d>
<XM .field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Model . TypedEl enent . t ype>
<Model . Class xni.idref="a6’ /> <!-- Model . Namespace -->
</ Mbdel . TypedE!l enent . t ype>
<Mbdel . Ref erence. r ef er encedEnd>
<Mbdel . Associ ati oneEnd xmi .idref="al20’ /> <!-- Model. Contai ns. contai ner -->
</ Mbdel . Ref er ence. r ef er encedEnd>
</ Mbdel . Ref erence>
<Mbdel . Ref er ence>
<Mbdel . Mbdel El erent . nane>const r ai nt s</ Mbdel . Mbdel El erent . name>
<Mbdel . Mbdel El enent . annot at i on></ Model . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue='instance_l evel ' />
<Model . Structural Feature. mul tiplicity>
<XM . field>0</XM .field>
<XM .field>1</ XM .fiel d>
<XM .field>fal se</ XM .field>
<XM .field>true</ XM .field>

A-12 OMG-MOF, v1.3.1 November 2001

</ Mbdel

<Model

Structural Feature.multiplicity>
Structural Feature.i sChangeabl e xm .value="true' />

<Mbdel . TypedEl enent . t ype>

<Mbdel . C ass xm .idref="ab8 /> <!-- Mdel.Constraint -->

</ Mbdel . TypedE!l enent . t ype>

<Mbdel . Ref erence. r ef er encedEnd>

<Mbdel . Associ ati onEnd xni.idref="al26’/> <!-- Mbdel . Constrains.constraint --
</ Model . Ref erence. r ef er encedEnd>
</ Model . Ref erence>
<l-- -->
<l-- -->
<!-- Contents of DataType: VerifyResultKind -->
<l-- -->
<l-- -

<Mbdel . Dat aType xm .id="all7 >

<Mbdel
<Mbdel
<Mbdel
<Mbdel
<Mbdel
<Mbdel
<Mbdel .

Model El enent . nanme>Veri f yResul t Ki nd</ Mbdel . Model El enent . nane>
Model El enent . annot at i on></ Model . Model El enent . annot ati on>

. Generalizabl eEl ement.visibility xm.value="public_vis'/>
. Generalizabl eEl ement. i sAbstract xm .value="false />

CGeneral i zabl eEl enent . i sRoot xm .val ue="fal se’/>

. Generalizabl eEl ement.i sLeaf xm .value="false />

Dat aType. t ypeCode>

<XM . Cor baTypeCode>

<XM
Xm
<XM
<XM
<XM
</ XM
</ XM

. Cor baTcEnum xmi . t cName=" Veri f yResul t Ki nd

.tcld="1DL: org. ong. nof / Model / Model El enent Cl ass/ VerifyResul tKind: 1.0 >
. Cor baTcEnuniabel xm .tcNanme="valid />

. Cor baTcEnuniabel xnmi.tcNane="invalid />

. Cor baTcEnunmLabel xmni .tcNane=' published' />

. Cor baTcEnun®

. Cor baTypeCode>

</ Model . Dat aType. t ypeCode>

</ Mbdel . Dat aType>

<l-- -->
<l-- -->
<l-- Contents of DataType: DepthKind -->
<l-- -->
<l-- -->

<Mbdel . Dat aType xm .id="alll >

<Mbdel
<Mbdel
. CGeneralizabl eEl ement.visibility xm .value="public_vis'/>
<Mbdel
. Generalizabl eEl ement.i sRoot xm .value="false' />
. Generalizabl eEl enent.isLeaf xm .value=false' />

<Model

<Model
<Model
<Model .

Mbdel El enent . nanme>Dept hKi nd</ Model . Model El enent . nane>
Model El enent . annot at i on></ Model . Model El enent . annot ati on>

Ceneral i zabl eEl enent . i sAbstract xm .value="false' />

Dat aType. t ypeCode>

<XM . Cor baTypeCode>

OMG-MOF, v1.3.1 November 2001 A-13

<XM . Cor baTcEnum xmi . t cNane=" Dept hKi nd’
xm . tcld="1DL: org. ong. nof / Model / Model El ement Cl ass/ Dept hKi nd: 1. 0’ >

<XM . Cor baTcEnunLabel xm .tcName="shallow />
<XM . Cor baTcEnuniLabel xm .tcName="deep’' />

</ XM . Cor baTcEnun®

</ XM . Cor baTypeCode>
</ Mbdel . Dat aType. t ypeCode>
</ Mbdel . Dat aType>

<l-- -
<l-- -->
<!-- Contents of DataType: ViolationType -->
<l-- -->
<l-- -

<Mbdel . Dat aType xm .id="al03" >
<Mbdel . Mbdel El erent . nane>Vi ol ati onType</ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm.val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xm .val ue="fal se’'/>
<Mbdel . General i zabl eEl ement . i sRoot xm .val ue="fal se’ />
<Mbdel . General i zabl eEl ement . i sLeaf xm .value="false' />
<Mbdel . Dat aType. t ypeCode>
<XM . Cor baTypeCode>
<XM . CorbaTcStruct xm .tcNanme='Viol ati onType’
xm . tcld="1DL: org. ong. nof / Model / Model El ement Cl ass/ Vi ol ati onType: 1.0’ >
<XM . Cor baTcFi el d xm .tcName="error_Kkind >
<XM . Cor baTypeCode>
<XM . CorbaTcString xmi.tcLength="0"/>
</ XM . Cor baTypeCode>
</ XM . Cor baTcFi el d>
<XM . CorbaTcField xm .tcNane="elenent _in_error’>
<XM . Cor baTypeCode>
<XM . Cor baTcObj Ref xni .tcNane=""
xm .tcld="1DL: org.ong. nof / Refl ective/ RefGbject: 1.0’ />
</ XM . Cor baTypeCode>
</ XM . Cor baTcFi el d>
<XM . Cor baTcField xm .tcNane="values in_error’>
<XM . Cor baTypeCode>
<XM . Cor baTcObj Ref xni .tcNane=""
xm .tcld="1DL: org. ong. nof / Ref | ecti ve/ NanedObj ectList:1.0" />
</ XM . Cor baTypeCode>
</ XM . Cor baTcFi el d>
<XM . Cor baTcFi el d xm .tcNanme="error_description’ >
<XM . Cor baTypeCode>
<XM . CorbaTcString xm .tcLength="0"/>
</ XM . Cor baTypeCode>
</ XM . Cor baTcFi el d>
</ XM . Cor baTcSt ruct >
</ XM . Cor baTypeCode>
</ Mbdel . Dat aType. t ypeCode>

A-14 OMG-MOF, v1.3.1 November 2001

</ Mbdel . Dat aType>
<Mbdel . Qper ati on>
<Model . Model El enent . nane>veri f y</ Model . Model El erent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Operation.isQuery xm .value="true'/>
<Mbdel . Namespace. cont ent s>
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>*r et ur n</ Model . Model El enent . nane>
<Mbdel . Mbdel El ement . annot at i on></ Mbdel . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xnmi.value="return_dir’/>
<Model . Paranmeter. multiplicity>
<XM . field>1</XM . field>
<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Model . Paraneter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Model . Dat aType xm .idref="al1l17' /> <!-- Nodel El enent. VerifyResul tKind -->
</ Mbdel . TypedEl erment . t ype>
</ Mbdel . Par anet er >
<Mbdel . Par anet er >
<Mbdel . Mbdel El errent . nane>dept h</ Model . Mbdel El enent . nane>
<Mbdel . Mbdel El ement . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xm .value="in_dir'/>
<Model . Paranmeter. multiplicity>
<XM . field>1</XM . field>
<XM . field>1</ XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Model . Paraneter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Model . Dat aType xm .idref="alll /> <!-- Model El enent. Dept hKi nd -->
</ Model . TypedEl enment . t ype>
</ Mbdel . Par anet er >
<Mbdel . Par anet er >
<Mbdel . Mbdel El emrent . nane>vi ol at i ons</ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Mbdel El enent . annot ati on>
<Mbdel . Paraneter.direction xm .value="out _dir'/>
<Model . Paranmeter. multiplicity>
<XM . field>0</XM.field>
<XM . field>1</ XM .fiel d>
<XM . field>fal se</ XM .field>
<XM . field>true</ XM .field>
</ Model . Paranmeter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Model . Dat aType xm .idref="al103"/><!-- Mdel El enent. Viol ati onType -->
</ Model . TypedEl enment . t ype>
</ Mbdel . Par anet er >
</ Mbdel . Nanespace. cont ent s>

OMG-MOF, v1.3.1 November 2001 A-15

A-16

</ Mbdel . Oper ati on>
<Mbdel . Qper ati on>

<Mbdel .
<Mbdel .
<Mbdel .
<Mbdel .
<Mbdel
<Mbdel .

<Mbdel

Model El enent . name>i sFrozen</ Mbdel . Mbdel El enent . nane>
Model El enent . annot at i on></ Model . Model El enent . annot ati on>
Feature.visibility xm .value=" public_vis' />

Feat ure. scope xm .val ue="instance_|l evel ' />

.Operation.isQery xm .value="true'/>

Namespace. cont ent s>
. Paranet er >

<Mbdel . Mbdel El enent . nanme>*r et ur n</ Model . Model El enent . nane>
<Model . Model El enent . annot at i on></ Mbdel . Model El enrent . annot ati on>
<Mbdel . Paraneter.direction xnmi.value="return_dir’/>

<Model . Paranmeter. multiplicity>

<XM
<XM
<XM
<XM

field>1</ XM . field>
field>1</ XM . field>
.field>false</ XM .field>
.field>false</ XM .field>

</ Model . Paraneter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xm .idref="a98 /> <!-- Mddel.bool ean -->
</ Model . TypedEl enment . t ype>
</ Model . Par anet er >

</ Model

. Nanespace. cont ent s>

</ Mbdel . Oper ati on>
<Mbdel . Qper ati on>

<Mbdel .
<Mbdel .
<Mbdel .
<Mbdel .
<Mbdel
<Mbdel .

<Mbdel

Mbdel El enent . nanme>i sVi si bl e</ Model . Model El enent . nane>
Model El enent . annot at i on></ Model . Model El enent . annot ati on>
Feature.visibility xm .value=" public_vis' />

Feat ure. scope xm .val ue="instance_| evel ' />

.Operation.isQery xm .value="true'/>

Namespace. cont ent s>
. Paranet er >

<Mbdel . Mbdel El enent . nanme>*r et ur n</ Model . Model El enent . nane>
<Model . Model El enent . annot at i on></ Mbdel . Model El enrent . annot ati on>
<Mbdel . Paraneter.direction xnm.value="return_dir’'/>

<Model . Paranmeter. multiplicity>

<XM
<XM
<XM
<XM

field>1</ XM . field>
.field>1</ XM . field>
.field>false</ XM .field>
.field>false</ XM .field>

</ Model . Paraneter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xm .idref="a98 /> <!-- Mddel.bool ean -->
</ Model . TypedEl enment . t ype>
</ Model . Par anet er >

<Model

. Par anet er >

<Mbdel . Model El enent . nanme>ot her El enent </ Mbdel . Model El enent . nane>
<Model . Model El enent . annot at i on></ Mbdel . Model El enrent . annot ati on>
<Mbdel . Paraneter.direction xm .value="in_dir'/>

<Model . Paranmeter. multiplicity>

<XM

.field>1</ XM .fiel d>

OMG-MOF, v1.3.1 November 2001

<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>

</ Mbdel . Parameter. multiplicity>

<Mbdel . TypedEl enent . t ype>
<Model . C ass xm .idref="a29’ /> <!-- Mdel.Mdel El enent -->

</ Mbdel . TypedEl erment . t ype>

</ Mbdel . Par anet er >
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . Oper ati on>
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . C ass>

<l-- -->
<l-- -->
<l-- Contents of DataType: VisibilityKind -->
<l-- -->
<l-- -->

<Mbdel . Dat aType xm .id="all0’ >
<Model . Mbdel El ement . nane>Vi si bi | i t yKi nd</ Model . Model El enent . nane>
<Mbdel . Mbdel El enrent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xni.val ue="false'/>
<Model . General i zabl eEl ement . i sRoot xm .val ue='false' />
<Model . General i zabl eEl ement . i sLeaf xm .value="false' />
<Mbdel . Dat aType. t ypeCode>
<XM . Cor baTypeCode>
<XM . Cor baTcEnum xmi .t cNane=" Vi si bi | i t yKi nd’
xm .tcld="1DL: org. ong. nof / Model / Vi sibilityKind: 1.0 >
<XM . Cor baTcEnumi_abel xmi .tcNane='public_vis'/>
<XM . Cor baTcEnumi_abel xmi .tcNane='protected vis'/>
<XM . Cor baTcEnumi_abel xmi .tcNane='private vis'/>
</ XM . Cor baTcEnun®
</ XM . Cor baTypeCode>
</ Mbdel . Dat aType. t ypeCode>
</ Model . Dat aType>

<l-- -->
<l-- -->
<l-- Contents of Class: Namespace -->
<l-- -->
<l-- -->

<Mbdel . Cl ass xm .id="a6’ >
<Mbdel . Mbdel El enrent . nane>Nanespace</ Model . Model El enent . name>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xm .value="true'/>
<Mbdel . General i zabl eEl enent . i sRoot xm .val ue="fal se’/>
<Mbdel . General i zabl eEl enent . i sLeaf xm .val ue="false' />

OMG-MOF, v1.3.1 November 2001

A-17

A-18

<Mbdel . C ass.isSingleton xni.value="false' />
<Mbdel . Model El enent . constrai nt s>
<Mbdel . Constraint xm .idref="¢c5 />
</ Mbdel . Mbdel El enrent . constrai nt s>
<Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . d ass xm .idref="a29’ /> <!-- Model . Model El enent -->
</ Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . Nanespace. cont ent s>
<Mbdel . Constraint xm.id="c5 >
<Mbdel . Mbdel El ement . name>Cont ent NanmesMuist Not Col | i de</ Model . Model El enent
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM.any xm .type="string" xm.name="">
inv: self.contents.forAll(
el, e2 | el.nane = e2.name inplies rl =r2)
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPol i cy xm .value="inmedi ate’' />
<Mbdel . Const r ai nt. constrai nedEl enent s>
<Mobdel . Class xni.idref="a6’ /> <!-- Model . Namespace -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Model . Const r ai nt >
<Mbdel . Excepti on xm .id="NameNot Found’ >
<Mbdel . Mbdel El erent . nane>NaneNot Found</ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .val ue="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_level’ />
<Mbdel . Namespace. cont ent s>
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>nane</ Model . Model El enent . nanme>
<Mbdel . Mbdel El ement . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xm .value="out _dir'/>
<Model . Paranmeter. multiplicity>
<XM . field>1</ XM . fiel d>
<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Model . Paranmeter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Model . Dat aType xm .idref="a97' /> <!-- Mdel.NaneType -->
</ Model . TypedEl enment . t ype>
</ Mbdel . Par anet er >
</ Mbdel . Nanespace. cont ent s>
</ Model . Excepti on>
<Model . Exception xni.id="NaneNot Resol ved’ >
<Mbdel . Mbdel El errent . nane>NaneNot Resol ved</ Model . Model El ement . nane>
<Mbdel . Mbdel El erent . annot at i on></ Model . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_level’ />
<Mbdel . Namespace. cont ent s>

OMG-MOF, v1.3.1 November 2001

. hame>

<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>expl anat i on</ Mbdel . Mbdel El enent . name>
<Mbdel . Mbdel El enent . annot at i on></ Model . Mbdel El enent . annot ati on>
<Mbdel . Paraneter.direction xm .value="out _dir'/>
<Model . Paranmeter. multiplicity>
<XM .field>1</ XM .field>
<XM .field>1</ XM .field>
<XM .field>fal se</ XM .field>
<XM .field>fal se</ XM .field>
</ Mbdel . Parameter. multiplicity>
<Mbdel . TypedEl enent . t ype>
<Mbdel . Dat aType xm .idref="al00'/> <!-- Model .string -->
</ Mbdel . TypedEl erment . t ype>
</ Mbdel . Par anet er >
<Mbdel . Par anet er >
<Mbdel . Mbdel El enent . name>r est OF Nanme</ Mbdel . Model El enent . nane>
<Mbdel . Mbdel El enent . annot at i on></ Model . Mbdel El enent . annot ati on>
<Mbdel . Paraneter.direction xm .value="out _dir'/>
<Model . Paranmeter. multiplicity>
<XM .field>0</XM .field>
<XM .field> 1</ XM . fiel d>
<XM .field>true</ XM . field>
<XM . field>fal se</ XM .fiel d>
</ Model . Paraneter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Model . Dat aType xm .idref="a97' /> <!-- Mdel.NaneType -->
</ Mbdel . TypedEl erment . t ype>
</ Mbdel . Par anet er >
</ Mbdel . Nanespace. cont ent s>
</ Model . Excepti on>
<Mbdel . Ref er ence>
<Mbdel . Mbdel El enment . nane>cont ent s</ Model . Model El enent . nane>
<Mbdel . Mbdel El enent . annot at i on></ Model . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM . field>0</XM .field>
<XM .field>1</ XM .fiel d>
<XM .field>true</ XM .field>
<XM .field>true</ XM .field>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Model . TypedEl enent . t ype>
<Mbdel . Cl ass xm .idref="a29" /> <!-- Model. Mdel El enent -->
</ Mbdel . TypedE!l enent . t ype>
<Mbdel . Ref erence. r ef er encedEnd>
<Model . Associ ati onEnd xm .idref="al21' /> <!--
Model . Cont ai ns. cont ai nedEl enent -->
</ Model . Ref erence. r ef er encedEnd>
</ Model . Ref erence>
<Mbdel . Qper ati on>

OMG-MOF, v1.3.1 November 2001 A-19

<Mbdel . Mbdel El erent . nane>l ookupEl enent </ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_level’ />
<Mbdel . Operation.isQuery xm .value="true'/>
<Model . Oper ati on. excepti ons>
<Mbdel . Exception xm .idref="NaneNot Found’ />
</ Model . Oper ati on. excepti ons>
<Mbdel . Namespace. cont ent s>
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>*r et ur n</ Model . Model El enent . nane>
<Mbdel . Mbdel El ement . annot at i on></ Mbdel . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xni.value="return_dir’/>
<Model . Paranmeter. multiplicity>
<XM . field>0</XM.field>
<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Model . Paraneter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Model . C ass xm .idref="a29' /> <!-- Mdel.Mdel El enent -->
</ Mbdel . TypedEl erment . t ype>
</ Mbdel . Par anet er >
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>nane</ Model . Model El enent . nanme>
<Mbdel . Mbdel El ement . annot at i on></ Mbdel . Model El enent . annot ati on>
<Mbdel . Paranmeter.direction xm .value="in_dir'/>
<Model . Paranmeter. multiplicity>
<XM . field>1</ XM . field>
<XM . field>1</ XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Model . Paraneter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Model . Dat aType xm .idref="a97' /> <!-- Mdel.NaneType -->
</ Model . TypedEl enment . t ype>
</ Mbdel . Par anet er >
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . Oper ati on>
<Mbdel . Qper ati on>
<Mbdel . Mbdel El enent . nanme>r esol veQual i fi edNane</ Mbdel . Mbdel El enent . nane>
<Mbdel . Mbdel El enent . annot at i on></ Model . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_level’ />
<Mbdel . Operation.isQuery xm .value="true'/>
<Model . Oper ati on. excepti ons>
<Model . Exception xmi .idref="NanmeNot Resol ved’ />
</ Model . Oper ati on. excepti ons>
<Mbdel . Namespace. cont ent s>
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>*r et ur n</ Model . Model El enent . nane>

A-20 OMG-MOF, v1.3.1 November 2001

<Mbdel . Mbdel El ement . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xnmi.value="return_dir’/>
<Model . Paranmeter. multiplicity>
<XM . field>1</XM . field>
<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Mbdel . Parameter. multiplicity>
<Mbdel . TypedEl enent . t ype>
<Model . C ass xm .idref="a29’ /> <!-- Mdel.Mdel El enent -->
</ Mbdel . TypedEl erment . t ype>
</ Mbdel . Par anet er >
<Mbdel . Par anet er >
<Mbdel . Mbdel El emrent . nane>qual i fi edNane</ Model . Model El enent . nane>
<Mbdel . Mbdel El ement . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xm .value="in_dir'/>
<Model . Paranmeter. multiplicity>
<XM . field>1</XM . field>
<XM . field>1</ XM .fiel d>
<XM . field>true</ XM .field>
<XM . field>fal se</ XM .field>
</ Model . Paranmeter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Model . Dat aType xm .idref="a97' /> <!-- Mdel.NaneType -->
</ Mbdel . TypedEl erment . t ype>
</ Mbdel . Par anet er >
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . Oper ati on>
<Mbdel . Qper ati on>
<Mbdel . Mbdel El errent . nane>f i ndEl ement sByType</ Model . Model El ement . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_level’ />
<Mbdel . Operation.isQuery xm .value="true'/>
<Mbdel . Namespace. cont ent s>
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>*r et ur n</ Model . Model El enent . nanme>
<Mbdel . Mbdel El ement . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xm.value="return_dir’'/>
<Model . Paranmeter. multiplicity>
<XM . field>0</XM.field>
<XM . field> 1</ XM .fiel d>
<XM . field>true</ XM .field>
<XM . field>true</ XM .field>
</ Model . Paranmeter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Mbdel . C ass xm .idref="a29' /> <!-- Mdel.Mdel El enent -->
</ Model . TypedEl enment . t ype>
</ Mbdel . Par anet er >
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>of Type</ Mbdel . Model El enent . name>

OMG-MOF, v1.3.1 November 2001 A-21

<Mbdel . Mbdel El ement . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paranmeter.direction xm .value="in_dir'/>
<Model . Paranmeter. multiplicity>
<XM . field>1</XM . field>
<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Mbdel . Parameter. multiplicity>
<Mbdel . TypedEl enent . t ype>
<Model . Cl ass xm .idref="a27' /> <!-- Mdel.C ass -->
</ Mbdel . TypedEl erment . t ype>
</ Mbdel . Par anet er >
<Mbdel . Par anet er >
<Mbdel . Mbdel El ement . name>i ncl udeSubt ypes</ Model . Model El enent . nane>
<Mbdel . Mbdel El ement . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xm .value="in_dir'/>
<Model . Paranmeter. multiplicity>
<XM . field>1</XM . field>
<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Model . Paranmeter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xm .idref="a98 /> <!-- Mddel.bool ean -->
</ Mbdel . TypedEl erment . t ype>
</ Mbdel . Par anet er >
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . Oper ati on>
<Mbdel . Qper ati on>
<Mbdel . Mbdel El erent . nane>nanel sVal i d</ Mbdel . Mbdel El erent . nanme>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_level’ />
<Mbdel . Operation.isQuery xm .value="true'/>
<Mbdel . Namespace. cont ent s>
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>*r et ur n</ Model . Model El enent . nanme>
<Mbdel . Mbdel El ement . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xm.value="return_dir’'/>
<Model . Paranmeter. multiplicity>
<XM . field>1</XM . field>
<XM . field>1</ XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Model . Paranmeter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xm .idref="a98 /> <!-- Mddel.bool ean -->
</ Model . TypedEl enment . t ype>
</ Mbdel . Par anet er >
<Mbdel . Par anet er >
<Mbdel . Mbdel El emrent . name>pr oposedNane</ Model . Model El enent . nanme>

A-22 OMG-MOF, v1.3.1 November 2001

<Mbdel . Mbdel El ement . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paranmeter.direction xm .value="in_dir'/>
<Model . Paranmeter. multiplicity>
<XM . field>1</XM . field>
<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Mbdel . Parameter. multiplicity>
<Mbdel . TypedEl enent . t ype>
<Mbodel . Dat aType xm .idref="a97' /> <!-- Mdel.NaneType -->

</ Mbdel . TypedEl erment . t ype>

</ Mbdel . Par anet er >
</ Mbdel . Nanespace. cont ent s>

</ Mbdel . Oper ati on>

</ Mbdel . Nanespace. cont ent s>

</ Mbdel . Cl ass>

<l-- -->
<l-- -->
<!-- Contents of Class: Generalizabl eEl enent -->
<l-- -->
<l-- -->

<Mbdel . C ass xm .id="a71 >
Model El emrent . nane>CGener al i zabl eEl enent </ Model . Mbdel El enent . name>
Model El emrent . annot at i on></ Mbdel . Mbdel El enent . annot ati on>

<Mbdel .
<Mbdel .
<Mbdel
<Mbdel
<Mbdel
<Mbdel
<Mbdel .
<Mbdel .
<Mbdel
<Mbdel
<Mbdel
<Mbdel
<Mbdel
<Mbdel
<Mbdel

</ Mbdel .

.Ceneralizabl eElement.visibility xm .value="public_vis'/>
. Generalizabl eEl enent . i sAbstract xm .value="true />

. Generalizabl eEl enent.i sRoot xm.value= false' />

. Generalizabl eEl enent.isLeaf xm.value=false />

Cl ass.isSingleton xm.value="false'/>
Mobdel El ement . constrai nt s>

. Const rai
. Constrai
. Const rai
. Constrai
. Const r ai
. Const r ai
. Const rai

nt
nt
nt
nt
nt
nt
nt

Xmi
Xmi
Xmi
Xmi
Xmi
Xmi
Xmi

.idref=
.idref=
.idref=
.idref=
.idref=
.idref=
.idref=

c6' />
c7 />
c8' />
c9 />
clo’ />
cl1 />
cl2' />

Model El enent . constrai nt s>

<Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . ass xm .idref="a6’ /> <!-- Nbdel . Nanespace -->
</ Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . Nanespace. cont ent s>
<Mbdel . Constraint xm.id="c6" >
<Mbdel . Mbdel El emrent . name>Supert ypeMust Not BeSel f </ Mbdel . Model El enent . name>
<Mbdel . Mbdel El errent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">

i nv:

</ XM . any>

sel f.al | Supertypes()

-> forAll(s | s &t;> self)

OMG-MOF, v1.3.1 November 2001 A-23

</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xn.value="inmediate’ />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Mbdel . Class xni.idref="a71’' /> <!-- Mdel.Generalizabl eEl enent -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="c¢c7 >
<Mbdel . Mbdel El ement . name>Supert ypeKi ndMust BeSane</ Model . Model El ement . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv: self.supertypes -> forAll(s | s.ocl Type() = self.ocl Type())
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xn.value="inmediate’ />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Mbdel . Class xni.idref="a71’ /> <!-- Mdel.Generalizabl eEl enent -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="c8 >

<Model . Mbdel El enent . nanme>Cont ent sMust Not Col | i deW t hSupert ypes</ Mbdel . Model El ement .

me>
<Model . Model El ement . annot at i on></ Model . Model El ement . annot at i on>
<Model . Const rai nt . expr essi on>
<XM.any xm .type="string" xm.name="">
inv:
| et superContents = self.all Supertypes() ->
collect(s | s.contents) in
sel f.contents ->

forAll (ml |

super Contents ->

forAll (n2 |

ml. nane = nR.nane inplies mL = nR))
</ XM . any>

</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Model . Constrai nt. eval uati onPolicy xm .value="imedi ate' />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Model . Class xnmi.idref="a71' /> <!-- Mdel.Generalizabl eEl enent -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="c9 >
<Mbdel . Mbdel El erent . name>Di anondRul eMust BeQheyed</ Model . Model El ement . nane>
<Mbdel . Mbdel El enent . annot at i on></ Model . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv:
| et super Nanespaces =

A-24 OMG-MOF, v1.3.1 November 2001

na

sel f.supertypes -> collect(s | s.extendedNanespace) in
super Nanespaces -> asSet -> isUnique(s | s.nane)
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xni.value="inmediate’ />
<Mbdel . Const r ai nt. constrai nedEl enent s>
<Mbdel . Class xni.idref="a71’ /> <!-- Mdel.Generalizabl eEl enent -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Model . Constraint xm.id="c10 >
<Mbdel . Mbdel El emrent . name>NoSupert ypesAl | owedFor Root </ Model . Model El ement . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv: self.isRoot inplies self.supertypes -> isEmpty
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xm .value="inmediate’ />
<Mbdel . Const r ai nt. constrai nedEl enent s>
<Mbdel . Class xni.idref="a71’ /> <!-- Mbdel.Generalizabl eEl enent -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="cll >
<Mbdel . Mbdel El ement . name>Supert ypesMist BeVi si bl e</ Model . Model El ement . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM.any xm .type="string" xm.name="">
inv: self.supertypes -> forAll(s | self.isVisible(s))
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPol i cy xm .val ue="deferred />
<Mbdel . Const r ai nt. constrai nedEl enent s>
<Model . Class xni.idref="a71' /> <!-- Model.Generalizabl eEl enent -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Model . Const r ai nt >
<Mbdel . Constraint xm.id="cl2’'>
<Mbdel . Mbdel El erent . name>NoSubt ypesAl | onedFor Leaf </ Model . Model El enent . nane>
<Mbdel . Mbdel El enent . annot at i on></ Model . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM.any xm .type="string" xm.name="">
inv: self.supertypes -> forAll(s | not s.islLeaf)
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Model . Constrai nt. eval uati onPolicy xm .value="imedi ate' />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Mbdel . Class xni.idref="a71' /> <!-- Mbdel.Generalizabl eEl enent -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>

OMG-MOF, v1.3.1 November 2001 A-25

</ Mbdel . Const r ai nt >
<Model . Attri bute>
<Mbdel . Mbdel El enrent . nane>i sRoot </ Mbdel . Mbdel El ement . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM . field>1</ XM .field>
<XM . field>1</ XM . field>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xnm .val ue="false' />
<Mbdel . TypedEl enent . t ype>
<Mbdel . Dat aType xmni .idref="a98 /> <l-- Model . bool ean -->
</ Mbdel . TypedE!l enent . t ype>
</ Model . Attri bute>
<Mbdel . Attri but e>
<Mbdel . Mbdel El enent . nane>i sLeaf </ Mbdel . Mbdel El ement . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM .field>1</ XM .field>
<XM .field>1</ XM .field>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xnm .value="false' />
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xmi .idref="a98 /> <!l-- Model . bool ean -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Attri bute>
<NMbdel . Attri but e>
<Mbdel . Mbdel El errent . nane>i sAbstract </ Model . Model El enent . nane>
<Mbdel . Mbdel El emrent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM . field>1</ XM .field>
<XM . field>1</ XM .field>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Mbdel . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xn .value="false' />
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xmni .idref="a98 /> <l-- Model . bool ean -->
</ Mbdel . TypedE!l enent . t ype>

A-26 OMG-MOF, v1.3.1 November 2001

</ Model . Attri bute>
<Model . Attri bute>
<Model . Mbdel El ement . nane>vi si bi | i t y</ Model . Mbdel El erent . nane>
<Mbdel . Mbdel El errent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM . field>1</ XM .field>
<XM . field>1</ XM . field>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xnm .val ue="false' />
<Mbdel . TypedEl enent . t ype>
<Model . Dat aType xmi .idref="al110'/> <!-- Model.VisibilityKind -->
</ Mbdel . TypedE!l enent . t ype>
</ Model . Attri bute>
<Mbdel . Ref erence xm .id="al40’ >
<Mbdel . Mbdel El errent . nane>supert ypes</ Model . Model El enent . nane>
<Mbdel . Mbdel El errent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM . field>0</XM.field>
<XM . field>1</ XM .fiel d>
<XM . field>true</XM.field>
<XM . field>true</ XM .field>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Model . TypedEl enent . t ype>
<Mbdel . Class xni.idref="a71' /> <!-- Mdel.Generalizabl eEl enent -->
</ Mbdel . TypedE!l enment . t ype>
<Mbdel . Ref erence. r ef er encedEnd>
<Mbdel . Associ ati onEnd xm .idref="al38 /> <!-- Mdel.Generalizes.supertype --

</ Mbdel . Ref er ence. r ef er encedEnd>
</ Mbdel . Ref erence>
<Mbdel . Qper ati on>
<Mbdel . Mbdel El emrent . nane>al | Supert ypes</ Model . Model El enent . nane>
<Mbdel . Mbdel El enent . annot at i on></ Model . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_level’ />
<Mbdel . Operation.isQuery xm .value="true'/>
<Mbdel . Namespace. cont ent s>
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>*r et ur n</ Model . Model El enent . nane>
<Mbdel . Mbdel El ement . annot at i on></ Mbdel . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xnm.value="return_dir’'/>
<Model . Paranmeter. multiplicity>
<XM . field>0</XM.field>

OMG-MOF, v1.3.1 November 2001 A-27

<XM . field>1</ XM .fiel d>
<XM . field>true</ XM .field>
<XM . field>true</ XM .field>
</ Mbdel . Parameter. multiplicity>
<Mbdel . TypedEl enent . t ype>
<Mbdel . Class xni.idref="a71'/> <!-- Model.Generalizabl eEl enent -->
</ Mbdel . TypedEl erment . t ype>
</ Mbdel . Par anet er >
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . Oper ati on>
<Mbdel . Qper ati on>
<Mbdel . Mbdel El emrent . name>| ookupEl enent Ext ended</ Model . Mbdel El enrent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_level’ />
<Mbdel . Operation.isQuery xm .value="true'/>
<Model . Oper ati on. excepti ons>
<Mbdel . Exception xm .idref="NaneNot Found’ />
</ Model . Oper ati on. excepti ons>
<Mbdel . Namespace. cont ent s>
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>*r et ur n</ Model . Model El ement . nane>
<Mbdel . Mbdel El erent . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xni.value="return_dir’/>
<Model . Paranmeter. multiplicity>
<XM . field>1</XM . field>
<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Model . Paranmeter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Model . C ass xm .idref="a29’ /> <!-- Mdel.Mdel El enent -->
</ Model . TypedEl enment . t ype>
</ Mbdel . Par anet er >
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>nane</ Model . Model El enent . nane>
<Mbdel . Mbdel El ement . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xm.value="in_dir’/>
<Model . Paranmeter. multiplicity>
<XM . field>1</ XM . field>
<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Model . Paranmeter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Model . Dat aType xm .idref="a97' /> <!-- Mdel.NaneType -->
</ Model . TypedEl enment . t ype>
</ Mbdel . Par anet er >
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . Oper ati on>
<Mbdel . Qper ati on>

OMG-MOF, v1.3.1 November 2001

A

<Mbdel . Mbdel El emrent . name>f i ndEl enent sBy TypeExt ended</ Model . Model El ement . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_level’ />
<Mbdel . Operation.isQuery xm .value="true'/>
<Mbdel . Namespace. cont ent s>
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>*r et ur n</ Model . Model El ement . nane>
<Mbdel . Mbdel El erent . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xnmi.value="return_dir’/>
<Model . Paranmeter. multiplicity>
<XM . field>0</XM.field>
<XM . field>1</ XM .fiel d>
<XM . field>true</ XM .field>
<XM . field>true</ XM .field>
</ Mbdel . Parameter. multiplicity>
<Model . TypedEl enent . t ype>
<Mbdel . C ass xm .idref="a29’ /> <!-- Mdel.Mdel El enent -->
</ Mbdel . TypedE!l erment . t ype>
</ Mbdel . Par anet er >
<Mbdel . Par anet er >
<Mbdel . Mbdel El errent . nane>of Type</ Mbdel . Model El enent . name>
<Mbdel . Mbdel El erent . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xm.value="in_dir'/>
<Model . Paranmeter. multiplicity>
<XM . field>1</XM . field>
<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Model . Paranmeter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Model . Cl ass xm .idref="a27' /> <!-- Mdel.C ass -->
</ Model . TypedEl enment . t ype>
</ Mbdel . Par anet er >
<Mbdel . Par anet er >
<Mbdel . Mbdel El ement . name>i ncl udeSubt ypes</ Model . Model El enent . nane>
<Mbdel . Mbdel El ement . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xm.value="in_dir’/>
<Model . Paranmeter. multiplicity>
<XM . field>1</ XM . field>
<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Model . Paranmeter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xm .idref="a98 /> <!-- Mddel.bool ean -->
</ Model . TypedEl enment . t ype>
</ Mbdel . Par anet er >
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . Oper ati on>
</ Mbdel . Nanespace. cont ent s>

OMG-MOF, v1.3.1 November 2001 A-29

</ Model . Cl ass>

<l-- -->
<l-- -->
<l-- Contents of C ass: TypedEl ement -->
<l-- -->
<l-- -->

<Model . C ass xm .id="a9%96’ >

<Mbdel . Mbdel El enent . nane>TypedEl enent </ Model . Model El enent . name>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xm .value="true' />
<Mbdel . General i zabl eEl enent . i sRoot xm .val ue="fal se’ />

<Mbdel . General i zabl eEl enent . i sLeaf xm .val ue="false' />

<Mbdel . C ass.isSingleton xni.value="false' />

<Mbdel . Model El enent . constrai nt s>

<Mbdel . Constraint xm.idref="¢c13 />

<Mbdel . Constraint xm .idref="c14' />
</ Mbdel . Mbdel El enrent . constrai nt s>
<Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . ass xm .idref="a29’' /> <!-- Mbdel . Model El enent
</ Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . Nanespace. cont ent s>
<Mbdel . Constraint xm.id="cl3 >
<Mbdel . Mbdel El emrent . name>Associ at i onsCannot BeTypes</ Mbdel . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM.any xm .type="string" xm.name="">
inv: not self.type.ocllsKindO (Association)
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xnm.value="inmediate’' />
<Mbdel . Const r ai nt. constrai nedEl enent s>
<Mbdel . C ass xni.idref="a96’ /> <!-- Mdel.TypedEl enent
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Model . Const r ai nt >
<Mbdel . Constraint xm.id="cl4’ >
<Mbdel . Mbdel El erent . nanme>TypeMuist BeVi si bl e</ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM.any xm .type="string" xm.name="">
inv: self.isVisible(self.type)
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPol i cy xm .val ue="deferred />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Mbdel . Cl ass xni.idref="a96’ /> <!-- Mdel.TypedEl enent
</ Mbdel . Constrai nt. constrai nedEl emrent s>

>

-->

-->

A-30 OMG-MOF, v1.3.1 November 2001

</ Mbdel . Const r ai nt >
<Mbdel . Ref er ence>
<Mbdel . Mbdel El enent . nane>t ype</ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM .field>1</ XM .field>
<XM .field>1</ XM .fiel d>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . TypedEl enent . t ype>
<Mbdel . Class xni.idref="a5 /> <l-- Model.C assifier -->
</ Mbdel . TypedE!l enent . t ype>
<Mbdel . Ref erence. r ef er encedEnd>

<Mbdel . Associ ati onEnd xm .idref="al55 /> <!-- Mdel.|lsO Type.type -->

</ Model . Ref erence. r ef er encedEnd>
</ Model . Ref erence>
</ Mbdel . Nanespace. cont ent s>
</ Model . Cl ass>

<l-- -->
<l-- -->
<!-- Contents of Class: Classifier -->
<l-- -->
<l-- -->

<Mbdel . Cl ass xm .id="a5 >
<Mbdel . Mbdel El enent . nane>Cl assi fi er </ Model . Model El enent . nane>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xm .value="true' />
<Model . Gener al i zabl eEl enent . i sRoot xm .val ue='false />
<Model . Gener al i zabl eEl enent . i sLeaf xm .value="false />
<Model . d ass. i sSingl eton xm .val ue="fal se’/>
<Mbdel . Gener al i zabl eEl enent . supertypes>

<Mbdel . Class xni.idref="a71’/> <!-- Model.Generalizabl eEl enent -->

</ Mbdel . Gener al i zabl eEl enent . supertypes>

</ Model . Cl ass>

<l-- -->
<l-- -->
<!-- Contents of Cass: Cass -->
<l-- -->
<l-- -->

<Mbdel . C ass xm .id="a27 >
<Mbdel . Model El enent . nanme>Cl ass</ Mbdel . Model El ement . nane>
<Mbdel . Model El enent . annot at i on></ Mbdel . Model El enent . annot ati on>

OMG-MOF, v1.3.1 November 2001

A-31

<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xni.val ue="fal se' />
<Mbodel . General i zabl eEl ement . i sRoot xm .val ue='false' />
<Mbdel . General i zabl eEl ement . i sLeaf xm .value="false' />
<Mbdel . d ass.isSingleton xni.value="false' />
<Mbdel . Model El enent . constrai nt s>
<Mbdel . Constraint xm .idref="¢c15 />
<Mbdel . Constraint xm .idref="c16' />
</ Mbdel . Mbdel El enent . constrai nt s>
<Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . ass xm .idref="a5 /> <!-- Mbdel.C assifier -->
</ Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . Nanespace. cont ent s>
<Mbdel . Constraint xm.id="cl5 >
<Mbdel . Mbdel El erent . name>Cl assCont ai nrent Rul es</ Model . Mbdel El enrent . nane>
<Mbdel . Mbdel El errent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM.any xm .type="string" xm.name="">
inv:
Set {C ass, DataType, Attribute, Reference, Operation,
Exception, Constraint, Tag} ->
i ncl udesAl |l (sel f.content Types())
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xn.value="inmedi ate’' />
<Mbdel . Const r ai nt. constrai nedEl enent s>
<Mbdel . Class xmi.idref="a27' /> <!-- Mbdel.Cd ass -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="cl6’ >

<Mbdel . Mbdel El enent . nanme>Abstr act Cl assesCannot BeSi ngl et on</ Mbdel . Mbdel El enent . nane>

<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>

<XM.any xm .type="string" xm.name="">

inv: self.isAbstract inplies not self.isSingleton

</ XM . any>

</ Model . Constrai nt. expressi on>

<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPol i cy xm .val ue="deferred />
<Mbdel . Const rai nt. constrai nedEl enent s>

<Model . C ass xmi.idref="a27' /> <!-- Mbdel.C ass -->

</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Model . Const r ai nt >
<Mbdel . Attri but e>

<Mbdel . Mbdel El errent . nane>i sSi ngl et on</ Mbdel . Mbdel El erent . nanme>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue='instance_l evel ' />

<Model . Structural Feature. mul tiplicity>

A-32 OMG-MOF, v1.3.1 November 2001

<XM .field>1</ XM .field>
<XM .field>1</ XM .field>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xnm .val ue="false' />
<Mbdel . TypedEl enent . t ype>
<Mbdel . Dat aType xmni .idref="a98 /> <!l-- Model . bool ean -->
</ Mbdel . TypedE!l enent . t ype>
</ Model . Attri bute>
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . O ass>

<l-- -->
<l-- -->
<l-- Contents of DataType: TypeDescri ptor -->
<l-- -->
<l-- -->

<Model . Dat aType xm .id="al02’ >
<Mbdel . Mbdel El errent . nane>TypeDescr i pt or </ Mbdel . Model El enent . name>
<Mbdel . Mbdel El enrent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xni.val ue="false' />
<Model . General i zabl eEl ement . i sRoot xm .val ue='false' />
<Model . General i zabl eEl ement . i sLeaf xm .value="false' />
<Mbdel . Dat aType. t ypeCode>
<XM . Cor baTypeCode>
<XM . Cor baTcAl i as xm .tcName=" TypeDescri ptor’
xm .tcld="1DL: org. ong. nof / Mbdel / TypeDescriptor: 1.0 >
<XM . Cor baTypeCode>
<XM . Cor baTcTypeCode/ >
</ XM . Cor baTypeCode>
</ XM . Cor baTcAl i as>
</ XM . Cor baTypeCode>
</ Mbdel . Dat aType. t ypeCode>
</ Model . Dat aType>

<l-- -->
<l-- -->
<l-- Contents of Class: DataType -->
<l-- -->
<l-- -->

<Mbdel . Cl ass xm .id="a88 >
<Mbdel . Mbdel El enent . nane>Dat aType</ Model . Mbdel El enent . nane>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xni.val ue="false />
<Mbdel . General i zabl eEl enent . i sRoot xm .val ue="fal se'/>

OMG-MOF, v1.3.1 November 2001 A-33

<Model . General i zabl eEl ement . i sLeaf xm .value="false' />
<Mbdel . d ass.isSingleton xni.value="false />
<Mbdel . Model El enent . constrai nt s>
<Mbdel . Constraint xm .idref="¢c17' />
<Mbdel . Constraint xm .idref="¢18 />
<Mbdel . Constraint xm .idref="¢19" />
<Mbdel . Constraint xm .idref="¢c20" />
</ Mbdel . Mbdel El emrent . constrai nt s>
<Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . ass xm .idref="a5 /> <!-- Mbdel.C assifier -->
</ Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . Nanespace. cont ent s>
<Mbdel . Constraint xm.id="cl7 >
<Mbdel . Mbdel El emrent . name>Dat aTypeCont ai nrent Rul es</ Model . Mobdel El enrent . nane>
<Mbdel . Mbdel El emrent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM.any xm .type="string" xm.name="">
inv:
Set { TypeAli as, Constraint, Tag} ->
i ncl udesAl |l (sel f.content Types())
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xm.value="inmediate’' />
<Mbdel . Const r ai nt. constrai nedEl enent s>
<Model . C ass xmi.idref="a27' /> <!-- Mbdel.C ass -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="cl8 >
<Mbdel . Mbdel El emrent . name>Thi sTypecodeNot Suppor t ed</ Model . Model El enrent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv:
sel f.typeCode. al | TypeKi nds() - >
excl udes(Set{#tk _void, #tk _Principal, #tk_null, #tk except,
#t k_val ue, #tk val ue_box, #tk native,
#t k_abstract _interface})
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPol i cy xm .val ue="deferred />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Model . Cl ass xni.idref="a88 /> <!-- Mbdel . DataType -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Model . Const r ai nt >
<Mbdel . Constraint xm.id="cl9 >
<Mbdel . Mbdel El emrent . name>Dat aTypesHaveNoSupert ypes</ Mbdel . Model El enent . nanme>
<Mbdel . Mbdel El enent . annot at i on></ Model . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">

A-34 OMG-MOF, v1.3.1 November 2001

inv: self.supertypes -> isEnpty
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xni.value="inmediate’ />
<Mbdel . Const r ai nt. constrai nedEl enent s>
<Model . Cl ass xni.idref="a88 /> <!-- Mbdel.DataType -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="c20 >

<Mbdel . Mbdel El ement . name>Dat aTypesCannot BeAbst r act </ Mbdel . Model El enent

<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv: not self.isAbstract
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPol i cy xm .value="inmedi ate’' />
<Mbdel . Const r ai nt. constrai nedEl enent s>
<Mbdel . Cl ass xni.idref="a88 /> <!-- Mbdel . DataType -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Model . Const r ai nt >
<NMbdel . Attri but e>
<Mbdel . Mbdel El errent . nane>t ypeCode</ Mbdel . Mbdel El errent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .val ue="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM .field>1</ XM .field>
<XM .field>1</ XM .field>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Mbdel . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xnm .value="false' />
<Model . TypedEl enent . t ype>
<Model . Dat aType xmi .idref="a102' /> <!-- MNodel . TypeDescriptor -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Attri bute>
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . Cl ass>

<l-- -->
<l-- -->
<!-- Contents of Class: TypeAlias -->
<l-- -->
<l-- -->

<Model . d ass xm .id="al04’ >
<Model . Model El enent . nane>TypeAl i as</ Model . Model El enent . name>

OMG-MOF, v1.3.1 November 2001

. hame>

A-35

<Mbdel . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xni.val ue="fal se'/>
<Mbdel . General i zabl eEl ement . i sRoot xm .val ue='false' />
<Model . General i zabl eEl ement . i sLeaf xm .value="false' />
<Mbdel . C ass.isSingleton xni.value="false />
<Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . ass xm .idref="a96’ /> <!-- Model . TypedEl enent -->
</ Mbdel . Gener al i zabl eEl enent . supertypes>
</ Mbdel . C ass>

<I--

<l--
<l-- Contents of DataType: ScopeKind
<l--
<l--

<Mbdel . Dat aType xm .id="all3 >
<Mbdel . Mbdel El enrent . nane>ScopeKi nd</ Mbdel . Mbdel El enent . name>
<Mbdel . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xni.val ue="fal se'/>
<Mbdel . General i zabl eEl ement . i sRoot xm .val ue='false'/>
<Model . General i zabl eEl ement . i sLeaf xm .value="false' />
<Mbdel . Dat aType. t ypeCode>
<XM . Cor baTypeCode>
<XM . Cor baTcEnum xmi . t cNane=" ScopeKi nd’
xm . tcld="1DL: org. ong. Mof / Model / ScopeKi nd: 1. 0’ >
<XM . Cor baTcEnuniLabel xm .tcNane="instance_ |evel’/>
<XM . Cor baTcEnuniabel xm .tcNanme='classifier |level’'/>
</ XM . Cor baTcEnun®
</ XM . Cor baTypeCode>
</ Mbdel . Dat aType. t ypeCode>
</ Model . Dat aType>

<I--

<I--
<l-- Contents of Class: Feature
<l--
<I--

<Mbdel . Cl ass xm .id="a2 >
<Mbdel . Mbdel El enent . nane>Feat ur e</ Model . Model El enent . nane>
<Model . Mbdel El enent . annot at i on></ Model . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xm .value="true' />
<Model . Gener al i zabl eEl enent . i sRoot xm .val ue='false' />
<Model . Gener al i zabl eEl enent . i sLeaf xm .value="false />
<Model . d ass. i sSingl eton xm .val ue="fal se’ />
<Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . Class xm .idref="a29' /> <!-- Model. Mdel El enent -->

OMG-MOF, v1.3.1 November 2001

</ Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . Nanespace. cont ent s>
<Model . Attri bute>
<Mbdel . Mbdel El enrent . nane>scope</ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM .field>1</ XM .fiel d>
<XM .field>1</ XM .field>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xnm .value="false' />
<Mbdel . TypedEl enent . t ype>
<Mbdel . Dat aType xni .idref="all3' /> <!-- Mbodel. ScopeKind -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Attri bute>
<Mbdel . Attri but e>
<Model . Mbdel El ement . nane>vi si bi |l i t y</ Model . Mbdel El erent . nanme>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM .field>1</ XM .field>
<XM .field>1</ XM .fiel d>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xm .val ue="false' />
<Model . TypedEl enent . t ype>
<Model . Dat aType xmi .idref="al110"/> <!-- Model.VisibilityKind -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Attri bute>
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . C ass>

<Model . Const ant >
<Mbdel . Mbdel El enent . nane>Unbounded</ Mbdel . Model El enent . nane>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Mbdel . Const ant . val ue>
<XM . any xmi.type="uLong" xmi .name="">-1</XM . any>
</ Model . Const ant . val ue>
<Model . TypedEl enent . t ype>
<Model . Cl ass xm .idref="uLong’ /> <!-- unsigned long -->
</ Mbdel . TypedEl enent . t ype>
</ Model . Const ant >

<l-- -->

OMG-MOF, v1.3.1 November 2001 A-37

<l-- -->
<l-- Contents of DataType: MiltiplicityType -->
<l-- -->
<l-- -->

<Mbdel . Dat aType xmi .id="a99’ >
<Mbdel . Mbdel El erent . nane>Mul ti plicityType</ Model . Model El enent . nane>
<Mbdel . Mbdel El enent . annot ati on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xni.val ue="fal se'/>
<Mbdel . General i zabl eEl ement . i sRoot xm .val ue='false' />
<Model . General i zabl eEl ement . i sLeaf xm .value="false' />
<Mbdel . Dat aType. t ypeCode>
<XM . Cor baTypeCode>
<XM . CorbaTcStruct xm .tcNanme="MultiplicityType’
xm .tcld="1DL: org. ong. nof/ Model /Mul tiplicityType:1.0 >
<XM . Cor baTcFi el d xm .tcName="1ower’ >
<XM . Cor baTypeCode>
<XM . Cor baTcLong/ >
</ XM . Cor baTypeCode>
</ XM . Cor baTcFi el d>
<XM . Cor baTcFi el d xm .t cName=" upper’ >
<XM . Cor baTypeCode>
<XM . Cor baTcLong/ >
</ XM . Cor baTypeCode>
</ XM . Cor baTcFi el d>
<XM . CorbaTcField xm .tcNane="is_ordered >
<XM . Cor baTypeCode>
<XM . Cor baTcBool ean/ >
</ XM . Cor baTypeCode>
</ XM . Cor baTcFi el d>
<XM . CorbaTcField xnmi .tcNanme="is_uni que’ >
<XM . Cor baTypeCode>
<XM . Cor baTcBool ean/ >
</ XM . Cor baTypeCode>
</ XM . Cor baTcFi el d>
</ XM . Cor baTcStruct >
</ XM . Cor baTypeCode>
</ Mbdel . Dat aType. t ypeCode>
<Mbdel . Model El enent . constrai nt s>
<Mbdel . Constraint xm .idref="¢c55 />
<Mbdel . Constraint xm .idref="c56" />
<Mbdel . Constraint xm .idref="¢c57" />
<Mbdel . Constraint xm .idref="¢c58 />
</ Mbdel . Mbdel El enent . constrai nt s>
<Mbdel . Nanespace. cont ent s>
<Mbdel . Constraint xm.id="c55 >

<Mbdel . Mbdel El enent . nanme>Lower Cannot BeNegat i veOr Unbounded</ Mbdel . Mbdel El enent

<Mbdel . Model El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>

A-38 OMG-MOF, v1.3.1 November 2001

. hame>

<XM .any xm .type="string" xm.name="">
inv: self.lower >= 0 and self.lower & t;> Unbounded
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xni.value="inmediate’ />
<Mbdel . Const r ai nt. constrai nedEl enent s>
<Model . Class xni.idref="a99' /> <!-- Mdel.MiltiplicityType -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="c56 >
<Mbdel . Mbdel El emrent . name>Lower Cannot ExceedUpper </ Mbdel . Model El enent . name>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv: self.lower & t;= self.upper or self.upper = Unbounded
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xm .value="inmediate’ />
<Mbdel . Const r ai nt. constrai nedEl enent s>
<Model . Class xmi .idref="a99' /> <!-- Mdel.MiltiplicityType -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="c57" >
<Mbdel . Mbdel El erent . nane>Upper Must BePosi ti ve</ Model . Mbdel El emrent . nanme>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM.any xm .type="string" xm.name="">
inv: self.upper >= 1 or self.upper = Unbounded
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xnm.value="inmediate’' />
<Mbdel . Const r ai nt. constrai nedEl enent s>
<Model . Class xmi .idref="a99' /> <!-- Model.MiltiplicityType -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Model . Const r ai nt >
<Mbdel . Constraint xm.id="c58 >
<Mbdel . Mbdel El emrent . name>Must BeUnor der edNonuni que</ Model . Mobdel El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM.any xm .type="string" xm.name="">
inv:
sel f.upper =1 inplies
(not self.isOrdered and not self.isUnique)
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Model . Constrai nt. eval uati onPolicy xm .value="imedi ate' />
<Mbdel . Const rai nt. constrai nedEl enent s>

OMG-MOF, v1.3.1 November 2001 A-39

<Mbdel . Class xni.idref="a99" /> <!I--
</ Model . Constrai nt. constrai nedEl enent
</ Model . Constrai nt >
</ Mbdel . Nanespace. cont ent s>
</ Model . Dat aType>

Model . Mul tiplicityType -->
S>

<l-- -->
<l-- -->
<l-- Contents of Class: Structural Feature -->
<l-- -->
<l-- -->

<Mbdel . C ass xm .id="a20 >

<Mbdel . Mbdel El enment . nane>St r uct ur al Feat ur e</ Model . Model El enent . nane>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xm .value="true' />

<Mbdel . General i zabl eEl enent . i sRoot xm .val ue="fal se’ />

<Mbdel . General i zabl eEl enent . i sLeaf xm .val ue="false' />

<Mbdel . C ass.isSingleton xni.value="false' />

<Mbdel . Gener al i zabl eEl enent . supertypes>

<Mbdel . ass xm .idref="a2' /> <!-- Model . Feature -->
<Mbdel . ass xm .idref="a96’ /> <!-- Mbdel . TypedEl enent
</ Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . Nanespace. cont ent s>
<Mbdel . Attri but e>

>

<Mbdel . Mbdel El errent . nane>nul tiplicity</ Mdel . Mdel El enent. nanme>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />

<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />

<Mbdel . Structural Feature. mul tiplicity>

<XM .field>1</ XM .fiel d>
<XM .field>1</ XM .field>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Struct ural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xm .val ue="false' />
<Model . TypedEl enent . t ype>
<Model . Dat aType xmi.idref="a99 /> <!--
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Attri bute>
<Mbdel . Attri but e>

Model . Mul tiplicityType -->

<Mbdel . Mbdel El errent . nane>i sChangeabl e</ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue='instance_l evel ' />
<Model . Structural Feature. mul tiplicity>

<XM .field>1</ XM .field>

<XM .field>1</ XM .fiel d>
<XM . field>fal se</ XM . field>

A-40 OMG-MOF, v1.3.1 November 2001

<XM

.field>fal se</ XM .field>

</ Mbdel . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xnm .value="false' />
<Mbdel . TypedEl enent . t ype>
<Mbdel . Dat aType xmni .idref="a98 /> <!l-- Model . bool ean -->
</ Mbdel . TypedE!l enent . t ype>
</ Model . Attri bute>

</ Mbdel . Nanespace. cont ent s>
</ Mbdel . Cl ass>
<l-- -->
<l-- -->
<l-- Contents of Class: Attribute -->
<l-- -->
<l-- -->
<Mbdel . O ass xm .id="a23 >
<Mbdel . Mbdel El enrent . nane>At t ri but e</ Model . Mbdel El enent . name>
<Mbdel . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xni.val ue="fal se'/>
<Mbdel . General i zabl eEl ement . i sRoot xm .val ue='false'/>
<Model . General i zabl eEl ement . i sLeaf xm .value="false' />
<Mbdel . d ass.isSingleton xni.value="false' />
<Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . C ass xm .idref="a20" /> <!-- Moddel. Structural Feature -->
</ Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . Nanespace. cont ent s>
<NMbdel . Attri but e>
<Mbdel . Mbdel El errent . nane>i sDer i ved</ Mbdel . Model El enent . nane>
<Mbdel . Mbdel El emrent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM .field>1</ XM .fiel d>
<XM .field>1</ XM .field>
<XM .field>fal se</ XM .field>
<XM .field>fal se</ XM .field>
</ Mbdel . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xm .value="false' />
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xmni .idref="a98 /> <!-- Model . bool ean -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Attri bute>
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . O ass>
<l-- -->
<l-- -->

OMG-MOF, v1.3.1 November 2001 A-41

<l-- Contents of Cl ass: Reference >
<l-- -->
<l-- -->

<Mbdel . Cl ass xm .id="a86" >

<Mbdel . Mbdel El enent . nane>Ref er ence</ Mbdel . Model El enent . nane>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xm .val ue="false />
<Mbdel . General i zabl eEl enent . i sRoot xm .val ue="fal se' />

<Mbdel . General i zabl eEl enent . i sLeaf xm .val ue="false' />

<Mbdel . d ass.isSingleton xni.value="false' />

<Mbdel . Model El enent . constrai nt s>

<Mbdel . Constraint xm.idref="c21' />

<Mbdel . Constraint xm.idref="c22'/>

<Mbdel . Constraint xm.idref="¢c23 />

<Model . Constraint xm .idref="¢c24" />

<Mbdel . Constraint xm .idref="c25 />

<Mbdel . Constraint xm.idref="c26" />

<Mbdel . Constraint xm.idref="¢c27 />

</ Model . Model El enent. constrai nt s>

<Mbdel . Gener al i zabl eEl enent . supertypes>

<Mbdel . Cl ass xm .idref="a20" /> <!-- Model. Structural Feature -->
</ Mbdel . Gener al i zabl eEl enent . supertypes>

<Mbdel . Nanespace. cont ent s>

<Model . Constraint xm.id="c21 >

<Mbdel . Mbdel El enent . nane>Ref erenceMul ti plicityMist Mat chEnd</ Mbdel . Model El enent . nane>

<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>

<XM.any xm .type="string" xm.name="">

inv: self.multiplicity = self.referencedEnd.nultiplicity

</ XM . any>

</ Model . Constrai nt. expressi on>

<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPol i cy xm .val ue="deferred />
<Mbdel . Const r ai nt. constrai nedEl enent s>

<Mbdel . Cl ass xni.idref="a86" /> <!-- Mbdel.Reference -->

</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="c22’'>

<Mbdel . Mbdel El enent . name>Ref er enceMust Bel nst anceScoped</ Model . Mbdel El enent . nanme>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv: self.scope = #instance_| eve
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Model . Constrai nt. eval uati onPolicy xm .value="imedi ate' />

A-42 OMG-MOF, v1.3.1 November 2001

<Model . Constrai nt. constrai nedEl enent s>
<Model . Class xni.idref="a86" /> <!-- Model . Reference -->
</ Mbdel . Constrai nt. constrai nedEl enent s>
</ Mbdel . Constrai nt>
<Mbdel . Constraint xm.id= c23 >

<Model . Mbdel El enent . name>Changeabl eRef er enceMust HaveChangeabl eEnd</ Mbdel . Model El emen
t. nane>
<Model . Model El ement . annot at i on></ Model . Model El ement . annot at i on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv: self.isChangeable = self.referencedEnd. i sChangeabl e
</ XM . any>
</ Model . Constrai nt. expressi on>
<Model . Constrai nt. | anguage>0CL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPol i cy xm .val ue="deferred />
<Model . Constrai nt. constrai nedEl enent s>
<Model . Cl ass xni.idref="a86"/> <!-- Mdel.Reference -->
</ Model . Constrai nt. constrai nedEl enent s>
</ Model . Constr ai nt >
<Model . Constraint xm.id="c24 >

<Mbdel . Mbdel El enent . nanme>Ref er enceTypeMist Mat chEndType</ Model . Mbdel El enent . nanme>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv: self.type = self.referencedEnd. type
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPol i cy xm .val ue="deferred />
<Mbdel . Const r ai nt. constrai nedEl enent s>
<Mbdel . Cl ass xni.idref="a86" /> <!-- Mbdel.Reference -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="c25 >

<Mbdel . Mbdel El enent . nanme>Ref er encedEndMust BeNavi gabl e</ Mbdel . Model El enent . nane>
<Mbdel . Mbdel El enent . annot at i on></ Model . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM.any xm .type="string" xm.name="">
inv: self.referencedEnd.isNavi gabl e
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPol i cy xm .val ue="deferred />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Mbdel . Cl ass xni.idref="a86" /> <!-- Mbdel.Reference -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Model . Const r ai nt >
<Mbdel . Constraint xm.id="c26’ >

OMG-MOF, v1.3.1 November 2001 A-43

<Mbdel . Mbdel El enent . nanme>Cont ai ner Must Mat chExposedType</ Model . Mbdel El enent . nanme>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv:
sel f.container.all Supertypes() -> including(self) ->
i ncl udes(sel f.referencedEnd. ot her End. t ype)
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPol i cy xm .val ue="deferred />
<Mbdel . Const r ai nt. constrai nedEl enent s>
<Model . Cl ass xni.idref="a86" /> <!-- Mbdel.Reference -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="c27 >
<Mbdel . Mbdel El emrent . name>Ref er encedEndMust BeVi si bl e</ Model . Model El enent . nane>
<Mbdel . Mbdel El emrent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv: self.isVisible(self.referencedEnd)
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPol i cy xm .val ue="deferred />
<Mbdel . Const r ai nt. constrai nedEl enent s>
<Mbdel . Cl ass xni.idref="a86" /> <!-- Mbdel.Reference -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Ref er ence>
<Mbdel . Mbdel El errent . nane>exposedEnd</ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM .field>1</ XM .field>
<XM .field>1</ XM .fiel d>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Model . TypedEl enent . t ype>
<Mbdel . Cl ass xni.idref="a90’ /> <!-- Mbdel . Associ ati onEnd -->
</ Mbdel . TypedE!l enent . t ype>
<Mbdel . Ref erence. r ef er encedEnd>
<Mbodel . Associ ati onEnd xmi .idref="al50’ /> <!-- Mbdel . Exposes. exposedEnd -->
</ Mbdel . Ref er ence. r ef er encedEnd>
</ Mbdel . Ref erence>
<Mbdel . Ref er ence>
<Mbdel . Mbdel El erent . nane>r ef er encedEnd</ Model . Model El enent . nane>

A-44 OMG-MOF, v1.3.1 November 2001

<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>

<XM .field>1</ XM .field>

<XM .field>1</ XM .fiel d>

<XM . field>fal se</ XM . fiel d>

<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Struct ural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . TypedEl enent . t ype>

<Mbdel . C ass xni.idref="a90’ /> <!-- Mbdel.Associ ati onEnd -->
</ Mbdel . TypedE!l enent . t ype>
<Mbdel . Ref erence. r ef er encedEnd>

<Mbdel . Associ ati onEnd xm .idref="al46’ /> <!-- Mbodel . RefersTo. referencedEnd -

</ Model . Ref erence. r ef er encedEnd>
</ Model . Ref erence>
</ Mbdel . Nanespace. cont ent s>
</ Model . Cl ass>

<l-- -->
<l-- -->
<!-- Contents of Class: Behavioral Feature -->
<l-- -->
<l-- -->

<Mbdel . Cl ass xm .id="a67 >
<Mbdel . Mbdel El enment . nane>Behavi or al Feat ur e</ Mbdel . Model El enent . nane>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xm .value="true' />
<Mbdel . General i zabl eEl enent . i sRoot xm .val ue="fal se’ />
<Mbdel . General i zabl eEl enent . i sLeaf xm .val ue="false />
<Mbdel . d ass.isSingleton xni.value="false' />
<Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . Class xm .idref="a2'/> <!-- Model.Feature -->
<Mbdel . ass xm .idref="a6’ /> <!-- MNbdel . Nanespace -->
</ Mbdel . Gener al i zabl eEl enent . supertypes>
</ Model . Cl ass>

<l-- -->
<l-- -->
<!-- Contents of C ass: Operation -->
<l-- -->
<l-- -->

<Model . ass xm .id="a25 >
<Mbdel . Mbdel El enrent . nane>0per at i on</ Mbdel . Mbdel El enent . nanme>
<Mbdel . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />

OMG-MOF, v1.3.1 November 2001

A-45

<Mbdel . General i zabl eEl enent . i sAbstract xni.val ue="fal se'/>
<Mbdel . General i zabl eEl ement . i sRoot xm .val ue='false' />
<Mbdel . General i zabl eEl ement . i sLeaf xm .value="false' />
<Mbdel . d ass.isSingleton xni.value="false' />
<Mbdel . Model El enent . constrai nt s>
<Mbdel . Constraint xm .idref="¢c28 />
<Mbdel . Constraint xm .idref="¢c29 />
<Mbdel . Constraint xm .idref="¢c30" />
</ Mbdel . Mbdel El enent . constrai nt s>
<Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . C ass xm .idref="a67' /> <!-- Mddel.Behavioral Feature -->
</ Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . Nanespace. cont ent s>
<Mbdel . Constraint xm.id="c28 >
<Mbdel . Mbdel El erent . name>Qper at i onCont ai nnent Rul es</ Mbdel . Model El enent . nane>
<Mbdel . Mbdel El errent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM.any xm .type="string" xm.name="">
inv:
Set { Paranet er, Constraint, Tag} ->
i ncl udesAl |l (sel f.content Types())
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xn.value="inmediate’ />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Model . Cl ass xmi.idref="a25"/> <!-- Mdel.Operation -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="c29 >

<Mbdel . Mbdel El enent . name>CQper at i onsHaveAt Most OneRet ur n</ Model . Mbdel El enent . nanme>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv:
sel f.contents ->
select(c | c.ocllsTypeOr(Paraneter)) ->
select(p : Paraneter | p.direction = #return_dir) ->
size < 2
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt .| anguage>0OCL</ Model . Constrai nt. | anguage>
<Model . Constrai nt. eval uati onPolicy xm .value="imedi ate' />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Model . Cl ass xmi.idref="a25"/> <!-- Mdel.Operation -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Model . Const r ai nt >
<Mbdel . Constraint xm.id="c30 >

<Mbdel . Mbdel El enent . nanme>Cper at i onExcept i onsMust BeVi si bl e</ Mbdel . Mbdel El enent . nane>

A-46 OMG-MOF, v1.3.1 November 2001

<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm.type="string" xm.name=
inv: self.exceptions -> forAll (e | self.isVi sible(e))
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Const rai nt. eval uati onPol i cy xm .val ue="deferred />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Model . Cl ass xnmi.idref="a25"/> <!-- Mdel.Operation -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Model . Attri but e>
<Mbdel . Mbdel El errent . nane>i sQuer y</ Model . Model El enent . nane>
<Mbdel . Mbdel El emrent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM . field>1</ XM .field>
<XM . field>1</ XM .field>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xnm .value="fal se' />
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xmni .idref="a98 /> <!l-- Model . bool ean -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Attri bute>
<Mbdel . Ref erence xm .id="al36’ >
<Mbdel . Mbdel El errent . nane>except i ons</ Model . Model El enent . nane>
<Mbdel . Mbdel El emrent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM . field>0</XM.field>
<XM . field>1</ XM .fiel d>
<XM . field>true</XM.field>
<XM . field>true</XM.field>
</ Mbdel . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Model . TypedEl enent . t ype>
<Model . Cl ass xni.idref="a87" /> <!-- Mbdel . Exception -->
</ Mbdel . TypedE!l enent . t ype>
<Mbdel . Ref er ence. r ef er encedEnd>
<Mbdel . Associ ati onEnd xmi .idref="al34’/> <!-- Mbdel . CanRai se. except -->
</ Mbdel . Ref er ence. r ef er encedEnd>
</ Mbdel . Ref erence>
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . C ass>

OMG-MOF, v1.3.1 November 2001 A-47

<l-- -->
<l-- -->
<!-- Contents of C ass: Exception -->
<l-- -->
<l-- -->

<Mbdel . Cl ass xm .id="a87 >
<Mbdel . Mbdel El enrent . nane>Except i on</ Mbdel . Mbdel El enent . nanme>
<Mbdel . Mbdel El enent . annot ati on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xni.value="fal se' />
<Model . General i zabl eEl ement . i sRoot xm . val ue='false' />
<Mbdel . General i zabl eEl ement . i sLeaf xm .value="false' />
<Mbdel . C ass.isSingleton xni.value="false />
<Mbdel . Model El enent . constrai nt s>
<Mbdel . Constraint xm .idref="¢31"/>
<Mbdel . Constraint xm .idref="¢32"/>
</ Mbdel . Mbdel El enrent . constrai nt s>
<Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . C ass xm .idref="a67' /> <!-- Mddel.Behavioral Feature -->
</ Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . Nanespace. cont ent s>
<Mbdel . Constraint xm.id="c31 >
<Mbdel . Mbdel El emrent . name>Except i onCont ai nnent Rul es</ Mbdel . Model El enent . name>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv: Set{Parameter, Tag}) -> includesAll (self.contentTypes())
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xm.value="inmediate’ />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Model . Cl ass xnmi.idref="a87"/> <!-- Mdel . Exception -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="c32">

<Mbdel . Mbdel El enent . nanme>Except i onsHaveOnl yQut Par anmet er s</ Model . Model El enent . nanme>

<Mbdel . Mbdel El errent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>

<XM .any xm .type="string" xm.name="">

inv:

sel f.contents ->

select(c | c.ocllsTypeOr(Paraneter)) ->

forAll (p : Parameter | p.direction = #out_dir)

</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Model . Constrai nt. eval uati onPolicy xm .value="imedi ate' />
<Model . Constrai nt. constrai nedEl enent s>

A-48 OMG-MOF, v1.3.1 November 2001

<Model . Cl ass xnmi.idref="a87" /> <!-- Mdel . Exception -->
</ Mbdel . Constrai nt. constrai nedEl enent s>
</ Mbdel . Constrai nt>

</ Mbdel . Nanespace. cont ent s>

</ Mbdel . C ass>

<l-- -->
<l-- -->
<!-- Contents of Class: Association -->
<l-- -->
<l-- -->

<Mbdel . C ass xm .id="a62 >

<Mbdel
<Mbdel
<Mbde
<Mbde
<Mbde
<Mbde
<Mbdel
<Mbdel
<Mbdel
<Mbdel
<Mbdel
<Mbdel
<Mbdel
<Mbdel

</ Mbdel

<Mbdel
<Mbdel
</ Mbdel
<Mbdel
<Mbdel

Model El emrent . nane>Associ at i on</ Mbdel . Mbdel El enent . nane>
Model El emrent . annot at i on></ Mbdel . Mbdel El enent . annot ati on>

.Ceneralizabl eElement.visibility xm .value="public_vis'/>
. Generalizabl eEl enent.i sAbstract xm.value=false />

. Generalizabl eEl enent.i sRoot xm.value="false />

. Generalizabl eEl enent.isLeaf xm.value=false />

Class.isSingleton xm.value="fal se' />
Model El enent . constrai nt s>

.Constraint xm.idref="¢33 />
.Constraint xm .idref="¢c34'/>
.Constraint xm.idref="¢c36"/>
.Constraint xm .idref="¢c37" />
.Constraint xm.idref="¢38 />
.Constraint xm.idref="¢39" />

Model El enent . constrai nt s>

Gener al i zabl eEl enent . supertypes>
.Class xm .idref="a5 /> <!-- Model.Cl assifier -->
. Gener al i zabl eEl enent . supertypes>
Nanmespace. cont ent s>

.Constraint xm.id="c33 >

<Model . Model El enent . name>Associ at i onCont ai nnment Rul es</ Model . Model El enent . nane>
<Mbdel . Model El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>

<XM

.any xm.type="string" xm.nane="">

inv:
Set { Associ ati onEnd, Constraint, Tag} ->
i ncl udesAl | (sel f.content Types())

</ XM . any>

</ Model . Constrai nt. expressi on>

<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Model . Constrai nt. eval uati onPolicy xm .value="imedi ate' />
<Mbdel . Const rai nt. constrai nedEl enent s>

<Mbdel . Cl ass xni.idref="a62’' /> <!-- Mdel.Association -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Model . Const r ai nt >

<Model

.Constraint xm.id="c34' >

OMG-MOF, v1.3.1 November 2001 A-49

<Mbdel . Mbdel El enent . name>Associ ati onsHaveNoSupert ypes</ Mbdel . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv: self.supertypes -> isEnpty
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xn.value="inmediate' />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Mbdel . Cl ass xni.idref="a62’' /> <!-- Mbdel.Association -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="c36" >

<Mbdel . Model El enent . name>Associ at i onMust BeRoot AndLeaf </ Mbdel . Model El enent . nane>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv: self.isRoot and self.isLeaf
</ XM . any>
</ Mbdel . Constrai nt. expressi on>
<Model . Constrai nt. | anguage>0CL</ Model . Constrai nt. | anguage>
<Model . Constrai nt. eval uati onPolicy xm .value="imedi ate' />
<Mbdel . Constrai nt. constrai nedEl emrent s>
<Mbdel . Cl ass xni.idref="a62' /> <!-- Mbdel.Association -->
</ Model . Constrai nt. constrai nedEl enent s>
</ Model . Constrai nt >
<Model . Constraint xm.id="¢c37 >

<Mbdel . Mbdel El enent . name>Associ at i onsCannot BeAbst r act </ Mbdel . Model El enent . nane>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv: not self.isAbstract
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Model . Constrai nt. eval uati onPolicy xm .value="imedi ate' />
<Mbdel . Constrai nt. constrai nedEl emrent s>
<Mbdel . Cl ass xni.idref="a62' /> <!-- Mbdel.Association -->
</ Model . Constrai nt. constrai nedEl enent s>
</ Model . Constrai nt >
<Mbdel . Constraint xm.id="c38 >
<Mbdel . Mbdel El enent . name>Associ ati onsMiust BePubl i c</ Mbdel . Model El enent . nane>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv: self.visibility = #public_vis
</ XM . any>

A-50 OMG-MOF, v1.3.1 November 2001

</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xn.value="inmediate’ />
<Mbdel . Constrai nt. constrai nedEl emrent s>
<Mbdel . Cl ass xni.idref="a62' /> <!-- Mbdel.Association -->

</ Model . Constrai nt. constrai nedEl enent s>

</ Model . Constrai nt >

<Mbdel . Constraint xm.id=" ¢c39 >

<Mbdel . Mbdel El emrent . name>Associ at i onsMust BeBi nar y</ Model . Model El enrent . nane>

<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv: self.contents ->
select(c | c.ocllsTypeOf(AssociationEnd)) -> size = 2
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xnm.value="inmediate’ />
<Mbdel . Const r ai nt. constrai nedEl enent s>
<Mbdel . C ass xni.idref="a62’' /> <!-- Mbdel.Association -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Attri but e>
<Mbdel . Mbdel El errent . nane>i sDer i ved</ Mbdel . Model El enent . nane>
<Mbdel . Mbdel El emrent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. multiplicity>
<XM .field>1</ XM .field>
<XM .field>1</ XM .field>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xnm .value="false' />
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xmi .idref="a98 /> <l-- Model . bool ean -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Attri bute>
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . Cl ass>

<l-- -->
<l-- -->
<!-- Contents of DataType: AggregationKind -->
<l-- -->
<l-- -->

<Model . Dat aType xm .id="all4’ >
<Mbdel . Mbdel El errent . nane>Aggr egat i onKi nd</ Model . Model El enent . nanme>
<Mbdel . Mbdel El enrent . annot at i on></ Mbdel . Model El enent . annot ati on>

OMG-MOF, v1.3.1 November 2001

A-51

A-52

<Mbdel
<Mbdel
<Mbdel
<Mbdel
<Mbdel .

.Ceneralizabl eElement.visibility xm .value="public_vis'/>
. Generalizabl eEl enent.i sAbstract xm.value=false />

. Generalizabl eEl enent.i sRoot xm.value="false />

. Generalizabl eEl enent.isLeaf xm.value="false/>

Dat aType. t ypeCode>

<XM . Cor baTypeCode>

<XM .

Cor baTcEnum xm . t cName=" Aggr egat i onKi nd’

xm .tcld="1DL: org. ong. nof / Mbdel / Aggr egati onKi nd: 1. 0’ >

<XM . Cor baTcEnumLabel xmi .tcNane=' none’' />

<XM . Cor baTcEnumLabel xm .tcNane='shared’' />

<XM . Cor baTcEnumi_abel xm .tcNane='conposite' />

</ XM . Cor baTcEnun®
</ XM . Cor baTypeCode>
</ Mbdel . Dat aType. t ypeCode>

</ Model . Dat aType>
<l-- -->
<l-- -->
<!-- Contents of C ass: AssociationEnd -->
<l-- -->
<l-- -->

<Model . Cd ass xm .id="a9%90’ >

<Mbdel .
<Mbdel .
<Mbdel
<Mbdel
<Mbdel
<Mbdel
<Mbdel .
<Mbdel .
<Mbdel
<Mbdel
<Mbdel
<Mbdel
</ Mbdel

Model El emrent . nane>Associ at i onEnd</ Model . Model El enent . nanme>
Model El emrent . annot at i on></ Mbdel . Model El enent . annot ati on>

. Ceneralizabl eElement.visibility xm .value=" public_vis'/>
. Generalizabl eEl enent.i sAbstract xm.value=false />

. Generalizabl eEl enent.i sRoot xm.value="false />

. Generalizabl eEl enent.isLeaf xm.value="false />

Cl ass.isSingleton xm.value="false'/>
Model El enent . constrai nt s>

.Constraint xm .idref="c40' />
.Constraint xm .idref="c41' />
.Constraint xm .idref="c42'/>
.Constraint xm .idref="c43 />

. Model El enent . constrai nt s>

<Mbdel . Gener al i zabl eEl enent . supertypes>

<Mbdel
</ Mbdel
<Mbdel .
<Mbdel

.Class xm .idref="a96" /> <!-- Model . TypedEl enent -->
. Gener al i zabl eEl enent . supertypes>

Nanmespace. cont ent s>

.Constraint xm.id=" c40 >

<Mbdel . Mbdel El erent . nane>EndTypeMist BeC ass</ Model . Model El ement . nane>
<Mbdel . Mbdel El errent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>

<XM

.any xm.type="string" xm.nane="">

inv: self.type.ocl|sTypeO(C ass)
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Model . Constrai nt. eval uati onPolicy xm .value="imedi ate' />
<Model . Constrai nt. constrai nedEl enent s>

OMG-MOF, v1.3.1 November 2001

<Mbdel . Cl ass xni.idref="a90’ /> <!-- Mbdel.Associ ati onEnd -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="c41 >
<Mbdel . Mbdel El errent . nane>EndsMuist BeUni que</ Model . Mbdel El enrent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Mbdel El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv:
(self.multiplicity.upper > 1 or
self.multiplicity.upper = UNBOUNDED) inplies
self.multiplicity.isUnique
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xn.value="inmedi ate’' />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Mbdel . C ass xni.idref="a90’ /> <!-- Mbdel.Associ ati onEnd -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="c42’ >
<Mbdel . Mbdel El emrent . name>Cannot HaveTwoOr der edEnds</ Model . Mobdel El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv:
self.multiplicity.isOrdered inplies
not self.otherEnd.multiplicity.isOdered
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPol i cy xm .val ue="deferred />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Mbdel . C ass xni.idref="a90’ /> <!-- Mbdel.Associ ati onEnd -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="c43 >
<Mbdel . Mbdel El emrent . name>Cannot HaveTwoAggr egat eEnds</ Model . Model El enent . nane>
<Mbdel . Mbdel El enent . annot at i on></ Model . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM.any xm .type="string" xm.name="">
inv:
sel f.aggregation & t;&yt; #none inplies self.otherEnd = #none
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPol i cy xm .val ue="deferred />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Model . C ass xni.idref="a90’ /> <!-- Mbdel . Associ ati onEnd -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Model . Const r ai nt >

OMG-MOF, v1.3.1 November 2001 A-53

<Model . Attri bute>
<Mbdel . Mbdel El erent . nane>i sNavi gabl e</ Mbdel . Mbdel El erent . nanme>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .val ue="public_vis' />
<Mbdel . Feat ure. scope xm .val ue='instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM .field>1</ XM .field>
<XM .field>1</ XM .field>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xnm .val ue="false' />
<Mbdel . TypedEl enent . t ype>
<Mbdel . Dat aType xmni .idref="a98 /> <!l-- Model . bool ean -->
</ Mbdel . TypedE!l enent . t ype>
</ Model . Attri bute>
<Model . Attri bute>
<Mbdel . Mbdel El erent . nane>aggr egat i on</ Mbdel . Mbdel El erent . nanme>
<Mbdel . Mbdel El errent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM . field>1</ XM .field>
<XM . field>1</ XM .field>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xnm .val ue="false' />
<Model . TypedEl enent . t ype>
<Model . Dat aType xmi.idref="all4’ /> <!-- Model.Aggregati onKind -->
</ Mbdel . TypedE!l enment . t ype>
</ Mbdel . Attri bute>
<Mbdel . Attri but e>
<Mbdel . Mbdel El erent . nane>nul tiplicity</ Mdel . Mdel El enent. nanme>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM . field>1</ XM .field>
<XM . field>1</ XM .field>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Mbdel . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xni.value="false' />
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xmi .idref="a99' /> <!-- Model . MultiplicityType -->
</ Model . TypedE!l enent . t ype>
</ Mbdel . Attri bute>

A-54 OMG-MOF, v1.3.1 November 2001

<Model . Attri bute>
<Mbdel . Mbdel El errent . nane>i sChangeabl e</ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .val ue="public_vis' />
<Mbdel . Feat ure. scope xm .val ue='instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM .field>1</ XM .field>
<XM .field>1</ XM .field>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xnm .val ue="false' />
<Mbdel . TypedEl enent . t ype>
<Mbdel . Dat aType xmni .idref="a98 /> <!l-- Model . bool ean -->
</ Mbdel . TypedE!l enent . t ype>
</ Model . Attri bute>
<Mbdel . Qper ati on>
<Mbdel . Mbdel El errent . nane>ot her End</ Mbdel . Mbdel El errent . nane>
<Mbdel . Mbdel El errent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_level’ />
<Mbdel . Operation.isQuery xm .value="true'/>
<Mbdel . Namespace. cont ent s>
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>*r et ur n</ Model . Model El enent . nane>
<Mbdel . Mbdel El ement . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xnmi.value="return_dir’/>
<Model . Paranmeter. multiplicity>
<XM . field>1</ XM . field>
<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Model . Paranmeter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Mbdel . C ass xm .idref="a90" /> <!-- Model . Associ ati onEnd -->
</ Model . TypedEl enment . t ype>
</ Mbdel . Par anet er >
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . Oper ati on>
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . Cl ass>

<l-- -->
<l-- -->
<l-- Contents of Class: Package -->
<l-- -->
<l-- -->

<Mbdel . O ass xm .id="a50" >
<Mbdel . Mbdel El enent . nane>Package</ Model . Model El ement . nane>

OMG-MOF, v1.3.1 November 2001 A-55

<Mbdel . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xni.val ue="fal se'/>
<Mbdel . General i zabl eEl ement . i sRoot xm .val ue='false' />
<Model . General i zabl eEl ement . i sLeaf xm .value="false' />
<Mbdel . C ass.isSingleton xni.value="false />
<Mbdel . Model El enent . constrai nt s>
<Mbdel . Constraint xm .idref="c44' />
<Mbdel . Constraint xm .idref="c45 />
</ Mbdel . Mbdel El enent . constrai nt s>
<Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . Cl ass xni.idref="a71'/> <!-- Model.Generalizabl eEl enent -->
</ Mbdel . Gener al i zabl eEl enent . supertypes>
<Mbdel . Nanespace. cont ent s>
<Mbdel . Constraint xm.id="c44’ >
<Mbdel . Mbdel El ement . name>PackageCont ai nment Rul es</ Model . Model El ement . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM.any xm .type="string" xm.name="">
inv:
Set { Package, C ass, DataType, Association, Exception,
Constraint, Inport, Tag}) -> includesAll (self.contentTypes)
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xn.value="inmedi ate’' />
<Mbdel . Const r ai nt. constrai nedEl enent s>
<Model . C ass xni.idref="a50" /> <!-- Mbdel.Package -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="c45 >
<Mbdel . Mbdel El emrent . name>PackagesCannot BeAbst r act </ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv: not self.isAbstract
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Model . Constrai nt. eval uati onPolicy xm .value="imedi ate' />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Mbdel . C ass xni.idref="a50" /> <!-- Mbdel.Package -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >

<l-- -->
<l-- -->
<l-- Contents of DataType: FormatType -->
<l-- -->
<l-- -->

A-56 OMG-MOF, v1.3.1 November 2001

<Mbdel . Dat aType xm .id="1t2">
<Mbdel . Mbdel El errent . nane>For mat Type</ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xm .val ue="fal se’'/>
<Mbdel . General i zabl eEl enent . i sRoot xm .val ue='false’ />
<Mbdel . General i zabl eEl ement . i sLeaf xm .value="false' />
<Mbdel . Dat aType. t ypeCode>
<XM . Cor baTypeCode>
<XM . Cor baTcAl i as xm .t cName=" For mat Type’
xm .tcld="1DL: org. ong. nof / Mbdel / PackageCl ass/ For mat Type: 1. 0" >
<XM . Cor baTypeCode>
<XM . CorbaTcString xm .tcLength="0"/>
</ XM . Cor baTypeCode>
</ XM . Cor baTcAl i as>
</ XM . Cor baTypeCode>
</ Mbdel . Dat aType. t ypeCode>
</ Mbdel . Dat aType>
<Mbdel . Excepti on xm .id=" For mat Not Supported’ >
<Mbdel . Mbdel El errent . nane>For mat Not Support ed</ Model . Model El ement . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_level’ />
</ Model . Excepti on>
<Model . Exception xmi .id=" Cbj ect Not Ext ernnal i zabl e’ >
<Mbdel . Mbdel El ement . name>0bj ect Not Ext er nal i zabl e</ Model . Model El ement . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_level’ />
<Mbdel . Namespace. cont ent s>
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>expl anat i on</ Mbdel . Model El enent . name>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Mbdel El enent . annot ati on>
<Mbdel . Paraneter.direction xm .value="out _dir'/>
<Model . Paranmeter. multiplicity>
<XM . field>1</XM . field>
<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Model . Paranmeter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xm .idref="al00' /> <!-- Model .string -->
</ Model . TypedEl enment . t ype>
</ Mbdel . Par anet er >
</ Mbdel . Nanespace. cont ent s>
</ Model . Excepti on>
<Model . Exception xm .id="111formedExternalizedject’>

<Mbdel . Mbdel El enent . nane>! | | f or medExt er nal i zedObj ect </ Mbdel . Mbdel El enent . nane>

<Mbdel . Model El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />

OMG-MOF, v1.3.1 November 2001 A-57

<Mbdel . Feat ure. scope xm .val ue="instance_level’ />
<Mbdel . Namespace. cont ent s>
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>expl anat i on</ Mbdel . Mbdel El enent . name>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Mbdel El enent . annot ati on>
<Mbdel . Paraneter.direction xm .value="out _dir'/>
<Model . Paranmeter. multiplicity>
<XM . field>1</XM . field>
<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Mbdel . Parameter. multiplicity>
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xm .idref="al00' /> <!-- Model .string -->
</ Mbdel . TypedEl erment . t ype>
</ Mbdel . Par anet er >
</ Mbdel . Nanespace. cont ent s>
</ Model . Excepti on>
<Mbdel . Qper ati on>
<Mbdel . Mbdel El erent . nane>ext er nal i ze</ Mbdel . Mbdel El ement . nanme>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_level’ />
<Mbdel . Operation.isQuery xm .value="true'/>
<Model . Oper ati on. excepti ons>
<Mbdel . Exception xm .idref="(bject Not Externalizable' />
<Mbdel . Exception xm .idref="Format Not Supported’ />
</ Model . Oper ati on. excepti ons>
<Mbdel . Namespace. cont ent s>
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>*r et ur n</ Model . Model El enent . nanme>
<Mbdel . Mbdel El ement . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xnm.value="return_dir’'/>
<Model . Paranmeter. multiplicity>
<XM . field>1</ XM . fiel d>
<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Model . Paranmeter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xm .idref="al01' /> <!-- Mbdel.any -->
</ Model . TypedEl enment . t ype>
</ Mbdel . Par anet er >
<Mbdel . Par anet er >
<Mbdel . Mbdel El errent . nane>f or mat </ Mbdel . Model El enent . name>
<Mbdel . Mbdel El ement . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xm .value="in_dir'/>
<Model . Paranmeter. multiplicity>
<XM . field>1</XM . field>
<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>

A-58 OMG-MOF, v1.3.1 November 2001

<XM . field>fal se</ XM .field>
</ Mbdel . Parameter. multiplicity>
<Mbdel . TypedEl enent . t ype>
<Mbdel . Dat aType xm .idref="t2'/> <!-- Package. Format Type -->
</ Mbdel . TypedEl ermrent . t ype>
</ Mbdel . Par anet er >
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . Oper ati on>
<Mbdel . Qper ati on>
<Mbdel . Mbdel El erent . nane>i nt er nal i ze</ Mbdel . Mbdel El erent . nanme>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .value="classifier_level’ />
<Mbdel . Operation.isQuery xm .value="false />
<Model . Oper ati on. excepti ons>
<Mbdel . Exception xm .idref="Format Not Supported’ />
<Mbdel . Exception xm .idref="111fornmedExternalizedCject’/>
</ Model . Oper ati on. excepti ons>
<Mbdel . Namespace. cont ent s>
<Mbdel . Par anet er >
<Mbdel . Mbdel El emrent . nane>*r et ur n</ Model . Model El enent . nane>
<Mbdel . Mbdel El ement . annot at i on></ Mbdel . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xni.value="return_dir’/>
<Model . Paranmeter. multiplicity>
<XM . field>1</XM . field>
<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Model . Paranmeter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Mbdel . 0 ass xm .idref="a50" /> <!-- Model.Package -->
</ Mbdel . TypedEl erment . t ype>
</ Mbdel . Par anet er >
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>f or mat </ Mbdel . Model El enent . name>
<Mbdel . Mbdel El ement . annot at i on></ Mbdel . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xm .value="in_dir'/>
<Model . Paranmeter. multiplicity>
<XM . field>1</ XM . field>
<XM . field>1</ XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Model . Paranmeter.nul tiplicity>
<Model . TypedEl enent . t ype>
<Model . Dat aType xm .idref="t2'/> <l-- Package. For mat Type -->
</ Model . TypedEl enment . t ype>
</ Mbdel . Par anet er >
<Mbdel . Par anet er >
<Mbdel . Mbdel El erent . nane>st r eanx/ Mbdel . Model El enent . name>
<Mbdel . Mbdel El ement . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Paraneter.direction xm .value="in_dir'/>

OMG-MOF, v1.3.1 November 2001 A-59

<Model . Paranmeter. multiplicity>
<XM . field>1</XM . field>
<XM . field>1</XM . field>
<XM . field>fal se</ XM .field>
<XM . field>fal se</ XM .field>
</ Mbdel . Parameter. multiplicity>
<Mbdel . TypedEl enent . t ype>
<Model . Dat aType xm .idref="al01' /> <!--
</ Mbdel . TypedEl erment . t ype>
</ Mbdel . Par anet er >
</ Mbdel . Namespace. cont ent s>
</ Mbdel . Oper ati on>
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . O ass>

Model . any -->

<l-- -->
<l-- -->
<!-- Contents of Class: |nport -->
<l-- -->
<l-- -->

<Model . C ass xm .id="a68’ >

<Mbdel . Mbdel El enent . nane>| nport </ Model . Mbdel El enrent . nane>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xnm.val ue="false />
<Mbdel . General i zabl eEl enent . i sRoot xm .val ue="fal se'/>

<Mbdel . General i zabl eEl enent . i sLeaf xm .val ue="false' />

<Mbdel . d ass.isSingleton xni.value="false />

<Mbdel . Model El enent . constrai nt s>

<Mbdel . Constraint xm.idref="c46' />

<Model . Constraint xm .idref="¢c47 />

<Mbdel . Constraint xm.idref="c48 />

<Mbdel . Constraint xm.idref="c49 />

<Mbdel . Constraint xm.idref="¢c50 />

</ Model . Model El enent. constrai nt s>

<Mbdel . Gener al i zabl eEl enent . supertypes>

<Mbdel . d ass xm .idref="a29' /> <!-- Mbdel . Model El enent
</ Mbdel . Gener al i zabl eEl enent . supertypes>

<Mbdel . Nanespace. cont ent s>

<Mbdel . Constraint xm.id="c46’ >

>

<Mbdel . Mbdel El enent . nane>Il npor t edNanespaceMust BeVi si bl e</ Mbdel . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv: self.container.isVisible(self.inportedNanespace)
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPol i cy xm .val ue="deferred />

A-60 OMG-MOF, v1.3.1 November 2001

<Mbdel . Constrai nt. constrai nedEl emrent s>
<Mbdel . Cl ass xni.idref="a68 /> <!-- Mbddel.Ilnport -->
</ Model . Constrai nt. constrai nedEl enent s>
</ Model . Constrai nt >
<Model . Constraint xm.id=" c47 >

<Mbdel . Mbdel El enent . nanme>CanOnl yl nport PackagesAndCl asses</ Model . Model El enent . nanme>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM.any xm .type="string" xm.name="">
inv:
sel f.inmported. ocl|sTypeOf (C ass) or
sel f.inmported. ocl|sTypeO (Package)
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xn.value="inmediate’ />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Mbdel . Class xni.idref="a68 /> <!-- Mbddel.Ilnport -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="c48 >
<Mbdel . Mbdel El erent . nane>Cannot | nport Sel f </ Model . Mbdel El emrent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Mbdel El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv: self.container & t;> self.inported
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPol i cy xm .val ue="deferred />
<Mbdel . Const r ai nt. constrai nedEl enent s>
<Mbdel . Cl ass xni.idref="a68 /> <!-- Mbddel.Ilnport -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="c49 >

<Mbdel . Mbdel El enent . nanme>Cannot | npor t Nest edConponent s</ Mbdel . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM.any xm .type="string" xm.name="">
inv: not self.container.all Contents() -> includes(self.inported)
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPol i cy xm .val ue="deferred />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Mbdel . Class xni.idref="a68 /> <!-- Mbddel.Ilnport -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Model . Const r ai nt >
<Mbdel . Constraint xm.id="c50 >

OMG-MOF, v1.3.1 November 2001 A-61

<Mbdel . Mbdel El emrent . name>Nest edPackagesCannot | nport </ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv:
sel f.container -> notEnpty inplies
sel f.container -> asSequence -> first -> container -> isEnmpty
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPol i cy xm .val ue="deferred />
<Mbdel . Const r ai nt. constrai nedEl enent s>
<Mbdel . Cl ass xni.idref="a68 /> <!-- Mbddel.Ilnport -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Model . Attri bute>
<Model . Mbdel El ement . nane>vi si bi | i t y</ Model . Mbdel El erent . nanme>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .val ue="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM .field>1</ XM .fiel d>
<XM . field>1</ XM .fiel d>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm . val ue="true’'/>
<Mbdel . Attribute.isDerived xm .val ue="false' />
<Model . TypedEl enent . t ype>
<Model . Dat aType xmi .idref="al110'/> <!-- Model.VisibilityKind -->
</ Mbdel . TypedE!l enment . t ype>
</ Mbdel . Attri bute>
<NMbdel . Attri but e>
<Mbdel . Mbdel El errent . nane>i sC ust er ed</ Mbdel . Mbdel El erent . nanme>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM .field>1</ XM .fiel d>
<XM .field>1</ XM .field>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Mbdel . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xn .value="false' />
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xmni .idref="a98 /> <!l-- Model . bool ean -->
</ Model . TypedE!l enent . t ype>
</ Mbdel . Attri bute>
<Mbdel . Ref er ence>
<Mbdel . Mbdel El errent . nane>i npor t edNanespace</ Model . Model El enent . nane>

A-62 OMG-MOF, v1.3.1 November 2001

<Mbdel . Model El enent . annot at i on></ Mbdel . Model El enent . annot ati on>

<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>

<XM . field>1</ XM .field>

<XM . field>1</ XM .field>

<XM . field>fal se</ XM . fiel d>

<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Struct ural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . TypedEl enent . t ype>

<Model . Class xni.idref="a6’ /> <!-- Model . Namespace -->
</ Mbdel . TypedE!l enent . t ype>
<Mbdel . Ref erence. r ef er encedEnd>

<Model . Associ ati onEnd xm .idref="al42'/> <!-- Mbdel.Aliases.inported -->

</ Model . Ref erence. r ef er encedEnd>
</ Model . Ref erence>
</ Mbdel . Nanespace. cont ent s>
</ Model . Cl ass>

<I--

<l--
<l-- Contents of DataType: DirectionKind
<l--
<l--

<Mbdel . Dat aType xm .id="all2’ >
<Mbdel . Mbdel El enent . nane>Di r ect i onKi nd</ Model . Mbdel El enent . nane>
<Mbdel . Mbdel El enent . annot at i on></ Model . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xm .val ue="false />
<Mbdel . General i zabl eEl enent . i sRoot xm .val ue="fal se'/>
<Mbdel . General i zabl eEl enent . i sLeaf xm .val ue="false' />
<Mbdel . Dat aType. t ypeCode>
<XM . Cor baTypeCode>
<XM . Cor baTcEnum xni .t cNanme=" Di r ecti onKi nd’
xm .tcld="1DL: org. ong. nof / Model / Di recti onKi nd: 1. 0’ >
<XM . Cor baTcEnuniabel xm .tcNane="in _dir’'/>
<XM . Cor baTcEnunmiabel xm .tcNanme="out _dir’'/>
<XM . Cor baTcEnunmi_abel xm .tcNanme="inout _dir’'/>
<XM . Cor baTcEnuniabel xm .tcNane="return _dir’/>
</ XM . Cor baTcEnun®
</ XM . Cor baTypeCode>
</ Mbdel . Dat aType. t ypeCode>
</ Model . Dat aType>

<I--

<l--
<!-- Contents of C ass: Paraneter
<I--
<I--

OMG-MOF, v1.3.1 November 2001

A-63

A-64

<Mbdel . Cl ass xni.id="a64’ >

<Mbdel .
<Mbdel .
. Ceneralizabl eElement.visibility xm .value="public_vis'/>
. Generalizabl eEl enent.i sAbstract xm.value=false />

. Generalizabl eEl enent.i sRoot xm.value="false/>

. Generalizabl eEl enent.isLeaf xm.value="false/>

<Mbdel .
. Gener al i zabl eEl enent . supertypes>

<Mbdel
<Mbdel
<Mbdel
<Mbdel

<Model

Model El emrent . nane>Par anmet er </ Model . Model El enent . name>
Model El emrent . annot at i on></ Mbdel . Mbdel El enent . annot at i on>

Cl ass.isSingleton xm.value="false' />

<Mbdel . C ass xm .idref="a96’ /> <!-- Model . TypedEl enent -->
</ Mbdel . Gener al i zabl eEl enent . supertypes>

<Model

. Nanmespace. cont ent s>

<Model . Attri but e>
<Mbdel . Mbdel El errent . nane>di r ect i on</ Mbdel . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM .field>1</ XM .field>
<XM .field>1</ XM .fiel d>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xnm .value="fal se' />
<Model . TypedEl enent . t ype>
<Model . Dat aType xni.idref="al112'/> <!-- Model.DirectionKind -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Attri bute>
<NMbdel . Attri but e>
<Mbdel . Mbdel El erent . nane>nul tiplicity</ Mdel . Model El enent. nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM .field>1</ XM .fiel d>
<XM .field>1</ XM .field>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Mbdel . Structural Feature.multiplicity>
<Mbdel . Struct ural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xm .value="false' />
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xmi .idref="a99' /> <!-- Model . MultiplicityType -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Attri bute>
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . O ass>

<I--

OMG-MOF, v1.3.1 November 2001

<l-- -->
<!-- Contents of C ass: Constraint -->
<l-- -->
<l-- -->

<Model . Cd ass xm .id="ab8' >

<Mbde
<Mbdel
<Mbde
<Mbde
<Mbdel
<Mbde
<Mbdel
<Mbdel
<Mbdel
<Mbdel
</ Mbdel
<Mbdel
<Mbdel
</ Mbdel
<Mbdel
<Mbdel

. Model El enent . name>Const r ai nt </ Model . Model El enent . nane>

Model El emrent . annot at i on></ Mbdel . Mbdel El enent . annot ati on>

. Ceneralizabl eElement.visibility xm .value="public_vis'/>
. General i zabl eEl ement . i sAbstract xm.value="false />

CGeneral i zabl eEl enent . i sRoot xm .val ue='fal se’/>

. Generalizabl eEl enent.i sLeaf xm .value="false />

Cl ass.isSingleton xm.value="false'/>

Mbdel El ement . constrai nt s>

.Constraint xm.idref="¢c51 />

.Constraint xm.idref="¢52"/>

. Model El enent . constrai nts>

Gener al i zabl eEl enent . supertypes>

.Class xm .idref="a29" /> <!-- Model . Model El enent -->
. Gener al i zabl eEl enent . supertypes>
Nanmespace. cont ent s>

.Constraint xm.id=" c51 >

<Model . Model El enent . name>Cannot Const r ai nThi sEl enent </ Mbdel . Model El enrent . nane>
<Mbdel . Model El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>

<XM .any xm .type="string" xm.name="">
inv:
sel f. constrai nedEl enents ->
forAll(c

not Set{Constraint, Tag, |nports,

TypeAlias, Constant} ->

i ncludes(c. ocl Type())

</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xm .value="inmedi ate’' />
<Mbdel . Const r ai nt. constrai nedEl enent s>

<Mbdel . Cl ass xni.idref="a58 /> <!-- Mbdel.Constraint -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Constraint xm.id="c52">

<Model . Mbdel El enent . nanme>Const rai nt sLi ni t edToCont ai ner </ Mbdel . Model El erent . name>

<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>

<XM .any xm .type="string" xm.name="">

inv:

sel f. constrai nedEl ements - > ;

forAll (c | self.container.extendedNamespace() ->

i ncludes(c))

</ XM . any>

OMG-MOF, v1.3.1 November 2001 A-65

A-66

</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPol i cy xm .val ue="deferred />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Mbdel . Cl ass xni.idref="a58 /> <!-- Mbdel.Constraint -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Model . Attri bute>
<Mbdel . Mbdel El errent . nane>expr essi on</ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM .field>1</ XM .field>
<XM . field>1</ XM .fiel d>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xnm .val ue="false' />
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xmi .idref="al0l /> <!-- Nbdel.any -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Attri bute>
<NMbdel . Attri but e>
<Mbdel . Mbdel El errent . nane>l anguage</ Mbdel . Mbdel El errent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM .field>1</ XM .field>
<XM .field>1</ XM .fiel d>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Struct ural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xnm .value="false' />
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xmi .idref="al00' /> <!-- Mbodel.string -->
</ Mbdel . TypedE!l enment . t ype>
</ Mbdel . Attri bute>

<l--

<l--
<l-- Contents of DataType: Eval uationKind
<I--
<l--

<Model . Dat aType xm .id="all5’ >

<Mbdel . Model El enent . nane>Eval uat i onKi nd</ Model . Mbdel El enent . nane>

<Mbdel . Model El enent . annot at i on></ Mbdel . Model El emrent . annot ati on>

OMG-MOF, v1.3.1 November 2001

Model

<Model . General i zabl eEl ement . visibility xm.val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xm .val ue="fal se’/>
<Mbdel . General i zabl eEl ement . i sRoot xm .val ue='false’ />
<Mbdel . General i zabl eEl enent . i sLeaf xm .value="false' />
<Mbdel . Dat aType. t ypeCode>
<XM . Cor baTypeCode>
<XM . Cor baTcEnum xmi . t cNane=" Eval uat i onKi nd’
xm . tcld="1DL: org. ong. nof / Model / Namespaced ass/ Eval uati onKi nd: 1. 0’ >
<XM . Cor baTcEnunlLabel xmi .tcNane="imediate />
<XM . Cor baTcEnuniLabel xm .tcName="deferred’ />
</ XM . Cor baTcEnun®
</ XM . Cor baTypeCode>
</ Mbdel . Dat aType. t ypeCode>
</ Mbdel . Dat aType>
<Model . Attri but e>
<Mbdel . Mbdel El errent . nane>eval uati onPol i cy</ Model . Mbdel El enrent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Mbdel El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM . field>1</ XM .field>
<XM . field>1</ XM .field>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xnm .value="false' />
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xm .idref="all5 /> <!-- Constraint.Eval uati onKind -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Attri bute>
<Mbdel . Ref er ence>
<Mbdel . Mbdel El erent . nane>const r ai nedEl ement s</ Model . Mbdel El errent . nanme>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM .field>1</ XM .fiel d>
<XM .field>-1</ XM .fiel d>
<XM . field>fal se</ XM . fiel d>
<XM . field>true</XM.field>
</ Model . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Model . TypedEl enent . t ype>
<Mbdel . d ass xni.idref="a29’ /> <!-- Mdel.Mdel El enent -->
</ Mbdel . TypedE!l enent . t ype>
<Mbdel . Ref erence. r ef er encedEnd>
<Mbdel . Associ ati onEnd xmi .idref="al25 /> <!--

. Constrains. constrai nedEl enent -->

</ Model . Ref er ence. r ef er encedEnd>
</ Model . Ref er ence>

OMG-MOF, v1.3.1 November 2001 A-67

A-68

</ Mbdel . Nanespace. cont ent s>
</ Mbdel . O ass>

<I--

<l--
<l-- Contents of DataType: Literal Type
<l--
<l--

<Model . Dat aType xm .id="t1 >
<Mbdel . Mbdel El enrent . nane>Li t er al Type</ Model . Mbdel El enent . nane>
<Mbdel . Mbdel El enent . annot ati on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xni.val ue="fal se'/>
<Mbdel . General i zabl eEl ement . i sRoot xm .val ue='false' />
<Mbdel . General i zabl eEl ement . i sLeaf xm .value="false' />
<Mbdel . Dat aType. t ypeCode>
<XM . Cor baTypeCode>
<XM . Cor baTcAl i as xm .tcName='Literal Type’
xm .tcld="1DL: org. ong. nof / Model / Li t eral Type: 1.0’ >
<XM . Cor baTypeCode>
<XM . Cor baTcAny/ >
</ XM . Cor baTypeCode>
</ XM . Cor baTcAl i as>
</ XM . Cor baTypeCode>
</ Mbdel . Dat aType. t ypeCode>
</ Model . Dat aType>

<I--

<I--
<l-- Contents of C ass: Constant
<I--
<l--

<Mbdel . Cl ass xm .id="a84 >

<Mbdel . Mbdel El enent . nane>Const ant </ Model . Model El enent . nane>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xnmi.val ue="false />
<Model . Gener al i zabl eEl enent . i sRoot xm .val ue='false' />

<Model . Gener al i zabl eEl enent . i sLeaf xm .value='false />

<Model . O ass. i sSingl eton xm .val ue="fal se’/>

<Mbdel . Model El enent . constrai nt s>

<Mbdel . Constraint xm.idref="¢cb3 />

<Mbdel . Constraint xm.idref="c54 />

</ Model . Model El enent. constrai nt s>

<Mbdel . Gener al i zabl eEl enent . supertypes>

<Model . Cl ass xm .idref="a96' /> <!-- Model. TypedEl erent -->

</ Mbdel . Gener al i zabl eEl enent . supertypes>

<Mbdel . Nanespace. cont ent s>

<Mbdel . Constraint xm.id=" ¢c53 >

OMG-MOF, v1.3.1 November 2001

<Mbdel . Mbdel El enent . nane>Const ant sVal ueMust Mat chType</ Mbdel . Mbdel El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv: self.value.type -> equal s(self.type -> nmapToTypecode())
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPol i cy xm .val ue="deferred />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Model . Class xni.idref="a84’ /> <!-- Mbdel.Constant -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Model . Constraint xm.id="c54 >

<Mbdel . Mbdel El enent . nanme>Const ant sTypeMist BeSi npl eDat aType</ Model . Model El enent
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Const rai nt . expr essi on>
<XM .any xm .type="string" xm.name="">
inv:
sel f.type. ocl | sKi ndOf (Dat aType) and
Set {#t k_short, #tk ushort, #tk_|ong, #tk ulong, #tk char,
#tk_octet, #tk float, #tk double, #tk _bool ean, #tk_ string,
#tk_wchar, #tk_wstring, #tk_|longlong, #tk_ulonglong,
#t k_| ongdoubl e, #tk fixed} ->
i ncl udes(sel f.type. asType(Dat aType) .t ypecode.
unwi ndAl i ases() . ki nd)
</ XM . any>
</ Model . Constrai nt. expressi on>
<Mbdel . Constrai nt. | anguage>0OCL</ Model . Constrai nt. | anguage>
<Mbdel . Constrai nt. eval uati onPolicy xm.value="inmediate’ />
<Mbdel . Const rai nt. constrai nedEl enent s>
<Model . Cl ass xni.idref="a84’ /> <!-- Mbdel.Constant -->
</ Mbdel . Constrai nt. constrai nedEl emrent s>
</ Mbdel . Const r ai nt >
<Mbdel . Attri but e>
<Mbdel . Mbdel El enrent . nane>val ue</ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Mbdel . Structural Feature. mul tiplicity>
<XM .field>1</ XM .field>
<XM .field>1</ XM .field>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Mbdel . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xn .value="false' />
<Model . TypedEl enent . t ype>
<Model . Dat aType xmi.idref="t1"/> <!-- Mbddel.Literal Type -->

OMG-MOF, v1.3.1 November 2001

. hame>

A-69

A-70

</ Mbdel . TypedE!l enent . t ype>
</ Model . Attri bute>

</ Model

</ Mbdel .

<I--

. Namespace. cont ent s>
Cl ass>

<l--

<l-- Contents of Cass: Tag

<l--
<I--

<Mbdel . Cl ass xnmi .id="al05 >

<Mbdel .
<Mbdel .
<Mbdel
<Mbdel
<Mbdel
<Mbdel
<Mbdel .
<Mbdel .

<Mbdel
</ Mbdel
<Mbdel .

<Mbdel

Mbdel El enent . name>Tag</ Mbdel . Model El enent . nane>
Model El emrent . annot at i on></ Mbdel . Mbdel El enent . annot at i on>

. CeneralizableElement.visibility xm .value="public_vis'/>
. Generalizabl eEl enent.i sAbstract xm.value=false />

. Generalizabl eEl enent.i sRoot xm.value="false/>

. Generalizabl eEl enent.isLeaf xm.value="false/>

Cl ass.isSingleton xm.value="fal se'/>

Gener al i zabl eEl enent . supertypes>

.Class xm .idref="a29" /> <!-- Model . Model El enent -->
. Gener al i zabl eEl enent . supertypes>

Nanmespace. cont ent s>

JAttribute>

<Mbdel . Mbdel El enrent . nane>t agl d</ Model . Model El enent . nane>

<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .val ue="public_vis' />

<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />

<Mbdel . Structural Feature. mul tiplicity>

<XM
<XM
<XM
<XM

field>1</ XM . field>
field>1</ XM . field>
.field>false</ XM .field>
.field>false</ XM . field>

</ Mbdel . Structural Feature.multiplicity>
<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xnm .value="false' />
<Model . TypedEl enent . t ype>
<Mbdel . Dat aType xmi .idref="al00' /> <!-- Model.string -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Attri bute>

<Model

JAttri bute>

<Mbdel . Mbdel El enent . nane>val ues</ Mbdel . Mbdel El erent . nane>
<Mbdel . Mbdel El enent . annot at i on></ Model . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />
<Model . Structural Feature. mul tiplicity>

<XM .field>0</XM .field>

<XM
<XM
<XM

.field>-1</ XM .fiel d>
.field>fal se</ XM .field>
.field>fal se</ XM .field>

</ Mbdel . Structural Feature.multiplicity>

OMG-MOF, v1.3.1 November 2001

<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>
<Mbdel . Attribute.isDerived xm .val ue="false' />

<Mbdel . TypedEl enent . t ype>

<Mbdel . Dat aType xmi .idref="al0l /> <!-- Nbdel.any -->
</ Mbdel . TypedE!l enent . t ype>
</ Model . Attri bute>

<Model

. Ref erence>

<Mbdel . Mbdel El errent . nane>el enent s</ Mbdel . Mbdel El errent . nane>
<Mbdel . Mbdel El errent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Feature.visibility xm .value="public_vis' />
<Mbdel . Feat ure. scope xm .val ue="instance_l evel ' />

<Mbdel . Structural Feature. mul tiplicity>

<XM .field>1</ XM .field>

<XM
<XM
<XM

.field>-1</ XM .fiel d>
.field>fal se</ XM .fiel d>
.field>true</ XM .field>

</ Mbdel . Structural Feature.multiplicity>

<Mbdel . Structural Feat ure. i sChangeabl e xm .val ue="true’'/>

<Model . TypedEl enent . t ype>

<Model . d ass xni.idref="a29 /> <!-- Mdel.Mdel El enent -->

</ Mbdel . TypedE!l enent . t ype>

<Mbdel . Ref erence. r ef er encedEnd>

<Mbdel . Associ ati onEnd xm .idref="al59" /> <!-- Mdel.AttachesTo. nodel El enent

</ Model . Ref erence. r ef er encedEnd>
</ Model . Ref er ence>

</ Mbdel . Nanespace. cont ent s>

</ Mbdel . Cl ass>

<l-- -->
<l-- -->
<!-- Contents of Association: AttachesTo -->
<l-- -->
<l-- -->

<Mbdel . Associ ati on xm .id="al57 >

<Mbdel
<Mbdel
<Mbde
<Mbdel
<Mbde
<Mbde
<Mbdel
<Mbdel
<Mbdel

Model El emrent . nane>At t achesTo</ Mbdel . Mbdel El enent . nane>
Model El emrent . annot at i on></ Mbdel . Mbdel El enent . annot ati on>

. CGeneralizabl eElement.visibility xm .value="public_vis'/>

CGeneral i zabl eEl enent . i sAbstract xm .value="false’ />

. Generalizabl eEl enent.i sRoot xm .value="true' />
. Generalizabl eEl enent.i sLeaf xm .value="true' />

Associ ation.isDerived xm .value="false />
Nanmespace. cont ent s>
.Associ ati onEnd xnmi .id="al59 >

<Model . Mbdel El enent . nanme>nodel El enrent </ Model . Model El enent . name>
<Mbdel . Model El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Associ ati onEnd. mul tiplicity>

<XM
<XM

.field>1</ XM . fiel d>
.field>-1</ XM .fiel d>

OMG-MOF, v1.3.1 November 2001 A-71

<XM . field>fal se</ XM . fiel d>
<XM . field>true</ XM .field>
</ Mbdel . Associ ationEnd. nul tiplicity>
<Mbdel . Associ ati onEnd. aggr egati on xm . val ue=" none’ />
<Mbdel . Associ ati onEnd. i sNavi gabl e xm .value="true' />
<Mbdel . Associ ati onEnd. i sChangeabl e xm . val ue="true’'/>
<Mbdel . TypedEl enent . t ype>
<Mbdel . d ass xni.idref="a29 /> <!-- Mdel.Mdel El enent -->
</ Mbdel . TypedE!l enent . t ype>

</ Mbdel . Associ at i onEnd>

<Mbdel . Associ ati onEnd xm .id="al58’ >
<Mbdel . Mbdel El enrent . nane>t ag</ Mbdel . Mbdel El ement . nanme>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Associ ati onEnd. mul tiplicity>
<XM .field>0</XM .field>
<XM .field>-1</ XM .fiel d>
<XM . field>true</XM.field>
<XM . field>true</XM.field>
</ Mbdel . Associ ationEnd. nul tiplicity>
<Mbdel . Associ ati onEnd. aggr egati on xm . val ue=" none’ />
<Mbdel . Associ ati onEnd. i sNavi gabl e xm .value="true' />
<Mbdel . Associ ati onEnd. i sChangeabl e xm . val ue="true'/>
<Model . TypedEl enent . t ype>
<Mbdel . Cl ass xmi.idref="al1l05 /> <!-- Mdel.Tag -->
</ Mbdel . TypedE!l enent . t ype>

</ Mbdel . Associ at i onEnd>

</ Mbdel . Nanespace. cont ent s>

</ Mbdel . Associ ati on>

<I--

<l--

<l-- Contents of Association: DependsOn

<l--
<I--

<Mbdel . Associ ati on xm .id="al29 >

<Mbdel
<Mbdel
. CGeneralizabl eElement.visibility xm .value="public_vis'/>
. Generalizabl eEl enent.i sAbstract xm.value=false />

. Generalizabl eEl enent.i sRoot xm .value="true' />

. Generalizabl eEl enent.isLeaf xm .value="true' />

.Associ ation.isDerived xm .value="true' />

<Mbdel

<Mbde
<Mbde
<Mbde
<Mbde
<Mbde

Mbdel El enent . name>DependsOn</ Model . Model El ement . nanme>
Mbdel El enent . annot at i on></ Model . Model El enent . annot at i on>

Namespace. cont ent s>

<Mbdel . Associ ati onEnd xm .id="al30" >

<Mbdel . Mbdel El errent . nane>dependent </ Mbdel . Model El enent . nane>
<Mbdel . Mbdel El enent . annot at i on></ Model . Model El enent . annot ati on>
<Model . Associ ati onEnd. multiplicity>

<XM . field>0</XM .field>

<XM .field>1</ XM .fiel d>

<XM .field>fal se</ XM .field>

A-72

OMG-MOF, v1.3.1 November 2001

<XM

.field>true</ XM .field>

</ Mbdel . Associ ationEnd. nul tiplicity>
<Mbdel . Associ ati onEnd. aggr egati on xm . val ue=" none’ />
<Mbdel . Associ ati onEnd. i sNavi gabl e xm .value="true' />
<Mbdel . Associ ati onEnd. i sChangeabl e xm . val ue='fal se’ />
<Mbdel . TypedEl enent . t ype>
<Model . d ass xni.idref="a29 /> <!-- Mdel.Mdel El enent -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Associ at i onEnd>

<Model

.Associ ati onEnd xm .id="al31 >

<Mbdel . Mbdel El errent . nane>pr ovi der </ Mbdel . Mbdel El errent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Associ ati onEnd. mul tiplicity>

<XM
<XM
<XM
<XM

.field>0</ XM .field>
field>- 1</ XM . fiel d>
.field>false</ XM .field>
.field>true</ XM .field>

</ Mbdel . Associ ationEnd. nul tiplicity>
<Mbdel . Associ ati onEnd. aggr egati on xm . val ue=" none’ />
<Mbdel . Associ ati onEnd. i sNavi gabl e xm .value="true' />
<Mbdel . Associ ati onEnd. i sChangeabl e xm . val ue='fal se’ />
<Model . TypedEl enent . t ype>
<Model . d ass xnmi.idref="a29' /> <!-- Mdel.Mdel El enent -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Associ at i onEnd>

</ Model

. Namespace. cont ent s>

</ Model . Associ ati on>

<l-- -->
<l-- -->
<l-- Contents of Association: Contains -->
<l-- -->
<l-- -->

<Mbdel . Associ ati on xm .id="all9 >

<Mbdel .
<Mbdel .
. CGeneralizabl eElement.visibility xm .value="public_vis'/>
. Generalizabl eEl enent.i sAbstract xm.value=false />

. Generalizabl eEl enent.i sRoot xm .value="true' />

. Generalizabl eEl enent.isLeaf xm .value="true' />

.Associ ation.isDerived xm .value="false' />

<Mbdel
<Mbdel
<Mbdel
<Mbdel
<Mbdel
<Mbdel .

<Mbdel

Model El ement . nane>Cont ai ns</ Model . Model El enent . nanme>
Model El emrent . annot at i on></ Mbdel . Mbdel El enent . annot ati on>

Namespace. cont ent s>
. Associ ati onEnd xm .id="al20" >

<Model . Mbdel El enent . name>cont ai ner </ Model . Model El enent . name>
<Mbdel . Model El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Associ ati onEnd. mul tiplicity>

<XM
<XM
<XM
<XM

.field>0</ XM .field>
field>1</ XM . field>
.field>false</ XM . field>
.field>false</ XM . field>

OMG-MOF, v1.3.1 November 2001 A-73

A-74

</ Mbdel . Associ ationEnd. nul tiplicity>

<Mbdel . Associ at i onEnd. aggr egati on xmi . val ue=" conposite’/>

<Mbdel . Associ ati onEnd. i sNavi gabl e xm .value="true' />
<Mbdel . Associ ati onEnd. i sChangeabl e xm . val ue="true'/>
<Mbdel . TypedEl enent . t ype>

<Model . Class xni.idref="a6’ /> <!-- Model . Namespace -->

</ Model . TypedEl enment . t ype>
</ Mbdel . Associ ati onEnd>
<Model . Associ ati onEnd xm .id="al2l1" >

<Mbdel . Model El enent . nane>cont ai nedEl enent </ Mbdel . Model El enent . nane>
<Mbdel . Model El enent . annot at i on></ Mbdel . Model El emrent . annot ati on>

<Model . Associ ati onEnd. multiplicity>
<XM .field>0</XM .field>
<XM .field>-1</ XM .fiel d>
<XM . field>true</XM.field>
<XM . field>true</XM.field>
</ Mbdel . Associ ationEnd. nul tiplicity>
<Mbdel . Associ ati onEnd. aggr egati on xm . val ue=" none’ />
<Mbdel . Associ ati onEnd. i sNavi gabl e xm .value="true' />
<Mbdel . Associ ati onEnd. i sChangeabl e xm . val ue="true'/>
<Model . TypedEl enent . t ype>
<Model . d ass xnmi.idref="a29 /> <!-- Mbdel . Mdel El enent
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Associ at i onEnd>
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . Associ ati on>

<I--

-->

<l--
<l-- Contents of Association: Ceneralizes
<l--
<I--

<Mbdel . Associ ati on xm .id="al37 >

<Mbdel . Mbdel El enent . nane>Cener al i zes</ Model . Model El enent . nane>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xm .val ue="false />
<Mbdel . General i zabl eEl enent . i sRoot xm .value="true'/>
<Model . Gener al i zabl eEl enent . i sLeaf xm .value="true’'/>
<Mbdel . Associ ation.isDerived xm .value=false' />
<Mbdel . Nanespace. cont ent s>
<Mbdel . Associ ati onEnd xm .id="al38 >
<Mbdel . Mbdel El errent . nane>supert ype</ Model . Model El enent . nane>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Associ ati onEnd. mul tiplicity>
<XM . field>0</XM .field>
<XM .field>1</ XM .fiel d>
<XM .field>true</ XM .field>
<XM .field>true</ XM .field>
</ Mbdel . Associ ationEnd. nul tiplicity>

OMG-MOF, v1.3.1 November 2001

<Mbdel . Associ ati onEnd. aggr egati on xm . val ue=" none’ />
<Mbdel . Associ ati onEnd. i sNavi gabl e xm .value="true' />
<Mbdel . Associ at i onEnd. i sChangeabl e xm . val ue="true’'/>
<Mbdel . TypedEl enent . t ype>
<Mbdel . Class xni.idref="a71’' /> <!-- Mdel.Generalizabl eEl enent -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Associ at i onEnd>
<Mbdel . Associ ati onEnd xm .id="al39" >
<Mbdel . Mbdel El errent . nane>subt ype</ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Associ ati onEnd. mul tiplicity>
<XM .field>0</XM .field>
<XM .field>-1</ XM .fiel d>
<XM . field>fal se</ XM . fiel d>
<XM . field>true</XM.field>
</ Mbdel . Associ ationEnd. nul tiplicity>
<Mbdel . Associ ati onEnd. aggr egati on xm . val ue=" none’ />
<Mbdel . Associ ati onEnd. i sNavi gabl e xm .value="true' />
<Mbdel . Associ ati onEnd. i sChangeabl e xm . val ue="true'/>

<Model . TypedEl enent . t ype>
<Mbdel . Class xni.idref="a71’ /> <!-- Mdel.Generalizabl eEl enent -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Associ at i onEnd>
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . Associ ati on>

<l-- -->
<l-- -->
<l-- Contents of Association: Aliases -->
<l-- -->
<l-- -->

<Mbdel . Associ ati on xm .id="al4l >

<Mbdel . Mbdel El enent . nane>Al i ases</ Mbdel . Mbdel El enent . nane>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xm .val ue="false />
<Mbdel . General i zabl eEl enent . i sRoot xm .value="true'/>

<Model . Gener al i zabl eEl enent . i sLeaf xm .value="true’'/>

<Mbdel . Associ ation.isDerived xm .value="fal se' />

<Mbdel . Nanespace. cont ent s>

<Mbdel . Associ ati onEnd xm .id="al43" >

<Model . Model El ement . nane>i nport er </ Model . Model El enent . name>
<Mbdel . Mbdel El enent . annot at i on></ Model . Model El enent . annot ati on>
<Model . Associ ati onEnd. mul tiplicity>

<XM .field>0</XM .field>

<XM .field>-1</ XM .fiel d>

<XM . field>fal se</ XM . fiel d>

<XM . field>true</XM.field>

</ Mbdel . Associ ationEnd. nul tiplicity>

<Mbdel . Associ ati onEnd. aggr egati on xm . val ue=' none’' />

OMG-MOF, v1.3.1 November 2001 A-75

<Mbdel . Associ ati onEnd. i sNavi gabl e xm .value="true' />
<Mbdel . Associ ati onEnd. i sChangeabl e xm . val ue="true'/>
<Mbdel . TypedEl enent . t ype>
<Mbdel . Class xni.idref="a68 /> <!-- Mbdel.Ilnport -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Associ at i onEnd>
<Mbdel . Associ ati onEnd xm .id="al42’ >

<Mbdel . Mbdel El errent . nane>i npor t ed</ Mbdel . Mbdel El errent . nane>
<Mbdel . Mbdel El errent . annot at i on></ Mbdel . Model El enent . annot ati on>

<Model . Associ ati onEnd. mul tiplicity>
<XM .field>1</ XM .fiel d>
<XM .field>1</ XM .field>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Mbdel . Associ ationEnd. nul tiplicity>
<Mbdel . Associ ati onEnd. aggr egati on xm . val ue=" none’ />
<Mbdel . Associ ati onEnd. i sNavi gabl e xm .value="true' />
<Mbdel . Associ ati onEnd. i sChangeabl e xm . val ue="true’'/>
<Model . TypedEl enent . t ype>
<Mbdel . Class xni.idref="a6’ /> <!-- Model . Namespace -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Associ at i onEnd>
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . Associ ati on>

<I--

<l--
<l-- Contents of Association: Constrains
<l--
<I--

<Mbdel . Associ ati on xm .id="al24 >

<Mbdel . Mbdel El enent . nane>Const r ai ns</ Model . Model El enent . nane>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xnmi.val ue="false />
<Mbdel . General i zabl eEl enent . i sRoot xm .value="true'/>

<Model . Gener al i zabl eEl enent . i sLeaf xm .value="true’'/>

<Mbdel . Associ ation.isDerived xm .value="fal se' />

<Mbdel . Nanespace. cont ent s>

<Mbdel . Associ ati onEnd xm .id="al26’ >
<Mbdel . Mbdel El errent . nane>const r ai nt </ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Associ ati onEnd. mul tiplicity>
<XM .field>0</XM .field>
<XM .field>-1</ XM .fiel d>
<XM .field>fal se</ XM .field>
<XM .field>true</ XM .field>
</ Mbdel . Associ ationEnd. nul tiplicity>
<Mbdel . Associ ati onEnd. aggr egati on xm . val ue=" none’' />
<Mbdel . Associ ati onEnd. i sNavi gabl e xm .value="true' />

A-76

OMG-MOF, v1.3.1 November 2001

<Mbdel . Associ ati onEnd. i sChangeabl e xm . val ue="true’'/>
<Mbdel . TypedEl enent . t ype>
<Mbdel . Cl ass xni.idref="a58 /> <!-- Mbdel.Constraint -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Associ at i onEnd>
<Mbdel . Associ ati onEnd xm .id="al25" >
<Mbdel . Mbdel El erent . nane>const r ai nedEl enent </ Model . Model El ement . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Associ ati onEnd. mul tiplicity>
<XM .field>1</ XM .field>
<XM .field>-1</ XM .fiel d>
<XM . field>fal se</ XM . fiel d>
<XM . field>true</XM.field>
</ Mbdel . Associ ationEnd. nul tiplicity>
<Mbdel . Associ ati onEnd. aggr egati on xm . val ue=" none’ />
<Mbdel . Associ ati onEnd. i sNavi gabl e xm .value="true' />
<Mbdel . Associ ati onEnd. i sChangeabl e xm . val ue="true'/>

<Model . TypedEl enent . t ype>

<Mbdel . Cl ass xm .idref="a29" /> <!-- Model. Mdel El enent -->
</ Mbdel . TypedE!l enent . t ype>
</ Model . Associ ati onEnd>

</ Mbdel . Nanespace. cont ent s>

</ Model . Associ ati on>

<l-- -->
<l-- -->
<!-- Contents of Association: CanRaise -->
<l-- -->
<l-- -->

<Mbdel . Associ ati on xm .id="al33 >

<Mbdel . Mbdel El enent . nane>CanRai se</ Model . Model El enent . nane>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xnm .val ue="false />
<Mbdel . General i zabl eEl enent . i sRoot xm .value="true'/>

<Model . Gener al i zabl eEl enent . i sLeaf xm .value="true’'/>

<Mbdel . Associ ation.isDerived xm .value=fal se' />

<Mbdel . Nanespace. cont ent s>

<Mbdel . Associ ati onEnd xm .id="al35 >

<Mbdel . Mbdel El erent . nane>oper at i on</ Mbdel . Model El enent . nane>
<Mbdel . Mbdel El errent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Associ ati onEnd. multiplicity>

<XM
<XM
<XM
<XM

.field>0</ XM .field>
field>- 1</ XM . fiel d>
.field>false</ XM . field>
.field>true</ XM .field>

</ Mbdel . Associ ationEnd. nul tiplicity>

<Mbdel . Associ ati onEnd. aggr egati on xm . val ue=" none’' />
<Mbdel . Associ ati onEnd. i sNavi gabl e xm .value="true' />
<Mbdel . Associ ati onEnd. i sChangeabl e xm . val ue="true'/>

OMG-MOF, v1.3.1 November 2001 A-T7

A-78

<Mbdel . TypedEl enent . t ype>
<Model . Cl ass xnmi.idref="a25"/> <!-- Mdel.Operation -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Associ at i onEnd>
<Mbdel . Associ ati onEnd xm .id="al34’ >
<Mbdel . Mbdel El enent . nane>except </ Mbdel . Mbdel El erent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Associ ati onEnd. multiplicity>
<XM .field>0</XM.field>
<XM .field>-1</ XM .fiel d>
<XM . field>true</ XM .field>
<XM . field>true</XM.field>
</ Mbdel . Associ ationEnd. nul tiplicity>
<Mbdel . Associ ati onEnd. aggr egati on xm . val ue=" none’ />
<Mbdel . Associ ati onEnd. i sNavi gabl e xm .value="true' />
<Mbdel . Associ ati onEnd. i sChangeabl e xm . val ue="true'/>
<Model . TypedEl enent . t ype>
<Model . Cl ass xni.idref="a87" /> <!-- Mdel . Exception -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Associ at i onEnd>
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . Associ ati on>

<l-- -->
<l-- -->
<l-- Contents of Association: Exposes -->
<l-- -->
<l-- -->

<Mbdel . Associ ation xm .id="al49 >
<Mbdel . Mbdel El enent . nane>Exposes</ Model . Model El ement . nane>
<Mbdel . Mbdel El enent . annot at i on></ Model . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xm .val ue="false />
<Mbdel . General i zabl eEl enent . i sRoot xm .value="true'/>
<Mbdel . General i zabl eEl enent . i sLeaf xm .value="true'/>
<Mbdel . Associ ation.isDerived xm .value="true' />
<Mbdel . Nanespace. cont ent s>
<Mbdel . Associ ati onEnd xm .id="al51 >
<Mbdel . Mbdel El enent . nane>r ef err er </ Model . Model El enent . nane>
<Model . Mbdel El enent . annot at i on></ Model . Model El enent . annot ati on>
<Model . Associ ati onEnd. mul tiplicity>
<XM . field>0</XM .field>
<XM .field>1</ XM .fiel d>
<XM .field>fal se</ XM .field>
<XM .field>true</ XM .field>
</ Mbdel . Associ ationEnd. nul tiplicity>
<Mbdel . Associ ati onEnd. aggr egati on xm . val ue=" none’' />
<Mbdel . Associ ati onEnd. i sNavi gabl e xm .value="true' />
<Mbdel . Associ ati onEnd. i sChangeabl e xm . val ue="true'/>
<Model . TypedEl enent . t ype>

OMG-MOF, v1.3.1 November 2001

<Model . Cl ass xni.idref="a86" /> <!-- Mbdel.Reference -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Associ at i onEnd>
<Mbdel . Associ ati onEnd xm .id="al50" >
<Mbdel . Mbdel El errent . nane>exposedEnd</ Model . Model El enent . nane>
<Mbdel . Mbdel El emrent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Associ ati onEnd. mul tiplicity>
<XM .field>1</ XM .field>
<XM .field>1</ XM .fiel d>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Mbdel . Associ ationEnd. nul tiplicity>
<Mbdel . Associ ati onEnd. aggr egati on xm . val ue=" none’ />
<Mbdel . Associ ati onEnd. i sNavi gabl e xm .value="true' />
<Mbdel . Associ ati onEnd. i sChangeabl e xm . val ue="true'/>
<Mbdel . TypedEl enent . t ype>
<Mbdel . C ass xni.idref="a90’ /> <!-- Mbdel.Associ ati onEnd -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Associ at i onEnd>
</ Mbdel . Nanespace. cont ent s>

</ Model . Associ ati on>

<l-- -->
<l-- -->
<l-- Contents of Association: RefersTo -->
<l-- -->
<l-- -->

<Mbdel . Associ ati on xm .id="al45 >

<Mbdel
<Mbdel
.Ceneralizabl eElement.visibility xm .value="public_vis'/>
. Generalizabl eEl enent.i sAbstract xm.value=false />

. Generalizabl eEl enent.i sRoot xm .value="true' />

. Generalizabl eEl enent.isLeaf xm .value="true' />

.Associ ation.isDerived xm .value="false' />

<Mbdel

<Mbde
<Mbde
<Mbde
<Mbde
<Mbde

Model El ement . nane>Ref er sTo</ Model . Model El enent . nanme>
Model El emrent . annot at i on></ Mbdel . Mbdel El enent . annot at i on>

Namespace. cont ent s>

<Mbdel . Associ ati onEnd xm .id="al47’ >

<Mbdel . Mbdel El errent . nane>r ef er ent </ Mbdel . Mbdel El errent . nane>
<Mbdel . Mbdel El enent . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Associ ati onEnd. mul tiplicity>

<XM .field>0</XM.field>

<XM .field>-1</ XM .fiel d>

<XM .field>fal se</ XM .field>

<XM .field>true</ XM .field>

</ Mbdel . Associ ati onEnd. nul tiplicity>

<Mbdel . Associ ati onEnd. aggr egati on xm . val ue=" none’' />

<Mbdel . Associ ati onEnd. i sNavi gabl e xm .value="true' />

<Mbdel . Associ ati onEnd. i sChangeabl e xm . val ue="true'/>
<Model . TypedEl enent . t ype>

<Mbdel . Cl ass xni.idref="a86" /> <!-- Mbdel.Reference -->

OMG-MOF, v1.3.1 November 2001 A-79

A-80

</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Associ at i onEnd>
<Mbdel . Associ ati onEnd xm .id="al46’ >
<Mbdel . Mbdel El erent . nane>r ef er encedEnd</ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Associ ati onEnd. mul tiplicity>
<XM .field>1</ XM .field>
<XM .field>1</ XM .field>
<XM . field>fal se</ XM . fiel d>
<XM . field>fal se</ XM . fiel d>
</ Mbdel . Associ ationEnd. nul tiplicity>
<Mbdel . Associ ati onEnd. aggr egati on xm . val ue=" none’ />
<Mbdel . Associ ati onEnd. i sNavi gabl e xm .value="true' />
<Mbdel . Associ ati onEnd. i sChangeabl e xm . val ue="true’'/>
<Mbdel . TypedEl enent . t ype>
<Mbdel . C ass xni.idref="a90’ /> <!-- Mbdel.Associ ati onEnd -->
</ Mbdel . TypedE!l enent . t ype>
</ Mbdel . Associ at i onEnd>
</ Mbdel . Nanespace. cont ent s>
</ Mbdel . Associ ati on>

<l-- -->
<l-- -->
<l-- Contents of Association: |sCO Type -->
<l-- -->
<l-- -->

<Mbdel . Associ ati on xm .id="al53 >

<Mbdel .
<Mbdel .
.Ceneralizabl eElement.visibility xm .value="public_vis'/>
. Generalizabl eEl enent.i sAbstract xm.value=false />

. Generalizabl eEl enent.i sRoot xm .value="true' />

. Generalizabl eEl enent.isLeaf xm .value="true' />

.Associ ation.isDerived xm .value="false' />

<Mbdel .

<Mbdel
<Mbdel
<Mbdel
<Mbdel
<Mbdel

Mbdel El enent . name>l sOf Type</ Mbdel . Mbdel El enent . name>
Mbdel El enent . annot at i on></ Model . Model El enent . annot at i on>

Namespace. cont ent s>

<Mbdel . Associ ati onEnd xm .id="al55" >

<Mbdel . Mbdel El enrent . nane>t ype</ Model . Model El enent . nane>
<Mbdel . Mbdel El enent . annot at i on></ Model . Model El enent . annot ati on>
<Mbdel . Associ ati onEnd. mul tiplicity>

<XM .field>1</ XM .fiel d>

<XM .field>1</ XM .field>

<XM . field>fal se</ XM . fiel d>

<XM . field>fal se</ XM . fiel d>
</ Mbdel . Associ ati onEnd. nul tiplicity>
<Mbdel . Associ ati onEnd. aggr egati on xm . val ue=" none’' />
<Mbdel . Associ ati onEnd. i sNavi gabl e xm .value="true' />
<Mbdel . Associ ati onEnd. i sChangeabl e xm . val ue="true'/>
<Model . TypedEl enent . t ype>

<Mbdel . Class xni.idref="a5 /> <!-- Model.C assifier -->

OMG-MOF, v1.3.1 November 2001

</ Model . TypedEl enment . t ype>
</ Mbdel . Associ ati onEnd>
<Model . Associ ati onEnd xm .id="al54" >

<Mbdel . Mbdel El erent . nane>t ypedEl enent s</ Model . Model El enent . nane>
<Mbdel . Mbdel El erent . annot at i on></ Mbdel . Model El enent . annot ati on>

<Model . Associ ati onEnd. mul tiplicity>

<XM .field>0</XM.field>

<XM .field>-1</ XM .fiel d>

<XM . field>fal se</ XM . fiel d>

<XM . field>true</XM.field>
</ Mbdel . Associ ationEnd. nul tiplicity>
<Mbdel . Associ ati onEnd. aggr egati on xm . val ue=" none’ />
<Mbdel . Associ ati onEnd. i sNavi gabl e xm .value="true' />
<Mbdel . Associ ati onEnd. i sChangeabl e xm . val ue="true’'/>
<Model . TypedEl enent . t ype>

<Mobdel .Class xnmi .idref="a96" /> <!--
</ Model . TypedEl enment . t ype>
</ Mbdel . Associ ati onEnd>

</ Mbdel . Nanespace. cont ent s>

</ Model . Associ ati on>

<I--

Model . TypedEl enent -->

<l--

<l-- Contents of DataType:

<l--
<I--

any

<Mbdel . Dat aType xm .id="al0l >

<Mbdel . Mbdel El enent . nane>any</ Mbdel . Mbdel El errent . nane>
<Mbdel . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xmni.value="false' />
<Mbdel . General i zabl eEl ement . i sRoot xm .val ue='false’ />
<Mbdel . General i zabl eEl ement . i sLeaf xm .value="false' />
<Mbdel . Dat aType. t ypeCode>
<XM . Cor baTypeCode>
<XM . Cor baTcAny/ >
</ XM . Cor baTypeCode>
</ Mbdel . Dat aType. t ypeCode>
</ Model . Dat aType>
<l--
<l--
<!-- Contents of DataType: bool ean
<l--
<I--

<Mbdel . Dat aType xmi.id="a98’ >
<Mbdel . Mbdel El enent . nane>bool ean</ Model . Model El enent . nane>
<Model . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />

OMG-MOF, v1.3.1

November 2001

A-81

<Model
<Model
<Model

. General i zabl eEl enent .
. Ceneral i zabl eEl enent .
. General i zabl eEl enent .
<Mbdel .

Dat aType. t ypeCode>

i sAbstract xm .value="false />
i SRoot xm .value="false />
i sLeaf xm .value="false />

<XM . Cor baTypeCode>
<XM . Cor baTcBool ean/ >
</ XM . Cor baTypeCode>

</ Mbdel . Dat aType. t ypeCode>
</ Model . Dat aType>
<l-- -->
<l-- -->
<l-- Contents of DataType: string -->
<l-- -->
<l-- -->
<Mbdel . Dat aType xm .id="al00" >
<Mbdel . Mbdel El enent . nane>st ri ng</ Model . Mbdel El enrent . nane>
<Mbdel . Mbdel El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xmni.val ue="fal se' />
<Mbdel . General i zabl eEl ement . i sRoot xm .val ue='false'/>
<Model . General i zabl eEl ement . i sLeaf xm .value="false' />
<Mbdel . Dat aType. t ypeCode>
<XM . Cor baTypeCode>
<XM . CorbaTcString xm .tcLength="0"/>
</ XM . Cor baTypeCode>
</ Mbdel . Dat aType. t ypeCode>
</ Model . Dat aType>
<l-- -->
<l-- -->
<!-- Contents of DataType: unsigned |ong -->
<l-- -->
<l-- -->
<Mbdel . Dat aType xm .id="uLong’ >
<Model . Model El ement . nane>unsi gned | ong</ Model . Model El ement . nanme>
<Mbdel . Mbdel El enrent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . General i zabl eEl ement . visibility xm .val ue="public_vis' />
<Mbdel . General i zabl eEl enent . i sAbstract xni.val ue="false'/>
<Mbdel . General i zabl eEl ement . i sRoot xm .val ue='false' />
<Model . General i zabl eEl ement . i sLeaf xm .value="false' />
<Mbdel . Dat aType. t ypeCode>
<XM . Cor baTypeCode>
<XM . Cor baTcU ong/ >
</ XM . Cor baTypeCode>
</ Mbdel . Dat aType. t ypeCode>
</ Model . Dat aType>
<l-- -->

A-82 OMG-MOF, v1.3.1 November 2001

<l-- -->
<l-- IDL Tags -->
<l-- -->
<l-- -->
<Mbdel . Tag>

<Model . Mbdel El enent . nane>l DL Prefi x</ Model . Mbdel El enent . nane>
<Mbdel . Model El enent . annot at i on></ Mbdel . Model El enent . annot ati on>
<Model . Tag. t agl d>or g. ong. nmof . i dl _prefi x</ Moddel . Tag. t agl d>

<Mbdel . Tag. val ues>

<XM .any xm .type="string" xm.nanme=
</ Mbdel . Tag. val ues>
<Mbdel . Tag. el enent s>

<Mbdel . Package xm .idref="al’/> <l-- Model -->
</ Mbdel . Tag. el enent s>
</ Model . Tag>
<Mbdel . Tag>

>or g. ong. nof </ XM . any>

<Mbdel . Model El enent . nane>I DL Nane for Attri but e</ Model . Model El enment . nane>

<Mbdel . Model El enent . annot at i on></ Mbdel . Model El enent . annot ati on>

<Mbdel . Tag. t agl d>org. ong. nof . i dl _substitute_nane</ Mbdel . Tag. t agl d>

<Mbdel . Tag. val ues>

<XM . any xmi.type="string" xm.name="">MfAttribute</ XM .any>

</ Mbdel . Tag. val ues>
<Mbdel . Tag. el ement s>

<Mbdel . ass xm .idref="a23" /> <!-- Nodel.Attribute -->

</ Mbdel . Tag. el enent s>
</ Model . Tag>
<Mbdel . Tag>

<Mbdel . Mbdel El erent . nane>l DL Nane for Excepti on</ Mdel . Model El enent . name>

<Mbdel . Model El enent . annot at i on></ Mbdel . Model El enent . annot ati on>

<Mbdel . Tag. t agl d>org. ong. nof . i dl _substitute_nane</ Mddel . Tag. t agl d>

<Mbdel . Tag. val ues>

<XM . any xmi.type="string" xmi.name="">MfException</ XM .any>

</ Mbdel . Tag. val ues>
<Mbdel . Tag. el ement s>

<Model . Cl ass xm .idref="a87" /> <!-- MNbdel.Exception -->

</ Mbdel . Tag. el enent s>
</ Model . Tag>

</ Model . Namespace. cont ent s>
</ Model . Package>
</ XM . cont ent >

</ XM >

A2 The XM DTD for MOF met a- nodel s
<I--
<I--
<l-- XM is the top-level XM element for XM transfer text
<I--

< ELEMENT XM (XM . header, XM .content?, XM .difference*,

OMG-MOF, v1.3.1 November 2001

A-83

A

XM . ext ensi ons*) >
<I ATTLI ST XM
xm . versi on CDATA #FI XED "1.0"
ti mestanp CDATA #l MPLI ED
verified (true | false) #l MPLIED >

<l-- -->
<l-- -->
<l-- XM . header contains docunmentation and identifies the nodel, -->
<!-- metanpdel, and metanet anodel -->
<l-- -->

<! ELEMENT XM . header (XM . docunmentation?, XM .nodel*, XM . netanodel*,
XM . net anet anodel *) >

<l-- -2
<l-- -2
<!-- docunentation for transfer data -->
<l-- -2

<!l ELEMENT XM . document ati on (#PCDATA | XM .owner | XM .contact |
XM . | ongDescription | XM .shortDescription |
XM . exporter | XM .exporterVersion |
XM . notice)* >

<I ELEMENT XM . owner ANY >

<I ELEMENT XM . contact ANY >

<! ELEMENT XM .| ongDescri pti on ANY >

<! ELEMENT XM . shortDescription ANY >

<I ELEMENT XM . exporter ANY >

<! ELEMENT XM . exporterVersi on ANY >

<I ELEMENT XM . exporter| D ANY >

<! ELEMENT XM . notice ANY >

<l-- -->
<l-- -2
<l-- XM .element.att defines the attributes that each XM el enent -->
<!-- that corresponds to a netanodel class nust have to conformto -->
<l-- the XM specification. -->
<l-- -->

<IENTITY % XM . el enent . att
"Xm .id | D # MPLI ED xni .| abel CDATA #|l MPLI ED xm . uui d
CDATA #| MPLIED * >

<l-- -->
<l-- -->
<l-- XM .link.att defines the attributes that each XML el ement that -->
<l-- corresponds to a netanodel class nmust have to enable it to -->
<l-- function as a sinple XLink as well as refer to nodel -->
<l-- constructs within the same XM file. -->
<l-- - >

A-84 OMG-MOF, v1.3.1 November 2001

<IENTITY % XM .l ink.att
"xm :1ink CDATA # MPLIED inline (true | false) # MPLIED
actuate (show | user) #I MPLIED href CDATA #l MPLIED role
CDATA #I MPLIED title CDATA #l MPLI ED show (enmbed | repl ace
| new) #l MPLI ED behavi or CDATA #| MPLI ED xm .idref |DREF
#1 MPLI ED xmi . uui dr ef CDATA #|l MPLIED >

<l-- -->
<l-- -->
<l-- XM .nodel identifies the nodel (s) being transferred -->
<l-- -->

<! ELEMENT XM . nodel ANY >

<! ATTLI ST XM . nodel
9XM . link.att;
Xm . name CDATA #REQUI RED
Xxm . version CDATA #l MPLI ED >

<l-- -->
<l-- -->
<l-- XM .netanodel identifies the netanodel (s) for the transferred -->
<l-- data -->
<l-- -->

<!l ELEMENT XM . net anodel ANY >

<I ATTLI ST XM . net anodel
9XM . link.att;
Xm . name CDATA #REQUI RED
Xxm . version CDATA #l MPLI ED >

<l-- -->
<l-- -->
<l-- XM . netanetanodel identifies the metanetanodel (s) for the -->
<!-- transferred data -->
<l-- -->

<!l ELEMENT XM . net anet anodel ANY >

<I ATTLI ST XM . et anet anodel
OXM . link.att;
Xm . name CDATA #REQUI RED
Xm .version CDATA #l MPLI ED >

<l-- -->
<l-- -->
<l-- XM .content is the actual data being transferred -->
<l-- -->

<l ELEMENT XM . content ANY >

<l-- -->

OMG-MOF, v1.3.1 November 2001

A-85

A

<l-- -->
<l-- XM .extensions contains data to transfer that does not conform -->
<l-- to the netanodel (s) in the header -->
<l-- -->

<! ELEMENT XM . ext ensi ons ANY >
<! ATTLI ST XM . ext ensi ons
xm . ext ender CDATA #REQUI RED >

<l-- -->
<l-- -->
<l-- extension contains information related to a specific nodel -->
<l-- construct that is not defined in the nmetanodel (s) in the header -->
<l-- -->

<! ELEMENT XM . ext ensi on ANY >
<! ATTLI ST XM . ext ensi on
%KM . el enent . att;
9XM . link.att;
xm . ext ender CDATA #REQUI RED
xm . ext ender | D CDATA #REQUI RED >

<l-- -->
<l-- -->
<l-- XM .difference holds XM. el ements representing differences to a -->
<l -- base nopdel -->
<l-- -->

<IELEMENT XM .difference (XM .difference | XM .delete | XM . add |
XM . replace)* >
<I ATTLI ST XM . difference
%M . el enent . att;
%M .link. att; >

<l-- -->
<l-- -->
<l-- XM .delete represents a deletion froma base nodel -->
<l-- -->

<! ELEMENT XM . del ete EMPTY >
<! ATTLI ST XM . del ete
9%XM . el enent . att;
XM . link.att; >

<l-- -->
<l-- -->
<l-- XM .add represents an addition to a base nodel -->
<!-- -->

<! ELEMENT XM . add ANY >
<! ATTLI ST XM . add

A-86 OMG-MOF, v1.3.1 November 2001

%M . el enent . att;
%KM .link.att;
Xxm . position CDATA "-1" >

<l-- -->
<l-- -->
<l-- XM .replace represents the replacement of a nodel construct -->
<l-- with another nodel construct in a base nodel -->
<l-- -->

<! ELEMENT XM . repl ace ANY >
<! ATTLI ST XM . repl ace
%M . el enent . att;
%M .link.att;
Xm . position CDATA "-1" >

<l-- -2
<l-- -2
<l-- XM .reference may be used to refer to data types not defined in -->
<!-- the metanodel -->
<l-- -2

<! ELEMENT XM . reference ANY >
<! ATTLI ST XM . reference
XM . link.att; >

<l-- -2
<l-- -2
<l-- This section contains the declaration of XM el enents -->
<l-- representing data types -->
<l-- -->

<! ELEMENT XM . TypeDefinitions ANY >
< ELEMENT XM .field ANY >

<I ELEMENT XM . seqltem ANY >

<! ELEMENT XM . oct et Stream (#PCDATA) >
<! ELEMENT XM . uni onDi scri m ANY >

<! ELEMENT XM . enum EMPTY >
<I' ATTLI ST XM . enum xni . val ue CDATA #REQUI RED >

<l ELEMENT XM . any ANY >

<I ATTLI ST XM . any
OXM . link.att;
xm . type CDATA #l MPLI ED
xm . nane CDATA #| MPLI ED >

<! ELEMENT XM . Cor baTypeCode (XM . CorbaTcAlias | XM . CorbaTcStruct |
XM . Cor baTcSequence | XM . CorbaTcArray |
XM . CorbaTcEnum | XM . Cor baTcUni on |
XM . Cor baTcExcept | XM . CorbaTcString |

OMG-MOF, v1.3.1 November 2001

A-87

<l ATTLI ST

<! ELEMENT
<l ATTLI ST

<! ELEMENT
<l ATTLI ST

<! ELEMENT
<l ATTLI ST

<! ELEMENT

<l ATTLI ST

<! ELEMENT
<l ATTLI ST

<! ELEMENT
<l ATTLI ST

<! ELEMENT
<l ATTLI ST

<! ELEMENT
<l ATTLI ST

<! ELEMENT

A-88

XM .
XM .
XM .
XM .
XM .
XM .
XM .
XM .
XM .
XM .

XM . Cor baTypeCode
%M . el enent.att; >

Cor baTcWstring |
Cor baTcLong |

Cor baTcU ong |
Cor baTcDoubl e |
Cor baTcChar

Cor baTcCct et
Cor baTcTypeCode |

Cor baTcNul |

Cor baTcLongLong |

| XM . CorbaTcWhar
| XM . CorbaTcAny |

XM . Cor baTcPri nci pal

| XM . CorbaTcVoid |

XM . Cor baTcObj Ref

Cor baTcLongDoubl e) >

XM . CorbaTcAl i as (XM . Cor baTypeCode) >

XM . Cor baTcAl i as

xm .t cName CDATA #REQUI RED

xm.tcld

CDATA #l MPLI ED >

XM . CorbaTcStruct (XM . CorbaTcField)* >

XM . Cor baTcSt r uct

xm .t cName CDATA #REQUI RED

xm.tcld

CDATA #l| MPLI ED >

XM . Cor baTcFi el d (XM . Cor baTypeCode) >

XM . Cor baTcFi el d

xm .t cNanme CDATA #REQUI RED >

XM . Cor baTcSequence (XM . Cor baTypeCode |

XM . Cor baRecur si veType) >

XM . Cor baTcSequence

xm . tcLengt h CDATA #REQUI RED >

XM . Cor baRecur si veType
XM . Cor baRecur si veType

EMPTY >

xm . of f set CDATA #REQUI RED >

XM . Cor baTcArray (XM . CorbaTypeCode) >

XM . Cor baTcArray

xm . tcLengt h CDATA #REQUI RED >

XM . Cor baTcObj Ref EMPTY >

XM . Cor baTchj Ref

xm .t cName CDATA #REQUI RED

xm .tcld

CDATA #l| MPLI ED >

XM . Cor baTcEnum (XM . Cor baTcEnuniabel)* >

XM . Cor baTcEnum

xm .t cName CDATA #REQUI RED

xm.tcld

XM . Cor baTcEnuniabel

CDATA #l MPLI ED >

EMPTY >

OMG-MOF, v1.3.1

November 2001

XM . Cor baTcUshort
XM . Cor baTcFIl oat
XM . Cor baTcBool ean |

XM . Cor baTcShor t

<l ATTLI ST

<! ELEMENT
<l ATTLI ST

<! ELEMENT
<l ATTLI ST

<! ELEMENT
<l ATTLI ST

<! ELEMENT
<l ATTLI ST

<! ELEMENT
<l ATTLI ST

<! ELEMENT
<l ATTLI ST

<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT
<! ELEMENT

<I--

XM . Cor baTcEnuniabel
xm .t cName CDATA #REQUI RED >

XM . Cor baTcUni onMor (XM . Cor baTypeCode, XM . any) >

XM . Cor baTcUni onMbr
xm .t cName CDATA #REQUI RED >

XM . Cor baTcUni on (XM . Cor baTypeCode, XM . Cor baTcUni onMor*) >

XM . Cor baTcUni on
xm .t cNanme CDATA #REQUI RED
xm.tcld CDATA #| MPLI ED >

XM . Cor baTcExcept (XM . CorbaTcField)* >
XM . Cor baTcExcept

xnm .t cNanme CDATA #REQUI RED

xm.tcld CDATA #I MPLI ED >

XM . Cor baTcStri ng EMPTY >
XM . CorbaTcString
xm . tcLengt h CDATA #REQUI RED >

XM . Cor baTcWstri ng EMPTY >
XM . Cor baTcWst ri ng
xm . tcLengt h CDATA #REQUI RED >

XM . Cor baTcFi xed EMPTY >

XM . Cor baTcFi xed
xm .tcDigits CDATA #REQUI RED
xm .tcScal e CDATA #REQUI RED >

XM . Cor baTcShort EMPTY >

XM . Cor baTcLong EMPTY >

XM . Cor baTcUshort EMPTY >
XM . Cor baTcU ong EMPTY >

XM . Cor baTcFl oat EMPTY >

XM . Cor baTcDoubl e EMPTY >
XM . Cor baTcBool ean EMPTY >
XM . Cor baTcChar EMPTY >

XM . Cor baTcWehar EMPTY >

XM . Cor baTcCct et EMPTY >

XM . Cor baTcAny EMPTY >

XM . Cor baTcTypeCode EMPTY >
XM . Cor baTcPrinci pal EMPTY >
XM . Cor baTcNul | EMPTY >

XM . Cor baTcVoi d EMPTY >

XM . Cor baTcLongLong EMPTY >
XM . Cor baTcLongDoubl e EMPTY >

<I--

<!-- METAMODEL PACKAGE: Model

OMG-MOF, v1.3.1 November 2001

A-89

A

<l-- -->
<l-- -->

<IENTITY % Model . Vi sibilityKind
" xm.value (public_vis| protected_vis| private_vis) #REQU RED >

<IENTITY % Model . Directi onKi nd
" xmi.value (in_dir| out_dir| inout_dir| return_dir) #REQU RED >

<IENTI TY % Model . ScopeKi nd
" xm.value (instance_level| classifier_|level) #REQU RED >

<IENTI TY % Mbodel . Aggregati onKi nd
" xm .value (none| shared| conposite) #REQUI RED >

<! ELEMENT Mbdel . Namespace. contents (Model . Feature
| Model . Cl assifier
| Model . Namespace
| Model . St ruct ural Feature
| Model . Attribute
| Model . Oper ati on
| Model . C ass
| Model . Model El enent
| Model . Package
| Model . Constrai nt
| Model . Associ ati on
| Model . Par anet er
| Model . Behavi or al Feat ure
| Model . | nport
| Model . Gener al i zabl eEl ement
| Model . Const ant
| Model . Ref erence
| Model . Excepti on
| Model . Dat aType
| Model . Associ ati onEnd
| Model . TypedEl enent
| Model . TypeAl i as
| Model . Tag) * >

<l-- -->
<l-- -->
<!-- METAMODEL CLASS: Model . Mbdel El enent -->
<l-- -->
<l-- -->

<IENTI TY % Model . Mbdel El erent . Dept hKi nd
" xm .value (shallow deep) #REQU RED >

<IENTITY % Model . Mbdel El erent . Veri f yResul t Ki nd
" xm .value (valid| invalid| published) #REQUI RED >

A-90 OMG-MOF, v1.3.1 November 2001

<! ELEMENT Mbdel . Model El ement . nane (#PCDATA| XM . r ef erence) *>
<! ELEMENT Mbdel . Model El ement . annot ati on (#PCDATA| XM . r ef erence) *>

<! ELEMENT Mbdel . Model El ement . cont ai ner (Model . Cl assifier
| Model . Namespace
| Model . Oper ati on
| Model . C ass
| Model . Package
| Model . Associ ati on
| Model . Behavi or al Feat ure
| Model . General i zabl eEl ement
| Model . Excepti on
| Model . Dat aType) ?>

<! ELEMENT Model . Model El ement . constrai nts (Model . Constraint)*>

<IENTI TY % Model . Mbdel El erent Properties ' ((Mdel . Mdel El enent. nane) ?
, (Model . Mobdel El enent . annotation)?)’ >

<IENTITY % Model . Mbdel El emrent Associ ati ons ' (Mbdel . Model El enent . cont ai ner ?
, Model . Model El ement . constrai nts*)’ >

<! ELEMENT Mbdel . Model El enent (%vbdel . Model El ement Properti es;
, (XM . ext ensi on* %vbdel . Mbdel El enent Associ ations;))?>

<! ATTLI ST Mbdel . Mbdel El enent 9%XM . el enment. att; 9%XM .l ink.att; >

<l-- -->
<l-- -->
<!-- METAMODEL CLASS: Mbdel . Feature -->
<l-- -->
<l-- -->

<! ELEMENT Mbdel . Feature.visibility EMPTY>
<! ATTLI ST Model . Feature.visibility %bdel . VisibilityKind; >

<! ELEMENT Mbdel . Feat ure. scope EMPTY>
<! ATTLI ST Model . Feat ur e. scope %bdel . ScopeKi nd; >

<IENTI TY % Model . FeatureProperties ' (%bdel . Mbdel El enent Properti es;
, (Model . Feature.visibility)?
, (Model . Feature. scope)?)’ >

<IENTI TY % Model . Feat ur eAssoci ati ons ' (%bdel . Model El enent Associ ati ons;)’

<! ELEMENT Mbdel . Feature (%bdel . Feat ureProperti es;
, (XM . ext ensi on* %bdel . Feat ureAssoci ations;))?>

OMG-MOF, v1.3.1 November 2001

A-91

A

<! ATTLI ST Mbdel . Feature %XM . el enment. att; 9%XM .l ink.att; >

<l-- -->
<l-- -->
<l-- METAMODEL CLASS: Model . Nanespace -->
<l-- -->
<l-- -->

<IENTI TY % Model . NanespaceProperties ' (%bdel . Model El erent Properties;)’ >
<IENTI TY % Model . NanmespaceAssoci ati ons ' (%vbdel . Model El enent Associ ations;)’ >
<IENTI TY % Model . NanespaceConposi ti ons ' (Mbdel . Nanespace. contents*)’ >
<! ELEMENT Model . Namespace (%vbdel . NamespaceProperti es;

, (XM . ext ensi on* | %vbdel . NamespaceAssoci ati ons;)

, %wbdel . NamespaceConposi tions;)?>

<! ATTLI ST Model . Nanespace %M . el enment.att; %XM.link.att; >

<l-- -->
<l-- -->
<!-- METAMODEL CLASS: Model . CGenerali zabl eEl enent -->
<l-- -->
<l-- -->

<! ELEMENT Mbdel . Generalizabl eEl enent.visibility EMPTY>
<! ATTLI ST Model . General i zabl eEl enent.visibility %bdel.VisibilityKind;>

<! ELEMENT Model . General i zabl eEl enrent . i sAbstract EMPTY>
<! ATTLI ST Model . General i zabl eEl enent . i sAbstr act
xm .value (true | false) #REQU RED>

<! ELEMENT Model . General i zabl eEl enent . i sRoot EMPTY>
<! ATTLI ST Model . General i zabl eEl enrent . i sRoot
xm .value (true | false) #REQU RED>

<! ELEMENT Model . General i zabl eEl enent . i sLeaf EMPTY>
<! ATTLI ST Model . General i zabl eEl enrent . i sLeaf
xm .value (true | false) #REQU RED>

<! ELEMENT Model . General i zabl eEl ement . supertypes (Mdel.C assifier
| Model . C ass
| Model . Package
| Model . Associ ati on
| Model . General i zabl eEl enment
| Model . Dat aType) *>

<IENTITY % Model . General i zabl eEl emrent Properties ' (%bdel . NamespaceProperti es;

A-92 OMG-MOF, v1.3.1 November 2001

, (Model . Generalizabl eEl enent.visibility)?
, (Model . General i zabl eEl enent . i sAbstract) ?
, (Model . General i zabl eEl enent . i sRoot) ?

, (Model . Generalizabl eEl enent.isLeaf)?)’ >

<IENTI TY % Model . Gener al i zabl eEl ement Associ ati ons ' (%\bdel . NanespaceAssoci ati ons;
, Model . General i zabl eEl emrent . supertypes*)’ >

<IENTI TY % Model . Gener al i zabl eEl emrent Conposi ti ons ' (%bdel . NamespaceConposi tions;)’
>

<! ELEMENT Mbdel . General i zabl eEl enent (%wbdel . Gener al i zabl eEl ement Properti es;
, (XM . ext ensi on* | %bdel . Gener al i zabl eEl ement Associ ati ons;)
, 9%bdel . General i zabl eEl ement Conposi tions;)?>

<! ATTLI ST Model . General i zabl eEl ement %XM . el enent. att; %M .link.att; >

<l-- -->
<l-- -->
<!-- METAMODEL CLASS: Mbdel.Cl assifier -->
<l-- -->
<l-- -->

<IENTITY % Model . Cl assifierProperties ' (%bdel.Generalizabl eEl ement Properties;)’ >

<IENTI TY % Model . Cl assi fi er Associ ati ons ' (%bdel . Gener al i zabl eEl enent Associ ati ons;)’
>

<IENTI TY % Model . C assi fi erConpositions ' (%bdel . Gener al i zabl eEl enent Conposi tions;)’
>

<! ELEMENT Mbdel . Cl assifier (%del.C assifierProperties;
, (XM . ext ensi on* %wdel . C assi fierAssoci ations;)
, 9%bdel . d assifierConpositions;)?>

<! ATTLI ST Mbdel .Classifier %M .elenent.att; %M .link.att; >

<l-- -->
<l-- -->
<l'-- METAMODEL CLASS: Model . TypedEl enent -->
<l-- -->
<l-- -->

<! ELEMENT Model . TypedEl ement . t ype (Model . Cl assifier
| Model . C ass
| Model . Associ ati on
| Model . Dat aType) ?>

<IENTITY % Model . TypedEl ement Properties ' (%bdel . Model El ement Properties;)’ >

OMG-MOF, v1.3.1 November 2001 A-93

A

<IENTI TY % Model . TypedEl ement Associ ati ons ' (%bdel . Model El ement Associ ati ons;
, Model . TypedEl ement . type?)’ >

<! ELEMENT Model . TypedEl ement (%bdel . TypedEl ement Properti es;
, (XM . ext ensi on* %vbdel . TypedEl enent Associ ations;))?>

<! ATTLI ST Model . TypedEl enent %XM . el ement. att; 9%XM .link.att; >

<l-- -->
<l-- -->
<!-- METAMODEL CLASS: Model . Structural Feature -->
<l-- -->
<l-- -->

<! ELEMENT Model . Structural Feature.nmultiplicity (XM.field| XM .reference)*>

<! ELEMENT Mbdel . Struct ural Feat ure. i sChangeabl e EMPTY>
<I ATTLI ST Model . Struct ural Feat ure. i sChangeabl e
xm .value (true | false) #REQU RED>

<IENTITY % Model . Struct ural Feat ureProperties ' (%bdel . Feat ureProperti es;
, (Model . Structural Feature. multiplicity)?
, (Model . Structural Feat ure. i sChangeable)?)’ >

<IENTITY % Model . Struct ur al Feat ur eAssoci ati ons ' (%bdel . Feat ur eAssoci ati ons;
, Model . TypedEl ement . type?)’ >

<! ELEMENT Mbdel . Structural Feature (%vbdel . Structural Feat ureProperties;
, (XM . ext ensi on* , %vbdel . Structural Feat ureAssoci ations;))?>

<! ATTLI ST Model . Structural Feature %XM . el enent.att; 9XM .link.att; >

<l-- -->
<l-- -->
<!-- METAMODEL CLASS: Model . Attribute -->
<l-- -->
<l-- -->

<! ELEMENT Model . Attribute.isDerived EMPTY>
<! ATTLI ST Model . Attribute.isDerived
xm .value (true | false) #REQU RED>

<IENTITY % Model . Attri but eProperties ' (%bdel. Structural FeatureProperties;
, (Model . Attribute.isDerived)?)’ >

<IENTITY % Model . Attri but eAssoci ati ons ' (%bdel . Structural Feat ureAssoci ations;)’ >

<! ELEMENT Model . Attribute (%vbdel . Attri but eProperties;

A-94 OMG-MOF, v1.3.1 November 2001

, (XM . ext ensi on* %vbdel . Attribut eAssociations;))?>

<! ATTLI ST Model . Attribute %XM .elenent.att; 9%XM.link.att; >

<l-- -->
<l-- -->
<!-- METAMODEL CLASS: Mbdel . Behavi oral Feature -->
<l-- -->
<l-- -->

<IENTITY % Model . Behavi or al Feat ur eProperti es ' (%bdel . FeatureProperties;)’
<IENTI TY % Model . Behavi or al Feat ur eAssoci ati ons ' (%bdel . Feat ur eAssoci ati ons;)’

<IENTI TY % Model . Behavi or al Feat ur eConposi ti ons ' (Mbdel . Nanespace. cont ent s*)’

<! ELEMENT Mbdel . Behavi or al Feat ure (%bdel . Behavi or al Feat ur eProperti es;
, (XM . ext ensi on* | %bdel . Behavi or al Feat ur eAssoci ati ons;)
, %bdel . Behavi or al Feat ur eConposi tions;)?>

<! ATTLI ST Model . Behavi oral Feature %XM . el enent.att; %KM .link.att; >

<l-- -->
<l-- -->
<!-- METAMODEL CLASS: Model . Operation -->
<l-- -->
<l-- -->

<! ELEMENT Mbdel . Operation.isQuery EMPTY>
<! ATTLI ST Model . Operation.isQuery
xm .value (true | false) #REQU RED>

<! ELEMENT Mbdel . Oper ati on. excepti ons (Model . Exception)*>

<IENTITY % Model . Operati onProperties ' (%bdel . Behavi or al Feat ureProperti es;

, (Model . Operation.isQery)?)’ >

<IENTITY % Model . Operati onAssoci ati ons ' (%bdel . Behavi or al Feat ur eAssoci ati ons;

, Model . Oper ati on. exceptions*)’ >

<IENTI TY % Model . Operati onConposi tions ' (%bdel . Behavi or al Feat ur eConposi tions;)’

<! ELEMENT Model . Operation (%vbdel . Operati onProperties;
, (XM . ext ensi on* | %vbdel . Oper ati onAssoci ati ons;)
, 9%bdel . Oper ati onConpositions;)?>

<! ATTLI ST Model . Operation %M . elenment.att; 9%XM.Ilink.att; >

OMG-MOF, v1.3.1 November 2001

>

A-95

A

<l-- -->
<!-- -->
<!-- METAMODEL CLASS: Mbdel . d ass -->
<l-- -->
<l-- -->

<! ELEMENT Mbdel . Cl ass. i sSi ngl eton EMPTY>
<l ATTLI ST Model . C ass. i sSi ngl eton
xm .value (true | false) #REQU RED>

<IENTITY % Model . Cl assProperties ' (%vbdel .C assifierProperties;
, (Model . Ol ass. i sSingleton)?)’ >

<IENTITY % Model . Cl assAssoci ations ' (%bdel . Cl assi fi erAssoci ations;)’ >
<IENTITY % Model . C assConpositions ' (%bdel . Cl assifierConpositions;)’ >
<! ELEMENT Model . O ass (%bdel . Cl assProperti es;

, (XM . ext ensi on* %bdel . C assAssoci ations;)

, 9%bdel . d assConpositions;)?>

<! ATTLI ST Mbdel . Cl ass %XM . el ement. att; 9%XM .l ink.att; >

<l-- -->
<l-- -->
<l-- METAMODEL CLASS: Model . Package -->
<l-- -->
<l-- -->

<IENTI TY % Model . PackageProperties ' (%bdel . Generalizabl eEl enent Properties;)’ >
<IENTI TY % Model . PackageAssoci ati ons ' (%bdel . Gener al i zabl eEl enent Associ ations;)’ >
<IENTI TY % Model . PackageConposi ti ons ' (%bdel . Gener al i zabl eEl enent Conpositions;)’ >
<! ELEMENT Mbdel . Package (%bdel . PackageProperti es;

, (XM . ext ensi on* | %bdel . PackageAssoci ati ons;)

, %wbdel . PackageConposi tions;)?>

<! ATTLI ST Model . Package %XM . el enent.att; %M .link.att; >

<l-- -->
<l-- -->
<!-- METAMODEL CLASS: Model . Constraint -->
<l-- -->
<l-- -->

<! ENTI TY % Mbdel . Constrai nt. Eval uati onKi nd
" xm.value (imediate| deferred) #REQU RED >

A-96 OMG-MOF, v1.3.1 November 2001

<! ELEMENT Model . Constrai nt. expressi on (XM . any) >
<! ELEMENT Model . Constrai nt. | anguage (#PCDATA| XM . reference)*>

<! ELEMENT Mbdel . Constrai nt. eval uati onPol icy EMPTY>

<l ATTLI ST Model . Constrai nt. eval uati onPol i cy %bdel . Constrai nt. Eval uati onKi nd; >

<! ELEMENT Model . Constrai nt. constrai nedEl enents (Model . Feature
| Model . Cl assifier
| Model . Namespace
| Model . St ruct ural Feature
| Model . Attribute
| Model . Oper ati on
| Model . C ass
| Model . Model El enent
| Model . Package
| Model . Constrai nt
| Model . Associ ati on
| Model . Par anet er
| Model . Behavi or al Feat ure
| Model . | nport
| Model . Gener al i zabl eEl ement
| Model . Const ant
| Model . Ref erence
| Model . Excepti on
| Model . Dat aType
| Model . Associ ati onEnd
| Model . TypedEl enent
| Model . TypeAl i as
| Model . Tag) *>

<IENTITY % Model . Constrai nt Properties ' (%bdel . Mbdel El enent Properti es;

, (Model . Constrai nt. expression)?
, (Model . Constraint. | anguage) ?
, (Model . Constraint. eval uati onPolicy)?)’ >

<IENTI TY % Model . Const rai nt Associ ati ons ' (%bdel . Mbdel El enent Associ ati ons;

, Model . Constraint.constrai nedEl enents*)’ >

<! ELEMENT Mbdel . Constraint (%bdel . Constrai nt Properties;
, (XM . ext ensi on* %vbdel . Constrai nt Associ ations;))?>

<! ATTLI ST Mbdel . Constraint %XM . el enent.att; %KM .link.att; >

<I--

<l--
<! -- NMETAMODEL CLASS: Mbdel . Associ ation
<l--
<I--

OMG-MOF, v1.3.1 November 2001

A-97

A

<! ELEMENT Model . Associ ation.isDerived EMPTY>
<! ATTLI ST Model . Associ ation.isDerived
xm .value (true | false) #REQU RED>

<IENTITY % Model . Associ ati onProperties ' (%bdel . Cl assifierProperties;
, (Mbdel . Associ ation.isDerived)?)’ >

<IENTITY % Model . Associ ati onAssoci ati ons ' (%bdel . Cl assifierAssociations;)’ >
<IENTI TY % Model . Associ ati onConpositions ' (%bdel.C assifierConpositions;)’ >
<! ELEMENT Model . Associ ati on (%bdel . Associ ati onProperti es;

, (XM . ext ensi on* %bdel . Associ ati onAssoci ations;)

, 9%bdel . Associ ati onConpositions;)?>

<! ATTLI ST Model . Associ ati on 9XM . el enent.att; %KM .link.att; >

<l-- -->
<l-- -->
<! -- METAMODEL CLASS: WMbdel . Paraneter -->
<l -- -->
<l-- -->

<! ELEMENT Mbdel . Paraneter. directi on EMPTY>
<! ATTLI ST Mbdel . Paraneter. directi on %bdel . Directi onKi nd; >

<! ELEMENT Model . Paraneter.multiplicity (XM.field| XM .reference)*>
<IENTITY % Model . Paranet er Properties ' (%bdel . TypedEl enment Properti es;
, (Model . Paraneter.direction)?
, (Model . Paraneter. multiplicity)?)’ >

<IENTI TY % Model . Par anet er Associ ati ons ' (%bdel . TypedEl enent Associ ations;)’ >

<! ELEMENT Model . Par aneter (%bdel . Par anet er Properti es;
, (XM . ext ensi on* %vbdel . Par anet er Associ ations;))?>

<! ATTLI ST Model . Paraneter 9%XM .elenent.att; %M .link.att; >

<l-- -->
<l-- -->
<l'-- METAMODEL CLASS: Model .| nport -->
<l-- -->
<l-- -->

<! ELEMENT Mbdel . I nport.visibility EMPTY>
<! ATTLI ST Model . I nport.visibility %bdel . VisibilityKind;>

A-98 OMG-MOF, v1.3.1 November 2001

<! ELEMENT Mbdel . I nport.isClustered EMPTY>
<! ATTLI ST Model . I nport.isCl ustered
xm .value (true | false) #REQU RED>

<! ELEMENT Mbdel . | nport. i nportedNanmespace (Mdel . assifier
| Model . Namespace
| Model . Oper ati on
| Model . C ass
| Model . Package
| Model . Associ ati on
| Model . Behavi or al Feat ure
| Model . General i zabl eEl ement
| Model . Excepti on
| Model . Dat aType) ?>

<IENTITY % Model . | nport Properties ' (%bdel . Model El enent Properti es;
, (Model . Inport.visibility)?

, (Model . I nport.isCustered)?)’ >

<

ENTITY % Model . | nport Associ ations ' (%bdel . Model El ement Associ ati ons;
, Model . I nport.inmportedNanespace?)’ >

<

ELEMENT Model . I nport (%bdel . | mport Properti es;
, (XM . ext ensi on* %vbdel . | nport Associ ations;))?>

<

ATTLI ST Model . I nmport 9%XM . el ement. att; %M .link.att; >

<l-- -->
<l-- -->
<!-- METAMODEL CLASS: Model . Const ant -->
<l-- -->
<l-- -->

<

ELEMENT Model . Const ant . val ue (XM . any) >

<IENTI TY % Model . Const ant Properti es ' (%bdel . TypedEl ement Properti es;

, (Model . Const ant . val ue)?)’ >

<

<! ELEMENT Model . Constant (%bdel . Const ant Properti es;

, (XM . ext ensi on* %bdel . Const ant Associ ations;))?>

<

ATTLI ST Mbdel . Constant 9%XM . el enent.att; 9%XM.link.att; >

<!-- -->
<!-- -->
<! -- METAMODEL CLASS: Model . Ref erence -->
<!-- -->

OMG-MOF, v1.3.1 November 2001

ENTI TY % Model . Const ant Associ ati ons ' (%bdel . TypedEl enent Associ ations;)’

A-99

A

<l-- -->

<! ELEMENT Mbdel . Ref erence. ref erencedEnd (Model . Associ ati onEnd) ?>
<IENTITY % Model . Ref erenceProperties ' (%bdel . Structural FeatureProperties;)’ >

<IENTI TY % Model . Ref er enceAssoci ati ons ' (%bdel . Struct ural Feat ur eAssoci ati ons;
, Model . Ref erence. ref erencedEnd?)’ >

<! ELEMENT Mbdel . Ref erence (%bdel . Ref erenceProperti es;
, (XM . ext ensi on* %bdel . Ref er enceAssoci ations;))?>

<! ATTLI ST Model . Reference %XM . el enent.att; %M .link.att; >

<l-- -->
<l-- -->
<!-- METAMODEL CLASS: Mddel . Excepti on -->
<l-- -->
<l-- -->

<IENTITY % Model . Excepti onProperties ' (%bdel . Behavi or al Feat ureProperties;)’ >
<IENTITY % Model . Excepti onAssoci ati ons ' (%bdel . Behavi or al Feat ur eAssoci ations;)’ >
<IENTITY % Model . Excepti onConposi ti ons ' (%bdel . Behavi or al Feat ur eConposi tions;)’ >
<! ELEMENT Model . Exception (%bdel . Excepti onProperties;

, (XM . ext ensi on* | %vbdel . Excepti onAssoci ati ons;)

, %wbdel . Excepti onConposi tions;)?>

<! ATTLI ST Model . Exception %M . elenment.att; %M .link.att; >

<l-- -->
<l-- -->
<l'-- METAMODEL CLASS: Model . Dat aType -->
<l-- -->
<l-- -->

<! ELEMENT Model . Dat aType. t ypeCode (XM . Cor baTypeCode) >

<IENTI TY % Model . Dat aTypeProperties ' (%bdel . Cl assifierProperties;
, (Model . Dat aType. typeCode) ?)’ >

<IENTI TY % Mbodel . Dat aTypeAssoci ati ons ' (%bdel . Cl assi fierAssociations;)’ >
<IENTI TY % Mbdel . Dat aTypeConposi ti ons ' (%bdel . Cl assi fi erConpositions;)’ >

<! ELEMENT Model . Dat aType (%bdel . Dat aTypeProperti es;
, (XM . ext ensi on* %vbdel . Dat aTypeAssoci ati ons;)

A-100 OMG-MOF, v1.3.1 November 2001

, %bdel . Dat aTypeConposi tions;)?>

<! ATTLI ST Model . Dat aType %XM . el ement. att; 9%XM .link.att; >

<l-- -->
<l-- -->
<!-- METAMODEL CLASS: Model . Associ ati onEnd -->
<l-- -->
<l-- -->

<! ELEMENT Model . Associ ati onEnd.multiplicity (XM.fieldl XM .reference)*>

<! ELEMENT Mbdel . Associ ati onEnd. aggr egati on EMPTY>
<! ATTLI ST Model . Associ ati onEnd. aggr egati on %bdel . Aggr egat i onKi nd; >

<! ELEMENT Mbdel . Associ ati onEnd. i sNavi gabl e EMPTY>
<l ATTLI ST Model . Associ ati onEnd. i sNavi gabl e
xm .value (true | false) #REQU RED>

<! ELEMENT Mbdel . Associ ati onEnd. i sChangeabl e EMPTY>
<! ATTLI ST Model . Associ ati onEnd. i sChangeabl e
xm .value (true | false) #REQU RED>

<IENTITY % Model . Associ ati onEndProperties ' (%bdel . TypedEl ement Properti es;

, (Model . Associ ationEnd. multiplicity)?

, (Model . Associ ati onEnd. aggr egati on) ?

, (Model . Associ ati onEnd. i sNavi gabl e) ?

, (Model . Associ ati onEnd. i sChangeabl e)?)’ >

<IENTI TY % Model . Associ ati onEndAssoci ati ons ' (%bdel . TypedEl enent Associ ati ons;)’

<! ELEMENT Mbdel . Associ ati onEnd (%bdel . Associ ati onEndProperti es;
, (XM . ext ensi on* , %bdel . Associ ati onEndAssoci ations;))?>

<! ATTLI ST Mbdel . Associ ati onEnd %XM . el enent. att; 9%XM .link.att; >

<l-- -->
<l-- -->
<!-- METAMODEL CLASS: Model . TypeAli as -->
<l-- -->
<l-- -->

<IENTITY % Model . TypeAl i asProperties ' (%bdel . TypedEl emrent Properties;)’ >

<IENTITY % Model . TypeAl i asAssoci ati ons ' (%vbdel . TypedEl enent Associ ati ons;)’

<! ELEMENT Mbdel . TypeAlias (%bdel . TypeAl i asProperties;
, (XM . ext ensi on* %vbdel . TypeAl i asAssoci ations;))?>

OMG-MOF, v1.3.1 November 2001

>

A-101

A

<! ATTLI ST Model . TypeAlias %M .elenment.att; 9%XM.link.att;

<I--

>

<l--
<l-- METAMODEL CLASS: Model . Tag
<I--
<I--

<! ELEMENT Mbdel . Tag. tagld (#PCDATA| XM . ref erence) *>
<! ELEMENT Mbdel . Tag. val ues (XM . any) >

<! ELEMENT Mbdel . Tag. el enents (Model . Feature
| Model . Cl assifier
| Model . Namespace
| Model . St ruct ural Feature
| Model . Attribute
| Model . Oper ati on
| Model . C ass
| Model . Model El enent
| Model . Package
| Model . Constrai nt
| Model . Associ ati on
| Model . Par anet er
| Model . Behavi or al Feat ure
| Model . | nport
| Model . Gener al i zabl eEl ement
| Model . Const ant
| Model . Ref er ence
| Model . Excepti on
| Model . Dat aType
| Model . Associ ati onEnd
| Model . TypedEl enent
| Model . TypeAl i as
| Model . Tag) *>

<IENTITY % Model . TagProperties ' (%bdel . Model El enent Properti es;

, (Model . Tag. t agl d) ?
, (Model . Tag. val ues)*)’ >

<IENTI TY % Model . TagAssoci ati ons ' (%bdel . Model El ement Associ ati ons;

, Model . Tag. el enents*)’ >

<! ELEMENT Mbdel . Tag (%bdel . TagProperti es;
, (XM . ext ensi on* | %bdel . TagAssoci ations;))?>

<! ATTLI ST Model . Tag %XM . el enent. att; %M .link.att; >

<! ELEMENT Mbdel ((Model . Feature
| Model . Cl assifier

A-102 OMG-MOF, v1.3.1 November 2001

| Model
| Model
JAttribute
. OQperation
| Model
| Model
| Model
| Model
. Associ ation
| Model
| Model
| Model

| Model
| Model

| Model

| Model

| Model
| Model
| Model
| Model

Nanmespace
Structural Feature

Cl ass
Model El enent
Package
Constrai nt

Par anet er
Behavi or al Feat ure

| nport

. General i zabl eEl enent
| Model
| Model
| Model
| Model

Const ant
Ref er ence
Exception
Dat aType

. Associ ati onEnd
. TypedE!l enent

. TypeAl i as

. Tag) *) >
<l ATTLI ST Mode

oXM . el enent . att;

XM . link.att;>

OMG-MOF, v1.3.1 November 2001

A-103

A-104 OMG-MOF, v1.3.1 November 2001

MOF IDL Summary

Note — The copyright information was added as comments to the IDL file.

This appendix summarizes the CORBA IDL for the Meta Object Facility so that it can
be easily processed by IDL compilers. The IDL for the Model and Reflective packages

has been included so that the appropriate sections can be compiled separately as

needed.

B.1 MOF Model IDL

//Meta Qbject Facility (MOF) Specification
//Version 1.3.1

[/ Novenber 2001

/1 Qbj ect Managenent Group, Inc.

/1 Appendi x B: MOF I DL Summary

/1 Copyri ght 1997-1999, DSTC (Cooperative Research Centre for
I Enterprise Distributed Systens Technol ogy)
/1 Copyright 1997-1999, El ectronic Data Systens

/1 Copyri ght 1997-1999, |BM Corporation

/1 Copyright 1997-1999, International Conputers Limted
/1 Copyright 1997-1999, njectivity Inc.

/1 Copyri ght 2000, Cbject Managenent G oup

/1 Copyright 1997-1999, Oracle Corporation

/1 Copyright 1997-1999, Pl ati num Technol ogy Inc.

/1 Copyright 1997-1999, Rational Software Corporation

/1 Copyright 1997-1999, System Software Associ ates

/1 Copyright 1997-1999, Unisys Corporation

/1 The conpani es |listed above have granted to the bject

/I Managenent Group, Inc. (OM5 a nonexclusive, royalty-free,
//paid up, worldw de license to copy and distribute this

/[docunment and to nmodify this document and distribute copies
//of the modified version. Each of the copyright hol ders

OMG-MOF, v1.3.1 November 2001

B-1

B

//1isted above has agreed that no person shall be deened to
[/ have infringed the copyright in the included material of
/lany such copyright holder by reason of having used the
//specification set forth herein or having conformed any
// conputer software to the specification.

#pragma prefix "org.ony. nof"

nmodul e Model {
typedef sequence < any > AnyBag;
i nterface Mddel Package;
i nterface Mddel El enent Cl ass;
interface Model El ement;
typedef sequence <::Mbdel :: Model El emrent > Model El enent Set ;
typedef sequence <::Mbdel:: Model El ement > Model El enent ULi st ;
interface Namespaced ass;
interface Namespace;
typedef sequence <::Mbdel :: Nanespace> NamespaceULi st;
interface Generalizabl eEl ement ass;
interface Generalizabl eEl enent;
typedef sequence <::Mbddel:: Generalizabl eEl enent > General i zabl eEl ement Set ;
typedef sequence <::Mbdel:: Generalizabl eEl enent > General i zabl eEl ement ULi st ;
interface TypedEl ement Cl ass;
interface TypedEl enment;
typedef sequence <::Mbdel:: TypedEl ement > TypedEl enent Set ;
typedef sequence <::Mbdel:: TypedEl ement > TypedEl enent ULi st ;
interface Classifierd ass;
interface Classifier;
typedef sequence <::Mddel::Classifier> Cl assifierUList;
interface Classd ass;
interface C ass;
typedef sequence <::Mbddel::Class> Cl assULi st;
interface DataTypeC ass;
interface DataType;
typedef sequence <::Mbdel :: Dat aType> Dat aTypeULi st ;
interface TypeAliasd ass;
interface TypeAli as;
typedef sequence <::Mbdel:: TypeAlias> TypeAliasULi st;
interface Featured ass;
interface Feature;
typedef sequence <::Mbdel :: Feature> FeatureULi st;
interface Structural Featured ass;
interface Structural Feature;
typedef sequence <::Mbdel:: Structural Feature> Structural FeatureULi st;
interface Mof AttributeCl ass;
interface MofAttribute;
typedef sequence <::Model::MfAttribute> MfAttributeUList;
interface Referenced ass;
interface Reference;
typedef sequence <::Mbdel :: Reference> ReferenceSet;
typedef sequence <::Mbdel:: Ref erence> Ref erenceULi st;
i nterface Behavi oral Feat ur eCl ass;
i nterface Behavi oral Feat ure;
typedef sequence <::Moddel:: Behavi oral Feat ure> Behavi or al Feat ureULi st ;
interface Operationd ass;
interface Operation;

B-2 OMG-MOF, v1.3.1 November 2001

typedef sequence <::Mbdel :: Operati on> OperationSet;
typedef sequence <::Mbdel:: Operation> OperationUList;
interface Mf ExceptionCl ass;
interface MfException;
typedef sequence <:: Model:: Mof Exception> MfExceptionULi st;
interface Associationd ass;
interface Association;
typedef sequence <::Mbddel :: Associ ati on> Associ ati onULi st;
interface Associati onEndd ass;
interface Associ ati onEnd;
typedef sequence <::Mbdel:: Associ ati onEnd> Associ ati onEndULi st ;
i nterface Packaged ass;
i nterface Package;
typedef sequence <::Mbdel :: Package> PackageULi st;
interface I nportd ass;
interface I nport;
typedef sequence <::Mbdel::Inport> | nport Set;
typedef sequence <::Model::Inport> |InportUList;
interface Paraneterd ass;
interface Paraneter;
typedef sequence <::Mbdel:: Paramet er > Par anet er ULi st ;
interface ConstraintCl ass;
interface Constraint;
typedef sequence <::Mbddel:: Constraint> ConstraintSet;
typedef sequence <::Model:: Constraint> ConstraintUList;
interface ConstantC ass;
interface Constant;
typedef sequence <::Mbdel:: Constant> Constant ULi st;
interface Tagd ass;
interface Tag;
typedef sequence <::Mbdel :: Tag> TagULi st ;
typedef string NameType;
typedef sequence <::Mbdel :: NanmeType> NaneTypeli st;
typedef string AnnotationType;
interface Mbdel El enentCl ass : Reflective:: Ref Object {
readonly attribute Model El enent ULi st all _of _type_nodel _el ement;
const string MJST_BE_CONTAI NED_UNLESS_PACKACE =
"org.ong. nof: constrai nt. nodel . rodel _el enent . nust _be_cont ai ned_unl ess_package";
const string FROZEN_ATTRI BUTES_CANNOT_BE_CHANGED =
"org.ong. nof: constrai nt.nodel . rodel _el enent.frozen_attributes_cannot _be_changed";
const string FROZEN_ELEMENTS_CANNOT_BE_DELETED =
"org.ong. nof: constrai nt. nodel . nrodel _el enent. frozen_el ements_cannot _be_del eted";
const string FROZEN_DEPENDENCI ES_CANNOT_BE_CHANGED =
"org.ong. nof: constrai nt. nodel . rodel _el enent . frozen_dependenci es_cannot _be_changed";
typedef string DependencyKi nd;
typedef sequence <::Mbddel :: Model El ement Cl ass: : DependencyKi nd> DependencyKi ndSet ;
const DependencyKi nd CONTAI NER_DEP = "container";
const DependencyKi nd CONTENTS_DEP = "contents";
const DependencyKi nd S| GNATURE_DEP = "si gnature";
const DependencyKi nd CONSTRAI NT_DEP = "constraint";
const DependencyKi nd CONSTRAI NED_ELEMENTS_DEP = "constrai ned el enents";
const DependencyKi nd SPECI ALI ZATI ON_DEP = "speci al i zati on";
const DependencyKi nd | MPORT_DEP = "i nport";
const DependencyKi nd TYPE_DEFI NI TI ON_DEP = "type definition";
const DependencyKi nd REFERENCED _ENDS DEP = "referenced ends";

OMG-MOF, v1.3.1 November 2001 B-3

const DependencyKi nd TAGGED_ELEMENTS_DEP = "tagged el ements";
const DependencyKind I NDI RECT_DEP = "indirect";
const DependencyKind ALL_DEP = "all";
enum VerifyResultKind { valid, published, invalid };
enum Dept hKi nd { shall ow, deep };
struct ViolationType {
string error_kind;
Refl ecti ve: : Ref Cbject elenent_in_error;
Refl ecti ve: : NamedVal ueLi st val ues_in_error;
string error_description;
H
typedef sequence <:: Mbddel :: Mdel El enent Cl ass: : Viol ati onType> Viol ati onTypeSet ;

}; /1 end of interface Mdel El enent Cl ass

interface Mddel El enent : Mbdel El enent Cl ass {
NameType nanme ()
raises (Reflective::MfError);
void set_nane (in NaneType new_val ue)
raises (Reflective::MfError);
NameTypeli st qualified_nane ()
raises (Reflective:: MfError);
Annot ati onType annotation ()
raises (Reflective:: MfError);
void set_annotation (in AnnotationType new_val ue)
raises (Reflective:: MfError);
Model El enent Set required_el ements ()
raises (Reflective::MfError);
Model El enent Set find_required_el enents (
in Model El ement d ass: : DependencyKi ndSet ki nds,
in bool ean recursive)
raises (Reflective::MfError);
bool ean i s_required_because (i n Mdel El enent ot her _el enent,
out Model El ement d ass: : DependencyKi nd reason)
raises (Reflective:: MfError);
Nanmespace container ()
rai ses (Reflective::NotSet, Reflective::MfError);
void set_container (in Namespace new_val ue)
raises (Reflective:: MfError);
voi d unset _container ()
raises (Reflective::MfError);
Constrai ntSet constraints ()
raises (Reflective::MfError);
void set_constraints (in ConstraintSet new val ue)
raises (Reflective:: MfError);
void add_constraints (in Constraint new el ement)
raises (Reflective:: MfError);
void nodi fy_constraints (in Constraint old_elenment, in Constraint new el ement)
rai ses (Reflective::NotFound, Reflective::MfError);
void renpve_constraints (in Constraint old_el enent)
rai ses (Reflective::NotFound, Reflective::MfError);
Model El enent Cl ass: : Veri fyResul tKind verify (
in Model El ement d ass: : Dept hKi nd dept h,
out Model El ement d ass: : Vi ol ati onTypeSet probl ens)
raises (Reflective:: MfError);

OMG-MOF, v1.3.1 November 2001

bool ean is_frozen ()
rai ses (Reflective::MfError);
bool ean is_visible (in Mdel El enent ot her_el ement)
rai ses (Reflective::MfError);
}; // end of interface Mdel El enent

enum VisibilityKind { public_vis, protected_vis, private_vis };

interface NamespaceC ass : Model El enent O ass {
readonly attribute NamespaceUList all_of _type_namespace;
const string CONTENT_NAMES_MUST_NOT_COLLI DE =
"org.ong. nof: constrai nt.nodel . namespace. content _nanes_nust _not _col | i de";
exception NarmeNot Found { NameType nane; };
exception NanmeNot Resol ved {
string expl anati on;
NameTypeli st rest_of _name; };
}; /1 end of interface Namespaced ass

interface Namespace : NanmespaceCl ass, Mdel El enent {

Model El enent ULi st contents ()
rai ses (Reflective:: MfError);

void set_contents (in Mdel El enent ULi st new_val ue)
raises (Reflective:: MfError);

void add_contents (in Mdel El enent new_el ement)
raises (Reflective:: MfError);

void add_contents_before (in Mdel El ement new el ement, in Mdel El enent before_el enent)
rai ses (Reflective::NotFound, Reflective::MfError);

void nodify_contents (in Mdel El enent ol d_el ement, in Mdel El enent new_el enent)
rai ses (Reflective::NotFound, Reflective::NMfError);

void renove_contents (in Mdel El enent ol d_el ement)
rai ses (Reflective::NotFound, Reflective::MfError);

Model El enent | ookup_el ement (i n NameType nane)
rai ses (Nanespaced ass:: NaneNot Found, Reflective::MfError);

Model El enent resol ve_qualified_name (in NameTypeList qualified_nane)
rai ses (Nanespaced ass: : NaneNot Resol ved, Reflective:: MfError);

Mbdel El ement ULi st find_el enents_by type (in Class of _type, in bool ean include_subtypes)
rai ses (Reflective:: MfError);

bool ean name_is_valid (in NaneType proposed_nane)
rai ses (Reflective:: MfError);

}; /1 end of interface Namespace

interface Generalizabl eEl ement G ass : NamespaceC ass {

readonly attribute Generalizabl eEl ement ULi st

al | _of _type_generalizabl e_el enent;
const string SUPERTYPE_MJUST_NOT_BE_SELF =

"org.ong. nof : constraint.nodel . general i zabl e_el ement . supertype_nust _not_be_sel f";
const string SUPERTYPE_KI ND_MJST_BE_SAME =

"org.ong. nof: constrai nt.nodel . general i zabl e_el ement . supertype_ki nd_nust _be_sanme";
const string CONTENTS_MUST_NOT_COLLI DE_W TH_SUPERTYPES =

"org.ong. nof : constraint. nodel . generali zabl e_el ement "

".contents_nust_not_col lide_with_supertypes";
const string DI AMOND RULE MJST_BE OBEYED =

"org.ong. nof: constrai nt.nodel . general i zabl e_el ement . di anond_r ul e_nust _be_obeyed";
const string NO_SUPERTYPES_ALLOWED_FOR _ROOT =

"org.ong. nof: constrai nt.nodel . general i zabl e_el ement . no_supertypes_al | owed_for_root";

OMG-MOF, v1.3.1 November 2001 B-5

const string SUPERTYPES MJST BE VI SI BLE =

"org.ong. nof: constraint.nodel . general i zabl e_el ement . supertypes_nust _be_vi si bl e";
const string NO SUBTYPES ALLOAED FOR_LEAF =

"org.ong. nof: constraint.nodel . general i zabl e_el enment. no_subtypes_al | owed_for_| eaf";
}; /1 end of interface Generalizabl eEl enent O ass

interface Generalizabl eEl ement : Generalizabl eEl ement C ass, Namespace {
bool ean is_root ()
raises (Reflective::MfError);
void set_is_root (in boolean new val ue)
raises (Reflective::MfError);
bool ean is_leaf ()
raises (Reflective::MfError);
void set_is_leaf (in boolean new val ue)
raises (Reflective::MfError);
bool ean is_abstract ()
raises (Reflective:: MfError);
void set_is_abstract (in bool ean new_val ue)
raises (Reflective::MfError);
VisibilityKind visibility ()
raises (Reflective:: MfError);
void set_visibility (in VisibilityKind new_val ue)
raises (Reflective:: MfError);
General i zabl eEl ement ULi st supertypes ()
raises (Reflective::MfError);
void set_supertypes (in Generalizabl eEl ement ULi st new_val ue)
raises (Reflective::MfError);
voi d add_supertypes (in Generalizabl eEl ement new_el enent)
raises (Reflective:: MfError);
voi d add_supertypes_before (in Generalizabl eEl enent new_el ement,
in Ceneralizabl eEl ement before_el enent)
rai ses (Reflective::NotFound, Reflective::NMfError);
void nodi fy_supertypes (in Generalizabl eEl enent ol d_el ement,
in Ceneralizabl eEl enent new_el ement)
rai ses (Reflective::NotFound, Reflective::MfError);
voi d renmove_supertypes (in Ceneralizabl eEl ement ol d_el ement)
rai ses (Reflective::NotFound, Reflective::NMfError);
General i zabl eEl ement Set al | _supertypes ()
raises (Reflective:: MfError);
Model El enent | ookup_el enent _extended (in NaneType nane)
raises (Reflective:: MfError);
Model El enent ULi st find_el ements_by_type_extended (
in Class of _type,
i n bool ean incl ude_subt ypes)
raises (Reflective:: MfError);
}; /1 end of interface Generalizabl eEl emrent

interface TypedEl ement Cl ass : Mdel El enment Cl ass {
/'l get all typed_el ement including subtypes of typed_el ement
readonly attribute TypedEl enent ULi st all _of _type_typed_el ement;
const string ASSOCI ATI ONS_CANNOT_BE_TYPES =
"org.ong. nof : constraint. nodel .typed_el ement . associ ati ons_cannot _be_t ypes";
const string TYPE_MJST_BE VI SI BLE =
"org.ong. nof : constraint. nodel .typed_el ement . type_nust _be_visible";
}; /1 end of interface TypedEl ement Cl ass

OMG-MOF, v1.3.1 November 2001

interface TypedEl enent : TypedEl enent Cl ass, Mdel El ement {
Classifier type ()
rai ses (Reflective::MfError);
void set_type (in Classifier new_val ue)
rai ses (Reflective::MfError);
}; /1 end of interface TypedEl enent

interface ClassifierClass : Generalizabl eEl enent Cl ass {
readonly attribute ClassifierUList all_of_type_classifier;
}; /1 end of interface ClassifierCl ass

interface Classifier : CassifierClass, Ceneralizabl eEl enent { };

interface ClassC ass : dassifierClass {
readonly attribute CassUList all_of_type_class;
readonly attribute CassUList all_of_class_class;
const string CLASS CONTAI NVENT_RULES =
"org.ong. nof : constraint. nodel . cl ass. cl ass_contai nment _rul es";
const string ABSTRACT_CLASSES_CANNOT_BE_SI NGLETON =
"org.ong. nof: constraint.nodel . cl ass. abstract_cl asses_cannot _be_si ngl et on";

Class create_class (
/* from Model El ement */ in ::Mdel::NaneType nane,
/* from Model El enent */ in ::Mdel::AnnotationType annotati on,
/* from Generalizabl eEl enent */in bool ean is_root,
/* from Generalizabl eEl ement */in bool ean is_|eaf,
/* from Generalizabl eEl ement */in bool ean is_abstract,
/* from Generalizabl eEl ement */in ::Mdel::VisibilityKind visibility,
/* fromd ass */ in bool ean is_singl eton)
rai ses (Reflective:: MfError);
}; // end of interface Cassd ass

interface Class : ClassCass, Jassifier {
bool ean i s_singleton ()
rai ses (Reflective:: MfError);
void set_is_singleton (in bool ean new val ue)
rai ses (Reflective:: MfError);
}; // end of interface O ass

typedef ::CORBA: : TypeCode TypeDescri ptor;

interface DataTypeClass : ClassifierCl ass {

readonly attribute DataTypeUList all_of_type_data_type;
readonly attribute DataTypeULi st all_of _class_data_type;
const string DATA_TYPE_CONTAI NMENT_RULES =

"org.ong. nof: constraint.nodel . data_type. data_type_contai nnent _rul es";
const string THI S_TYPECODE_NOT_SUPPORTED =

"org.ong. nof: constraint.nodel.data_type.this_typecode_not_supported";
const string DATA_TYPES_HAVE_NO SUPERTYPES =

"org.ong. nof: constraint.nodel . data_t ype. dat a_t ypes_have_no_supertypes";
const string DATA_TYPES_CANNOT_BE_ABSTRACT =

"org.ong. nof: constraint.nodel . data_type. data_types_cannot _be_abstract";

Dat aType create_data_type (

OMG-MOF, v1.3.1 November 2001 B-7

}s

/* from Model El ement */ in ::Mdel::NaneType nane,
/* from Model El enent */ in ::Mdel::AnnotationType annotati on,
/* from Generalizabl eEl ement */in bool ean is_root,
/* from Generalizabl eEl ement */in bool ean is_|eaf,
/* from Generalizabl eEl ement */in bool ean is_abstract,
/* from Generalizabl eEl ement */in ::Mdel::VisibilityKind visibility,
/* from Dat aType */ in TypeDescriptor type_code)
rai ses (Reflective::MfError);
}; /1 end of interface DataTypeCl ass

interface DataType : DataTypeCl ass, Cassifier {
TypeDescri pt or type_code ()
rai ses (Reflective:: MfError);
void set_type_code (in TypeDescriptor new_ val ue)
raises (Reflective:: MfError);
}; /1 end of interface DataType

interface TypeAliasC ass : TypedEl enent O ass {
readonly attribute TypeAliasUList all_of_type_type_alias;
readonly attribute TypeAliasUList all_of _class_type_alias;
TypeAlias create_type_alias (
/* from Model El ement */ in ::Mdel::NaneType nane,
/* from Model El enent */ in ::Mdel::AnnotationType annotati on)
rai ses (Reflective:: MfError);
}; /1 end of interface TypeAliasd ass

interface TypeAlias : TypeAliasC ass, TypedEl enent {
}; /1 end of interface TypeAlias

enum ScopeKind { instance_level, classifier_level };

interface Featured ass : Mbdel El enent Cl ass {
readonly attribute FeatureUList all_of _type_feature;
/1 end of interface Featured ass

interface Feature : FeatureCl ass, Mdel El enent {
ScopeKi nd scope ()
rai ses (Reflective:: MfError);
void set_scope (in ScopeKind new_val ue)
rai ses (Reflective:: MfError);
VisibilityKind visibility ()
rai ses (Reflective:: MfError);
void set_visibility (in VisibilityKind new_val ue)
rai ses (Reflective:: MfError);
}; // end of interface Feature

const | ong UNBOUNDED = -1;
struct MultiplicityType {
long | ower;
| ong upper;
bool ean i s_ordered;
bool ean i s_uni que; };
const string LOWER_CANNOT_BE_NEGATI VE_OR_UNBOUNDED =
"org.onyg. nof : con-

straint.nodel .multiplicity_type.lower_cannot_be_negative_or_unbounded";

OMG-MOF, v1.3.1 November 2001

int

—

in

—

in

int

int

const string LOWER_CANNOT_EXCEED_ UPPER =

"org.ong. nof: constraint.model . multiplicity_type.lower_cannot_exceed_upper";
const string UPPER_MJST_BE_POSI Tl VE =

"org.ong. nof: constraint.nodel.multiplicity_type.upper_nust_be_positive";
const string MJST_BE_UNORDERED NONUNI QUE =

"org.ong. nof: constraint.nodel.multiplicity_type.nmst_be_unordered_nonuni que";

erface Structural FeatureCl ass : FeatureCl ass, TypedEl enent Cl ass {
readonly attribute Structural FeatureUList all_of _type_structural _feature;
/1 end of interface Structural Featured ass

erface Structural Feature : Structural Featured ass, Feature, TypedEl ement {
Mul tiplicityType nultiplicity ()
rai ses (Reflective:: MfError);
void set_multiplicity (in MiltiplicityType new_val ue)
rai ses (Reflective:: MfError);
bool ean i s_changeabl e ()
rai ses (Reflective:: MfError);
void set_is_changeabl e (in bool ean new_val ue)
raises (Reflective:: MfError);
/'l end of interface Structural Feature

erface Mof AttributeClass : Structural Featured ass {
readonly attribute MofAttributeUList all_of _type_nof_attribute;
readonly attribute MofAttributeULi st all_of_class_nof_attribute;

Mof Attribute create_nmof _attribute (

/* from Model El ement */ in ::Mdel::NaneType nane,

/* from Model El enent */ in ::Mdel::AnnotationType annotati on,
/* from Feature */ in ::Mdel::ScopeKind scope,

/* from Feature */ in ::Mdel::VisibilityKind visibility,

/* from Structural Feature */in ::Mdel::MiltiplicityType nultiplicity,
/* from Structural Feature */in bool ean i s_changeabl e,
/* fromMfAttribute */ in boolean is_derived)
rai ses (Reflective:: MfError);
/1 end of interface Mof AttributeCl ass

erface Mof Attribute : MofAttributeCl ass, Structural Feature {
bool ean i s_derived ()
rai ses (Reflective:: MfError);
void set_is_derived (in bool ean new_val ue)
rai ses (Reflective:: MfError);
/1 end of interface Mof Attribute

erface Referenced ass : Structural FeatureC ass {
readonly attribute ReferenceUList all_of type_reference;
readonly attribute ReferenceUList all_of class_reference;
const string REFERENCE_MULTI PLI CI TY_MJST_MATCH END =

"org.ong. nof: constraint.nodel.reference.reference_nultiplicity_rmust_match_end";
const string REFERENCE_MUST_BE_| NSTANCE_SCOPED =

"org.ong. nof: constraint.nodel.reference. ref erence_nust _be_i nst ance_scoped”;
const string CHANGEABLE REFERENCE MUST_HAVE CHANGEABLE_END =

"org.ong. nof: constraint.nodel.refer-

ence. changeabl e_r ef erence_nust _have_changeabl e_end";

const string REFERENCE_TYPE_MJST_MATCH END _TYPE =

OMG-MOF, v1.3.1 November 2001 B-9

"org.ong. nof: constraint.nodel.reference. ref erence_type_nust_match_end_type";
const string REFERENCED END_MJST_BE_NAVI GABLE =

"org.ong. nof: constraint.nodel.reference. ref erenced_end_nust _be_navi gabl e";
const string CONTAI NER_MJUST_MATCH EXPOSED _TYPE =

"org.ong. nof: constrai nt.nodel . reference. contai ner _nust _nmat ch_exposed_t ype";
const string REFERENCED _END_MJST_BE_VI S| BLE =

"org.ong. nof: constraint.nodel.reference. ref erenced_end_nust_be_visible";

Ref erence create_reference (

/* from Model El ement */ in ::Mdel::NaneType nane,

/* from Model El enent */ in ::Mdel::AnnotationType annotati on,
/* from Feature */ in ::Mdel::ScopeKind scope,

/* from Feature */ in ::Mdel::VisibilityKind visibility,

/* from Structural Feature */in ::Mdel::MiltiplicityType nultiplicity,
/* from Structural Feature */in bool ean is_changeabl e)
rai ses (Reflective::MfError);
}; /1 end of interface Referenced ass

interface Reference : ReferenceCl ass, Structural Feature {
Associ ati onEnd exposed_end ()
rai ses (Reflective::MfError);
voi d set_exposed_end (in Associati onEnd new_val ue)
rai ses (Reflective:: MfError);
Associ ati onEnd referenced_end ()
raises (Reflective::MfError);
void set_referenced_end (in Associ ati onEnd new_val ue)
rai ses (Reflective::MfError);
}; /1 end of interface Reference

interface Behavioral FeatureCl ass : FeatureCl ass, NamespaceC ass ({
readonly attribute Behavioral FeatureULi st all_of _type_behavioral _feature;
}; /1 end of interface Behavioral Featured ass

interface Behavioral Feature :
Behavi or al Featured ass, Feature , Nanmespace {};

interface Operationd ass : Behavi oral FeatureCl ass {
readonly attribute OperationUList all_of_type_operation;
readonly attribute OperationUList all_of_class_operation;

const string OPERATI ON_CONTAI NMENT_RULES =

"org.ong. nof : constraint.nodel . operation. operati on_contai nnent_rul es";
const string OPERATI ONS_HAVE_AT_MOST_ONE_RETURN =

"org.ong. nof : constraint. nodel . operation. operati ons_have_at_npbst_one_return";
const string OPERATI ON_EXCEPTI ONS_MJST_BE_VI SI BLE =

"org.ong. nof: constrai nt.nodel . operation. operati on_excepti ons_nust_be_vi si bl e";

Operation create_operation (

/* from Model El ement */ in ::Mdel::NaneType nane,

/* from Model El enent */ in ::Mdel::AnnotationType annotati on,
/* from Feature */ in ::Mdel::ScopeKind scope,

/* from Feature */ in ::Mdel::VisibilityKind visibility,
/* from Operation */ in bool ean is_query)

rai ses (Reflective::MfError);
}; /1 end of interface Operati ond ass

B-10 OMG-MOF, v1.3.1 November 2001

interface Operation : OperationClass, Behavioral Feature {

b

bool ean i s_query ()
raises (Reflective::MfError);
void set_is_query (in boolean new_ val ue)
raises (Reflective::MfError);
Mbf Excepti onULi st exceptions ()
raises (Reflective::MfError);
voi d set_exceptions (in MfExcepti onULi st new_val ue)
raises (Reflective::MfError);
voi d add_exceptions (in MfException new_el ement)
raises (Reflective::MfError);
voi d add_exceptions_before (in MfException new el enent,
in MfException before_el ement)
rai ses (Reflective::NotFound, Reflective::NMfError);
voi d nodi fy_exceptions (in MfException ol d_el enent,
in MfException new_el ement)
rai ses (Reflective::NotFound, Reflective::NMfError);
voi d renove_exceptions (in MfException ol d_el enent)
rai ses (Reflective::NotFound, Reflective::NMfError);
/1 end of interface Qperation

interface Mf ExceptionClass : Behavi oral Featured ass {

b

readonly attribute MfExceptionUList all_of_type_nof_exception;
readonly attribute MfExceptionUList all_of_class_nof _exception;
const string EXCEPTI ON_CONTAI NMENT_RULES =
"org.ong. nof : constraint. nodel . mof _excepti on. excepti on_contai nnment_rul es";
const string EXCEPTI ONS_HAVE_ONLY_OUT_PARAMETERS =
"org.ong. nof: constrai nt.nodel . rof _exception. excepti ons_have_only_out _paranmeters"”;

Mof Exception create_nof _exception (

/* from Model El ement */ in ::Mdel::NaneType nane,

/* from Model El enent */ in ::Mdel::AnnotationType annotati on,
/* from Feature */ in ::Mdel::ScopeKind scope,

/* from Feature */ in ::Mdel::VisibilityKind visibility)

raises (Reflective:: MfError);
/1 end of interface Mf ExceptionCl ass

interface Mf Exception : MfExceptionClass , Behavioral Feature { };

interface AssociationCass : ClassifierClass {

readonly attribute AssociationUList all_of_type_association;
readonly attribute AssociationUList all_of_class_associ ation;
const string ASSOCI ATI ONS_CONTAI NVENT_RULES =

"org.ong. nof : constraint. nodel . associ ati on. associ ati ons_contai nment _rul es";
const string ASSOCI ATI ONS_HAVE_NO_SUPERTYPES =

"org.ong. nof: constrai nt.nodel . associ ati on. associ ati ons_have_no_supertypes";
const string ASSOCI ATI ONS_MJST_BE_ROOT_AND_LEAF =

"org.ong. nof: constrai nt.nodel . associ ati on. associ ati ons_nust_be_r oot _and_I| eaf";
const string ASSOCI ATI ONS_CANNOT_BE_ABSTRACT =

"org.ong. nof: constrai nt.nodel . associ ati on. associ ati ons_cannot _be_abstract";
const string ASSOCI ATI ONS_MJST_BE _PUBLI C =

"org.ong. nof: constrai nt.nodel . associ ation. associ ati ons_nust_be_public";
const string ASSOCI ATI ONS_MJUST_BE_BI NARY =

"org.ong. nof: constrai nt.nodel . associ ati on. associ ati ons_nust _be_bi nary";

OMG-MOF, v1.3.1 November 2001 B-11

Associ ation create_association (
/* from Model El ement */ in ::Mdel::NaneType nane,
/* from Model El enent */ in ::Mdel::AnnotationType annotati on,
/* from Generalizabl eEl enent */in bool ean is_root,
/* from Generalizabl eEl ement */in bool ean is_| eaf,
/* from Generalizabl eEl ement */in bool ean is_abstract,
/* from Generalizabl eEl ement */in ::Mdel::VisibilityKind visibility,
/* from Association */ in bool ean is_derived)
rai ses (Reflective::MfError);
}; // end of interface AssociationC ass

interface Association : AssociationCdass, Oassifier {

bool ean i s_derived ()
rai ses (Reflective::MfError);
void set_is_derived (in bool ean new_val ue)
rai ses (Reflective:: MfError);
}; // end of interface Association

enum Aggr egationKind { none, shared, conposite };

interface Associ ati onEndd ass : TypedEl ement Cl ass {

readonly attribute Associati onEndULi st all_of _type_associ ati on_end;
readonly attribute Associati onEndULi st all_of _class_associ ati on_end;
const string END TYPE_MUST_BE_CLASS =

"org.ong. nof: constraint.nodel . associ ati on_end. end_t ype_nust _be_cl ass";
const string ENDS_MJUST_BE_UNI QUE =

"org.ong. nof: constrai nt.nodel . associ ati on_end. ends_nust _be_uni que";
const string CANNOT_HAVE TWO ORDERED_ENDS =

"org.ong. nof: constrai nt.nodel . associ ati on_end. cannot _have_two_or dered_ends";

const string CANNOT_HAVE TWO AGGREGATE_ENDS =

"org.ong. nof: constrai nt.nodel . associ ati on_end. cannot _have_t wo_aggr egat e_ends";

Associ ati onEnd create_association_end (

/* from Model El ement */ in ::Mdel::NaneType nane,

/* from Model El enent */ in ::Mdel::AnnotationType annotati on,

/* from Associ ati onEnd */ in bool ean is_navigabl e,

/* from Associ ati onEnd */ in ::Mdel::Aggregati onKi nd aggregati on,

/* from Associ ati onEnd */ in ::Mdel::MltiplicityType multiplicity,
/* from Associ ati onEnd */ in bool ean is_changeabl e)

rai ses (Reflective:: MfError);
}; // end of interface Associati onEndd ass

interface AssociationEnd : Associ ati onEndCl ass, TypedEl ement {
bool ean i s_navi gable ()
rai ses (Reflective:: MfError);
void set_is_navigable (in boolean new_val ue)
rai ses (Reflective:: MfError);
Aggr egat i onKi nd aggregation ()
raises (Reflective:: MfError);
voi d set_aggregation (in AggregationKi nd new_val ue)
raises (Reflective:: MfError);
Mul tiplicityType nultiplicity ()
rai ses (Reflective:: MfError);

B-12 OMG-MOF, v1.3.1 November 2001

void set_multiplicity (in MiltiplicityType new_val ue)
rai ses (Reflective::MfError);

Associ ati onEnd ot her_end ()
rai ses (Reflective::MfError);

bool ean i s_changeabl e ()
raises (Reflective:: MfError);

voi d set_is_changeabl e (in bool ean new_val ue);

}; // end of interface Associati onEnd

interface PackageC ass : Generalizabl eEl ement d ass {
readonly attribute PackageULi st all_of _type_package;
readonly attribute PackageULi st all_of _class_package;
const string PACKAGE_CONTAI NMENT_RULES =
"org.ong. nof: constrai nt. nodel . package. package_cont ai nnent _rul es";
const string PACKAGES_CANNOT_BE ABSTRACT =
"org.ong. nof: constrai nt.nodel . package. packages_cannot _be_abstract";

typedef string Fornmat Type;

exception Fornat Not Supported {};
exception Obj ectNot Externalizable { string explanation; };
exception Il formedExternalizedObject { string explanation; };

General i zabl eEl ement internalize (in PackageCd ass:: Format Type fornat,
in any stream
rai ses (Packaged ass: : For mat Not Support ed,
Packaged ass:: ||| formedExternal i zedOoj ect,
Refl ective:: MofError);

Package create_package (
/* from Model El enent */
/* from Model El enment */
/* from Generalizabl eEl ement */
/* from Generalizabl eEl ement */
/* from Generalizabl eEl ement */
/* from Generalizabl eEl ement */
rai ses (Reflective:: MfError);
}; /1 end of interface PackageCd ass

n ::Model :: NameType nane,

n ::Model::AnnotationType annotati on,
n bool ean is_root,

n bool ean is_| eaf,

n bool ean is_abstract,

n ::Mdel::VisibilityKind visibility)

interface Package : PackageCl ass, Ceneralizabl eEl enent {

any externalize (in Packaged ass:: Fornat Type format)
rai ses (PackageC ass: : Obj ect Not Ext er nal i zabl e,
Packaged ass: : For mat Not Support ed,
Refl ective:: Mof Error);
}; /1 end of interface Package

interface I nportClass : Model El enent Cl ass {
readonly attribute InportUList all_of_type_inport;
readonly attribute InportUList all_of_class_inport;
const string | MPORTED_NAMESPACE_MJUST_BE VI SI BLE =
"org.ong. nof: constraint.nodel.inport.inported_namespace_nust_be_vi si bl e";
const string CAN_ONLY_| MPORT_PACKACGES_AND_CLASSES =
"org.ong. nof: constraint.nodel.inport.can_only_inport_packages_and_cl asses";
const string CANNOT_| MPORT_SELF =

OMG-MOF, v1.3.1 November 2001 B-13

"org.ong. nof : constraint.nodel .inport.cannot _i nport_self";

const string CANNOT_| MPORT_NESTED COMPONENTS =
"org.ong. nof: constraint.nodel.inport.cannot _i mport_nest ed_components"”;
const string NESTED_ PACKAGES_CANNOT_| MPORT =
"org.ong. nof : constraint. nodel .inport.nested_packages_cannot _i nport";
I nport create_inport (
/* from Model El enent */ in ::Model:: NameType nane,
/* from Model El enent */ in ::Mdel::AnnotationType annotation,
/[* fromlnport */ in ::Mdel::VisibilityKind visibility,
/* fromlnmport */ i n bool ean is_clustered)
rai ses (Reflective:: MfError);
}; /1 end of interface |InportCl ass

interface Inmport : InportCl ass, Mdel El enent {
VisibilityKind visibility ()
raises (Reflective:: MfError);
void set_visibility (in VisibilityKi nd new_val ue)
rai ses (Reflective:: MfError);
bool ean is_clustered ()
rai ses (Reflective:: MfError);
void set_is_clustered (in bool ean new_val ue)
rai ses (Reflective:: MfError);
Nanmespace i nported_nanespace ()
raises (Reflective:: MfError);
voi d set_inported_nanespace (i n Nanmespace new_val ue)
rai ses (Reflective:: MfError);
}; // end of interface |nport

enum DirectionKind { in_dir, out_dir, inout_dir, return_dir };
interface ParaneterC ass : TypedEl enent O ass {
readonly attribute ParaneterUList all_of _type_paraneter;
readonly attribute ParameterULi st all_of_cl ass_paraneter;
Paranmeter create_paraneter (
/* from Model El enent */ in ::Mdel::NameType nane,
/* from Model El enent */ in ::Mdel::AnnotationType annotation,
/* from Paraneter */ in ::Mdel::DirectionKind direction,
/* from Paraneter */ in ::Mdel::MltiplicityType nultiplicity)
rai ses (Reflective:: MfError);
}; /1 end of interface Paranmeterd ass

interface Paraneter : ParaneterCl ass, TypedEl enent {
DirectionKind direction ()
rai ses (Reflective:: MfError);
void set_direction (in DirectionKind new val ue)
rai ses (Reflective:: MfError);
Mul tiplicityType nultiplicity ()
rai ses (Reflective:: MfError);
void set_multiplicity (in MiltiplicityType new_val ue)
rai ses (Reflective:: MfError);
}; /1 end of interface Paraneter

interface ConstraintClass : Mdel El ement O ass {

readonly attribute ConstraintUList all_of_type_constraint;
readonly attribute ConstraintUList all_of_class_constraint;

B-14 OMG-MOF, v1.3.1 November 2001

const string CANNOT_CONSTRAI N_THI S_ELEMENT =

"org.ong. nof : constraint. nodel . constraint.cannot_constrain_this_elenent";
const string CONSTRAINTS LI M TED _TO_CONTAI NER =

"org.ong. nof: constraint.nodel.constraint.constraints_limted_to_container”;

enum Eval uationKind { innmedi ate, deferred };

Constraint create_constraint (
/* from Model El ement */ in ::Model:: NaneType nane,
/* from Model El enent */ in ::Mdel::AnnotationType annotation,
/* from Constraint */ in any expression,
/* from Constraint */ in string | anguage,
/* from Constraint */
in ::Mdel::ConstraintC ass:: Eval uati onKi nd eval uati on_policy)
rai ses (Reflective:: MfError);
}; /1 end of interface ConstraintCl ass

interface Constraint : ConstraintClass, Mdel El enent {

any expression ()
raises (Reflective::MfError);

void set_expression (in any new_val ue)
raises (Reflective::MfError);

string | anguage ()
raises (Reflective:: MfError);

void set_| anguage (in string new_val ue)
raises (Reflective:: MfError);

Constrai ntCl ass:: Eval uati onKi nd eval uation_policy ()
raises (Reflective::MfError);

void set_evaluation_policy (in ConstraintCl ass:: Eval uati onKi nd new_val ue)
raises (Reflective::MfError);

Model El enent Set constrai ned_el enents ()
raises (Reflective:: MfError);

voi d set_constrai ned_el enents (i n Mbdel El enent Set new_val ue)
raises (Reflective::MfError);

voi d add_constrai ned_el ements (in Mdel El enent new_el ement)
raises (Reflective:: MfError);

void nodi fy_constrai ned_el ements (in Mdel El enent ol d_el enent,

in Model El enent new_el ement)

raises (Reflective::MfError);

void renove_constrai ned_el ements (in Mdel El ement ol d_el ement)
rai ses (Reflective::NotFound, Reflective::NMfError);

}; // end of interface Constraint

typedef any Literal Type;

interface ConstantClass : TypedEl ement Cl ass {
readonly attribute ConstantUList all_of_type_constant;
readonly attribute ConstantUList all_of_class_constant;
const string CONSTANTS VALUE MUST_MATCH TYPE =
"org.ong. nof: constraint.nodel . constant.constants_val ue_nust_match_type";
const string CONSTANTS TYPE_MJUST_BE_SI MPLE_DATA TYPE =
"org.ong. nof: constraint.nodel . constant.constants_type_nust_be_si npl e_data_type";

Constant create_constant (
/* from Model El enent */ in ::Mdel::NaneType nane,

OMG-MOF, v1.3.1 November 2001 B-15

/* from Model El enent */ in ::Mdel::AnnotationType annotati on,
/* from Constant */ in ::Mdel::Literal Type const_val ue)
rai ses (Reflective::MfError);
}; /1 end of interface ConstantCl ass

interface Constant : ConstantCl ass, TypedEl enent {
Li teral Type val ue ()
rai ses (Reflective:: MfError);
void set_value (in Literal Type new_val ue)
rai ses (Reflective:: MfError);
}; /1 end of interface Constant

interface Tagd ass : Mdel El ement Cl ass {
readonly attribute TagUList all_of_type_tag;
readonly attribute TagUList all_of _class_tag;

Tag create_tag (

/* from Model El ement */ in ::Mdel::NaneType nane,

[* from Model El enent */ in ::Mdel::AnnotationType annotati on,
/* from Tag */ in string tag_id,

/* from Tag */ in AnyBag val ues)

rai ses (Reflective::MfError);
}; /1 end of interface Tagd ass

interface Tag : Tagd ass, Model El enent {
string tag_id ()
raises (Reflective::MfError);
void set_tag_id (in string new_val ue)
raises (Reflective:: MfError);
AnyBag val ues ()
raises (Reflective:: MfError);
void set_values (in AnyBag new_val ue)
raises (Reflective:: MfError);
void add_val ues (in any new_el enent)
raises (Reflective::MfError);
void nodify_values (in any old_elenent, in any new el enent)
rai ses (Reflective::NotFound, Reflective::MfError);
void renove_values (in any ol d_el enent)
rai ses (Reflective::NotFound, Reflective::NMfError);
Model El enent Set el enents ()
raises (Reflective:: MfError);
void set_elements (in Mdel El enent Set new_val ue)
raises (Reflective:: MfError);
void add_el ements (in Mdel El enent new_el ement)
raises (Reflective::MfError);
voi d add_el ements_before (in Mdel El enent new_el enent,
in Model El enent bef ore_el ement)
rai ses (Reflective::NotFound, Reflective::MfError);
void nmodify_elements (in Model El ement ol d_el enent,
in Model El enent new_el ement)
rai ses (Reflective::NotFound, Reflective::NMfError);
void renove_el ements (in Mdel El enent ol d_el enent)
rai ses (Reflective::NotFound, Reflective::MfError);
}; // end of interface Tag

B-16 OMG-MOF, v1.3.1 November 2001

struct AttachesToLink {
Mbdel El ement nodel _el enent;
:: Model : : Tag tag;
H
typedef sequence <AttachesToLi nk> AttachesToLi nkSet;

interface AttachesTo : Reflective::Ref Association {
AttachesToLi nkSet all _attaches_to_links ();
bool ean exists (in Mdel El enent nodel _el ement, in ::Model::Tag tag)
raises (Reflective:: MfError);
Model El enent Set nodel _el enent (in ::Mdel::Tag tag)
raises (Reflective::MfError);
TagULi st tag (in Model El ement nodel _el enent)
raises (Reflective::MfError);
void add (in Mdel El ement nodel _el ement, in ::Mdel::Tag tag)
raises (Reflective::MfError);
voi d add_before_tag (in Mdel El ement nodel _el ement,
in ::Mdel::Tag tag,
in ::Mdel::Tag before)
rai ses (Reflective::NotFound, Reflective::MfError);
void nodi fy_nodel _el ement (in Mdel El ement nodel _el enent,
in ::Mdel::Tag tag,
i n Model El ement new_nodel _el ement)
rai ses (Reflective::NotFound, Reflective::NMfError);
void nodi fy_tag (in Model El ement nodel _el ement,
in ::Mdel::Tag tag,
in ::Mdel::Tag new_tag)
rai ses (Reflective::NotFound, Reflective::NMfError);
void renmove (in Model El enent nodel _elenent, in ::Mdel::Tag tag)
rai ses (Reflective::NotFound, Reflective::MfError);
s
struct DependsOnLink {
Mbdel El ement dependent;
Mbdel El ement provi der;
s
typedef sequence <DependsOnLi nk> DependsOnLi nkSet ;

interface DependsOn : Reflective:: Ref Associ ation {

DependsOnLi nkSet al | _depends_on_Il i nks ();

bool ean exists (in Mdel El ement dependent, in Model El ement provider)
raises (Reflective:: MfError);

Model El enent Set dependent (i n Mdel El ement provider)
raises (Reflective:: MfError);

Model El enent Set provi der (in Mdel El enent dependent)
raises (Reflective:: MfError);

}s

struct Contai nsLink {
Narmespace cont ai ner;
Mbdel El ement cont ai ned_el enent ;
}s
typedef sequence <Contai nsLi nk> Cont ai nsLi nkSet ;

interface Contains : Reflective::RefAssociation {
Cont ai nsLi nkSet al |l _contains_links ();

OMG-MOF, v1.3.1 November 2001 B-17

bool ean exists (in Nanespace container, in Mdel El ement contai ned_el ement)
rai ses (Reflective:: MfError);
Nanmespace container (in Mdel El enent contai ned_el enent)
rai ses (Reflective::MfError);
Model El enent ULi st contai ned_el ement (i n Namespace contai ner)
rai ses (Reflective:: MfError);
void add (in Nanespace container, in Mdel El ement contained_el ement)
rai ses (Reflective::MfError);
voi d add_before_contai ned_el ement (i n Nanespace contai ner,
i n Mbdel El enent cont ai ned_el enent,
i n Mbdel El enent before)
rai ses (Reflective::NotFound, Reflective::NMfError);
void nodi fy_contai ner (in Nanmespace cont ai ner,
in Model El ement contai ned_el enent,
i n Namespace new_cont ai ner)
rai ses (Reflective::NotFound, Reflective::NMfError);
voi d nodi fy_contained_el ement (in Namespace contai ner,
in Model El ement contai ned_el enent,
in Model El enent new_cont ai ned_el ement)
rai ses (Reflective::NotFound, Reflective::NMfError);
void renove (in Namespace container, in Mdel El enent contained_el enent)
rai ses (Reflective::NotFound, Reflective::NMfError);

}s

struct GeneralizesLink {
General i zabl eEl ement supertype;
General i zabl eEl enent subt ype;
s

typedef sequence <GeneralizesLi nk> GeneralizesLi nkSet;

interface Generalizes : Reflective:: Ref Association {
Generali zesLi nkSet all_generalizes_links ();
bool ean exists (in Generalizabl eEl ement supertype,
in Generalizabl eEl enent subtype)

rai ses (Reflective:: MfError);

General i zabl eEl ement ULi st supertype (in Generalizabl eEl enent subtype)
rai ses (Reflective::MfError);
General i zabl eEl enment Set subtype (in Generalizabl eEl ement supertype)
rai ses (Reflective::MfError);
void add (in Generalizabl eEl enent supertype,
in Generalizabl eEl ement subtype)

rai ses (Reflective::MfError);

voi d add_before_supertype (in Generalizabl eEl ement supertype,
in Generalizabl eEl enent subtype,
in Generalizabl eEl enent before)

rai ses (Reflective::NotFound, Reflective::NMfError);

void nodi fy_supertype (in Generalizabl eEl ement supertype,
in Generalizabl eEl enent subtype,
in Generalizabl eEl enent new_supertype)

rai ses (Reflective::NotFound, Reflective::MfError);

void nodi fy_subtype (in Generalizabl eEl enent supertype,
in Generalizabl eEl enent subtype,
in Generalizabl eEl ement new_subtype)

rai ses (Reflective::NotFound, Reflective::NMfError);

void remove (in Ceneralizabl eEl enent supertype,

B-18 OMG-MOF, v1.3.1 November 2001

b

in Generalizabl eEl ement subtype)
rai ses (Reflective::NotFound, Reflective::NMfError);

struct AliasesLink {

b

I nport inporter;
Nanmespace i nported;

typedef sequence <Ali asesLink> AliasesLinkSet;

interface Aliases : Reflective:: RefAssociation {

b

Al i asesLinkSet all_aliases_links ();
bool ean exists (in Inmport inporter, in Namespace inported)
rai ses (Reflective:: MfError);
I nport Set inporter (in Nanespace inported)
rai ses (Reflective:: MfError);
Namespace inported (in Import inporter)
rai ses (Reflective:: MfError);
void add (in Inmport inporter, in Nanespace inported)
rai ses (Reflective:: MfError);
void nodify_inporter (in Inport inporter,
i n Namespace inported,
in lmport new_i nporter)
rai ses (Reflective::NotFound, Reflective::MfError);
void nodify_inported (in Inport inporter,
i n Namespace inported,
i n Namespace new_i nport ed)
rai ses (Reflective::NotFound, Reflective::MfError);
void renove (in Inmport inporter, in Nanespace inported)
rai ses (Reflective::NotFound, Reflective::NMfError);

struct ConstrainsLink {

}s

;. Model :: Constraint constraint;
Mbdel El ement constrai ned_el enent;

typedef sequence <Constrai nsLi nk> Constrai nsLi nkSet ;

interface Constrains : Reflective::Ref Association {

Constrai nsLinkSet all_constrains_links ();
bool ean exists (in ::Mdel::Constraint constraint,
in Model El enent constrained_el ement)
rai ses (Reflective::MfError);
Constrai ntSet constraint (in Mdel El ement constrained_el enent)
rai ses (Reflective::MfError);
Model El enent Set constrai ned_el ement (in ::Mdel:: Constraint constraint)
rai ses (Reflective:: MfError);
void add (in ::Mdel::Constraint constraint,
i n Model El ement constrai ned_el ement)
rai ses (Reflective:: MfError);
void nmodify_constraint (in ::Mdel::Constraint constraint,
i n Model El ement constrai ned_el enent,
in ::Mdel::Constraint new constraint)
rai ses (Reflective::NotFound, Reflective::MfError);
void nodi fy_constrai ned_el ement (in ::Mdel::Constraint constraint,

OMG-MOF, v1.3.1 November 2001 B-19

b

i n Model El ement constrained_el enent,
in Model El enent new_constrai ned_el ement)
rai ses (Reflective::NotFound, Reflective::NMfError);
void renmove (in ::Mdel::Constraint constraint,
i n Model El ement constrai ned_el ement)
rai ses (Reflective::NotFound, Reflective::NMfError);

struct CanRai seLink {

b

:: Model : : Operation operation;
Mbf Excepti on except;

typedef sequence <CanRai selLi nk> CanRai seLi nkSet ;

interface CanRaise : Reflective::RefAssociation {

}s

CanRai seLi nkSet all_can_raise_links ();
bool ean exists (in ::Mdel::Qperation operation, in MfException except)
rai ses (Reflective:: MfError);
Oper ationSet operation (in MfException except)
rai ses (Reflective:: MfError);
Mof ExceptionULi st except (in ::Model::Qperation operation)
rai ses (Reflective:: MfError);
void add (in ::Mdel::COperation operation, in MfException except)
rai ses (Reflective:: MfError);
voi d add_before_except (in ::Mdel::Operation operation,
i n Mof Exception except,
i n Mof Exception before)
rai ses (Reflective::NotFound, Reflective::NMfError);
void nodi fy_operation (in ::Mbdel:: Cperation operation,
in MfException except,
in ::Mdel::Operation new_ operation)
rai ses (Reflective::NotFound, Reflective::NMfError);
void nodi fy_except (in ::Model::Qperation operation,
in MfException except,
in MfException new_except)
rai ses (Reflective::NotFound, Reflective::NMfError);
void renove (in ::Mdel::Operation operation, in MfException except)
rai ses (Reflective::NotFound, Reflective::NMfError);

struct ExposesLink {

}s

Reference referrer;
Associ ati onEnd exposed_end;

typedef sequence <ExposesLi nk> ExposesLi nkSet;

interface Exposes : Reflective::RefAssociation {

ExposesLi nkSet al | _exposes_links ();

bool ean exists (in Reference referrer, in Associati onEnd exposed_end)
rai ses (Reflective:: MfError);

ReferenceSet referrer (in AssociationEnd exposed_end)
rai ses (Reflective:: MfError);

Associ ati onEnd exposed_end (in Reference referrer)
rai ses (Reflective:: MfError);

void add (in Reference referrer, in AssociationEnd exposed_end)

B-20 OMG-MOF, v1.3.1 November 2001

rai ses (Reflective:: MfError);
void nodify_referrer (in Reference referrer,
in Associ ati onEnd exposed_end,
in Reference new referrer)
rai ses (Reflective::NotFound, Reflective::NMfError);
voi d nodi fy_exposed_end (in Reference referrer,
in Associ ati onEnd exposed_end,
in Associ ati onEnd new_exposed_end)
rai ses (Reflective::NotFound, Reflective::NMfError);
void remove (in Reference referrer, in AssociationEnd exposed_end)
rai ses (Reflective::NotFound, Reflective::NMfError);

b

struct RefersToLink {

Ref erence referent;

Associ ati onEnd referenced_end;
}s

typedef sequence <Ref ersToLi nk> RefersToLi nkSet ;

interface RefersTo : Reflective::Ref Association {
RefersToLi nkSet all _refers_to_links ();
bool ean exists (in Reference referent, in AssociationEnd referenced_end)
rai ses (Reflective::MfError);
Ref erenceSet referent (in AssociationEnd referenced_end)
rai ses (Reflective::MfError);
Associ ationEnd referenced_end (in Reference referent)
raises (Reflective:: MfError);
void add (in Reference referent, in AssociationEnd referenced_end)
rai ses (Reflective:: MfError);
void nodify _referent (in Reference referent,
in Associ ati onEnd referenced_end,
in Reference new_referent)
rai ses (Reflective::NotFound, Reflective::MfError);
void nodi fy_referenced_end (in Reference referent,
in Associ ati onEnd referenced_end,
in Associ ati onEnd new_ref er enced_end)
rai ses (Reflective::NotFound, Reflective::MfError);
void renmove (in Reference referent, in AssociationEnd referenced_end)
rai ses (Reflective::NotFound, Reflective::MfError);

}s

struct |sOf TypeLink {
G assifier type;
TypedEl enent typed_el enents;
H
typedef sequence <I sOf TypelLi nk> | sOf TypeLi nkSet ;

interface | sOf Type : Reflective::Ref Association {
| sOF TypeLinkSet all _is_of _type_links ();
bool ean exists (in Classifier type, in TypedEl enent typed_el enents)
rai ses (Reflective:: MfError);
Classifier type (in TypedEl enent typed_el ements)
rai ses (Reflective:: MfError);
TypedEl enent Set typed_el enents (in Classifier type)

OMG-MOF, v1.3.1 November 2001 B-21

raises (Reflective::MfError);
void add (in Cassifier type, in TypedEl enent typed_el ements)
raises (Reflective::MfError);
void nodify_type (in Cassifier type,
in TypedEl enent typed_el ements,
in Classifier new_type)
rai ses (Reflective::NotFound, Reflective::NMfError);
void nodi fy_typed_elenents (in Classifier type,
in TypedEl ement typed_el enents,
in TypedEl ement new_typed_el enents)
rai ses (Reflective::NotFound, Reflective::NMfError);
void renmove (in Classifier type, in TypedEl ement typed_el ements)
rai ses (Reflective::NotFound, Reflective::NMfError);

b

i nterface Mdel PackageFactory {
Mbdel Package creat e_nodel _package ()
raises (Reflective::MfError);

b

interface Mddel Package : Reflective:: Ref Package {
readonly attribute Model El enent Cl ass nodel _el ement _ref;
readonly attribute NamespaceCd ass nanespace_ref;
readonly attribute Generalizabl eEl ement O ass

general i zabl e_el ement _ref;

readonly attribute TypedEl enent Cl ass typed_el ement _ref;
readonly attribute ClassifierCl ass classifier_ref;
readonly attribute CassC ass class_ref;
readonly attribute DataTypeCl ass data_type_ref;
readonly attribute TypeAiasO ass type_alias_ref;
readonly attribute FeatureC ass feature_ref;
readonly attribute Structural FeatureCd ass structural _feature_ref;
readonly attribute MofAttributeCl ass nof _attribute_ref;
readonly attribute Referenced ass reference_ref;
readonly attribute Behavi oral FeatureC ass Behavi or_feature_ref;
readonly attribute OperationC ass operation_ref;
readonly attribute MfExceptionCl ass nof _exception_ref;
readonly attribute Associati onC ass associ ati on_ref;
readonly attribute Associ ati onEndCl ass associ ati on_end_r ef;
readonly attribute PackageC ass package_ref;
readonly attribute InportCl ass inport_ref;
readonly attribute ParaneterCd ass paraneter_ref;
readonly attribute ConstraintClass constraint_ref;
readonly attribute ConstantCl ass constant_ref;
readonly attribute TagC ass tag_ref;
readonly attribute AttachesTo attaches_to_ref;
readonly attribute DependsOn depends_on_ref;
readonly attribute Contains contains_ref;
readonly attribute CGeneralizes generalizes_ref;
readonly attribute Aliases aliases_ref;
readonly attribute Constrains constrains_ref;
readonly attribute CanRaise can_raise_ref;
readonly attribute Exposes exposes_ref;
readonly attribute RefersTo refers_to_ref;
readonly attribute IsOf Type is_of _type_ref;

B-22 OMG-MOF, v1.3.1 November 2001

b

}; /1 end of nodul e Model

/1 end of

I DL generation

B.2 Reflective IDL

#pragma prefix "org.ony. nof"

nmodul e Reflective {
i nterface RefBaseObject;
interface Ref bject;
typedef sequence < Ref Obj ect > Ref ObjectUList;
typedef sequence < Ref Obj ect > Ref Object Set;
interface Ref Associ ation;
i nterface RefPackage;

t ypedef
t ypedef
typedef
t ypedef
t ypedef

const
const
const
const
const
const
const
const
const
const
const
const
const

stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri
stri

ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng

"org.onyg.

const
const
const
const
const
const
const
const

stri
stri
stri
stri
stri
stri
stri
stri

ng
ng
ng
ng
ng
ng
ng
ng

Ref Cbj ect Desi gnat or Type;

any Val ueType;

sequence < Val ueType > Val ueTypeli st;
sequence < Ref bject, 2 > Link;
sequence <Link> LinkSet;

UNDERFLOW VI OLATI ON = "org. ong. nof : structural . underfl ow';

OVERFLOW VI OLATI ON = "org.ong. nof: structural . overfl ow';

DUPLI CATE_VI OLATI ON = "org. ong. nof : structural . duplicate";
REFERENCE_CLOSURE_VI OLATI ON = "org. ong. nof : structural . ref erence_cl osure";
SUPERTYPE_CLOSURE_VI OLATI ON = "org. ong. nof : structural . supertype_cl osure”;
COVPOSI TI ON_CYCLE_VI OLATI ON = "org. ong. nof : structural . conposition_cycle";
COVPOSI TI ON_CLOSURE_VI OLATI ON = "org. ong. nof : struct ural . conposi tion_cl osure";
I NVALI D_OBJECT_VI OLATI ON = "org. ong. nof: structural .invalid_object";

NI L_OBJECT_VI OLATION = "org. ong. nof: structural .nil_object";

| NACCESSI BLE_OBJECT_VI OLATI ON = "org. ong. nof : structural .i naccessi bl e_obj ect";
ALREADY_EXI STS_VI CLATI ON = "org. ong. nof: structural . al ready_exi sts";

| NVALI D_DESI GNATOR_VI CLATI ON = "org. ong. nof :refl ective.invalid_designator";
WRONG DESI GNATOR_DESI GNATOR VI OLATI ON =

nmof : refl ecti ve. wong_desi gnat or _ki nd";

UNKNOWN_DESI GNATOR_VI CLATI ON = "org. ong. nof : refl ecti ve. unknown_desi gnat or";
ABSTRACT_CLASS_VI OLATI ON = "org. ong. nof: refl ective. abstract_cl ass";
NOT_CHANGEABLE_VI OLATI ON = "org. ong. nof: refl ective. not _changeabl e";
NOT_PUBLI C_VI OLATION = "org. ong. nof: refl ecti ve. not _public";

WRONG_SCOPE_VI OLATI ON = "org. ong. nof : refl ective. wong_scope";

WRONG_MULTI PLI CI TY_VI OLATION = "org.ong. nof:refl ective.wong_multiplicity";
WRONG_TYPE_VI OLATION = "org. ong. nof : refl ecti ve. wong_type";
WRONG_NUMBER_PARAMETERS_VI OLATI ON =

"org.ong. nof: refl ecti ve. wong_nunber _par aneters"”;
const string | NVALI D_DELETI ON_VI OLATION = “org. ong. nof : refl ective.invalid_del etion”;

struct

}s

NanedVal ueType {
string nane;
Val ueType val ue;

typedef sequence < NanmedVal ueType > NanedVal ueli st;
exception MfError {

string error_kind;

Ref Obj ect el ement _i n_error;

NarmedVal uelLi st extra_i nfo;

string error_description;

OMG-MOF, v1.3.1 November 2001 B-23

H

exception Not Found {};

exception Not Set {};

exception BadPosition {
unsi gned | ong current_si ze;

H

exception O herException {
Desi gnat or Type excepti on_desi gnat or;
Val ueTypelLi st excepti on_val ues;

}s

interface RefBaseObject {
string ref_mof _id ();
Desi gnat or Type ref _meta_object ();
bool ean ref__itself (in RefBaseObject other_object);
Ref Package ref _i medi at e_package ();
Ref Package ref _out er nost _package ();
void ref_delete ()
raises (MfError);
}; /1 end of RefBaseObject interface

interface Ref (bject : RefBaseObject {
bool ean ref _is_instance_of (in DesignatorType sone_cl ass,
i n bool ean consi der _subtypes);
Ref Obj ect ref_create_instance (in ValueTypelLi st args)
raises (MfError);
Ref Obj ect Set ref _all _objects (in bool ean incl ude_subtypes);
void ref_set_value (in DesignatorType feature,
in Val ueType new_val ue)
rai ses (MfError);
Val ueType ref_val ue (in DesignatorType feature)
rai ses (NotSet, MofError);
void ref_unset _value ()
raises (MfError);
void ref_add_val ue (i n DesignatorType feature,
in Val ueType new_el ement)
raises (MfError);
voi d ref_add_val ue_before (in DesignatorType feature,
in Val ueType new_el ement,
in Val ueType before_el enent)
rai ses (NotFound, MfError);
void ref_add_val ue_at (in DesignatorType feature,
in Val ueType new_el ement,
in unsigned | ong position)
rai ses (BadPosition, MfError);
void ref_nodi fy_val ue (in DesignatorType feature,
in Val ueType ol d_el enent,
in Val ueType new_el ement)
rai ses (Not Found, MfError);
void ref_nodi fy_val ue_at (in DesignatorType feature,
in Val ueType new_el enent,
in unsigned | ong position)
rai ses (BadPosition, MfError);
void ref_renove_val ue (in DesignatorType feature,
in Val ueType existing_element)

B-24 OMG-MOF, v1.3.1 November 2001

rai ses (Not Found, MfError);

void ref_renove_value_at (in DesignatorType feature,
in unsigned | ong position)

rai ses (BadPosition, MfError);
Ref Obj ect ref_i mmedi ate_conposite ();
Ref Obj ect ref_out ernost _conposite ();
Val ueType ref _i nvoke_operation (in DesignatorType requested_operation,

i nout Val ueTypelLi st args)

rai ses (Ot her Exception, MfError);

}; /1 end of RefObject interface

interface Ref Association : RefBaseject {
LinkSet ref_all_links ();
bool ean ref _link_exists (in Link some_link)
raises (MfError);
Ref Obj ect ULi st ref _query (in DesignatorType query_end,
in Ref Obj ect query_object)
raises (MfError);
void ref_add_link (in Link new_link)
raises (MfError);
void ref_add_link_before (in Link new_link,
i n Desi gnator Type position_end,
in Ref Obj ect before)
rai ses (NotFound, MfError);
void ref_nmodify_link (in Link old_link,
i n Designator Type position_end,
in Ref Obj ect new_object)
rai ses (Not Found, MfError);
void ref_renmove_link (in Link old_link)
rai ses (Not Found, MfError);
}; /1 end of RefAssociation interface

i nterface RefPackage : RefBase(bject {
Ref Obj ect ref_class_ref (in DesignatorType cl ass)
raises (MfError);
Ref Associ ation ref_association_ref (in DesignatorType association)
raises (MfError);
Ref Package ref _package_ref (in DesignatorType package)
raises (MfError);
}; // end of RefPackage interface
}; /1 end of Reflective nodule

OMG-MOF, v1.3.1 November 2001 B-25

B-26 OMG-MOF, v1.3.1 November 2001

C.1 MOF Mode

MODL Descriptionofthe MOF C

Note — The copyright information was added as comments to the MODL file.

The CORBA IDL for the Model module listed in Appendix B was automatically
produced using a prototype MOF and associated tools developed by DSTC. This
appendix gives the input files used to drive the IDL generation process. These are
expressed in an interim version of the DSTC's Meta Object Definition language
abbreviated as MODL .

MODL provides users with a compilable textual language to express models using the
concepts of the MOF Model. It has a syntax based loosely on CORBA DL, that has a
direct correspondence with MOF Model concepts. For historical reasons, some of the
MODL constructs use different names. In particular, References are called "knowns."

A rough specification of the interim MODL language is available on the OMG FTP

server and DSTC's Meta Object Facility web page at:

http: //www.dstc.edu.au/Meta-Object-Facility/Review/

//Meta Qbject Facility (MOF) Specification

//Version 1.3.1
// Novenber 2001

/1 bj ect Managenent Group,

I nc.

/1 Appendi x C. MODL Description of the MOF

/1 Copyright 1997-1999, DSTC (Cooperative Research Centre for
I Enterprise Distributed Systens Technol ogy)

/] Copyright 1997-1999,
/] Copyright 1997-1999,
/] Copyright 1997-1999,
/] Copyright 1997-1999,

El ectronic Data Systens

| BM Cor por ati on

International Conputers Linited
Qbj ectivity Inc.

/1 Copyri ght 2000, Cbject Managenent G oup

OMG-MOF, v1.3.1 November 2001

C-1

C

/1 Copyright 1997-1999, Oracle Corporation

/1 Copyright 1997-1999, Plati num Technol ogy Inc.

/1 Copyright 1997-1999, Rational Software Corporation
/1 Copyright 1997-1999, System Software Associ ates

/1 Copyright 1997-1999, Unisys Corporation

/1 The conpani es |listed above have granted to the Object

/I Managenent Group, Inc. (OMG a nonexclusive, royalty-free
//paid up, worldwide |icense to copy and distribute this

[/ docurment and to nodify this docunment and distribute copies
//of the nmodified version. Each of the copyright holders
//1isted above has agreed that no person shall be deened to
// have infringed the copyright in the included material of
/any such copyright holder by reason of having used the

[/ specification set forth herein or having confornmed any

// conputer software to the specification

/1

/1 MOF nodel expressed in MODL- 2

I

#pragma idl _prefix "org.ong. nof"

package Model {

/1 This artifact type represents an el enent name. |t should
/1 conformto the CORBA identifier syntax rules, or start with
/1 the character "*". The latter case should only be used for
/1 anonynmous data types (e.g. 'unsigned long') and for an
/1 operation's return paraneter.
typedef string NameType;

/1 This artifact type represents annotations that are used
/'l to document the nodes of a neta-nodel.
typedef string AnnotationType;

/1l Al elements of the core MOF neta-neta-nodel are derived
/1 from Model El enent. It provides all elements with a nane
/1 and an annotation, along with "containedness", "constraints"
/1 and derived "dependency.
abstract cl ass Model El ement {
constraint MistBeContai nedUnl essPackage : "[C-1]";
constraint FrozenAttributesCannotBeChanged : "[C-2]";
constraint FrozenEl ement sCannot BeDel eted : "[C-3]";
constraint FrozenDependenci esCannot BeChanged : "[C-4]";

/1 **** MODEL ELEMENT NANES ****

/'l The nodel element's sinple nanme

C-2 OMG-MOF, v1.3.1 November 2001

attribute NameType nane;
/'l The nodel elenent's fully qualified nane

readonly derived attribute list [1..*] of Nanme Type qualified_nane;

[**** ANNCTATI ONS ****

/'l The nodel element's annotation is a nulti-line string

attribute AnnotationType annotati on;

/| **** DEPENDENCI ES ****

I/ Each nodel element is aware of what it depends on.
known required_el enents projects dependent of DependsOn;

/1 This artifact type describes the kinds of dependency.
typedef string DependencyKind;

const DependencyKi nd Cont ai nerDep = "contai ner";

const DependencyKi nd ContentsDep = "contents";

const DependencyKi nd Si gnatureDep = "signature";

const DependencyKi nd ConstraintDep = "constraint"”;

const DependencyKi nd Constrai nedEl ement sDep = "constrai ned el ements”;
const DependencyKi nd Speci alizati onDep = "specialization";

const DependencyKi nd | nportDep = "inport";

const DependencyKi nd TypeDefinitionDep = "type definition";
const DependencyKi nd ReferencedEndsDep = "referenced ends";
const DependencyKi nd TaggedEl ementsDep = "t agged el ements";
const DependencyKind IndirectDep = "indirect";

const DependencyKind AllDep = "all";

/!l Return this ME's set of dependents of the requested kind.
set [0..*] of Model El enent
find_required_el enments(
/1 list of dependency kinds of interest
inset [1..*] of DependencyKind ki nds,
/1 1f true, return the closure of the dependency
i n bool ean recursive);

/1 This operation categorizes the dependency of this ME on another.

[/l The result is false (and kind is "") if there is no dependency.
bool ean is_required_because(

OMG-MOF, v1.3.1 November 2001 C-3

/1 the nodel elenment (supposedly) depended on
in Model El ement ot her_el enent,

/!l the kind of dependency

out DependencyKi nd reason);

[[**** CONTAI NMENT ****

/1 Each nodel element is aware of its container
known contai ner projects contained_el enent of Contains;

/| **** CONSTRAINTS, VERIFI CATION and FREEZI NG ****

known constraints projects constrained_el ement of Constrains;

/1 A VerifyResult says whether or not a nodel elenent is valid, and
/1 if valid whether the caller can rely on this continuing to be the
/'l case.
enum Veri fyResul tKind {

valid, published, invalid

}s

/1 The Depth argunment selects shallow or deep verification.
enum Dept hKi nd {
shal | ow, deep

}s

/1 The ViolationType struct is used to return information about
/1l a constraint violation detected during the verify operation.
/1 The contents of this struct are (deliberately) identical to the contents of
Il the Reflective:: MfError exception.
struct ViolationType {
string error_kind;
Refl ective:: Ref Cbj ect el ement_in_error;
Ref | ective: : NamedVal ueLi st val ues_in_error;
string error_description;

}s

/1 This operation verifies the nodel-elenent and its contents
/1 in context. The result will be true if everything is
/'l semantically consistent. Otherw se, error reports wll
/1 be returned via "problens".
VerifyResul tKind verify(
/] verify just this object or the closure
/1 of the objects it depends on

C-4 OMG-MOF, v1.3.1 November 2001

in Dept hKi nd dept h,
// any errors found are returned via this param
out set [0..*] of ViolationType probl ens);

/! Returns true iff this nodel -el ement has been frozen
bool ean is_frozen();

[] ***% VISIBILITY ***x

/1 This operation checks whether the supplied Mdel El enent is visible
[/l to this one according to the visibility rules.
bool ean is_visible(in Mdel El ement ot her_el enent);

/1 This artifact type represents the visibility of a conponent

/1 or feature beyond its defining context (i.e. its enclosing

/] containers). Private nmeans there is no visibility, protected
/1 means that there is visibility via generalization, and public
/1 means that there is visibility via inporting as well.

enum VisibilityKind {public_vis, protected_vis, private_vis};

/1

/1 Forward decl aration of classes used in Nanespace.
/1

abstract class Nanespace : Model El enent;

abstract class Generalizabl eEl ement : Nanespace;
abstract class Classifier : Generalizabl eEl enent;
class quote "Class" : dassifier;

/1 Namespace represents any neta-neta-nodel el enment that
/] acts as a container for other elements; e.g. has conponents
/1 or features. It has an associated derived namespace for
/1 the contained el ements.
11
/1 An Namespace can also be inported into another Package, though the
/1 semantics are unclear, and the napping to CORBA IDL is problematic.
abstract cl ass Namespace : Model El ement {
constraint Content NanesMust Not Col lide : "[C-5]";

exception NameNot Found {

OMG-MOF, v1.3.1 November 2001 C-5

NanmeType nane,

}s

excepti on NarmeNot Resol ved {

string expl anation;

list [0..*] of NanmeType rest Of Nane;
b

known contents projects container of Contains;

/1 This op looks for an entry called 'name' in 'contents'
Model El ement | ookup_el emrent (i n NanmelType nane)
rai ses (Name Not Found);

/1 This op does a name resolution of 'conpound' in 'contents'
Model El enent
resol ve_qualified_name(in list [1..*] of NanmeType qualified_nane)
rai ses (NanmeNot Resol ved);
/1 This op returns the Model Elenments in the Nanespace's direct
/1 contents that match "of _type". |If "include_subtypes" is true, the
/1 result includes ME's that are instances of subtypes of "of_type"
ordered set [0..*] of Model El enent
find_el ements_by_type(in Class of _type,
i n bool ean include_subtypes);

/1 This op determ nes whether the supplied name would be valid
/1 name for a new Model El enent in the NaneSpace.
bool ean name_is_valid(in NaneType proposed_nane);

/1 Generalizabl eEl ement represents a neta-neta-nodel el ement
/1 that can inherit from another one of the same kind, via the
/] Generalizes association.
abstract class Generalizabl eEl ement : Nanespace {
constrai nt SupertypeMist NotBeSelf : "[C6]";
constrai nt SupertypeKi ndMust BeSane : "[C7]";
constraint ContentsMistNot Col | i deWthSupertypes : "[C-8]";
constrai nt Di anondRul eMust BeGbeyed : "[CG9]";

constrai nt NoSupertypesAl | owedFor Root : "[C-10]";
constraint SupertypesMustBeVisible : "[C 11]";
constraint NoSubtypesAl | owedForLeaf : "[C-12]";

C-6 OMG-MOF, v1.3.1 November 2001

/1 If true, this GE cannot have supertypes
attribute boolean is_root;

/1 If true, this GE cannot have subtypes
attribute bool ean is_|eaf;

/]l If true, this GE is abstract. This nmeans that there wll

/1 be no factory operation for the object.
attribute bool ean is_abstract;

/1 This controls what can see the GE's in a nanespace
attribute VisibilityKind visibility;

/1 A GE knows about its supertypes (but not its subtypes)
known supertypes projects subtype of Generali zes;

Il This operation provides all of the GE's supertypes, not
/1 just the inmediate ones.
ordered set [0..*] of GeneralizableElement all_supertypes();

/1 Anal ogue to Nanespace. | ookup_el ement that includes the
/'l contents of the GE's direct and indirect supertypes.
Mbdel El ement | ookup_el emrent _ext ended(i n Nanm&ype nane)

rai ses (Name Not Found) ;

/1 Anal ogue to Nanespace.find_el enents_by type that includes
/1l the contents of the GE' s direct and indirect supertypes.
ordered set [0..*] of Model El enent
find_el enents_by type_extended(in Class of _type,
i n bool ean include_subtypes) ;

/1 TypedEl ement is an abstract subtype for those Mdel El enents
/1 that require a type as part of their definition.
abstract class TypedEl ement : Mdel El enent {

}s

constrai nt Associ ati onsCannot BeTypes : "[C 13]";
constraint TypeMustBeVisible : "[C 14]";

known type projects typed_el ements of |1sOf Type;

OMG-MOF, v1.3.1 November 2001 C-7

C

/Il Classifier is the abstract superclass for things that can be
/1 the type of something else.
abstract class Classifier : Generalizabl eEl enent {

}s

/1 A Class represents the type of an object; i.e. a value with
/1 object identity. The class's interface is expressed using Operation,
/1 Attribute and AssociationEnd features.

class quote "Oass" : Cassifier {
constraint ClassContai nnentRules : "[C15]";
constrai nt Abstract Cl assesCannot BeSi ngleton : "[C 16]";

/1 1f the "is_singleton" attribute is true, the generated interfaces
I/l will only allow a single instance of the class to exist.
attribute bool ean is_singleton;

}s

typedef TypeCode TypeDescri ptor;

/1 A DataType represents the type of a value that does not have
/1 object identity. It is used for expressing "artifact types"
/1 in the nodel |evel.
/1
/| DataTypes do not have any features, they may not generalize
/1 or be generalised, and they cannot be abstract.
Cl ass DataType : Cassifier {

constrai nt DataTypeContai nmentRules : "[C-17]";

constrai nt Thi sTypecodeNot Supported : "[C-18]";

constrai nt DataTypesHaveNoSupertypes : "[C 19]";

constrai nt DataTypesCannot BeAbstract : "[C 20]";

/1 The described type can be any CORBA type and is expressed as
/1 a CORBA typecode val ue.
attribute TypeDescriptor type_code;

/1 A TypeAlias is a conponent of a DataType that is used to associate
/1 an enbedded typecode within the DataType's typecode with another
/1 Classifier object.

cl ass TypeAlias : TypedEl emrent {

}s

C-8 OMG-MOF, v1.3.1 November 2001

enum ScopeKind { instance_level, classifier_|level };

/! Feature is an abstract supertype for a nunber of kinds

/1 of "features" of classes and associ ations.

abstract class Feature : Model El ement {
/'l Features mmy be "instance" or "class" level. Note however
/1 that "class" level features are only allowed for features
/1 of a Class.
attribute ScopeKi nd scope;

/1 A Feature may be "public", "private" or "protected'. Note
/1 that "private" and "protected" features are ignored for
// 1 DL generation purposes.
attribute VisibilityKind visibility;

s

const | ong Unbounded = -1,

/1 This artifact type is used to describe the nunber of val ues
/1 allowed / stored in a given context, and how they are rel ated.
/1 The precise interpretation of this info depends on the context.
struct MultiplicityType {

I ong | ower;

| ong upper;

bool ean i s_ordered;

bool ean i s_uni que;
b
constrai nt Lower Cannot BeNegati veOr Unbounded

on MultiplicityType in MiultiplicityType: "[C54]";
constraint Lower Cannot ExceedUpper

on MiultiplicityType in MiltiplicityType: "[C55]";
constraint Upper Must BePositive

on MiultiplicityType in MiultiplicityType: "[C56]";
constrai nt Mist BeUnor der edNonuni que

on MultiplicityType in MiultiplicityType: "[C57]";

/1 Structural Feature is an abstract super class for those

/1 features that are part of the "structure" of a Class; i.e.

/1 Attributes and References.

abstract class Structural Feature : Feature, TypedEl enent {
attribute MultiplicityType multiplicity;

OMG-MOF, v1.3.1 November 2001 C-9

C

11

If is_changeable is true, the generated IDL will allow
/1 client updates of / through the attribute or association ref.
attribute bool ean i s_changeabl g

s

/1 An Attribute is a feature of a d ass

#pragma idl _substititute_name "MofAttribute"

at

cl ass QUOTE "Attribute" : Structural Feature {
tribute bool ean is_derived;

}s

/'l A Reference is a feature of a Class that allows the client to
/] treat a projection of sonme "known" Association involving this
/1 object as a navigable link. The Reference is linked to roles
/1 of an Association via the Exposes and RefersTo associ ati ons.
cl ass Reference : Structural Feature {

constraint ReferenceMultiplicityMustMatchEnd : "[C-21]";

constraint ReferenceMustBel nstanceScoped : "[C 22]";

constrai nt Changeabl eRef er enceMust HaveChangeabl eEnd : "[C 23]";

constraint ReferenceTypeMust Mat chEndType : "[C 24]";

constraint ReferencedEndMust BeNavi gable : "[C-25]";

constrai nt Contai ner Must Mat chExposedType : "[C 26]";

constraint ReferencedEndMustBeVisible : "[C27]";

known exposed_end projects referrer of Exposes;

known referenced_end projects referent of RefersTo;

/1 This class is the superclass of Qperation and Exception
abstract cl ass Behavioral Feature : Feature, Namespace {

}s

/1 An Operation has Paraneters as features, and is associated
/1 with the Exceptions that it raises.
cl ass Operation : Behavioral Feature {

constrai nt OperationContainmentRules : "[C 28]";

constrai nt OperationsHaveAt Most OneReturn : "[C29]";

constrai nt Operati onExcepti onsMustBeVisible : "[C30]";

C-10 OMG-MOF, v1.3.1 November 2001

/1 If is_query is true, the operation should not alter the state of the
// object to which the operation applies.
attribute bool ean is_query;

/1 An operation knows about its exceptions
known excepti ons projects operation of CanRaise;

b

/1 An Exception has Paraneters.
#pragma idl _substitute_name " Mf Exception”
cl ass QUOTE "Exception" : Behavioral Feature {

constrai nt ExceptionContainnentRules : "[C 31]";
constraint ExceptionsHaveOnl yQut Paraneters : "[C 32]";
b

/1 An Association represents an relation between C asses

/1 The roles of the Association are described by Associati onEnd features.
/1 The MOF specification will say that only binary Associations need

/1 to be supported. Association attributes and operations are not

/1 supported in the core.

cl ass QUOTE "Association" : dassifier {

constrai nt AssociationContainnentRules : "[C33]";

constrai nt Associ ati onsHaveNoSupertypes : "[C-34]";
constrai nt Associ ati onMust BeRoot AndLeaf : "[C-35]";
constrai nt Associ ati onsCannot BeAbstract : "[C-36]";

constrai nt AssociationsMustBePublic : "[C-37]";
constrai nt Associati onsMustBeBinary : "[C-38]";

/1 This attribute says that the association information is
/1 derived from other information.
attribute bool ean is_derived;

enum AggregationKind { none, QUOTE "shared", QUOTE "conposite" };

/1 AssociationEnd is a feature of an Association that

/1 describes one of its roles; i.e. a colum of the association
/1l table.

cl ass Associ ati onEnd : TypedEl ement {

OMG-MOF, v1.3.1 November 2001 C-11

constraint EndTypeMustBeCl ass : "[C-39]";
constraint EndsMustBeUni que : "[C-40]";

constraint EndsMustBeUni que : "[C-41]";

constraint Cannot HaveTwoAggr egat eEnds : "[C-42]";

/1 1ff is_navigable is true, a Reference nay Expose this role
attribute bool ean is_navigable;

/1 The aggregation specifies the containnent / sharing semantics of
/1l the Role. (Does this belong on the Role or the Association?)
attribute AggregationKind aggregation;

/1 The multiplicity on a Role is a constraint on the nunmber and
/1 kind of values that fill the role when the association is

/1 "projected" over a single value in the other role. [It is

/1 not clear whether this is a meaningful definition given that

/1 we may be allowi ng duplicate "rows" in the association "table".
[/l Furthernore, it is not clear that either of is_ordered or

/1 is_unique are well-defined under this definition.]

attribute MultiplicityType multiplicity;

/1 1f is_changeable is true, the generated IDL will allow
/1 client updates
attribute bool ean i s_changeabl e;

/1 The "other end" of this Association
Associ ati onEnd ot her _end();

/1 A Package is a concrete nodel elenent that collects a nunber
/1 of related classes, associations, data types and constants
/1 Packages may be nested, and may inport objects from other
/1 Packages
/1
/1 There are a nunber of unresolved issues relating to the
/1 mappi ng of Package generalization and inporting onto CORBA | DL
cl ass QUOTE "Package" : Generalizabl eEl ement {
constraint PackageContai nmentRules : "[C 43]";
constrai nt PackagesCannot BeAbstract : "[C-44]";

[**** EXTERNALI ZE / | NTERNAL| ZE ****

/1 A FormatType string denotes an externalization fornmat

C-12 OMG-MOF, v1.3.1 November 2001

typedef string Format Type;

/1 This is raised if the caller requests an externalization
// format that is not supported (or not known!) by this MOF
/1 meta-nmeta-object inplenmentation.

exception Format Not Supported {};

I/l This is raised if the GE or its contents is in a state
/1 that makes them unexternalizable; e.g. sone externalization
/1 formats nay require that the GE is consistent.
exception Obj ect Not Ext ernal i zabl e {
string expl anation;

}s

/1l This is raised if the externalized GEis ill-forned, or
/1 of the wong format.
exception |11 fornedExternalizedObject {

string expl anation;

}s

/1 The Externalize op converts the GE and its contents into
/[l a "flat" formthat can be passed by value. The 'format’
/1 argument allows the client to select the externalization
/1 format.
any externalize(in Format Type fornat)

rai ses (Object Not Externalizabl e, Format Not Supported);

/1 The Internalize op creates a new GE froma "flat" form
cl ass Package internalize(in Format Type format, in any stream

rai ses (Format Not Supported, I1IlfornedExternalizedObject);
s
/1 Alnport is a "feature" of a Package that refers
/1 to (inmports) a conponent of another Package.
class QUOTE "I nport" : Model El ement {

constraint | nportedNamespaceMustBeVisible : "[C-45]";
constrai nt CanOnl yl nport PackagesAndC asses : "[C-46]";
constraint CannotlnportSelf : "[C-47]";

constrai nt Cannotl nport Nest edConponents : "[C-48]";
constrai nt NestedPackagesCannotlnport : "[C-49]";

attribute VisibilityKind visibility;

OMG-MOF, v1.3.1 November 2001 C-13

C

attribute bool ean is_clustered;

known i nported_nanespace projects inporter of

enum DirectionKind { in_dir, out_dir, inout_dir, return_dir };

/1 A Paraneter is a conponent of an Qperation or an Exception
/'l description.
cl ass Paraneter : TypedEl emrent {
/1 The paraneters of an QOperation may have direction "in",
[/ "out" or "inout". The result of an Operation is expressed
[/l as a Parameter with direction "return"
Il There can be at nost one result Parameter per Operation.

/1 The paraneters of an Exception nust all have the direction "out".

attribute DirectionKind direction;

/1 A parareter may have nmultiple values ...
attribute MultiplicityType multiplicity;

/1 A Constraint nodel elenment is used to express senantic
/1 constraints on constrained el enments

class QUOTE "Constraint" : ModelEl ement {
constraint Cannot Constrai nThi sEl ement : "[C-50]";
constraint ConstraintsLimtedToContainer : "[C51]";

attribute any expression;

attribute string | anguage;

enum Eval uati onKi nd {i medi ate, deferred};

attribute EvaluationKind eval uation_policy;

Al i ases;

known constrai ned_el enents projects QUOTE "constraint" of Constrains;

/1 A Literal Type is expressed using the same conventions

C-14 OMG-MOF, v1.3.1 November 2001

/'l as the CORBA IR uses; e.g. strings are used for enuneration
/1 val ues.
typedef any Literal Type;

/1 A Constant nodel elenment describes a binding between a
/1 a name and a typed val ue.
cl ass Constant : TypedEl enent {
constraint ConstantsVal ueMust Mat chType : "[C52]";
constraint ConstantsTypeMust BeSi npl eDat aType : "[C-53]";

/1 The value of a constant val ue
attribute Literal Type val ue;

}s

/!l A Tag is the basis a general mechani smfor attaching nanme/value pairs
/!l to a nmodel elenent. Wthin a nodel it can be used to attach "pragmas”
/'l etc that nodify the nmeaning of the nodel.
class Tag : Model El enent {

attribute string tag_id;

attribute bag [0..*] of any val ues;

known el ements projects tag of AttachesTo;

associ ati on AttachesTo {
role set [1..*] of Model El ement nodel _el enment;
role ordered set [0..*] of Tag tag;

}s

/1 DependsOn is derived from other associations in the nodel.
/1 The intended semantic is that Me-1 depends on ME-2 if ME-2 is
/'l a part of the definition of ME-1. For exanple, an ME depends
I/l on its Constraints, a Namespace depends on it contents, and
/1 Attribute depends on the "attr_type' Cassifier that gives
Il its type.
derived associati on DependsOn {

readonly role set [0..*] of Model El ement dependent;

readonly role set [0..*] of Model El enent provider;

}s

/1 Containnent is constrained by the "feature matrix". |In the case

OMG-MOF, v1.3.1 November 2001 C-15

C

/] of Association <-- Contains --> AssociationEnd, the cardinality is
/] constrained as well.
associ ati on Contains {

conposite role set [0..1] of Namespace contai ner;

role ordered set [0..*] of Model El ement contai ned_el erment ;

}s

/1 GCeneralizes expressed supertype / subtype relationships between
/1 Classes and Packages.
I
/1 W say that the supertype generalizes the subtype.
associ ati on CGeneralizes {
role ordered set [0..*] of Generalizabl eEl enent supertype;
role set [0..*] of Generalizabl eEl ement subtype;

}s

/1 This association represents inporting of external objects
/1 into a namespace.
associ ati on Aliases {

role set [0..*] of QUOTE "Inport" inporter;

rol e single Nanespace inported;

}s

/1 This association attaches a constraint to a nodel elenent.
/1 The constraint and nodel elenent should belong to the sane package.
associ ation Constrains {

role set [0..*] of QUOTE "Constraint" QUOTE "constraint";

role set [1..*] of Model El ement constrained_el enent;

/1 This association lists the exceptions that an operation may raise
associ ati on CanRai se {

role set [0..*] of Operation operation;

role ordered set [0..*] of QUOTE "Exception" except;

/1 The follow ng two associations relate References to the Ends of
/1 an Association. The End exposed by a Reference is the one that
/1 the Reference's container Class fills.

derived associati on Exposes ({

C-16 OMG-MOF, v1.3.1 November 2001

role set [0..*] of Reference referrer;
rol e single AssociationEnd exposed_end;

}s

/1 The role ref'd by an Reference is the one that the Reference
/1 allows a client to navigate to.
associ ati on RefersTo {
role set [0..*] of Reference referent;
role single AssociationEnd referenced_end;

s
associ ation IsOf Type {

role single Classifier type;
role set [0..*] of TypedEl ement typed_el ements;

}s

}s

OMG-MOF, v1.3.1 November 2001 Cc-17

C-18 OMG-MOF, v1.3.1 November 2001

MOF ImplementationRequirements D

D.1 Introduction

This specification seeks to avoid any undue implementation requirements, relying on
the experience and ingenuity of vendors to exceed any proscribed design. However, to
support interoperability of implementations, there are a few places where specific
approaches are required. The MOF specification expects interoperability among
facilities developed and provided from different vendors. This interoperability
includes:

® Model interoperability. The ability to transfer a model developed in one facility to
another facility, with no loss or corruption of information.

® Repository interoperability. The ability of a model under development in one
facility to import and use Packages and elements of Packages owned by another
facility.

® Client interoperability. The ability of tools or other software developed to use one
vendor's MOF to make use of another vendor's MOF without change.

D.2 Vendor Boundaries

The implementation requirements are needed to ensure that different vendors take a
compatible approach to implementing certain features, when incompatible approaches
risk the loss of interoperability. This required compatibility almost always involves
object interactions. Yet, it is recognized that the great magjority of these object
interactions will remain within one vendor's boundary - the interacting objects will all
have implementations from the same vendor. Rather than saddle vendors with these
implementation requirements unilaterally, they are only required across vendor
boundaries. This relaxation of requirements is born from the recognition that these
implementation requirements will likely not end up being the optimal implementations.

OMG-MOF V1.3 March 2000 D-1

Determining vendor boundaries will be left to implementations. However, at a
minimum, a MofRepository defines the vendor boundary. If an implementation can
safely identify a more inclusive boundary, they are welcome to do so. Within an
individual MofRepository; however, the implementation isinsured to be provided from
a single vendor.

D.3 Requirementsto Support Associations Across \Viendor Boundaries

D-2

Due to the nature of composition, it is not possible for a model to contain elements
from other Repositories. A Package cannot contain a Package or aType found in some
Repository outside its own. However, through the Import mechanism, a model can
make use of most model elements in other Repositories.

Although there are multiple ways in which Associations, References, and Links can be
implemented, it is necessary to define a consistent implementation to the object level to
ensure interoperability. Because at least one participant in an Association crossing
repository boundaries will not have a Reference defined for the Association, the
responsibility for maintaining Links falls to the Association.

For any Association which crosses Repository boundaries to another Repository
implementation, any invocation of a Reference of that Association will result in a
corresponding invocation to the Association itself. For Association X of Type A and
Type B, with corresponding AssociationEnds ae and be, and areference in Type A of
bref, use of:

a. addBr ef (b)

resultsin:
X.add(a, b).
A call of:

a. removeBref (b)

results in:
X.remove(a, b).

Calling:
a. addBr ef Bef ore(b, bl)

resultsin:
X. add_before_be(a, b, bl)

The operation:
a. bref ()

must provide the same results as:
X.with_ae(a)

OMG-MOF V1.3 March 2000

FutureDirectionsfor theMOF E

E.1 Introduction

This appendix summarizes potential areas of future work related to the MOF based on
feedback of MOF submitters and reviewers. Note that as with most OMG technologies
that are being standardized an abundance of ideas are proposed. Some simple
extensions such as the support of higher order associations to more complex ones such
as MOF model versioning have been proposed.

Additional work is anticipated in extending the proposed MOF standard to address the
related standards such as EIA CDIF and RM-ODP.

E.2 Extendingthe MOF to Support Ternary and Higher
Order Associations

The decision to support only binary associations was based on patterns of association
use in industry modeling, the additional encumbrances placed on interfaces when
ternary and higher-order associations are introduced, and the additional requirements
for completely specifying cardinality constraints (multiplicity). In the tradeoff between
simplicity and expressive power, the submitters chose simplicity. The submitters
believe that the MOF can be extended in the future to support N-ary associations with
minimal impact to current MOF applications.

E.3 Support of Stream based I nterchange For mat

A stream based interchange mechanism as has been defined by CDIF is a useful
mechanism to exchange MOF and UML compliant models - especially for legacy tools
which have traditionally not supported programmatic interfaces for exchanging models
and model fragments. The MOF designers have anticipated the need for such a
mechanism and expect to accommodate this requirement in an upwardly compatible
manner. The Package class in the MOF includes internalize and externalize operations
to support this capability.

OMG-MOF V1.3 March 2000 E-1

The MOF and OA& DF submitters recommend that a stream based interchange
mechanism be the subject of a future OMG RFP.

E.4 Support for MOF Evolution and \ersioning

The MOF and MOF Compliant metamodels will evolve over time. The issue of meta
model and instance evolution can be solved using a variety of techniques including the
use of versioning. This (and related issues like Interface Versioning) are critical issues
that needs to be addressed in enterprise development and runtime environments. The
MOF submitters recommend that this topic be a subject of a future RFP.

E.5 Support for Mapping between Models

Transformation between metamodels and models is of interest to the tool vendor and
end user community to provide interoperability between multiple type systems. The
MOF specification defines mappings between MOF and CORBA IDL. A desirable
direction for the MOF is to provide a more general purpose framework and a set of
interfaces for transformation between meta models. A related topic suggested during
the MOF evaluation period is that of generating IDL for "extensions" to the MOF
model.

E.6 Interoperability with Microsoft Repository

E-2

Microsoft has efforts underway to create a series of COM based repository and
information model (metamodel) interfaces in a number of application development
technology domains such as object modeling(UML), database management, component
management etc. Similar efforts are already underway at the OMG based on the
OA&DF, MOF, BOF and the CORBA Component model efforts creating a critical
mass of component software enabling standards.

While the OA& DF (UML meta model) specification has 'universal' support (in terms of
endorsements from the OM G community and Microsoft), such support does not extend
to the corresponding CORBA interfaces. It is aso possible that these models may
diverge in the future leading to interoperability problems for users of UML and the
MOF. A similar problem with COM/CORBA and more recently DCOM/CORBA
interoperability has resulted in related OMG RFPs to address the problem.

Future OMG RFPs to address repository and meta model interoperability between
CORBA and DCOM environments is crucial for customers and vendors who have
invested in both the technologies. Of course if Microsoft technologies supported
CORBA based information models as well (asis partialy the case with UML), such an
RFP would be unnecessary and the user community would have consistent information
models, components, and compatible tools.

OMG-MOF V1.3 March 2000

| ndex

A

addLink 6-25

addLinkBefore 6-25

addvalue 6-13

addVvalueAt 6-15

addValueBefore 6-14

aggregation 3-50

AggregationType 3-80

al_links 6-23

alObjects 5-58, 5-62, 5-70, 5-72, 6-11
allSupertypes 3-26

annotation 3-15

Annotation Template 5-92
AnnotationType 3-77

Architecture, four layer metamodel 2-2
Association 3-47

Association Template 5-59
Associations 3-8

Attribute Template 5-68

Attributes 3-4

B
BehavioralFeature 3-43

C
Class 3-31
Collection Kinds 5-42
Common Exceptions 5-24
Complex bindings1-5
Constant Template 5-89
constrainedElement 3-73
constrainedElements 3-60
Constraint 3-59
congraint 3-73
Constraint Template 5-91
Constraint-Constrains-Model Element 3-73
Constraints 3-16
Contained Elements 3-4
containedElement 3-66
container 3-16, 3-65
contents 3-22
CORBA

documentation set i
CORBA Basic Types 3-77
CORBA IDL for the Meta Object Facility B-1
CORBA IDL for the Reflective Interfaces 6-30
createl nstance 6-10

D

Data Type Template 5-90
Data Types 6-30
Dataviewpoint 1-1

Data warehouse management scenarios 1-6
delete 6-8
DependencyKind 3-81
dependent 3-74
DepthType 3-79
direction 3-58
DirectionType 3-80

E
dements 3-64

OMG-MOF V1.3

Ends 3-8, 3-65
evauationPolicy 3-60
EvaluationType 3-80
exception 3-71
Exception Template 5-89
exceptions 3-45
exposedEnd 3-42, 3-69
expression 3-59
Extending the MOF to Support Ternary and Higher Order
Associations E-1
externalize 3-54

F

Feature 3-36

findElementsByType 3-23
findElementsBy TypeExtended 3-27
findRequiredElement 3-18

Format 1 5-41

Format 2 5-41
FormatNotSupported 3-84

Future Directions for the MOF E-1

G

Generalizabl eElement type 3-24
GenerdizableElement-Generalizes-GeneralizableElement 3-66
Generation Rules for Collection Kinds 5-42

getAssociation 6-29

getClassRef 6-28

getNestedPackage 6-29

|

Identifier Format 1 5-41

Identifier Format 2 5-41

Identifier Name Scoping 5-44
Identifier Naming 5-39

IDL for the Reflective Interfaces 6-30
IDL mapping 5-1
immediate_containing_package 6-7
Import 3-55
Import-Aliases-Namespace 3-72
imported 3-72
importedNamespace 3-56

importer 3-72

Information management scenarios 1-6
Interface Repository (IR) 1-4
internalize 3-54

Interoperability with Microsoft Repository E-2
interpreting IDL templates 5-46
invokeOperation 6-20

isAbstract 3-25

isChangeable 3-39, 3-51

isDerived 3-40, 3-48

isFrozen 3-17

isinstanceOf 6-10

isLeaf 3-26, 3-78, 3-82, 3-83
isNavigable 3-50

isQuery 3-44

isRequiredBecause 3-19

isRoot 3-25

isSingleton 3-32

isVisble 3-18

March 2000 Index-3

| ndex

L

language 3-60

link_exists 6-24

Literal String Values 5-42
|lookupElement 3-22
|ookupElementExtended 3-27

M

mapping 5-1

Mapping Rules 5-45

Metamodel architecture 2-2

metaObject 6-7

ModelElement 3-15

model Element 3-76

ModelElement Containment Rules 3-12
M odel Element-DependsOn-M odel Element 3-74
Modeling viewpoin t1-1

modifyLink 6-26

modifyValue 6-15, 6-16
modifyValueAt 6-16, 6-17

MODL Description of the MO FC-1
MOF Implementation Requirements D-1
MOF Model C-1

MOF Model Associations 3-65

MOF Model Data Types 3-77

MOF Model Exceptions 3-83

MOF Model IDL A-1, B-1

MOF model types 3-3, 3-15

MOF to IDL Mapping 4-1,5-1
MofAttribute 3-40

MofException 3-46

multiplicity 3-39, 3-50, 3-58, 5-52, 5-53, 5-56
MultiplicityType 3-78, 3-82

N

name 3-15

nameisvValid 3-23

NameNotResolved 3-83

Namespace type 3-21
Namespace-Contains-Model Element 3-65
NameType 3-77

Notation 5-46

o
Object Management Group i
address of i
ObjectNotExternalizable 3-84
OCL Representation of the MOF Model Constraint s3-86
OMG Architecture and the Repository Common Facilityix
operation 3-71
Operation Template 5-86
Operation-CanRaise-M of Exception 3-71
Operations 3-7
otherEnd 3-51
outermost_container 6-20
outermost_containing_package 6-8

=}
Package 3-53

Package Create Template 5-49

Package Template mapping rules 5-46
Preconditions for Successful IDL mapping 5-33

Index-4 OMG-MOF V1.3

provider 3-75

Q
qualified Name 3-15
query 6-24

R

Reference 3-41

referencedEnd 3-41

referenceEnd 3-68
Reference-Exposes-AssociationEnd derived 3-69
Reference-RefersTo-AssociationEnd 3-68
References 3-5

referent 3-68

referrer 3-69

refltself 6-7

Reflection IDL B-22

Reflective

RefAssociation 6-22
RefBaseObject 6-5
RefPackage 6-28
Reflective Exceptions 5-31
Reflective Module 6-3
removeLink 6-27
removeVaue 6-17, 6-18
removeValueAt 6-18
Repository Common Facility ix
repository service 1-3
requiredElements 3-16
Requirements to Support Associations Across Vendor
Boundaries D-2
resolveQualifiedName 3-22
Rules 5-45
Rules for Splitting MOF Model Names into "Words" 5-40
Rules of ModelElement Containment 3-12

S

scope 3-38

ScopeType 3-80

Service interface bridges 1-5

setVaue 6-12, 6-13

Software development scenarios 1-2
Stereotypes iii, C-1, D-1, E-1

Structural Feature 3-38

subtype 3-67

Successful IDL mapping 5-33

supertype 3-67

Supertypes 3-4

supertypes 3-26

Support for Mapping between Model sE-2
Support for MOF Evolution and Versioning E-2
Support of Stream based Interchange Format E-1

T
Tag 3-63

tag 3-76

Tag-AttachesTo-ModelElement 3-76
tagld 3-64

type 3-29, 3-70

Type Create Template 5-57

Type Forward Declaration Template 5-51

March 2000

| ndex

Type management scenarios 1-4

Type Template 5-54

TypeAlias 3-35

typeCode 3-34

TypedElement type 3-29
TypedElement-1sOf Type-Classifier 3-70
typedElements 3-70

TypeDescriptor 3-77

Types 3-3

U
UDL development system 1-4

OMG-MOF V1.3

usage scenario for repository servic e1-3

\Y

value 3-62, 6-11

values 3-64

Vendor Boundaries D-1
VerificationResultkind 3-81, 3-82
verify 3-17

visibility 3-25, 3-37, 3-55
VishilityType 3-79

March 2000

Index-5

| ndex

Index-6 OMG-MOF V1.3 March 2000

	Preface
	1. MOF Overview
	1.1 Overview
	1.2 Software Development Scenarios
	1.3 Type Management Scenarios
	1.4 Information Management Scenarios
	1.5 Data Warehouse Management Scenarios

	2. MOF Conceptual Overview
	2.1 Overview
	2.2 Meta-data Architectures
	2.2.1 Four Layer Meta-data Architectures
	2.2.2 The MOF Meta-data Architecture
	2.2.3 MOF Meta-modeling Terminology

	2.3 The MOF Model - Meta-modeling Constructs
	2.3.1 Classes
	2.3.2 Associations
	2.3.3 Aggregation
	2.3.4 References
	2.3.5 DataTypes
	2.3.6 Packages
	2.3.7 Constraints and Consistency
	2.3.8 Miscellaneous Meta-modeling Constructs

	2.4 Meta-models and Mappings
	2.4.1 Abstract and Concrete Mappings
	2.4.2 CORBA Meta-data Services - The MOF IDL Mapping
	2.4.3 Meta-data Interchange - The MOF XML Mapping
	2.4.4 Mappings of the MOF Model

	3. MOF Model and Interfaces
	3.1 Overview
	3.2 How the MOF Model is Described
	3.2.1 Classes
	3.2.2 Associations
	3.2.3 DataTypes
	3.2.4 Exceptions
	3.2.5 Constants
	3.2.6 Constraints
	3.2.7 UML Diagrams

	3.3 The Structure of the MOF Model
	3.3.1 The MOF Model Package
	3.3.2 The MOF Model Service IDL
	3.3.3 The MOF Model Structure
	3.3.4 The MOF Model Containment Hierarchy

	3.4 MOF Model Classes
	3.4.6 Class
	3.4.7 DataType
	3.4.8 TypeAlias
	3.4.12 Reference
	3.4.14 Operation
	3.4.16 Association
	3.4.17 AssociationEnd
	3.4.18 Package
	3.4.19 Import
	3.4.20 Parameter
	3.4.21 Constraint
	3.4.22 Constant Class
	3.4.23 Tag

	3.5 MOF Model Associations
	3.5.1 Contains
	3.5.2 Generalizes
	3.5.3 RefersTo
	3.5.5 IsOfType
	3.5.6 CanRaise
	3.5.7 Aliases
	3.5.8 Constrains
	3.5.10 AttachesTo

	3.6 MOF Model Data Types
	3.6.1 CORBA Basic Types
	3.6.2 NameType
	3.6.3 AnnotationType
	3.6.4 TypeDescriptor
	3.6.5 MultiplicityType
	3.6.6 VisibilityKind
	3.6.7 DepthKind
	3.6.8 DirectionKind
	3.6.9 ScopeKind
	3.6.10 AggregationKind
	3.6.11 EvaluationKind
	3.6.12 DependencyKind
	3.6.13 FormatType
	3.6.14 LiteralType
	3.6.15 VerifyResultKind
	3.6.16 ViolationType

	3.7 MOF Model Exceptions
	3.7.1 NameNotFound
	3.7.2 NameNotResolved
	3.7.3 ObjectNotExternalizable
	3.7.4 FormatNotSupported
	3.7.5 IllformedExternalizedObject

	3.8 MOF Model Constants
	3.8.1 Unbounded
	3.8.2 The Standard DependencyKinds

	3.9 MOF Model Constraints
	3.9.1 MOF Model Constraints and other M2 Level Semantics
	3.9.2 Notational Conventions
	3.9.3 OCL Usage in the MOF Model specification
	3.9.4 The MOF Model Constraints
	3.9.5 Semantic specifications for some Operations, derived Attributes and Derived Associations
	3.9.6 OCL Helper functions

	4. The MOF Abstract Mapping
	4.1 Overview
	4.2 MOF Values
	4.2.1 Semantics of Equality for MOF Values

	4.3 Semantics of Class Instances
	4.4 Semantics of Attributes
	4.4.1 Attribute name and type
	4.4.2 Multiplicity
	4.4.3 Scope
	4.4.4 Is_derived
	4.4.5 Aggregation
	4.4.6 Visibility and is_changeable

	4.5 Package Composition
	4.5.1 Package Nesting
	4.5.2 Package Generalization
	4.5.3 Package Importation
	4.5.4 Package Clustering

	4.6 Extents
	4.6.1 The Purpose of Extents
	4.6.2 Class Extents
	4.6.3 Association Extents
	4.6.4 Package Extents

	4.7 Semantics of Associations
	4.7.1 MOF Associations in UML notation
	4.7.2 Core Association Semantics
	4.7.3 AssociationEnd Changeability
	4.7.4 AssociationEnd Navigability
	4.7.5 Association Aggregation
	4.7.6 Derived Associations

	4.8 Aggregation Semantics
	4.8.1 Aggregation “none”
	4.8.2 Aggregation “composite”
	4.8.3 Aggregation “shared”

	4.9 Closure Rules
	4.9.1 The Reference Closure Rule
	4.9.2 The Composition Closure Rule

	4.10 Recommended Copy Semantics
	4.11 Computational Semantics
	4.11.1 A Style Guide for Metadata Computational Semantics
	4.11.2 Access operations should not change metadata
	4.11.3 Update operations should only change the nominated metadata
	4.11.4 Derived Elements should behave like non-derived Elements
	4.11.5 Constraint evaluation should not have side-effects
	4.11.6 Access operations should avoid raising Constraint exceptions

	5. MOF to IDL Mapping
	5.1 Overview
	5.2 Meta Objects and Interfaces
	5.2.1 Meta Object Type Overview
	5.2.2 The Meta Object Interface Hierarchy

	5.3 Computational Semantics for the IDL Mapping
	5.3.1 Value Types and Equality in the IDL Mapping
	5.3.2 Lifecycle Semantics for the IDL Mapping
	5.3.3 Association Access and Update Semantics for the IDL Mapping
	5.3.4 Attribute Access and Update Semantics for the IDL Mapping
	5.3.5 Reference Semantics for the IDL Mapping
	5.3.6 Cluster Semantics for the IDL Mapping
	5.3.7 Atomicity Semantics for the IDL Mapping
	5.3.8 The Supertype Closure Rule
	5.3.9 Copy Semantics for the IDL Mapping

	5.4 Exception Framework
	5.4.1 Error_kind string values
	5.4.2 Structural Errors
	5.4.3 Constraint Errors
	5.4.4 Semantic Errors
	5.4.5 Usage Errors
	5.4.6 Reflective Errors

	5.5 Preconditions for IDL Generation
	5.6 Standard Tags for the IDL Mapping
	5.6.1 Tags for Specifying IDL #pragma prefix
	5.6.2 Tags for Providing Substitute Identifiers
	5.6.3 Tags for Specifying IDL Inheritance

	5.7 Generated IDL Issues
	5.7.1 Generated IDL Identifiers
	5.7.2 Generation Rules for Collection Types
	5.7.3 IDL Identifier Qualification
	5.7.4 File Organization and #include statements

	5.8 IDL Mapping Templates
	5.8.1 Template Notation
	5.8.2 Package Module Template
	5.8.3 Package Factory Template
	5.8.4 Package Template
	5.8.5 Class Forward Declaration Template
	5.8.6 Class Template
	5.8.7 Class Proxy Template
	5.8.8 Instance Template
	5.8.9 Class Create Template
	5.8.10 Association Template
	5.8.11 Attribute Template
	5.8.12 Reference Template
	5.8.13 Operation Template
	5.8.14 Exception Template
	5.8.15 Constant Template
	5.8.16 DataType Template
	5.8.17 Constraint Template
	5.8.18 Annotation Template

	6. The Reflective Module
	6.1 Introduction
	6.2 The Reflective Interfaces
	6.2.1 Reflective Argument Encoding Patterns.

	6.3 The CORBA IDL for the Reflective Interfaces
	6.3.1 Introduction
	6.3.2 Data Types

	Glossary
	Appendix A - XMI for the MOF
	Appendix B - MOF IDL Summary
	Appendix C - MODL Description of the MOF
	Appendix D - MOF Implementation Requirements
	Appendix E - Future Directions for the MOF
	Index

