
Meta Object Facility (MOF)
Specification

New Edition: v1.3 - March 2000
Errata to v1.3 - October 2001
Update to Appendix A, v1.3 .1 - November 2001



Copyright 1997-1999, DSTC (Cooperative Research Centre for Enterprise Distributed Systems Technology)
Copyright 1997-1999, Electronic Data Systems 
Copyright 1997-1999, IBM Corporation
Copyright 1997-1999, International Computers Limited
Copyright 1997-1999, Objectivity Inc.
Copyright 2000, Object Management Group
Copyright 1997-1999, Oracle Corporation
Copyright 1997-1999, Platinum Technology Inc.
Copyright 1997-1999, Rational Software Corporation
Copyright 1997-1999, System Software Associates
Copyright 1997-1999, Unisys Corporation

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid 
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod-
ified version.  Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the 
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein 
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may 
require use of an invention covered by patent rights.  OMG shall not be responsible for identifying patents for which a 
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of 
those patents that are brought to its attention.  OMG specifications are prospective and advisory only.  Prospective users 
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an 
Object Management Group specification in accordance with the license and notices set forth on this page.  This document 
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION  IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE  MAKE NO WARRANTY OF ANY KIND, EXPRESS 
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF 
TITLE OR OWNERSHIP,  IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR  
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed 
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages, 
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above 
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole 
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or 
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in 
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information 
storage and retrieval systems--without permission of the copyright owner. 



RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in 
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and 
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL, 
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, 
Inc. X/Open is a trademark of X/Open Company Ltd.

The UML logo is a trademark of Rational Software Corp.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers 
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at 
http://www.omg.org/library/issuerpt.htm.





Table of Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. MOF Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
1.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

1.2 Software Development Scenarios . . . . . . . . . . . . . . . . . . . . 1-2

1.3 Type Management Scenarios  . . . . . . . . . . . . . . . . . . . . . . . 1-4

1.4 Information Management Scenarios. . . . . . . . . . . . . . . . . . 1-6

1.5 Data Warehouse Management Scenarios . . . . . . . . . . . . . . 1-6

2. MOF Conceptual Overview  . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

2.2 Meta-data Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.2.1 Four Layer Meta-data Architectures . . . . . . . . . 2-2

2.2.2 The MOF Meta-data Architecture  . . . . . . . . . . 2-3
2.2.3 MOF Meta-modeling Terminology. . . . . . . . . . 2-5

2.3 The MOF Model - Meta-modeling Constructs . . . . . . . . . . 2-5

2.3.1 Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
2.3.2 Associations . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9

2.3.3 Aggregation  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
2.3.4 References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12

2.3.5 DataTypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
2.3.6 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14

2.3.7 Constraints and Consistency . . . . . . . . . . . . . . . 2-17
2.3.8 Miscellaneous Meta-modeling Constructs  . . . . 2-20

2.4 Meta-models and Mappings . . . . . . . . . . . . . . . . . . . . . . . . 2-21

2.4.1 Abstract and Concrete Mappings  . . . . . . . . . . . 2-21
OMG-MOF V1.3                    March 2000                              i



Contents
2.4.2 CORBA Meta-data Services - The MOF 
IDL Mapping  . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22

2.4.3 Meta-data Interchange - The MOF XML 
Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22

2.4.4 Mappings of the MOF Model . . . . . . . . . . . . . . 2-22

3. MOF Model and Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

3.2 How the MOF Model is Described. . . . . . . . . . . . . . . . . . . 3-2
3.2.1 Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

3.2.2 Associations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
3.2.3 DataTypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9

3.2.4 Exceptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
3.2.5 Constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10

3.2.6 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10
3.2.7 UML Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . 3-10

3.3 The Structure of the MOF Model . . . . . . . . . . . . . . . . . . . . 3-11
3.3.1 The MOF Model Package. . . . . . . . . . . . . . . . . 3-11

3.3.2 The MOF Model Service IDL  . . . . . . . . . . . . . 3-13
3.3.3 The MOF Model Structure . . . . . . . . . . . . . . . . 3-13

3.3.4 The MOF Model Containment Hierarchy . . . . . 3-15

3.4 MOF Model Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15
3.4.1 ModelElement . . . . . . . . . . . . . . . . . . . . . . . . . 3-15

3.4.2 Namespace  . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22
3.4.3 GeneralizableElement  . . . . . . . . . . . . . . . . . . . 3-25

3.4.4 TypedElement  . . . . . . . . . . . . . . . . . . . . . . . . . 3-30
3.4.5 Classifier  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31

3.4.6 Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31
3.4.7 DataType  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-33

3.4.8 TypeAlias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-35
3.4.9 Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-36

3.4.10 StructuralFeature . . . . . . . . . . . . . . . . . . . . . . . 3-38
3.4.11 Attribute  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-39

3.4.12 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-40
3.4.13 BehavioralFeature  . . . . . . . . . . . . . . . . . . . . . . 3-43

3.4.14 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-43
3.4.15 Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-45

3.4.16 Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-47
3.4.17 AssociationEnd. . . . . . . . . . . . . . . . . . . . . . . . . 3-49

3.4.18 Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-53
3.4.19 Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-55
ii OMG-MOF V1.3                    March 2000                              



Contents
3.4.20 Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-58

3.4.21 Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-59
3.4.22 Constant Class  . . . . . . . . . . . . . . . . . . . . . . . . . 3-62

3.4.23 Tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-63

3.5 MOF Model Associations  . . . . . . . . . . . . . . . . . . . . . . . . . 3-65

3.5.1 Contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-65
3.5.2 Generalizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-67

3.5.3 RefersTo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-68
3.5.4 Exposes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-69

3.5.5 IsOfType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-70
3.5.6 CanRaise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-71

3.5.7 Aliases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-72
3.5.8 Constrains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-73

3.5.9 DependsOn . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-74
3.5.10 AttachesTo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-76

3.6 MOF Model Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-77

3.6.1 CORBA Basic Types  . . . . . . . . . . . . . . . . . . . . 3-77
3.6.2 NameType. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-77

3.6.3 AnnotationType  . . . . . . . . . . . . . . . . . . . . . . . . 3-77
3.6.4 TypeDescriptor . . . . . . . . . . . . . . . . . . . . . . . . . 3-77

3.6.5 MultiplicityType . . . . . . . . . . . . . . . . . . . . . . . . 3-78
3.6.6 VisibilityKind . . . . . . . . . . . . . . . . . . . . . . . . . . 3-79

3.6.7 DepthKind  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-79
3.6.8 DirectionKind . . . . . . . . . . . . . . . . . . . . . . . . . . 3-80

3.6.9 ScopeKind  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-80
3.6.10 AggregationKind  . . . . . . . . . . . . . . . . . . . . . . . 3-80

3.6.11 EvaluationKind. . . . . . . . . . . . . . . . . . . . . . . . . 3-80
3.6.12 DependencyKind  . . . . . . . . . . . . . . . . . . . . . . . 3-81

3.6.13 FormatType. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-81
3.6.14 LiteralType . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-81

3.6.15 VerifyResultKind  . . . . . . . . . . . . . . . . . . . . . . . 3-82
3.6.16 ViolationType . . . . . . . . . . . . . . . . . . . . . . . . . . 3-82

3.7 MOF Model Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-83

3.7.1 NameNotFound  . . . . . . . . . . . . . . . . . . . . . . . . 3-83
3.7.2 NameNotResolved . . . . . . . . . . . . . . . . . . . . . . 3-83

3.7.3 ObjectNotExternalizable  . . . . . . . . . . . . . . . . . 3-84
3.7.4 FormatNotSupported  . . . . . . . . . . . . . . . . . . . . 3-84

3.7.5 IllformedExternalizedObject  . . . . . . . . . . . . . . 3-84

3.8 MOF Model Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-85

3.8.1 Unbounded . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-85
OMG-MOF V.13                 March  2000                         iii



Contents
3.8.2 The Standard DependencyKinds. . . . . . . . . . . . 3-85

3.9 MOF Model Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . 3-86
3.9.1 MOF Model Constraints and other M2 

Level Semantics . . . . . . . . . . . . . . . . . . . . . . . . 3-86

3.9.2 Notational Conventions  . . . . . . . . . . . . . . . . . . 3-86
3.9.3 OCL Usage in the MOF Model specification . . 3-88

3.9.4 The MOF Model Constraints  . . . . . . . . . . . . . . 3-91
3.9.5 Semantic specifications for some Operations, 

derived Attributes and Derived Associations  . . 3-106
3.9.6 OCL Helper functions  . . . . . . . . . . . . . . . . . . . 3-111

4. The MOF Abstract Mapping . . . . . . . . . . . . . . . . . . . . . . . . 4-1

4.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

4.2 MOF Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

4.2.1 Semantics of Equality for MOF Values  . . . . . . 4-3

4.3 Semantics of Class Instances . . . . . . . . . . . . . . . . . . . . . . . 4-3

4.4 Semantics of Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4
4.4.1 Attribute name and type . . . . . . . . . . . . . . . . . . 4-4

4.4.2 Multiplicity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5
4.4.3 Scope  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

4.4.4 Is_derived . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6
4.4.5 Aggregation  . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

4.4.6 Visibility and is_changeable . . . . . . . . . . . . . . . 4-7

4.5 Package Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7

4.5.1 Package Nesting . . . . . . . . . . . . . . . . . . . . . . . . 4-7
4.5.2 Package Generalization  . . . . . . . . . . . . . . . . . . 4-8

4.5.3 Package Importation . . . . . . . . . . . . . . . . . . . . . 4-8
4.5.4 Package Clustering . . . . . . . . . . . . . . . . . . . . . . 4-8

4.6 Extents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9

4.6.1 The Purpose of Extents. . . . . . . . . . . . . . . . . . . 4-9
4.6.2 Class Extents  . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10

4.6.3 Association Extents  . . . . . . . . . . . . . . . . . . . . . 4-10
4.6.4 Package Extents . . . . . . . . . . . . . . . . . . . . . . . . 4-11

4.7 Semantics of Associations . . . . . . . . . . . . . . . . . . . . . . . . . 4-12

4.7.1 MOF Associations in UML notation  . . . . . . . . 4-14
4.7.2 Core Association Semantics . . . . . . . . . . . . . . . 4-15

4.7.3 AssociationEnd Changeability . . . . . . . . . . . . . 4-17
4.7.4 AssociationEnd Navigability  . . . . . . . . . . . . . . 4-17

4.7.5 Association Aggregation  . . . . . . . . . . . . . . . . . 4-17
4.7.6 Derived Associations  . . . . . . . . . . . . . . . . . . . . 4-17
iv OMG-MOF V1.3                    March 2000                              



Contents
4.8 Aggregation Semantics  . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17

4.8.1 Aggregation “none”  . . . . . . . . . . . . . . . . . . . . . 4-18
4.8.2 Aggregation “composite” . . . . . . . . . . . . . . . . . 4-18

4.8.3 Aggregation “shared” . . . . . . . . . . . . . . . . . . . . 4-18

4.9 Closure Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18

4.9.1 The Reference Closure Rule . . . . . . . . . . . . . . . 4-19
4.9.2 The Composition Closure Rule. . . . . . . . . . . . . 4-20

4.10 Recommended Copy Semantics . . . . . . . . . . . . . . . . . . . . . 4-21

4.11 Computational Semantics. . . . . . . . . . . . . . . . . . . . . . . . . . 4-22

4.11.1 A Style Guide for Metadata Computational 
Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-22

4.11.2 Access operations should not change metadata 4-23

4.11.3 Update operations should only change the 
nominated metadata  . . . . . . . . . . . . . . . . . . . . . 4-23

4.11.4 Derived Elements should behave like 
non-derived Elements . . . . . . . . . . . . . . . . . . . . 4-23

4.11.5 Constraint evaluation should not have 
side-effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24

4.11.6 Access operations should avoid raising 
Constraint exceptions . . . . . . . . . . . . . . . . . . . . 4-24

5. MOF to IDL Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
5.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

5.2 Meta Objects and Interfaces . . . . . . . . . . . . . . . . . . . . . . . . 5-2

5.2.1 Meta Object Type Overview . . . . . . . . . . . . . . . 5-2
5.2.2 The Meta Object Interface Hierarchy . . . . . . . . 5-4

5.3 Computational Semantics for the IDL Mapping. . . . . . . . . 5-6

5.3.1 Value Types and Equality in the IDL Mapping . 5-6
5.3.2 Lifecycle Semantics for the IDL Mapping . . . . 5-8

5.3.3 Association Access and Update Semantics 
for the IDL Mapping  . . . . . . . . . . . . . . . . . . . . 5-11

5.3.4 Attribute Access and Update Semantics for the 
IDL Mapping  . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15

5.3.5 Reference Semantics for the IDL Mapping  . . . 5-21
5.3.6 Cluster Semantics for the IDL Mapping . . . . . . 5-22

5.3.7 Atomicity Semantics for the IDL Mapping  . . . 5-22
5.3.8 The Supertype Closure Rule . . . . . . . . . . . . . . . 5-22

5.3.9 Copy Semantics for the IDL Mapping  . . . . . . . 5-23

5.4 Exception Framework  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-24
5.4.1 Error_kind string values . . . . . . . . . . . . . . . . . . 5-25

5.4.2 Structural Errors . . . . . . . . . . . . . . . . . . . . . . . . 5-26
OMG-MOF V.13                 March  2000                         v



Contents
5.4.3 Constraint Errors  . . . . . . . . . . . . . . . . . . . . . . . 5-29
5.4.4 Semantic Errors  . . . . . . . . . . . . . . . . . . . . . . . . 5-29

5.4.5 Usage Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-30
5.4.6 Reflective Errors. . . . . . . . . . . . . . . . . . . . . . . . 5-30

5.5 Preconditions for IDL Generation  . . . . . . . . . . . . . . . . . . . 5-33

5.6 Standard Tags for the IDL Mapping . . . . . . . . . . . . . . . . . . 5-35

5.6.1 Tags for Specifying IDL #pragma prefix  . . . . . 5-36
5.6.2 Tags for Providing Substitute Identifiers  . . . . . 5-36

5.6.3 Tags for Specifying IDL Inheritance  . . . . . . . . 5-37

5.7 Generated IDL Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-39

5.7.1 Generated IDL Identifiers . . . . . . . . . . . . . . . . . 5-39
5.7.2 Generation Rules for Collection Types . . . . . . . 5-42

5.7.3 IDL Identifier Qualification . . . . . . . . . . . . . . . 5-44
5.7.4 File Organization and #include statements . . . . 5-44

5.8 IDL Mapping Templates  . . . . . . . . . . . . . . . . . . . . . . . . . . 5-44

5.8.1 Template Notation  . . . . . . . . . . . . . . . . . . . . . . 5-45
5.8.2 Package Module Template  . . . . . . . . . . . . . . . . 5-46

5.8.3 Package Factory Template  . . . . . . . . . . . . . . . . 5-48
5.8.4 Package Template . . . . . . . . . . . . . . . . . . . . . . . 5-50

5.8.5 Class Forward Declaration Template  . . . . . . . . 5-53
5.8.6 Class Template . . . . . . . . . . . . . . . . . . . . . . . . . 5-53

5.8.7 Class Proxy Template . . . . . . . . . . . . . . . . . . . . 5-54
5.8.8 Instance Template . . . . . . . . . . . . . . . . . . . . . . . 5-56

5.8.9 Class Create Template  . . . . . . . . . . . . . . . . . . . 5-57
5.8.10 Association Template . . . . . . . . . . . . . . . . . . . . 5-58

5.8.11 Attribute Template  . . . . . . . . . . . . . . . . . . . . . . 5-67
5.8.12 Reference Template  . . . . . . . . . . . . . . . . . . . . . 5-76

5.8.13 Operation Template  . . . . . . . . . . . . . . . . . . . . . 5-85
5.8.14 Exception Template  . . . . . . . . . . . . . . . . . . . . . 5-88

5.8.15 Constant Template  . . . . . . . . . . . . . . . . . . . . . . 5-88
5.8.16 DataType Template . . . . . . . . . . . . . . . . . . . . . . 5-89

5.8.17 Constraint Template . . . . . . . . . . . . . . . . . . . . . 5-90
5.8.18 Annotation Template  . . . . . . . . . . . . . . . . . . . . 5-91

6. The Reflective Module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

6.2 The Reflective Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3
6.2.1 Reflective Argument Encoding Patterns.  . . . . . 6-3

6.2.2 Reflective::RefBaseObject . . . . . . . . . . . . . . . . 6-5
6.2.3 Reflective::RefObject  . . . . . . . . . . . . . . . . . . . 6-9
vi OMG-MOF V1.3                    March 2000                              



Contents
6.2.4 Reflective::RefAssociation  . . . . . . . . . . . . . . . 6-22

6.2.5 Reflective::RefPackage  . . . . . . . . . . . . . . . . . . 6-28

6.3 The CORBA IDL for the Reflective Interfaces  . . . . . . . . . 6-29

6.3.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-29
6.3.2  Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-30

Glossary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Appendix A XMI for the MOF. . . . . . . . . . . . . . . . . . . . . . .  A-1

Appendix B MOF IDL Summary . . . . . . . . . . . . . . . . . . . . . B-1

Appendix C MODL Description of the MOF . . . . . . . . . . . . C-1

Appendix D MOF Implementation Requirements  . . . . . . . . D-1

Appendix E Future Directions for the MOF. . . . . . . . . . . . . E-1

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Index-1
OMG-MOF V.13                 March  2000                         vii



Contents
viii OMG-MOF V1.3                    March 2000                              



Preface
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported 
by over 800 members, including information system vendors, software developers and 
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented 
technology in software development. The organization's charter includes the 
establishment of industry guidelines and object management specifications to provide a 
common framework for application development. Primary goals are the reusability, 
portability, and interoperability of object-based software in distributed, heterogeneous 
environments. Conformance to these specifications will make it possible to develop a 
heterogeneous applications environment across all major hardware platforms and 
operating systems. 

OMG's objectives are to foster the growth of object technology and influence its 
direction by establishing the Object Management Architecture (OMA). The OMA 
provides the conceptual infrastructure upon which all OMG specifications are based. 

Associated OMG Documents

The CORBA documentation set includes the following:

• Object Management Architecture Guide defines the OMG’s technical objectives 
and terminology and describes the conceptual models upon which OMG standards 
are based. It defines the umbrella architecture for the OMG standards. It also 
provides information about the policies and procedures of OMG, such as how 
standards are proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains 
the architecture and specifications for the Object Request Broker. 

• CORBAservices: Common Object Services Specification contains specifications 
for OMG’s Object Services. 
                                 OMG-MOF V1.3                        March 2000 ix



• CORBAfacilities: Common Facilities Specification is a collection of services that 
many applications may share, but which are not as fundamental as the Object 
Services. For instance, a system management or electronic mail facility could be 
classified as a common facility. Common Facilities are used by most systems.

The OMG collects information for each book in the documentation set by issuing 
Requests for Information, Requests for Proposals, and Requests for Comment and, 
with its membership, evaluating the responses. Specifications are adopted as standards 
only when representatives of the OMG membership accept them as such by vote. (The 
policies and procedures of the OMG are described in detail in the Object Management 
Architecture Guide.) 

OMG formal documents are available from our web site in PostScript and PDF format. 
To obtain print-on-demand books in the documentation set or other OMG publications, 
contact the Object Management Group, Inc. at: 

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Introduction to OMG Modeling

This document describes the OMG standards for modeling distributed software 
architectures and systems along with their CORBA Interfaces. It is composed of two 
complementary specifications:

• Unified Modeling Language Specification

• Meta-Object Facility Specification

The Unified Modeling Language (UML) Specification defines a graphical language for 
visualizing, specifying, constructing, and documenting the artifacts of distributed 
object systems. The specification includes the formal definition of a common Object 
Analysis and Design (OA&D) metamodel, a graphic notation, and a CORBA IDL 
facility that supports model interchange between OA&D tools and metadata 
repositories. The UML provides the foundation for specifying and sharing CORBA-
based distributed object models.

The Meta-Object Facility (MOF) Specification defines a set of CORBA IDL interfaces 
that can be used to define and manipulate a set of interoperable metamodels and their 
corresponding models. These interoperable metamodels include the UML metamodel, 
the MOF meta-metamodel, as well as future OMG adopted technologies that will be 
specified using metamodels. The MOF provides the infrastructure for implementing 
CORBA-based design and reuse repositories. The MOF specifies precise mapping 
x                                  OMG-MOF V1.3                        March 2000 



rules that enable the CORBA interfaces for metamodels to be automatically generated, 
thus encouraging consistency in manipulating metadata in all phases of the distributed 
application development cycle. 

Since the UML and MOF are based on a four-layer metamodel architecture it is 
essential that the metamodels for each facility are architecturally aligned. For a 
description of the four layer metamodel architecture, please refer to Section 2.2, 
“Meta-data Architectures,” on page 2-1 in the MOF Specification. In order to achieve 
architectural alignment considerable effort has been expended so that the UML and 
MOF share the same core semantics. This alignment allows the MOF to reuse the 
UML notation for visualizing metamodels.  In those areas where semantic differences 
are required, well-defined mapping rules are provided between the metamodels. The 
OMG distributed repository architecture, which integrates UML and MOF with 
CORBA is described in Section 0.5, “Resolution of Technical Criteria in the Preface of 
the MOF Specification.

As the first adopted technologies specified using a metamodeling approach, the UML 
and MOF establish a rigorous foundation for OMG's metamodel architectures. Future 
metamodel standards should reuse their core semantics and emulate their systematic 
approach to architecture alignment.

Architectural Alignment of UML, MOF, and CORBA

Introduction

This section explains the architectural alignment of the OA&D Facility (OA&DF) 
metamodel and the MOF meta-metamodel, and their relationships to the OMA and 
CORBA object models. When discussing specific models, MOF corresponds to the 
MOF meta-metamodel also referred to as the MOF Model. The UML is used to refer 
to the proposed OA&DF metamodel.

As yet, there is not an MOF meta-metamodel standard or an OA&D metamodel 
standard. However, since each of these specifications has been unified, a proactive 
approach has been taken towards architectural alignment. Considerable structure 
sharing between the two specifications has been accomplished. As the OA&DF and 
MOF technologies evolve, additional alignment work will be addressed by standard 
OMG processes such as those for Revision Task Forces and subsequent RFPs.

The MOF and OA&DF alignment work has focused on aligning the metamodels and 
applying the MOF IDL Mapping for generating the CORBA IDL for both the MOF 
and UML models. This was accomplished by defining the MOF and UML models 
using the MOF and by generating the IDL interfaces based on the MOF specification.  
Note that both the MOF and OADF specifications use the UML notation for 
graphically defining the models.

In terms of abstraction levels and the kinds of meta-metaobjects used, the UML and 
MOF meta-metamodels are well aligned. There are significant advantages in aligning 
the OA&DF meta-metamodel with the MOF meta-metamodel. In the case of the MOF, 
OMG-MOF V1.3                 March 2000 xi



meta-metamodel alignment facilitates interoperability between the OA&DF and the 
MOF. An example of OA&DF-MOF interoperability is the use of an MOF-compliant 
repository to store an OA&DF object model.

Alignment of the UML, MOF, and CORBA paves the way for future extensibility of 
CORBA in key areas such as richer semantics, relationships, and constraints. Likewise 
the longer-term benefits to UML and MOF include better recognition and addressing of 
distributed computing issues in developing CORBA-compliant systems.

Motivation

The primary reason for aligning the OA&DF metamodel with the MOF meta-
metamodel is to facilitate interoperability between the two facilities using CORBA 
IDL. When considering interoperability between the OA&DF and the MOF, it is 
important to consider the difference in scope between the facilities. The MOF goal is 
to allow interoperability across the application development cycle by supporting the 
definition of multiple meta models, whereas the OA&DF focuses on supporting the 
definition of a single OA&D metamodel. An example of OA&DF-MOF 
interoperability is the use of an MOF-compliant repository to store and interchange 
OA&DF object models.  

The key motivation to align the MOF and OA&DF with CORBA is to address the 
requirement of aligning with CORBA and between the two facilities.  In addition, the 
MOF and OA&DF (especially the UML) specifications signify years of modeling and 
metamodeling experience that are being integrated.  As such, some of the key concepts 
in the UML and MOF are potential candidates to evolve the OMG Core object model 
and CORBA IDL in the future.

Approach

The UML and MOF are based on a four-layer metamodel architecture, where the MOF 
meta-metamodel is the meta-metamodel for the UML metamodel. As a result, the 
UML metamodel may be considered an instance-of the MOF meta-metamodel. This is 
sometimes referred to as loose metamodeling, where an Mn level model is an instance 
of an Mn+1 level model. 

Since the MOF and OA&DF have different scopes, and diverge in the area of 
relationships, we have not been able to apply strict metamodeling. In strict 
metamodeling, every element of an Mn level model is an instance of exactly one 
element of Mn+1 level model. Consequently, there is not a strict isomorphic mapping 
between all the MOF meta-metamodel elements and the UML meta-metamodel 
elements. In principle strict metamodeling is difficult (or sometimes impossible to 
accomplish) as the complexity of new concepts (for example patterns and frameworks) 
continues to increase. In any case, using a small set of primitive concepts such as those 
defined in the MOF it is possible to define arbitrarily complex metamodels.
xii                                  OMG-MOF V1.3                        March 2000 



In spite of this, since the two models were designed to be interoperable, the two 
metamodels are structurally quite similar. The following sections compare the core 
MOF and UML modeling concepts, and contrast them with the OMA and CORBA/IDL 
core object models. The issues related to mapping metaclasses which are not 
isomorphic (e.g., Association classes) are also discussed.

The following tables are comparison tables that summarize the mappings of similar 
concepts across the meta-metamodeling layers. Where there is no analog for a concept, 
it will be identified and discussed in “Issues Related to UML-MOF Mapping” on 
page -xv.

Metamodel Comparison

Most of the metaobjects for the UML core metamodel and the MOF core meta-
metamodel can be mapped to each other in a straightforward manner. Similarly, these 
metaobjects can also be mapped to the OMA and CORBA core object models in a 
direct way. 

The following tables compare the core modeling concepts and the data types for these 
models. 

UML Metamodel MOF Meta-
metamodel

OMA Core  Object Model 
CORBA Object Model

CORBA IDL 

Association (n-ary) Association (binary)

AssociationClass NA

AssociationEnd AssociationEnd

Attribute Attribute Attribute Attribute

BehavioralFeature BehavioralFeature

Class Class Class Interface (as Class)

Classifier Classifier

Constraint Constraint

DataType DataType Data type Data type

Dependency (class) /dependsOn (association)

Exception Exception Exception

Feature Feature

GeneralizableElement GeneralizableElement 

Generalization (class) generalizes  (association) Generalization Generalization

Interface Class (as Interface) Interface Interface

ModelElement ModelElement

NA Reference  

NA Constant Constant
OMG-MOF V1.3                 March 2000 xiii



The MOF supports the full range of CORBA data types as well as additional data types 
defined using the MOF primitive types. UML supports a subset of CORBA data types 
in its semantic model but mapping to a subset of specific CORBA types is clearly 
possible.

Namespace Namespace ~ IR Containers

Operation Operation Operation Operation

Package Package Module

Parameter Parameter Parameter Parameter

StructuralFeature StructuralFeature

Type (stereotype) Class (as Type) Type Interface (as Type)

UML Metamodel MOF Meta-metamodel CORBA Object Model and IDL

AggregationKind AggregationKind

Boolean CORBA Boolean Boolean

Enumeration CORBA Enum Enum

Expression NameType

Integer CORBA Short, Long, 
Unsigned Short, Unsigned  
Long, Double, Octet, Float

Short, Long, Unsigned Short, Unsigned  
Long, Double, Octet, Float

List List, Set Sequence

Multiplicity MultiplicityKind (simpler 
than UML multiplicity)

Name NameKind Name

OperationDirectionKind DirectionKind

dependencies (reified as classes) DependencyKind (enum)

ScopeKind ScopeKind

String CORBA String, Char String, Char

Time CORBA Time Service Data 
Types

Time Service Data Types

NA TypeDef TypeDef

Uninterpreted CORBA Any Any

VisibilityKind VisibilityKind

UML Metamodel MOF Meta-
metamodel

OMA Core  Object Model 
CORBA Object Model

CORBA IDL 
xiv                                  OMG-MOF V1.3                        March 2000 



The following sections discuss issues related to areas where the mapping between 
metamodels is not direct. 

Issues Related to UML-MOF Mapping

In general, the mapping from the UML meta-metamodel to the MOF meta-metamodel 
is straightforward.

A review of the previous comparison tables indicates that in most cases the mapping 
from the UML meta-metamodel to the MOF meta-metamodel is direct. In fact, for 
most of the core constructs there is a structural equivalency in the mapping.

The key differences are due to different usage scenarios of MOF and UML. The MOF 
needs to be simpler, directly implementable, and provide a set of CORBA interfaces 
for manipulating meta objects.  The UML is used as a general-purpose modeling 
language, with potentially many implementation targets.  These differences are 
commonly observed in repository, meta-CASE, and modeling-tool implementations. 
The key differences are: 

• The MOF only supports binary associations while UML supports higher-order (also 
referred to as 'N-ary') associations.  This trade-off was made because N-ary 
relationships are rarely used in meta-modeling and the design goal was to keep the 
MOF interfaces simpler. We have anticipated extending the MOF to support higher 
order associations in future.

• Associations in the MOF are limited to simple associations and cannot contain 
features. Association Classes in UML can contain features (such as attributes).  The 
MOF has been defined to be structurally extensible to full-blown association classes 
in the future by relaxing this constraint. UML Association Classes are modeled as 
MOF Classes with well-defined multiplicity constraints to ensure shared lifetime of 
features owned by the association.

• The MOF supports the concept of a Reference which allows direct navigation from 
one Classifier to another. The UML metamodel uses the Target AssociationEnd's 
'name' property as a 'pseudo-attribute' for the same purpose, but navigates to another 
classifier through an Association. The concept of reference is widely used in object 
repositories, as well as object and object-relational databases and optimizes 
navigation across a metamodel.

• Some concepts such as Generalization, Dependency, and Refinement are reified as 
classes in UML, but implemented as Associations in the MOF. The MOF does not 
require the richness of UML in these areas.

• The MOF supports the full set of CORBA data types, whereas the UML meta model 
does not define data types to this depth. A CORBA-specific implementation of 
UML is clearly possible by either creating the additional data types needed or by 
providing appropriate mappings.

• The UML has clearly defined the similarities of the key concepts of Class, Interface, 
and Type. The MOF and UML both use the Class concept as the most general of 
these in their respective models. The MOF specification is focused only on 
specification of meta models and generation of CORBA interfaces; therefore, it 
does not deal with implementation concepts such as 'Methods.' UML clearly needs 
OMG-MOF V1.3                 March 2000 xv



to support these concepts because UML can be used to model conceptual, logical, 
and implementation models. In this sense, the MOF uses the Class concept to define 
Types, since MOF Classes do not have any methods, just operations. This is 
consistent with the definition of UML Type as a stereotype of Class with a 
constraint that Types cannot contain methods. The MOF Class concept is rich 
enough to define Interfaces, and in fact the MOF specification itself clearly shows 
that an MOF Class can be mapped to multiple CORBA Interfaces. 

The previous table shows that the mapping of metadatatypes between the meta-
metamodels is also straightforward. Here also there are more MOF meta-
metaobjects than there are UML meta-metaobjects. The MOF supports the full 
range of CORBA data types as well as additional data types defined using the MOF 
primitive types.  UML supports a subset of CORBA data types in its semantic 
model but maps to specific CORBA types in its corresponding interface model.

Relationship to Other Models

A secondary emphasis was placed on the architectural alignment with CDIF and RM-
ODP, both of which have influenced the metamodel architectures. CDIF offers many 
useful concepts for specifying robust stream-based interchange formats. Similarly, 
ODP provides many useful ideas for specifying model viewpoints. 

Resolution of Technical Criteria

Relationship to OMG IDL and CORE ‘95

OMG IDL is used to specify all the interfaces in the Meta Object Facility. The MOF 
itself is of course manipulated using standard CORBA interfaces.

The OMG core object model describes how objects interact; therefore, it is an interface 
or interaction model.  No specific implementation is implied. The OMG object model 
is not intended to be a metamodel (as described in the OMA). The CORBA object 
model is a concrete model with the goal of specifying a mechanism for portability and 
distributed object interoperability. The MOF does define a meta-metamodel (for 
simplicity, we refer to this as the MOF model). The purpose of the MOF model is to 
enable the definition and manipulation of metamodels in various domains, with the 
initial focus being on object analysis and design metamodels. The MOF can be used to 
specify the OMG object model, which it can treat as a meta-model. Likewise, because 
the MOF defines a set of CORBA compliant interfaces, these interfaces conform to the 
CORBA object model. The MOF can be used to specify additional semantics 
(relationships, constraints) that are implied (or expressed in text) in the CORBA object 
model.

The MOF is intended to provide support for richer meta data definition and 
manipulation in a CORBA environment.
xvi                                  OMG-MOF V1.3                        March 2000 



Positioning within the Common Facilities Architecture

The Repository Common Facility is positioned within the Information Management 
Common Facility and is composed of a number of common facilities and object 
services, including the MOF and the Change Management Facility. 

The standardization of the MOF provides a solid foundation for the OMG architecture 
in moving toward a unifying architecture for defining and managing meta data in 
distributed environments.  illustrates the positioning of the MOF as a key component of 
the CORBA architecture as well as within the Common Facilities Architecture. 

The Meta Data/Schema Management facility in the figure corresponds to the MOF 
described in this specification. Note that the MOF interfaces are initially targeted to 
support the manipulation of OA&D metamodels; however, broader use in areas such as 
data warehouse management and business object management is expected.

OMG Architecture and the Repository Common Facility

Federation of Object Schemas

The MOF allows the definition of metamodels that are potentially domain independent 
and architecture neutral. The metamodels registered in the MOF can correspond to 
schemas that are in fact federated. The MOF uses the federation capabilities provided 
by services such as the Trader Service and the Object Transaction Service. The schema 
information itself is accessed using the interfaces specified in the MOF. The services of 
the MOF can be used to define integrated metamodels that correspond to federated 
schemas. This area is still emerging, and interfaces specifically designed to address 
federation beyond the services already provided by CORBA (Object Transaction 
Service and Object Trader service) are not specified in this specification.

Iy eng ar (c) 1995, Unisys  

O M G  A rc h i t e c tu r e  a n d  th e  R e p o s i to ry
C o m m o n  F a c i li ty

App li cation  Obj ects

Rep ository  Com mo n F acili ty

AP Is AP Is

O bject  Services 

Object Request Bro ker (ORB)

Meta Da ta/
Schema Mgmt

Data
Interchange

Vers ions...
OMG-MOF V1.3                 March 2000 xvii



Conformance to the MOF

The MOF specification has two conformance points: 1) MOF Model and Interfaces and 
2) OMG IDL Generation.

MOF Model and Interfaces

The MOF Model and IDL is the first compliance point. This has the following 
components:

• The MOF Model and the interfaces of the “Model” module which are defined in 
Chapter 3. (Additionally, Section B.1, “MOF Model IDL,” on page B-1 gives the 
consolidated IDL for the “Model” module.)

• The semantics of the “Model” module which are defined by elaborating the MOF to 
IDL mapping’s semantic specifications in Chapter 5 for the MOF Model.

• The interfaces and semantics of the “Reflective” module which are defined in 
Chapter 6. (Addiitonally, Section B.2, “Reflective IDL,” on page B-23 gives the 
consolidated IDL for the “Reflective” module.)

Document Summary

In addition to this Preface, the MOF Specification contains the following chapters:

Chapter 1, Overview, provides several scenarios of domains where MOF is expected to 
be used. The scenarios discussed include software development, type management, 
information management, and data warehouse management. 

Chapter 2, Model and Interfaces, is the main chapter of the specification. Each of the 
MOF classes, associations, and data types are fully described along with the IDL 
interfaces. The semantics of the MOF are defined using a combination of UML 
notation, textual description, and constraints using the Object Constraint Language 
(OCL).  The MOF interfaces are used to manipulate meta models and meta model 
constructs in a CORBA environment.

Chapter 3, MOF  Packages, defines general purpose interfaces used by all MOF objects 
to enable self discovery and general purpose manipulation of MOF objects. These 
interfaces can be used in addition to, or instead of, specific interfaces defined in the 
MOF Model chapter. These interfaces apply to MOF objects defined in this 
specification as well as MOF objects defined using the MOF in additional OMG 
specifications, such as the CORBA interfaces in the UML specification.

Chapter 4, MOF Semantic Details, provides a more comprehensive explanation of the 
fundamental modeling concepts in the MOF, detailed semantics including structural 
and behavioral constraints applied to more complex MOF concepts, such as 
Associations and Packages. This chapter also describes MOF Extensibility 
Mechanisms and the use of MOF in distributed repository environments.
xviii                                  OMG-MOF V1.3                        March 2000 



Chapter 5, MOF to IDL Mapping, defines the generation of CORBA IDL from the 
descriptions held in the MOF. IDL generation capability is intended to ensure that 
various metamodels defined using the MOF have consistent IDL. Given an MOF 
compliant meta-model (such as UML), this portion of the specification can be used to 
generate a concrete IDL for UML. 

Note – This specification does not require that the MOF can derive the meta-object 
IDL automatically.

Appendix A, MOF IDL Summary, summarizes the complete set of IDL specifications 
for the MOF and is provided in a format that can be easily processed by IDL 
compilers.

Appendix B, MODL Description of the MOF, summarizes the Meta Object Definition 
Language (MODL) textual description of the MOF which was used to generate the 
CORBA IDL for the MOF.

Appendix C, MOF Implementation Requirements, suggests approaches and principles 
that can be used to support MOF interoperability between implementation of MOF 
from multiple vendors. Areas addressed include Model interoperability as well as 
client tool interoperability when using multiple MOF implementations. 

Appendix D, Implementation Requirements, includes vendor boundaries as well as 
limited implementation requirements.

Appendix E, Future Directions of the MOF, summarizes potential areas of future work 
related to the MOF based on feedback of MOF submitters and reviewers.

Acknowledgments

The following companies submitted and/or supported parts of the MOF specification:

• BEA Systems, Inc.

• Cooperative Research Centre for Distributed Systems Technology  (DSTC)

• Data Access

• Digital Equipment Corporation

• Electronic Data Systems

• Hewlett-Packard Company

• IBM Corporation

• International Computers Limited

• MicroFocus

• Objectivity Inc.

• Oracle Corporation

• Platinum Technology Inc.

• Rational Software Corporation

• System Software Associates

• Unisys Corporation
OMG-MOF V1.3                 March 2000 xix



xx                                  OMG-MOF V1.3                        March 2000 



MOF Overview 1
  Contents

This chapter contains the following topics. 

1.1 Overview

The MOF is intended to support a wide range of usage patterns and applications. To 
understand the possible usage patterns for the MOF, the first thing one needs to 
understand is the two distinct viewpoints for the MOF:

1. Modeling viewpoint: The designer's viewpoint, looking "down" the meta levels. 
From the modeling viewpoint, the MOF is used to define an information model for 
a particular domain of interest. This definition is then used to drive subsequent 
software design and/or implementation steps for software connected with the 
information model.

2. Data viewpoint: The programmer's viewpoint, looking at the current meta-level, and 
possibly looking up at the higher meta-levels. From the data viewpoint, the MOF 
(or more accurately, a product of the MOF) is used to apply the OMA-based 

Topic Page

“Overview” 1-1

“Software Development Scenarios” 1-2

“Type Management Scenarios” 1-4

“Information Management Scenarios” 1-6

“Data Warehouse Management Scenarios” 1-6
                   OMG-MOF V1.3                            March 2000 1-1



1

distributed computing paradigm to manage information corresponding to a given 
information model. In this mode, it is possible for a CORBA client to obtain the 
information model descriptions and to use them to support reflection.

The second thing one needs to realize is that this MOF specification is intended to 
provide an open-ended information modeling capability. The specification defines a 
core MOF model that includes a relatively small, though not minimal, set of constructs 
for object-oriented information modeling. The MOF model can be extended by 
inheritance and composition to define a richer information model that supports 
additional constructs. Alternatively, the MOF model can be used as a model for 
defining information models. This feature allows the designer to define information 
models that differ from the philosophy or details of the MOF model. In this context, 
the MOF Model is referred to as a meta-metamodel because it is being used to define 
metamodels such as the UML.

Finally, one needs to understand the purpose and the limitations of the MOF model to 
the CORBA IDL mapping defined by this specification. The prime purpose of the 
mapping is to define CORBA interfaces for information models defined in terms of the 
MOF model1 using standard interfaces and interoperable semantics. These interfaces 
allow a client to create, access, and update information described by the model, with 
the expectation that the information will be managed in a way that maintains the 
structural and logical consistency constraints specified in the information model 
definition.

While we anticipate that some vendors will supply tools (for example, IDL generators, 
server generators, and so on) to support the development of software conforming to the 
mapping, provision of these tools is not a requirement of this specification. The second 
limitation is that the mapping is only intended to support the MOF model itself; that is, 
it does not support extensions to the metamodel or to other unconnected information 
models. Furthermore, since the IDL mapping is not itself modeled in the MOF, there 
can be no standardized support for extending the mapping or defining new mappings. 
Finally, the IDL mapping in this specification supports only CORBA IDL. Mappings 
from the MOF model to other interface definition languages are certainly feasible, as 
are direct mappings to programming languages or data definition languages. However, 
these mappings are beyond the scope of the first version of the MOF specification.

1.2 Software Development Scenarios

Initially, one of the most likely applications of the MOF will be to support the 
development of distributed object-oriented software from high-level models. Such a 
software development system would typically consist of a repository service for storing 
the computer representations of models and a collection of associated tools. The latter 
would allow the programmers and designers to input the models, and would assist in 
the process of translating these models into software implementations.

1.  Both extensions to the MOF meta-model that are expressible in the meta-model itself, and 
unconnected information models expressed using the MOF meta-model. 
1-2                    OMG-MOF V1.3                            March 2000 



1

In the simple case, the repository service could be an implementation of the MOF 
model interfaces. This service would be accompanied by tools (for example, compilers 
or graphical editors) that allow the designer to input information models using a human 
readable notation for the MOF model. Assuming that the target for software 
development is CORBA based, the system would include an IDL generator that 
implements the standard MOF model-to-CORBA IDL mapping.

The usage scenario for this repository service would be along the following lines:

1. The programmer uses the input tools provided by the system to define an object-
oriented information model using the notation provided.

2. When the design is complete, the programmer runs the IDL generator to translate 
the model into CORBA IDL.

3. The programmer examines the IDL, repeating steps 1 and 2 to refine the model as 
required.

4. The programmer then implements the generated IDL to produce a target object 
server, and implement the applications that use the object server.

The functionality of the development suite described above can be expanded in a 
variety of ways. We can:

• Add generator tools to automatically produce the skeleton of an object server 
corresponding to the generated IDL. Depending on the sophistication of the tool, 
this skeleton might include code for the query and update operations prescribed by 
the IDL mapping, and code to check the constraints on the information model.

• Add generator tools to produce automatically stereotypical applications such as 
scripting tools and GUI-based browsers.

• Extend the repository service to store the specifications and/or implementation code 
for target server and application functionality that cannot be expressed in the MOF 
model.

While the MOF model is a powerful modeling language for expressing a range of 
information models, it is not intended to be the ultimate modeling language. Instead, 
one intended use of the MOF is as a tool for designing and implementing more 
sophisticated modeling systems. The following example illustrates how the MOF might 
be used to construct a software development system centered around a hypothetical 
"Universal Design Language" (UDL).

Many parallels can be drawn between the hypothetical UDL discussed below and the 
draft OA&DF UML proposal in that UML is designed to be a general purpose 
modeling language for visualizing, designing, and developing component software.  
The UDL can be thought of as an extension, as well as a refinement, of many of the 
concepts in the UML. The extensions are mainly in the area of providing sufficient 
detail to complete the implementation framework technologies and defining additional 
meta models that address various technology domains such as database management, 
transaction processing, etc.
OMG-MOF V1.3        Software Development Scenarios         March 2000 1-3



1

The developer of a software development system based on UDL might start by using 
an MOF Model notation to define a meta-model for UDL. Conceivably, the UDL 
metamodel could reuse part or all of the MOF Model, though this is not necessarily a 
good idea2. The developer could then use a simple MOF-based development system 
(along the lines described above) to translate the UDL metamodel into CORBA IDL 
for a UDL repository, and to provide hand-written or generated software that 
implements the UDL repository and suitable UDL model input tools. 

The hypothetical UDL development system cannot be considered complete without 
some level of support for the process of creating working code that implements 
systems described by the UDL models. Depending on the nature of the UDL, this 
process might involve a number of steps in which the conceptual design is transformed 
into more concrete designs and, finally, into program source code. A UDL 
development system might provide a range of tools to assist the target system designer 
or programmer. These tools would need to be supported by repository functions to 
store extra design and implementation information, along with information such as 
version histories, project schedules, and so on, that form the basis of a mature software 
development process.

In practice, a software development system implemented along these lines would have 
difficulty meeting the needs of the marketplace. A typical software engineering "shop" 
will have requirements on both the technical and the process aspects of software 
engineering that cannot be met by a "one-size-fits-all" development system. The 
current trend in software development systems is for Universal Repository systems; 
that is, for highly flexible systems that can be tailored and extended on the fly.

An MOF-based universal repository system would be based around the core of the 
MOF Model, and a suite of tools for developing target metamodels (for example, the 
UDL) and their supporting tools. Many of the tools in the universal repository could be 
reflective; that is, the tools could make use of information from higher meta-levels to 
allow them to operate across a range of model types. Functionality, such as persistence, 
replication, version control, and access control would need to be supported uniformly 
across the entire repository framework.

1.3 Type Management Scenarios

A second area where early use of the MOF is likely is in the representation and 
management of the various kinds of type information used by the expanding array of 
CORBA infrastructure services. 

The CORBA Interface Repository (IR) is the most central type-related service in 
CORBA. The IR serves as a central repository for interface type definitions in a 
CORBA-based system. The current IR essentially provides access to interface 
definitions that conform to the implied information model of CORBA IDL. While the 

2.  The MOF meta-model has specific requirements (e.g., model simplicity and support for 
automatic IDL generation) that are not generally applicable. As a consequence, it is unrea-
sonable to expect the MOF meta0model design to be suitable for all kinds of object model-
ing. 
1-4                    OMG-MOF V1.3                            March 2000 



1

IR interfaces are tuned fairly well to read-only access, there is no standard update 
interface and no way to augment the interface definitions in the IR with other relevant 
information, such as behavioral semantics.

Given a simple MOF-based development environment (as described above), it would 
be easy to describe the implied information model for CORBA IDL using a notation 
for the MOF Model. The resulting CORBA IDL model could then be translated into 
the IDL for an MOF-based replacement for the CORBA IR. While this replacement IR 
would not be upwards compatible with the existing IR, the fact that it was MOF-based 
would provide a number of advantages. The MOF-based IR would:

• Support update interfaces.

• Be extensible in the sense that it would be feasible to extend the CORBA IDL 
model specification by (MOF Model) composition and inheritance. This ability 
would help smooth the path for future extensions to the CORBA object model.

• Make it easier to federate multiple IR instances and to represent associations 
between CORBA interface types and other kinds of type information.

• Automatically include links to its own meta-information definition expressed using 
MOF meta-objects.

Other candidates for use of MOF-based technology among existing and forthcoming 
infrastructure services include:

• Trader: The CORBA trader service maintains a database of "service offers" from 
services in a CORBA-based distributed environment. These offers have associated 
service types that are represented using the 
CosTradingRepos::ServiceTypeRepository interface. (A trader service type is a 
tuple consisting of a type name, an interface type, and a set of named property 
types. Service types can be defined as subtypes of other service types.)

• Notification: At least one initial submission for the forthcoming Notification service 
includes the notion of an event type. (An event type is a tuple consisting of a type 
name, a set of named property types, and a set of supertypes.) 

In both cases, an MOF-based type repository would have the advantages listed 
previously for the MOF-based Implementation Repository.

Looking to the future, there are a number of other possible uses for MOF-based type 
repositories in infrastructure services. For example:

• Service interface bridges: As CORBA matures and there is large-scale deployment 
as part of enterprise-wide computing infrastructures, it will become increasingly 
necessary to cope with legacy CORBA objects; that is, with objects that provide or 
use out-of-date service interfaces. In situations where statically deployed object 
wrappers are not a good solution, one alternative is to provide an ORB-level service 
that can insert an interface bridge between incompatible interfaces at bind time. 
Such a service would depend on types that describe the available bridges and the 
mechanisms used to instantiate them.

• Complex bindings: RM-ODP supports the idea that bindings between objects in a 
distributed environment can be far more complex than simple RPC, stream or 
multicast protocols. RM-ODP defines the notion of a multi-party binding involving 
OMG-MOF V1.3        Type Management Scenarios         March 2000 1-5



1

an arbitrary number of objects of various types, in which different objects fill 
different roles in the binding. A CORBA service to manage complex bindings 
would be based on formally described binding types that specify the numbers and 
types of objects filling each role and the allowed interaction patterns (behaviors) for 
a given binding.

1.4 Information Management Scenarios

The previous sections focused on the use of the MOF to support the software 
development life-cycle and the type management requirements of CORBA 
infrastructure services. This section broadens the scope to the more general domain of 
information management; that is, the design, implementation, and management of large 
bodies of more or less structured information.

First, note that some of the ideas outlined above carry over to the information 
management domain. In some cases, it may be appropriate to define the information 
model (that is, the database schema) for the application of interest directly using the 
MOF Model. In this case, the technology described previously can be used to automate 
the production of CORBA-based servers to store the information and applications to 
use it. In other situations, the MOF Model can be used to define a metamodel suitable 
for defining information models for the domain of interest; for example, a metamodel 
for describing relational database schemas. Then a development environment can be 
designed and implemented using MOF-based technology that supports the generation 
of CORBA-based data servers and applications from information models.

In addition, the MOF potentially offers significant benefits for large-scale information 
systems by allowing such a system to make meta-information available at run-time. 
Some illustrative examples follow.

Information discovery: The World-Wide Web contains a vast amount of useful (and 
useless) information on any topic imaginable. However, this information is largely 
inaccessible. In the absence of other solutions, current generation web indexing 
systems or search engines must rely on simple word matching. Unless the user frames 
queries carefully, the number of "hits" returned by a search engine are overwhelming. 
Furthermore, it is now apparent that even the largest search engines cannot keep pace 
with the Web's rate of growth.

In the absence of software that can "understand" English text, the approach most likely 
to succeed is to build databases of meta-data that describe web pages. If this meta-data 
is represented using MOF-based technology and an agreed base metamodel for the 
meta-data, the framework can support local meta-data extensions through judicious use 
of MOF-supported reflection. In addition, because the meta-data framework is defined 
in the MOF context, it can be accessible to a larger class of generic tools.

1.5 Data Warehouse Management Scenarios

Data warehousing is a recent development in enterprise-scale information management. 
The data warehouse technique recognizes that it is impractical to manage the 
information of an enterprise as a unified logical database. Instead, this technique 
1-6                    OMG-MOF V1.3                            March 2000 



1

extracts information from logically- and physically-distinct databases, integrates the 
information, and stores it in a large-scale "warehouse" database that allows read-only 
access to possibly non-current data. The extraction and integration processes depend 
on a database administrator creating a mapping from the schemas for the individual 
databases to the schema of the warehouse. If the meta-information for the various 
databases is represented using MOF-based technology, then it should be possible to 
create sophisticated tools to assist the database administrator in this process.

Meta data is often described as the "heart and soul" of the data warehouse 
environment. The MOF can be used to automate meta data management of data 
warehouses. Current meta data repositories that manage data warehouses often use 
static meta data using batch file-based meta data exchange mechanisms. We expect the 
use of MOF- and standard CORBA-based event and messaging mechanisms and 
mobile agent technology (also being standardized by OMG) to drive a new generation 
of data warehouse management tools and systems that are more dynamic. These tools 
will enable customers to react in a timelier manner to changing data access patterns 
and newly discovered patterns, which is the focus of data mining and information 
discovery systems. 

The MOF interfaces and the MOF Model can be used to define specific metamodels 
for database, data warehouse, model transformation, and warehouse management 
domains. The integration between these models in a run time data warehouse and the 
development environment (which has data models) and UML based object models 
(which describes the corporate data models and operational databases) is a typical use 
of an MOF. The traceability across these environments is enabled by defining an 
impact analysis metamodel which builds on the rich model of relationships supported 
by the MOF.
OMG-MOF V1.3        Data Warehouse Management Scenarios         March 2000 1-7



1

1-8                    OMG-MOF V1.3                            March 2000 



MOF Conceptual Overview 2
Contents

This chapter contains the following topics. 

2.1 Overview

The Meta Object Facility is a large specification. This chapter aims to make the MOF 
specification easier to read by providing a conceptual overview of the MOF.

The chapter starts by explaining the MOF’s conceptual architecture for describing and 
defining meta-data. The next section introduces the meta-modeling constructs that are 
used to describe meta-data. This is followed by a section that describes how meta-
models are mapped to implementation technologies, including the IDL mapping and 
XMI.

2.2 Meta-data Architectures

The central theme of the MOF approach to meta-data management is openness. The 
aim is to provide a framework that supports any kind of meta-data, and that allows new 
kinds to be added as required. In order to achieve this, the MOF uses a layered meta-
data architecture that is based on the traditional four layer meta-modeling architecture 

Topic Page

“Overview” 2-1

“Meta-data Architectures” 2-1

“The MOF Model - Meta-modeling Constructs” 2-5

“Meta-models and Mappings” 2-21
OMG-MOF V1.3                            March 2000 2-1



2

that is popular within standards communities such as ISO and CDIF. The key feature of 
this architecture is a meta-meta-modeling layer that provides a common language that 
ties together the meta-models and models.

The MOF meta-data architecture is typically (though not exclusively) used as a four 
layer framework. The MOF Model, which corresponds to the meta-meta-model in a 
traditional four layer meta-modeling architecture, is an object modeling language that 
is closely related to UML. The MOF Model is used to define the structure and 
semantics of general or domain specific meta-models (i.e., schemas for the meta-data 
of interest). While the MOF Model is object-oriented, it is equally well suited to 
defining object oriented meta-models, more traditional (e.g., Relational, Entity-
Relationship) meta-models, and even simpler ones.

The traditional four layer meta-data architecture is briefly described below. This is 
followed by a description of how this maps onto the MOF meta-data architecture. 

2.2.1 Four Layer Meta-data Architectures

The traditional framework for meta-modeling is based on an architecture with four 
layers. These layers are conventionally described as follows:

• The user object layer is comprised of the information that we wish to describe. This 
information is typically referred to as “data.”

• The model layer is comprised of the meta-data that describes information. Meta-
data is informally aggregated as models.

• The meta-model layer is comprised of the descriptions (i.e., meta-meta-data) that 
define the structure and semantics of meta-data. Meta-meta-data is informally 
aggregated as meta-models. A meta-model can also be thought of as a “language” 
for describing different kinds of data.

• The meta-meta-model layer is comprised of the description of the structure and 
semantics of meta-meta-data. In other words, it is the “language” for defining 
different kinds of meta-data.

The traditional framework is illustrated in Figure 2-1 on page 2-3. This particular 
example shows how the meta-data for simple records (i.e., “StockQuote” instances) 
might be represented. The layers are populated as follows:

• The information layer includes some illustrative StockQuote instances. 

• The model level includes the meta-data that represents the record type for 
“StockQuote” instances. The record type has a name (“StockQuote”) and two fields, 
each of which also has a name and a type. This type will typically be part of some 
larger scale data schema (not shown here). 

• The meta-model level defines what it means to be a record type. The meta-Class for 
Record is shown as having two meta-Attributes, the first defining the Record’s 
name, and the second defining its fields. The Meta-Class for a Field (not shown in 
full) would similarly define the meta-Attributes for the field name and type.
2-2 OMG-MOF V1.3                            March 2000  



2

• The meta-meta-model level is typically hard-wired, and defines the machinery that 
supports the meta-data framework’s meta-modeling constructs; e.g., meta-Classes 
and meta-Attributes.

Note – In theory, it is possible to add a meta-meta-meta-model and so on. However, for 
the purposes of the MOF, this 4-layer model suffices.

Figure 2-1 Four Layer Meta-data Architecture

While the diagram above shows only one model and one meta-model, the primary aim 
of having four meta- layers is to support multiple models and meta-models. Just as the 
model that defines the “StockQuote” type describes many StockQuote instances at the 
information level, the meta-model that defines “Record” and “Field” can describe 
many record types at the model level. Similarly, the meta-meta-model level can 
describe many other meta-models that in turn represent other kinds of meta-data.

The four layer meta-data architecture has a number of advantages:

• Assuming that the meta-meta-model is rich enough, it can support most if not all 
kinds of meta-information imaginable.

• It potentially allows different kinds of meta-data to be related. (This depends on the 
design of the framework’s meta-meta-model.)

• It potentially allows interchange of both meta-data (models) and meta-meta-data 
(meta-models). (This presupposes that the parties to the exchange are using the 
same meta-meta-model.)

2.2.2 The MOF Meta-data Architecture

The MOF meta-data architecture, shown in Figure 2-2, is based on the traditional four 
layer meta-data architecture described above.

StockQuote (“Sunbeam Harvesters”, 98.77)
StockQuote (“Ace Taxi Cab Ltd”, 12.32)

Record ( “StockQuote”,
[ Field ( “company”, String )

Field ( “price”, FixedPoint ) ] )

MetaClass ( “Record”,
[ MetaAttr ( “name”, String),

MetaAttr ( “fields”, List < “Field”> ) ]
MetaClass ( “Field”, ... )

Hard-wired Meta-meta-model

information

model

meta-model

meta-meta-model

...
OMG-MOF V1.3             Meta-data Architectures             March 2000 2-3



2

Figure 2-2 MOF Meta-data Architecture

The above diagram shows the MOF meta-data architecture instantiated with meta-
models and models for UML and OMG IDL.

The MOF meta-data architecture has a few important features that distinguish it from 
earlier meta-modeling architectures:

• The MOF Model is object-oriented, supporting meta-modeling constructs that are 
aligned with (though a bit simpler than) UML’s object modeling constructs. Hence, 
the diagram above uses UML style Package icons to denote MOF-based meta-
models as well as UML models.

• The MOF Model is self-describing. In other words, the MOF Model is formally 
defined using its own meta-modeling constructs. Hence, the MOF Model is also 
denoted by a UML style Package icon.

The self-defining nature of the MOF Model has some important consequences:

• It helps to validate the MOF’s meta-modeling constructs. Since the MOF Model can 
describe itself, it should be adequate for describing other meta-models of similar 
complexity.

• It allows the MOF’s interfaces and behavior to be defined by applying the MOF 
IDL mapping to the MOF Model. This provides uniformity of semantics between 
computational objects that represent models and meta-models. It also means that 
when a new technology mapping is defined, the APIs for managing meta-models in 
that context are implicitly defined as well.

• It provides an architectural basis for future extensions and modifications to the 
MOF Model.

MOF Model

models

meta-models

meta-meta-model

UML

MOF Model
MOF Model

UML Models

IDL Interface
IDL Interface

IDL Interfaces

Meta-model 
IDL

Meta-model 

M3 layer

M2 layer

M1 layer

M0 layer

...

...
2-4 OMG-MOF V1.3                            March 2000  



2

2.2.3 MOF Meta-modeling Terminology

There is enormous scope for confusion if standard meta-modeling terminology is used 
in the MOF specification. To avoid this and to make it easier to read, we have opted to 
simplify the terminology. Some particular points of confusion are as follows:

• The number of MOF meta-levels is not fixed. Since meta-levels are conventionally 
named upwards from the “information” layer, the meta-level of the top of MOF 
meta-data framework can vary.

• There are a number of object modeling concepts that appear at two, three, or even 
four levels in a well populated MOF meta-data framework. For example, a class in 
a UML is described by an instance of the class “Class” in the UML meta-model. 
This is in turn described by an instance of the class “Class” in the MOF Model. 
Finally, the class “Class” in the MOF Model is described by itself.

• While the “meta-” prefix has a clear meaning in the context of the MOF, evidence 
suggests that people who encounter it for the first time find it very confusing. This 
is particularly the case for forms like “meta-meta-” and “meta-meta-meta-”.

To avoid some of this confusion, we generally try to avoid using the “meta-” prefix. In 
particular, while the core of the MOF is a meta-meta-model (assuming that there are 4 
meta- layers), it is referred to as “the MOF Model.” Similarly, rather than using terms 
like Class, MetaClass, and MetaMetaClass, we use phraseology like “an M1-level 
instance of an M2-level Class.” Terms like M1-level and M2-level are relative labels of 
the meta- levels. (We assume that the reader can mentally adjust the “meta-ness” to fit 
the context.)

There are three cases where it is convenient to use the “meta-” prefix as part of MOF 
terminology:

1. The term “meta-data” is used to refer to data whose purpose is to describe other 
data.

2. The term “meta-model” is used to refer to a model of some kind of meta-data.

3. The term “meta-object” is used to refer to an abstract or technology specific object 
that represents meta-data.

In each case, the term is used across all meta-levels and has a deliberately imprecise 
meaning.

The core modeling concepts in the MOF use terms that are common with UML. For 
example, an MOF Class corresponds to a UML Class, an MOF Attribute corresponds 
to a UML Attribute, and an MOF Association corresponds to a UML Association. Note 
however that the correspondence is not always a direct match. For example, UML 
Associations may have many AssociationEnds, but MOF Associations must have 
precisely two.

2.3 The MOF Model - Meta-modeling Constructs

This section introduces the MOF’s core meta-modeling constructs (i.e., the MOF’s 
“abstract language”) for defining meta-models.
OMG-MOF V1.3             The MOF Model - Meta-modeling Constructs             March 2000 2-5



2

MOF meta-modeling is primarily about defining information models for meta-data. 
The MOF uses an object modeling framework that is essentially a subset of the UML 
core. In a nutshell, the 4 main modeling concepts are:

1. Classes, which model MOF meta-objects.

2. Associations, which model binary relationships between meta-objects.

3. DataTypes, which model other data (e.g. primitive types, external types, etc.).

4. Packages, which modularize the models.

2.3.1 Classes

Classes are type descriptions of “first class instance” MOF meta-objects. Classes 
defined at the M2 level logically have instances at the M1 level. These instances have 
object identity , state, and behavior. The state and behavior of the M1 level instances are 
defined by the M2 level Class in the context of the common information and 
computational models defined by the MOF specification.

Instances of classes belong to class extents that impact on certain aspects of their 
behavior. It is possible to enumerate all instances of a class in a class extent (see 
Section 4.6.2, “Class Extents,” on page 4-10).

Classes can have three kinds of structural features. Attributes and Operations described 
below and References described in Section 2.3.4, “References,” on page 2-12. Classes 
can also contain Exceptions, Constants, DataTypes, Constraints, and other elements.

2.3.1.1 Attributes

An Attribute defines a notional slot or value holder, typically in each instance of its 
Class. An Attribute has the following properties.

The aggregation properties of an Attribute depend on the Attribute’s type; see 
Section 2.3.3, “Aggregation,” on page 2-11.

Property Description

name Unique in the scope of the Attribute’s Class.

type May be a Class or a DataType.

“isChangeable” flag Determines whether the client is provided with an 
explicit operation to set the attribute’s value.

“isDerived” flag Determines whether the contents of the notional value 
holder is part of the “explicit state” of a Class instance, 
or is derived from other state.

“multiplicity” 
specification

(see “Attribute and Parameter Multiplicities” on 
page 2-7)
2-6 OMG-MOF V1.3                            March 2000  



2

2.3.1.2 Operations

Operations are “hooks” for accessing behavior associated with a Class. Operations do 
not actually specify the behavior or the methods that implement that behavior. Instead 
they simply specify the names and type signatures by which the behavior is invoked. 
Operations have the following properties.

2.3.1.3 Attribute and Operation Scoping

Attributes and Operations can be defined as “classifier level” or “instance level.” An 
instance-level Attribute has a separate value holder for each instance of a Class. By 
contrast, a classifier-level Attribute has a value holder that is shared by all instances of 
the Class in its class extent.

Similarly, an instance-level Operation can only be invoked on an instance of a Class 
and will typically apply to the state of that instance. By contrast, a classifier-level 
Operation can be invoked independently of any instance, and can apply to any or all 
instances in the class extent.

2.3.1.4 Attribute and Parameter Multiplicities

An Attribute or Parameter may be optional-valued, single-valued, or multi-valued 
depending on its multiplicity specification. This consists of three parts:

1. The “lower” and “upper” fields place bounds on the number of elements in the 
Attribute or Parameter value. The lower bound may be zero and the upper may be 
“unbounded.”

Property Description

name Unique in the scope of the Class.

list of positional parameters having the following properties:

Parameter name:

Parameter type may be denoted by a Class or a DataType

Parameter direction 
of “in,” “out,” or “in
out” 

determines whether actual arguments are passed from 
client to server, server to client, or both.

Parameter
“multiplicity”
specification

see “Attribute and Parameter Multiplicities” on page 2-7

An optional return type.

A list of Exceptions that can be raised by an invocation.
OMG-MOF V1.3             The MOF Model - Meta-modeling Constructs             March 2000 2-7



2

• A single-valued Attribute or Parameter has lower bound 1 and upper bound 1. An 
optional-valued Attribute or Parameter has lower bound 0 and upper bound 1. All 
other cases are called multi-valued parameters (since their upper bound is greater 
than 1).

Note – Multiplicity bounds are typically notated as one or two numbers, with “*” used 
to denote unbounded. For example, a UML bounds specification of “1” translates to 
lower and upper bounds of 1, and “2..*” translates to a lower bound of 2 and no upper 
bound. 

2. The “is_ordered” flag says whether the order of values in a holder has semantic 
significance. For example, if an Attribute is ordered, the order of the individual 
values in an instance of the Attribute will be preserved.

3. The “is_unique” flag says whether instances with equal value are allowed in the 
given Attribute or Parameter. The meaning of “equal value” depends on the base 
type of the Attribute or Parameter. See Section 4.2.1, “Semantics of Equality for 
MOF Values,” on page4-3 , and Section 5.3.1, “Value Types and Equality in the IDL 
Mapping,” on page 5-6 for additional information.

Note – The bounds and uniqueness parts of a multiplicity specification can give rise to 
runtime “structural checks” (see “Structural Consistency” on page 2-19). By contrast, 
orderedness does not imply any runtime checking.

2.3.1.5 Class Generalization

The MOF allows Classes to inherit from one or more other Classes. Following the lead 
of UML, the MOF Model uses the verb “to generalize” to describe the inheritance 
relationship (i.e., a super-Class generalizes a sub-Class).

The meaning of MOF Class generalization is similar to generalization in UML and to 
interface inheritance in CORBA IDL. The sub-Class inherits all of the contents of its 
super-Classes (i.e., all of the super-Classes Attributes, Operations and References, and 
all nested DataTypes, Exceptions and Constants). Any explicit Constraints that apply to 
a super-Class and any implicit behavior for the super-Class apply equally to the sub-
Class. At the M1 level, an instance of an M2-level Class is type substitutable for 
instances of its M2-level super-Classes.

The MOF places restrictions on generalization to ensure that it is meaningful and that 
it can be mapped onto a range of implementation technologies:

• A Class cannot generalize itself, either directly or indirectly. 

• A Class cannot generalize another Class if the sub-Class contains a model element 
with the same name as a model element contained or inherited by the super-Class 
(i.e., no over-riding is allowed).
2-8 OMG-MOF V1.3                            March 2000  



2

• When a Class has multiple super-Classes, no model elements contained or inherited 
by the super-Classes can have the same name. There is an exception (analogous to 
the “diamond rule” in CORBA IDL) that allows the super-Classes to inherit names 
from a common ancestor Class.

Note – It is also possible to use Tags to specify that the interfaces generated for a Class 
inherits from pre-existing interfaces.

2.3.1.6 Abstract Classes

A Class may be defined as “abstract.” An abstract Class is used solely for the purpose 
of inheritance. No meta-objects can ever exist whose most-derived type corresponds to 
an abstract Class.

Note – The MOF uses “abstract Class” in the same sense as UML, and also Java and 
many other object oriented programming languages. Specifying an MOF Class as 
“abstract” does not say how instances are transmitted. In particular, the use of the term 
“abstract class” has no relationship to the IDL keyword “abstract” introduced by the 
Objects-by-value specification.

2.3.1.7 Leaf and Root Classes

A Class may be defined as a “leaf” or “root” Class. Declaring a Class as a leaf prevents 
the creation of any sub-Classes. Declaring a Class as a root prevents the declaration of 
any super-Classes.

2.3.2 Associations

Associations are the MOF Model’s primary construct for expressing the relationships 
in a meta-model. At the M1 level, an M2 level MOF Association defines relationships 
(links) between pairs of instances of Classes. Conceptually, these links do not have 
object identity, and therefore cannot have Attributes or Operations.

2.3.2.1 Association Ends

Each MOF Association contains precisely two Association Ends describing the two 
ends of links. The Association Ends define the following properties..

Property Description

A name for the end This is unique within the Association.

A type for the end This must be a Class.

Multiplicity specification See “Association End Multiplicities” on page 2-10.
OMG-MOF V1.3             The MOF Model - Meta-modeling Constructs             March 2000 2-9



2

2.3.2.2 Association End Multiplicities

Each Association End has a multiplicity specification. While these are conceptually 
similar to Attribute and Operation multiplicities, there are some important differences:

• An Association End multiplicity does not apply to the entire link set. Instead, it 
applies to projections of the link set for the possible values of the “other” end of a 
link. See Figure 2-3.

• Since duplicate links are disallowed in M1-level link sets, “is_unique” is implicitly 
TRUE. The check for duplicate links is based on equality of the instances that they 
connect; see Section 4.2.1, “Semantics of Equality for MOF Values,” on page 4-3.

.

Figure 2-3 The projections of a link set

Figure 2-3 shows a link set for an Association with an AssociationEnd named “left” 
whose Class is A, and a second named “right” whose Class is B. Instances of A are 
shown as “a1,” “a2,” and “a3” and “b1” and “b2” are instances of B. In this example 
with five links, the projection of “a1” is the collection {b1}, and the projection of “b1” 
is the collection {a1, a2, a3}. If there is another B instance (say “b3”) with no 
corresponding links, the projection of that b3 is an empty collection.

An aggregation 
specification

See “Association Aggregation” on page 2-12.

A “navigability” setting Controls whether References can be defined for the end 
(see Section 2.3.4, “References,” on page 2-12).

A “changeability” setting Determines whether this end of a link can be updated 
“in place.”

Property Description

a1

a2

a3

a2

a3

b1

b1

b2

b2

b1

left: Class A right: Class B

Projection of b1

Projection of b2

Projection of a1

Projection of a2

Projection of a3
2-10 OMG-MOF V1.3                            March 2000  



2

The “lower” and “upper” bounds of an Association End constrain the number of 
instances in a projection. For example, if the “left” End of the Association has a 
bounds “0..3”, then the projection of the link set for any extant instance of B must 
contain between zero and three instances of A.

The “is_ordered” flag for the Association End determines whether the projections from 
the other End have an ordering. The MOF Model only allows one of an Association’s 
two Association Ends to be marked as “ordered.”

In the above example, this could say whether order of the elements of the projection of 
“b1” is significant (i.e., whether {a1, a2, a3} is a set or a unique list).

2.3.3 Aggregation

In an MOF meta-model Classes and DataTypes can be related to other Classes using 
Associations or Attributes. In both cases, aspects of the behavior of the relationships 
can be described as aggregation semantics.

2.3.3.1 Aggregation Semantics

The MOF supports two kinds of aggregation for relationships between instances (i.e., 
“composite” and “non-aggregate”). A third aggregation semantic - “shared” - is not 
supported in this version of the MOF specification.

A non-aggregate relationship is a (conceptually) loose binding between instances with 
the following properties:

• There are no special restrictions on the multiplicity of the relationships.

• There are no special restrictions on the origin of the instances in the relationships.

• The relationships do not impact on the lifecycle semantics of related instances. In 
particular, deletion of an instance does not cause the deletion of related instances.

By contrast, a composite relationship is a (conceptually) stronger binding between 
instances with the following properties:

• A composite relationship is asymmetrical, with one end denoting the “composite” 
or “whole” in the relationship and the other one denoting the “components” or 
“parts.”

• An instance cannot be a component of more than one composite at a time, under 
any composite relationship.

• An instance cannot be a component of itself, its components, its components’ 
components and so on under any composite relationship.

• When a “composite” instance is deleted, all of its components under any composite 
relationship are also deleted, and all of the components’ components are deleted and 
so on.

• The Composition Closure Rule: an instance cannot be a component of an instance 
from a different package extent (see Section 4.9.2, “The Composition Closure 
Rule,” on page 4-20). 
OMG-MOF V1.3             The MOF Model - Meta-modeling Constructs             March 2000 2-11



2

2.3.3.2 Association Aggregation

The aggregation semantics of an Association are specified explicitly using the 
“aggregation” Attribute of the AssociationEnds. In the case of a “composite” 
Association, the “aggregation” Attribute of the “composite” AssociationEnd is set to 
true and the “aggregation” Attribute of the “component” AssociationEnd is set to false. 
Also, the multiplicity for the “composite” AssociationEnd is required to be “[0..1]” or 
“[1..1]” in line with the rule that an instance cannot be a component of multiple 
composites.

2.3.3.3 Attribute Aggregation

The effective aggregation semantics for an Attribute depend on the type of the 
Attribute. For example:

• An Attribute whose type is expressed as a DataType has “non-aggregate” semantics.

• An Attribute whose type is expressed as a Class has “composite” semantics.

It is possible to use a DataType to encode the type of a Class. Doing this allows the 
meta-model to define an Attribute whose value or values are instances of a Class 
without incurring the overhead of “composite” semantics.

2.3.4 References

The MOF Model provides two constructs for modeling relationships between Classes 
(i.e., Associations and Attributes). While MOF Associations and Attributes are similar 
from the information modeling standpoint, they have important differences from the 
standpoints of their computational models and their corresponding mapped interfaces.

Note – Attributes can also model relationships between Classes and DataTypes, but 
that is not relevant to this point.

Associations offer a “query-oriented” computational model. The user performs 
operations on an object that notionally encapsulates a collection of links:

• Advantage: The association objects allow the user to perform “global” queries over 
all relationships, not just those for a given object.

• Disadvantage: The client operations for accessing and updating relationships tend to 
be more complex.

Attributes offer a “navigation-oriented” computational model. The user typically 
performs get and set operations on an attribute.

• Advantage: The get and set style of interfaces are simpler, and tend to be more 
natural for typical meta-data oriented applications which “traverse” a meta-data 
graph.

• Disadvantage: Performing a “global” query over a relationship expressed as an 
Attribute is computationally intensive.
2-12 OMG-MOF V1.3                            March 2000  



2

The MOF Model provides an additional kind of Class feature called a Reference that 
provides an alternative “Attribute like” view of Associations. A Reference is specified 
by giving the following:

• a name for the Reference in its Class, 

• an “exposed” Association End in some Association whose type is this Class or a 
super-Class of this Class, and

• a “referenced” Association End which is the “other” end of the same Association.

Defining a Reference in a Class causes the resulting interface to contain operations 
with signatures that are identical to those for an “equivalent” Attribute. However, rather 
than operating on the values in an attribute slot of a Class instance, these operations 
access and update the Association, or more precisely a projection of the Association. 
This is illustrated in UML-like notation in Figure 2-4.

Figure 2-4 An example of a Reference

Figure 2-4 shows a Class called My_Class_1 that is related to My_Class_2 by the 
Association My_Assoc. My_Class_1 has an Attribute called “attr” whose type is 
Integer. In addition, it has a Reference called “ref” that references “end2” of the 
Association. This provides an API for “ref” that allows a user to access and update a 
My_Class_1 instance’s link to a My_Class_2 instance using get and set operations.

Note – Strictly speaking, the UML notation in the diagram shows “ref” as a derived 
attribute of My_Class_1 with type of My_Class_2. 

The example above shows a Reference that “exposes” an Association End with a 
multiplicity of “[1..1]”. References can actually expose ends with any valid 
multiplicity specification. The resulting Reference operations are similar to those for 
an Attribute with the same multiplicity. However, since MOF Associations do not 
allow duplicates, Association Ends and therefore References must always have their 
multiplicity “is_unique” flag set to true.

There are some of important restrictions on References:

• When the “is_navigable” property of an Association End is false, it is not legal to 
define a Reference that “references” that Association End.

• An M1 instance of a Class that “references” an Association cannot be used to make 
a link in an instance of the Association in a different extent. This restriction is 
described in Section 4.9.1, “The Reference Closure Rule,” on page 4-19.

My_Class_1

attr: Integer
/ref: My_Class_2

My_Class_2

.....1

My_Assoc
end_1 end_2

«exposes»

«references»
OMG-MOF V1.3             The MOF Model - Meta-modeling Constructs             March 2000 2-13



2

2.3.5 DataTypes

Meta-model definitions often need to use attribute and operation parameter values that 
have “ordinary” types. The MOF provides the meta-modeling concept of a DataType to 
fill this need.

In general terms, DataTypes can be used to represent two kinds of type:

1. Meta-models often need to define types whose values do not have object identity; 
e.g. integers, strings, enumerations and so on.

2. Meta-models sometimes need to reuse “external” types; i.e. types which are defined 
in some kind of non-MOF interface specification.

Note – The current MOF specification only states how CORBA data types and 
(external) CORBA interface types are handled. Support for other type systems is 
scheduled for inclusion in the next revision.

See Section 3.4.7, “DataType,” on page 3-33 for more details on how DataTypes are 
used to express types.

2.3.6 Packages

The Package is the MOF Model construct for grouping elements into a meta-model. 
Packages serve two purposes. 

1. At the M2 level, Packages provide a way of partitioning and modularizing the meta-
model space. Packages can contain most kinds of model element (e.g., other 
Packages, Classes, Associations, DataTypes, Exceptions, Constants and so on).

2. At the M1 level, Package instances act the outermost containers for meta-data. 
Indirectly, they also define the scope boundaries of Association link sets and of 
“classifier level” Attributes and Operations on Class instances (see Section 4.6.4, 
“Package Extents,” on page 4-11).

The MOF Model provides four mechanisms for meta-model composition and reuse 
(i.e., generalization, nesting, importing, and clustering). These are described in the 
following subsections.

2.3.6.1 Package Generalization

Packages may be generalized by (inherit from) one or more other Packages in a way 
that is analogous to Class generalization described in Section 2.3.1.5, “Class 
Generalization,” on page 2-8. When one Package inherits from another, the inheriting 
(sub-) Package acquires all of the meta-model elements belonging to the (super-) 
Package it inherits from. Package inheritance is subject to rules that prevent name 
collision between inherited and locally defined meta-model elements.
2-14 OMG-MOF V1.3                            March 2000  



2

At the M1 level, a sub-Package instance has the ability to create and manage its own 
collections of Class instances and Links. This applies to the Classes and Associations 
that it defines explicitly, and to those that it acquires by inheritance. 

The relationship between instances of the super- and sub-Packages is similar to 
relationship between instances of super- and sub-Classes:

• A sub-Package instance is type substitutable for instances of its super-Packages 
(i.e., the sub-Package instance “IS_A” super-Package instance).

• A sub-Package instance does not use or depend on an instance of the super-Package 
(i.e., there is no “IS_PART_OF” relationship).

Packages may be defined as “root” or “leaf” Packages (with analogous meaning to 
“root” and “leaf” Classes), but “abstract” Packages are not supported.

2.3.6.2 Package Nesting

A Package may contain other Packages, which may in turn contain other Packages. 
Model elements defined in nested Packages may be strongly coupled to other model 
elements in the same containment. For example, a Class in a nested Package have a 
Reference that links it via an Association in its context, or its semantics could be 
covered by a user-defined Constraint that applies to the enclosing Package.

A nested Package is a component of its enclosing Package. Since, in general, the 
model elements in a nested Package can be inextricably tied to its context, there are 
some significant restrictions on how nested Packages can be composed. In particular, 

• a nested Package may not generalize or be generalized by other Packages.

• a nested Package may not be imported or clustered by other Packages.

Nested Packages are not directly instantiable. No factory objects or operations are 
defined for nested Package instances. An M1 level instance of a nested Package can 
only exist in conjunction with an instance of its containing Package. Conceptually, a 
nested Package instance is a component of an instance of its containing Package.

Note – The main effect of nesting one Package inside another is to partition the 
concepts and the namespace of the outer Package. Nesting is not a mechanism for 
reuse. Indeed when a Package is nested, the options for reusing its contents are 
curtailed.

2.3.6.3 Package Importing

In many situations, the semantics of Package nesting and generalization do not provide 
the best mechanism for meta-model composition. For example, the meta-modeler may 
wish to reuse some elements of an existing meta-model and not others. The MOF 
provides an import mechanism to support this.
OMG-MOF V1.3             The MOF Model - Meta-modeling Constructs             March 2000 2-15



2

A Package may be defined as importing one or more other Packages. When one 
Package imports another, the importing Package is allowed to make use of elements 
defined in the imported one Package. As a shorthand, we say that the elements of the 
imported Package are imported.

Here are some examples of how a Package can reuse imported elements. The importing 
Package can declare:

• Attributes, Operations, or Exceptions using imported Classes or DataTypes, 

• Operations that raise imported Exceptions,

• DataTypes and Constants using imported DataTypes or Constants,

• Classes whose supertypes are imported Classes, and

• Associations for which the types of one or both Association Ends is an imported 
Class.

At the M1 level, an instance of an importing Package has no explicit relationship with 
any instances of the Packages that it imports. Unlike a subtype Package, an importing 
Package does not have the capability to create instances of imported Classes. A client 
must obtain any imported Class instances it needs via a separate instance of the 
imported Package.

2.3.6.4 Package Clustering

Package clustering is a stronger form of Package import that binds the importing and 
imported Package into a “cluster.” As with ordinary imports, a Package can cluster a 
number of other Packages, and can be clustered by a number of other Packages.

An instance of a cluster Package behaves as if the clustered Packages were nested 
within the Package. That is, the lifecycle of a clustered Package instance is bound to 
the lifecycle of its cluster Package instance. In particular:

• When the user creates an instance of a cluster Package, an instance of each of its 
clustered Packages is created automatically.

• The instances of the clustered Packages created above all belong to the same cluster 
Package extent.

• Deleting a cluster Package instance automatically deletes its clustered Packaged 
instances, and the clustered Package instances cannot be deleted except as part of 
the deletion of the cluster Package instance.

However, unlike a nested Package, it is possible to create an independent instance of a 
clustered Package. Also, in some situations clustered Package instances are not strictly 
nested.

Note – It is possible to cluster or inherit from Packages that cluster other Packages. 
The impact of this on M1 level instance relationships is discussed in Section 4.6.4, 
“Package Extents,” on page 4-11.
2-16 OMG-MOF V1.3                            March 2000  



2

In summary, the relationship between the M1 level instances in a Package cluster is 
that each clustered Package instance is a component of the cluster Package instance. 
Unlike nested Packages, there is no composite relationship between the M2 level 
Packages.

2.3.6.5 Summary of Package Composition Constructs

The properties of the four Package composition mechanisms defined by the MOF 
Model are summarized by Table 2-1. 

The symbology of the table is based on UML (i.e., a filled diamond means 
composition, a hollow diamond means aggregation, a hollow triangle means 
inheritance, and a dotted arrow means “depends on”). 

Note that P1 and P2 denote different (though related) things in different columns of the 
table:

• In column 2, they denote conceptual M2 level Packages in a meta-model.

• In column 3, they denote both the conceptual M2 level Packages, and the objects 
that represent them in a reified meta-model.

• In column 4, they denote M1 level Package instances (when underlined) or their 
types.

2.3.7 Constraints and Consistency

The MOF Model constructs described so far allow the meta-modeler to define a meta-
data information that comprises nodes (Classes) with attached properties (Attributes / 
DataTypes) and relationships between nodes (Associations). While the above 
constructs are sufficient to define an “abstract syntax” consistent of meta-data nodes 
and links, this syntax typically needs to be augmented with additional consistency 
rules.

This section describes the MOF Model’s support for consistency rules and model 
validation.

Table 2-1 Package Composition Constructs

Meta-model Construct Conceptual 
Relationship

M2 level Relationship 
Properties

M1 level Relationship 
Properties

Nesting P1 contains P2

Generalization / Inheritance P1 generalizes P2

Importing P1 imports P2 none

Clustering P1 clusters P2
or none

P1 P2 P1 P2

P2 P1 P2 P1

P1 P2

P1 P2 P1 P2
OMG-MOF V1.3             The MOF Model - Meta-modeling Constructs             March 2000 2-17



2

2.3.7.1 Constraints

The MOF Model defines a element called Constraint that can be used to attach 
consistency rules to other meta-model components. A Constraint comprises:

• a constraint name,

• a “language” that identifies the language used to express the consistency rules,

• an “expression” in the language that specifies a rule,

• an “evaluation policy” that determines when the rule should be enforced, and

• a set of “constrained elements.”

A Constraint expression is an expression in some language that can be “evaluated” in 
the context of a meta-model to decide if it is valid. The MOF specification does not 
define or mandate any particular languages for Constraint expressions, or any 
particular evaluation mechanisms. Indeed, it is legitimate for Constraints to be 
expressed in informal language (e.g., English) and for validation to be implemented by 
ad-hoc programming. However, the Constraints that are part of the MOF Model 
specification itself are expressed in Object Constraint Language (OCL) as described in 
the UML specification.

The evaluation policy property of a Constraint determines whether the consistency rule 
should be enforced immediately or at a later time. Figure 2-5 gives a simple example 
that will be used to illustrate the need for evaluation policies. 

Figure 2-5 Examples of Constraints

In Figure 2-5, Constraint X constrains only Attribute a while Constraint B constrains 
both Attributes a and b.

It is feasible to check the first Constraint (X: “a is odd” on the Attribute “a”) at any 
time. It could be checked whenever a value for “a” is supplied (e.g., at instance 
creation and when “a” is updated). An exception would be raised if the new value for 
“a” was even. Alternatively, constraint checking could be deferred to a later point (e.g., 
when the user requests validation of a model).

My_Class

a: Integer

b: Integer

Constraint X 

Constraint Y

b equals a * 2

a is odd
2-18 OMG-MOF V1.3                            March 2000  



2

The second constraint (Y: “b equals a * 2” on both Attributes “a” and “b”) is another 
matter. If a server enforces Y on every update, the user would never be able to change 
the values of either “a” or “b.” No matter which order the user invoked the operations, 
the updates would raise an exception. Instead, enforcement of Y must be deferred until 
both “a” and “b” have been updated.

Note – The Constraint construct is intended to be used for specifying consistency rules 
for models rather than for defining the computation behavior of (for example) 
Operations. It is “bad style” to specify Constraint expressions that have side-effects on 
the state of a model, not least because it is unspecified when Constraints are evaluated .

2.3.7.2 Structural Consistency

As noted previously, an MOF-based meta-model defines an “abstract syntax” for meta-
data. Some aspects of the abstract syntax are enforced by the corresponding meta-data 
server’s IDL. For example, the operation that creates a link for an Association has a 
type signature that prevents the user from creating a link with the wrong kind of Class 
instances. However, some aspects of the abstract syntax can only be enforced by 
runtime structural consistency checks. While most of the structural checks are made 
immediately, checks for “underflow” often need to be deferred.

It is not practical for a meta-model to specify a priori all possible things that can go 
wrong in a/n MOF-based meta-data server. It is therefore necessary to recognize that 
a/n MOF server may need to perform a variety of runtime checks that are neither 
defined or implied by the meta-model. These include additional meta-data validation 
that is not specified by the meta-model, resource and access control checks, and 
internal error checking.

2.3.7.3 Consistency Checking Mechanisms

The MOF specification provides a lot of latitude for meta-data server implementations 
in the area of constraint checking or validation.

• Support for checking of Constraints is not mandatory. In particular, there is no 
requirement to support any particular language for Constraint expressions.

• The set of events (if any) that may trigger deferred checking is not specified. No 
general APIs are specified for initiating deferred consistency checking.

• Persistence and interchange of meta-data, which is in an inconsistent state may be 
allowed. (Indeed, this would seem to be a prerequisite for some styles of meta-data 
acquisition.)

• There are no specified mechanisms for ensuring that validated meta-data remains 
valid, or that it does not change.

The one aspect of consistency checking that is mandatory is that a meta-data server 
must implement all structural consistency checks that are labeled as immediate.
OMG-MOF V1.3             The MOF Model - Meta-modeling Constructs             March 2000 2-19



2

2.3.8 Miscellaneous Meta-modeling Constructs

This section describes the remaining significant elements of the MOF Model.

2.3.8.1 Constants

The Constant model element allows the meta-modeler to define simple bindings 
between a name and a constant value. A Constant simply maps onto a constant 
declaration in (for example) the IDL produced by the MOF IDL mapping.

2.3.8.2 Exceptions

The Exception model element allows the meta-modeler to declare the signature of an 
exception that can be raised by an Operation. An Exception simply maps onto (for 
example) an IDL exception declaration.

2.3.8.3 Tags

The Tag model element is the basis of a mechanism that allows a “pure” MOF meta-
model to be extended or modified. A Tag consists of:

• a name that can be used to denote the Tag in its container,

• a “tag id” that denotes the Tag’s kind,

• a collection of zero or more “values” associated with the Tag, and

• the set of other model elements that the Tag is “attached” to.

The meaning of a model element is (notionally) modified by attaching a Tag to it. The 
Tag’s “tag id” categorizes the intended meaning of the extension or modification. The 
“values” then further parameterize the meaning.

As a general rule, the definition of values and meanings for “tag id” strings is beyond 
the scope of the MOF specification. The specification recommends a tag id naming 
scheme that is designed to minimize the risk of name collision, but use of this scheme 
is not mandatory; see Section 3.4.23, “Tag,” on page 3-63.

One exception to this is the MOF to IDL Mapping. This defines some standard tag ids 
that allow a meta-model to influence the IDL mapping; see Section 5.6, “Standard Tags 
for the IDL Mapping,” on page 5-35 for the complete list. For example:

• “Substitute Name” provides an alternative IDL identifier for an element in a meta-
model, and

• “IDL Prefix” allows the meta-modeler to specify the IDL “prefix” for a top-level 
Package.
2-20 OMG-MOF V1.3                            March 2000  



2

2.4 Meta-models and Mappings

The previous sections outlined the overall meta-data architecture for the MOF, and the 
meta-modeling constructs provided by the MOF Model. This section describes the 
Mapping approach that is used to instantiate MOF meta-models and meta-data in the 
context of a given implementation technology.

This section is organized as follows. The first subsection outlines the purpose and 
structure of MOF Mappings. The next two subsections give high-level overviews of the 
OMG MOF technology mappings defined to date. The final subsection explains how 
the standard mappings are applied to the MOF Model to produce the OMG IDL for the 
MOF Model server and an XML DTD for meta-model interchange.

2.4.1 Abstract and Concrete Mappings

MOF Mappings relate an M2-level meta-model specification to other M2 and M1-level 
artifacts, as depicted in Figure 2-6.

Figure 2-6 The function of MOF Technology Mappings

Figure 2-6 depicts the Mapping derived relationships for an application meta-model as 
follows:

• The Abstract mapping (defined in “The MOF Abstract Mapping” chapter) fleshes 
out a MOF meta-model into an abstract information model (i.e., by spelling out the 
logical structure of the meta-data described by the meta-model).

• The IDL Mapping (Section 2.4.2, “CORBA Meta-data Services - The MOF IDL 
Mapping,” on page 2-22) produces the standard OMG IDL and associated 
behavioral semantics for meta-objects that can represent meta-data conforming to 
the meta-model.

• The XML Mapping (see Section 2.4.3, “Meta-data Interchange - The MOF XML 
Mapping,” on page 2-22) produces the standard XML DTD for interchanging meta-
data conforming to the meta-model.

Mof 
Model

Application
Meta-model Applic’n

IDL + Server

Applic’n

XMI DTD

Application meta-data

as CORBA objects

Application meta-data

Application

meta-data as
an XML doc.

XMI - XML Mapping

M3 level

M2 level

M1 level

IDL Mapping

Abstract Mapping
OMG-MOF V1.3             Meta-models and Mappings             March 2000 2-21



2

The Abstract Mapping has two roles: 1) it serves to define the “meaning” of a meta-
model, and 2) it provides a point of alignment for current and future MOF technology 
Mappings.

Since the IDL and XML Mappings are both aligned with the Abstract Mapping there is 
a mechanical one-to-one correspondence between abstract meta-data and meta-data 
expressed as XMI documents and as CORBA meta-objects. This correspondence holds 
for all meta-models. More significantly, it should also hold for any future meta-model 
Mappings (e.g., to Java or DCOM technology) provided that they are aligned with the 
Abstract Mapping.

2.4.2 CORBA Meta-data Services - The MOF IDL Mapping

The MOF IDL Mapping produces a specification for a CORBA meta-data service from 
a MOF meta-model specification. The OMG IDL interfaces and associated behavioral 
semantics are specified in the “MOF to IDL Mapping” chapter and “The Reflective 
Module” chapter. These interfaces support creating, updating, and accessing meta-data 
in the form of CORBA objects, either using “specific” interfaces that are tailored to the 
meta-model or “generic” interfaces that are meta-model independent.

The MOF IDL Mapping places some additional restrictions in MOF meta-models 
beyond those set out in the “MOF Model and Interfaces” chapter. See Section 5.5, 
“Preconditions for IDL Generation,” on page 5-33 for details.

2.4.3 Meta-data Interchange - The MOF XML Mapping

Interchange of MOF-based meta-data is defined in a separate OMG specification. The 
XMI (XML-based Meta-data Interchange) specification leverages the W3C’s XML 
(eXtensible Markup Language) technology to support the interchange of meta-data and 
meta-models between MOF-based and other meta-data repositories.

The XMI specification (ad/98-07-01) has two main parts:

1. The “XML DTD Production Rules” define a uni-directional mapping from a/n MOF 
meta-model to a XML DTD (Document Type Definition) for meta-data interchange 
documents.

2. The “XML Document Production Rules” define a bi-directional mapping between 
an XML document (structured according to the above DTD) and MOF-based meta-
data that (implicitly) conforms to the Abstract Mapping.

2.4.4 Mappings of the MOF Model

The XMI specification has been applied to the MOF Model (rendered as a/n MOF 
meta-model) to produce XML and DTD documents that form an optional compliance 
point of the MOF specification:
2-22 OMG-MOF V1.3                            March 2000  



2

• Appendix A.1, “The MOF Model in XML” contains an XMI rendering of the MOF 
Model itself, along with the XMI generated DTD for MOF meta-models. This XML 
document should be viewed as a normative rendering of the MOF Model for 
interchange purposes.

• Appendix A.2, “The XMI DTD for MOF meta-models” contains the normative XMI 
DTD for the interchange of MOF meta-models.
OMG-MOF V1.3             Meta-models and Mappings             March 2000 2-23



2

2-24 OMG-MOF V1.3                            March 2000  



MOF Model and Interfaces 3
Contents

This chapter contains the following topics. 

3.1 Overview

This chapter describes the model that defines the MOF. The MOF provides a set of 
modeling elements, including the rules for their use, with which to construct models. 
Specifically, the MOF modeling elements support development of meta-models. This 
focus enables the MOF to provide a more domain-specific modeling environment for 
defining meta-models instead of a general-purpose modeling environment. 

A well-designed modeling tool or facility should be based on a meta-model that 
represents the modeling elements and the rules provided by the tool or facility. 

Topic Page

“Overview” 3-1

“How the MOF Model is Described” 3-2

“The Structure of the MOF Model” 3-11

“MOF Model Classes” 3-15

“MOF Model Associations” 3-65

“MOF Model Data Types” 3-77

“MOF Model Exceptions” 3-83

“MOF Model Constants” 3-85

“MOF Model Constraints” 3-86
    OMG-MOF V1.3                              March 2000 3-1



3

Every meta-model is also a model. If the MOF Model described in this section is the 
meta-model for the MOF, where is the model for this meta-model? Formally, the MOF 
is defined in itself; that is, the modeling elements defined in the MOF Model and 
provided by the MOF are used to define the MOF Model itself. In essence, the MOF 
Model is its own meta-model. However, this circular definition does not support 
presentation of the model. Therefore, this specification describes the MOF narratively 
and through the use of UML notation, tables, and Object Constraint Language (OCL) 
expressions.

Note that the use of UML notation is a convenience to the designers of the MOF and 
to the readers of the MOF specification. The semantics of the MOF Model are 
completely defined in the MOF specification and do not depend on the semantics of 
any other model. The MOF interfaces used to manipulate meta-models are dependent 
on CORBA in that these interfaces are specified using CORBA IDL.

A significant amount of the MOF Model syntax and semantics definition is constraint-
based. This specification describes the constraint expressions as clearly as possible. In 
addition, the specification provides a reference to the OCL expression that defines each 
constraint. 

The OCL, which is defined in Object Constraint Language Definition, provides a small 
set of language elements used to define expressions (see the Unified Modeling 
Language Specification for additional OCL information). As an expression language, 
OCL cannot change the state of objects; however, it can express constraints (including 
invariants, preconditions, and post-conditions). OCL expressions use operations 
defined in the MOF Model with the attribute isQuery set to TRUE. (Such operations do 
not change the state of the object.). To ensure complete specification of constraints, 
this document provides OCL definitions for MOF-defined operations used in OCL 
expressions. In addition, to avoid ambiguity or misinterpretation this specification uses 
OCL to define a few of the most complex concepts of the MOF Model.

The interfaces through which the MOF is utilized are generated from the MOF Model. 
However, these interfaces do not provide the semantic information necessary to 
determine the behavior of their operations. Therefore, it is essential to understand the 
MOF in terms of its model and related semantics, not just its interfaces. 

3.2 How the MOF Model is Described

This chapter describes the modeling elements that comprise the MOF Model and 
provide the building blocks for meta-models. Because these elements are formally 
described with the MOF Model itself, the characteristics used to describe the model are 
the same characteristics provided by the model. 

The following subsections briefly describe the conventions that this specification uses 
to define the model elements and their characteristics, with a few exceptions noted.
3-2     OMG-MOF V1.3                              March 2000  



3

3.2.1 Classes

Classes are the fundamental building blocks of MOF meta-models and the MOF 
Model. A Class can have three kinds of features; Attributes, References, and 
Operations. They may inherit from other Classes, and may be related to other Classes 
by Associations. Classes are presented in detail in Section 4.3, “Semantics of Class 
Instances,” on page 4-3.

The MOF uses the term Class with a meaning that is similar to that of Class in UML. 
An MOF Class is an abstract specification or classification of meta-objects that 
includes their state, their interfaces, and (at least informally) behavior. A Class 
specification is sufficient to allow the generation of concrete interfaces with well 
defined semantics for managing meta-object state. However, an MOF Class 
specification does not include any methods to implement meta-object behavior.

The Classes that make up the MOF Model are introduced in Section 3.3, “The 
Structure of the MOF Model,” on page 3-11 and specified in detail in Section 3.4, 
“MOF Model Classes,” on page 3-15. Each Class is defined in terms of its name(s), its 
super-Classes, the Classes whose instances it can contain, its attributes, its references, 
its operations, its constraints, and whether it is abstract or concrete.

Note – Except where stated, the order in which Section 3.4, “MOF Model Classes 
introduces Classes and their component features is not normative. The normative order 
is defined in the XMI for the MOF Model which may be found in Appendix A. This 
order determines the order in which elements appear in the generated IDL, and is in 
theory significant.

This document uses a hybrid textual and tabular notation to define the important 
characteristics of each Class in the MOF Model. The notation defines defaults for most 
characteristics, so that the Class definitions need only explicitly specify characteristics 
that are different from the default. The following text explains the notation used for 
Classes and their characteristic.

3.2.1.1 Class Heading

Each Class in the MOF Model is introduced by a second level section heading. The 
heading defines the standard ModelElement name for the Class. The Classes name on 
the heading line can be followed by the word “ abstract” or by a “substitute_name” for 
some mapping. For example, the following:

3.4.1 ModelElement abstract

introduces a Class called “ModelElement” and defines its Chapter “isAbstract” flag to 
have the value “true.” On the other hand, the following:

3.4.11 Attribute idl_substitute_name “MofAttribute”
OMG-MOF V1.3           How the MOF Model is Described           March 2000 3-3



3

introduces a Class called “Attribute” and defines its substitute name (for the IDL 
mapping) as “MofAttribute.” The latter information is encoded using a Tag whose 
“tagId” is “idl_substitute_name” and whose “values” consist of the Any-ized string 
“MofAttribute.”

Unless stated otherwise each Class in the MOF Model has “isAbstract” set to false, and 
has no attached Tags.

Note – The MOF uses “abstract Class” in the same sense as UML, and also Java and 
many other object oriented programming languages. There is no relationship with the 
IDL keyword “abstract” introduced in CORBA 2.3.

The paragraph or paragraphs following a Class heading give a description of the Class, 
its purpose, and its meaning.

3.2.1.2 Superclasses

The “Superclasses” heading lists the MOF Classes that generalize the Class being 
described. In the MOF context, generalization is another term for inheritance. Saying 
that a Class A generalizes a Class B, means the same as saying that Class B inherits 
from Class A. The sub-Class (B) inherits the contents of the super-Class (A). Multiple 
inheritance is permitted in the MOF.

This heading is always present, since with the sole exception of ModelElement, all 
Classes in the MOF Model have super-Classes.

3.2.1.3 Contained Elements 

Instances of the sub-Classes of NameSpace can act as containers of other elements. If 
present, the “Contained Elements” heading lists the Classes whose instances may be 
contained by an instance of this container Class. It also gives the index of the MOF 
Model Constraint that defines the containment rule for the Class. For more details, see  
Section 3.3.3, “The MOF Model Structure,” on page 3-13. In particular, Table 3-4 on 
page 3-9 expresses the MOF Class containment rules in a concise form.

If the “Contained Elements” heading is absent, instances of the Class may not contain 
other instances. This occurs if the Class is an abstract Class (and therefore has no 
instances), or if the Class is not derived from the Namespace Class.

3.2.1.4 Attributes

The “Attributes” heading lists the Attributes for a Class in the MOF Model. Attributes 
that are inherited from the super-Classes are not listed. If the “Attributes” heading is 
missing, the Class has no Attributes.

All Attributes defined in the MOF Model have a “visibility” of “public_vis.” All have 
a “type” that is represented using a DataType, and therefore all have aggregation 
semantics of “none.” The remaining characteristics of Attributes are defined using the 
notation described in Table 3-1.
3-4     OMG-MOF V1.3                              March 2000  



3

3.2.1.5 References

The “References” heading lists the References for a Class in the MOF Model. A 
Reference connects its containing Class to an Association End belonging to an 
Association that involves the Class. This allows a client to navigate directly from an 
instance of the Class to other instance or instances that are related by links in the 
Association. If the “References” heading is absent, the Class has no References.

A Class involved in an Association may or may not have a corresponding Reference. A 
Reference means that a client can navigate to instances of the other Class; however, 
this comes at the cost of some restrictions. In particular, if one or both Classes in an 
Association have References for that Association, the Reference Closure rule restricts 
the creation of links between instances in different “extents” (see Section 4.9.1, “The 
Reference Closure Rule,” on page 4-19).

Table 3-1 Notation for Attribute Characteristics

Entry Description

type: This entry defines the base type for the Attribute. This is expressed 
as the name of a DataType defined in Section 3.6, “MOF Model 
Data Types,” on page 3-77, or as the name of a CORBA data type 
(e.g., “boolean” or “string”). The base type is represented by the 
Attribute’s “type.”

multiplicity: This entry defines the “multiplicity” for the Attribute, consisting of  
its “lower” and “upper” bounds, an “isOrdered” flag, and an 
“isUnique” flag. See Section 3.6.5, “MultiplicityType,” on 
page 3-78, and Section 4.4.2, “Multiplicity,” on page 4-5 for more 
details. The multiplicity for an Attribute is expressed as follows:
• The “lower” and “upper” bounds are expressed as “exactly one,”,“zero 

or one,” “zero or more,” and “one or more.”
• If the word “ordered” appears, “isOrdered” should be true. If it is 

absent, “isOrdered” should be false.
• If the word “unique” appears, “isUnique” should be true. If it is absent, 

“isUnique” should be false.

changeable: This optional entry defines the “isChangeable” flag for the 
Attribute. If omitted, “isChangeable” is true.

derived from: This optional entry either describes the derivation of a derived 
Attribute, or if the entry is present, the Attribute’s “isDerived” flag 
will be true. If it is absent, the flag will be false.

scope: This optional entry defines the “scope” of an Attribute as either 
“instance_level” or “classifier_level.” If the entry is absent, the 
Attribute’s “scope” is “instance_level.” 
OMG-MOF V1.3           How the MOF Model is Described           March 2000 3-5



3

Note – The modeling of navigation in MOF differs from UML. In UML, mechanisms 
for navigating links are available when the “isNavigable” flag is true for a given 
AssociationEnd. In this case, stronger uniqueness constraints on AssociationEnd names 
mean that they are unique within the namespaces of the Association and all Classes 
involved and their sub-Classes. This means that the AssociationEnd names uniquely 
bind to a “navigator” operation in each context in which navigation might be used.

Most characteristics of References in the MOF Model are either common across all 
References or derived from other information:

• The “visibility” of all References in the MOF Model is “public_vis.”

• The “scope” of all References is “instance_scope.”

• The “type” of all References is the same as the “type” of the AssociationEnd it 
references.

• The “multiplicity” of all References is the same as the “multiplicity” of the 
AssociationEnd it references.

The variable characteristics of References are defined or documented using the 
notation described in Table 3-2.

Table 3-2 Notation for Reference characteristics

Entry Description

class: This entry documents the base type of the Reference and is 
represented as its “type.” Note that the “type” of a Reference must 
be the same as the “type” of the referenced AssociationEnd.

defined by: This entry defines the Association and AssociationEnd that the 
Reference is linked to via a RefersTo link.

multiplicity: This entry documents the “multiplicity” characteristics for the 
Reference. These are written the same way as Attribute 
“multiplicity” characteristics, except that “unique” is omitted 
because its value is predetermined (see Section 3.2.2.2, “Ends,” on 
page 3-8). Note the following:
• the OCL constraints on MultiplicityType and AssociationEnd mean that 

the “isUnique” field must be “false” if the “upper” bound is 1 and 
“true” otherwise, and

• the “multiplicity” settings for an AssociationEnd and its corresponding 
Reference(s) must be the same.

changeable: This optional entry defines the setting of the Reference’s 
“isChangeable” flag. If the entry is absent, the “isChangeable” flag 
is true.

inverse: This optional entry documents the “inverse” Reference for this 
Reference (i.e., the Reference on the link related Class that allows 
navigation back to this Reference’s Class).  If this entry is absent, 
the Reference does not have an inverse Reference.
3-6     OMG-MOF V1.3                              March 2000  



3

3.2.1.6 Operations

The “Operations” heading lists the Operations for a Class in the MOF Model. If the 
heading is absent, the Class has no Operations.

All Operations for Classes in the MOF Model have “visibility” of “public_vis.” The 
remaining characteristics of References are defined using notation described in 
Table 3-3.

Table 3-3 Notation for Operation Characteristics

Entry Description

return type: This optional entry defines the “type” and “multiplicity” of the 
Operation’s return Parameter (i.e., the one with “direction” of 
“return_dir”). The “type” is denoted by a name of a Class or 
DataType in the MOF Model, or a name of a CORBA data type. 
The “multiplicity” is expressed like an Attribute “multiplicity” (see 
Table 3-2 on page 3-6), except that when it is absent, the 
“multiplicity” defaults to “exactly one.”

The return Parameter (if it exists) should be the first contained 
Parameter of the Operation. If this entry is absent or says “none,” 
the Operation does not have a return Parameter.

isQuery: This optional entry defines the Operation’s “isQuery” flag. If it is 
absent, the “isQuery” flag has the value false.

scope: This optional entry defines the Operation’s “scope.” If it is absent, 
the Operation has a “scope” of “instance_level.”

parameters: This entry defines the Operation’s non-return Parameter list in the 
the order that they appear in the Operation’s signature. The 
“name,” “direction,” “type,” and “multiplicity” are defined for 
each Parameter. If the “multiplicity” is not explicitly specified, it 
defaults to “exactly one.” If the entry simply says “none,” the 
Operation has no non-return Parameters.

exceptions: This optional entry defines the list of Exceptions that this 
Operation may raise in the order that they appear in the 
Operation’s signature. If it is absent, the Operation raises no 
Exceptions.

operation 
semantics:

This optional entry simply gives a cross reference to the OCL 
defining the Operation’s semantics. Note that the MOF Model does 
not provide a standard way of representing an Operation’s semantic 
specification, and it is not included in the normative XMI 
serialization of the MOF Model.
OMG-MOF V1.3           How the MOF Model is Described           March 2000 3-7



3

3.2.1.7 Constraints

The “Constraints” heading lists the Constraints that are attached to this Class in the 
MOF Model. The OCL for the Constraints may be found in Section 3.9.4, “The MOF 
Model Constraints,” on page3-91 . Each listed Constraint “constrains” the Class, and is 
also contained by it.

3.2.1.8 IDL

The “IDL” heading shows an excerpt of the MOF Model IDL that corresponds to this 
Class. The excerpts, which are part of the “Model” module given in the “MOF to IDL 
Summary” appendix, consist of a Class proxy interface and an Instance interface. For 
information on these interfaces, refer to the “MOF to IDL Mapping” chapter.

3.2.2 Associations

The Associations in the MOF Model are defined in Section 3.5, “MOF Model 
Associations,” on page 3-65.

Associations describe relationships between instances of Classes. In short, an 
Association relates two Classes (or relates one Class to itself) to define a “link set” that 
contains two-ended “links” between instances of the Classes. The properties of an 
Association rest mostly in its two AssociationEnds. Refer to Section 4.7, “Semantics of 
Associations,” on page 4-12 for a more detailed explanation.

3.2.2.1 Association Heading

Each Association in the MOF Model is introduced by a second level section heading in 
Section 3.5, “MOF Model Associations,” on page 3-65. The heading defines the 
standard ModelElement name for the Association. The Classes name on the heading 
line can be followed by the word “derived.” For example, the following:

3.5.4  Exposes derived

introduces an Association called “Exposes” and defines its Chapter “isDerived” flag to 
be true. If the word “derived” is not present, the Association’s “isDerived” flag is false.

The paragraph or paragraphs following an Association heading give a description of 
the Association, its purpose, and its meaning.

3.2.2.2 Ends

The “Ends” heading defines the two AssociationEnds for an Association in the MOF 
Model. The two AssociationEnds are defined by giving their “name” values and 
defining the remaining characteristics in tabular form.

Every AssociationEnd in the MOF Model has both “isNavigable” and “isChangeable” 
set to true. The remaining characteristics of AssociationEnds are defined using notation 
described in Table 3-4.
3-8     OMG-MOF V1.3                              March 2000  



3

3.2.2.3 Derivation

The “Derivation” heading defines how a derived Association should be computed. It 
may include marker for an OCL rule defined in Section 3.9.5, “Semantic specifications 
for some Operations, derived Attributes and Derived Associations,” on page 3-106.

3.2.2.4 IDL

The “IDL” heading shows an excerpt of the MOF Model IDL that corresponds to this 
Association. These excerpts, which are part of the “Model” module given in the MOF 
IDL Summary appendix, consist of an Association interface and related IDL data 
types. For more information, refer to Chapter 5 - MOF to IDL Mapping.

3.2.3 DataTypes

The DataTypes that form part of the MOF Model are described in Section 3.6, “MOF 
Model Data Types,” on page 3-77.

All DataTypes in the MOF Model have “visibility” of “public_vis.” The settings of the 
dummy attributes are “isAbstract” - false, “isRoot” - true, and “isLeaf” - true.

The remaining characteristics are the Exception’s 

• “name” - given in the section heading, 

• Container - given by the “Container” heading, and 

Table 3-4 AssociationEnds Characteristics

Entry Description

class: This entry specifies the Class whose instances are linked at this 
end of the Association. This is represented by the AssociationEnd’s 
“name” attribute.

multiplicity: This entry defines the AssociationEnd’s “multiplicity” attribute. 
This is expressed in the same way as References (i.e., uniqueness 
is implicit - see Section 3.2.1.5, “References,” on page 3-5). Note 
the following:
• the OCL constraints on MultiplicityType and AssociationEnd mean that 

the “isUnique” field must be “false” if the “upper” bound is 1 and 
“true” otherwise, and

• the “multiplicity” settings for an AssociationEnd and its corresponding 
Reference(s) must be the same.

aggregation: This optional entry defines the AssociationEnd’s “aggregation” 
attribute as one of “composite,” “shared,” or “none” (see 
Section 4.7.5, “Association Aggregation,” on page 4-17). If the 
entry is absent, the AssociationEnd’s “aggregation” attribute takes 
the value “none.” 
OMG-MOF V1.3           How the MOF Model is Described           March 2000 3-9



3

• “typeCode” that can be determined from the declaration under the “IDL” heading. 

If the “Container” heading is absent, the DataType is contained by the Model Package.

3.2.4 Exceptions

The Exceptions that form part of the MOF Model are described in Section 3.7, “MOF 
Model Exceptions,” on page 3-83.

All Exceptions in the MOF Model have “visibility” of “public_vis” and “scope” of 
“classifier_level.”

The remaining characteristics are the Exception’s

• “name” - given in the section heading, and 

• Parameters and Container, which are given in the corresponding headings. 

If the Container heading is absent, the Exception is contained by the Model Package.

3.2.5 Constants

The Constants that form part of the MOF Model are described in Section 3.9, “MOF 
Model Constraints,” on page 3-86.

The characteristics of a Constant are its 

• “name” - given in the section heading, and 

• Container - given under the “Container” heading, and 

• “type” and “value” that can be determined from the IDL. 

If the “Container” heading is absent, the DataType is contained by the Model Package.

3.2.6 Constraints

The Constraints that form part of the MOF Model are described in  Section 3.9, “MOF 
Model Constraints,” on page 3-86. The notation used for describing the constraints is 
described in Section 3.9.2.1, “Notation for MOF Model Constraints,” on page 3-86.

3.2.7 UML Diagrams

At various points in this chapter, UML class diagrams are used to describe aspects of 
the MOF Model. To understand these diagrams, the reader should mentally map from 
UML modeling concepts to the equivalent MOF meta-modeling constructs.

There is one point in which this document’s use of UML notation requires explaining. 
In standard UML notation, an arrowhead on an Association line indicates that the 
Association is navigable in the direction indicated. Absence of an arrowhead can mean 
either that the Association is navigable or that it is navigable in both directions, 
depending on the context. 
3-10     OMG-MOF V1.3                              March 2000  



3

As was explained in Section 3.2.1.5, “References,” on page 3-5, the MOF models 
navigable Associations in a different way. Thus in this document, an arrowhead on one 
end of an Association means that a Reference exists on the Class at the opposite end 
that allows navigation in the indicated direction. If there are no arrowheads, there are 
References on the Classes at both ends of the Association.

3.3 The Structure of the MOF Model

This section gives an overview of the structure of the MOF Model.

3.3.1 The MOF Model Package

The MOF Model, as it is currently defined, consists of a single non-nested Package 
called “Model.” 

The class diagram in Figure 3-1 on page 3-12 shows the Classes and Associations of 
the “Model” Package. To aid readability, Class features, DataTypes, and other details 
have been omitted from the diagram. These details are all specified in later sections of 
this chapter.
OMG-MOF V1.3           The Structure of the MOF Model           March 2000 3-11



3

Figure 3-1 The MOF Model Package

Cl
ass

At
trib

ute

<<
Mo

fA
ttr

ibu
te>

>

Ge
ne

ral
iza

ble
Ele

me
nt

0..
*

0..
*

+s
up

ert
yp

e

0..
*

{or
de

red
}

Ge
ne

ral
ize

s

+s
ub

typ
e

0..
*

Ex
ce

pti
on

<<
Mo

fE
xce

pti
on

>>
Op

era
tio

n

0..
*

0..
*

+e
xc

ep
t

0..
*

{o
rde

red
}

+o
pe

rat
ion

0..
*

Ca
nR

ais
e

Pa
ck

ag
e

Da
taT

yp
e

Be
ha

vio
ral

Fe
atu

re
St

ruc
tur

alF
ea

tur
e

Pa
ram

ete
r

Fe
atu

re

Co
ns

tan
t

As
so

cia
tio

nE
nd

Re
fer

en
ce

1

0..
*

+e
xp

os
ed

En
d

1

+r
efe

rre
r

0..
*

/E
xp

os
es1

0..
*

+r
efe

ren
ce

dE
nd 1

+r
efe

ren
t

0..
*

Re
fer

sT
o

As
so

cia
tio

n

Ty
pe

dE
lem

en
t

Cla
ss

ifie
r

0..
*

1

+t
yp

ed
Ele

me
nt

0..
*

+t
yp

e

1

IsO
fT

yp
e

Ty
pe

Ali
as

Im
po

rt

Co
ns

tra
int

Na
me

spa
ce

1

0..
*

+im
po

rte
d

1
+im

po
rte

r

0..
*

Ali
as

es

Ta
g

Mo
de

lEl
em

en
t

0..
*

0..
*

+d
ep

en
de

nt 0..
*

/D
ep

en
ds

On
+p

rov
ide

r 0..
*

1..
*

0..
*

+c
on

str
ain

ed
Ele

me
nt

1..
*

+c
on

str
ain

t

0..
*Co

ns
tra

ins

0..
1

0..
*

+c
on

tai
ne

r

0..
1

+c
on

tai
ne

dE
lem

en
t

0..
*

{or
de

red
}

Co
nta

ins

0..
*

1..
*

+t
ag

0..
* {O
rde

re

+m
od

el

1..
*

At
tac

he
sT

o

3-12     OMG-MOF V1.3                              March 2000  



3

3.3.2 The MOF Model Service IDL

The “Model” Package is used to generate the CORBA IDL for the OMG MOF Model 
service using the MOF to IDL Mapping defined in the “MOF Abstract Mapping” 
chapter through the “Reflective Module” chapter. Relevant fragments of the resulting 
IDL is embedded in the Class, Association, DataType, and Exception descriptions in 
Section 3.4, “MOF Model Classes,” on page 3-15 through Section 3.7, “MOF Model 
Exceptions,” on page 3-83. The complete IDL, along with the dependent “Reflective” 
IDL may be found in the MOF IDL Summary appendix.

The IDL for the MOF Model service requires a “prefix” of “org.omg.mof.” To this end, 
the “Model” Package is defined to have an “idl_prefix” Tag with value “org.omg.mof.”

3.3.3 The MOF Model Structure

The core structure of the MOF Model is shown in the class diagram in Figure 3-2. This 
diagram shows the key abstract Classes in the MOF Model and the key Associations 
between them.

3.3.3.1 Key Abstract Classes

The key abstract Classes in the MOF Model are as follows:

• ModelElement - this is the common base Class of all M3-level Classes in the MOF 
Model. Every ModelElement has a “name.”

• Namespace - this is the base Class for all M3-level Classes that need to act as 
containers in the MOF Model.

• GeneralizableElement - this is the base Class for all M3-level Classes that support 
“generalization” (i.e., inheritance).

• TypedElement - this is the base Class for M3-level Classes such as Attribute, 
Parameter, and Constant whose definition requires a type specification.

• Classifier - this is the base Class for all M3-level Classes that (notionally) define 
types. Examples of Classifier include Class and DataType.
OMG-MOF V1.3           The Structure of the MOF Model           March 2000 3-13



3

Figure 3-2 The Key Abstractions of the MOF Model

3.3.3.2 Key Associations

The key Associations in the MOF Model are as follows:

• Contains - this Association relates a ModelElement to the Namespace that contains 
it (see Section 3.3.4, “The MOF Model Containment Hierarchy,” on page 3-15).

• Generalizes - this Association relates a GeneralizableElement to its ancestors (i.e., 
supertypes) and children (i.e., subtypes) in a model element inheritance graph. Note 
that a GeneralizableElement may not know about all of its subtypes.

• IsOfType - this Association relates a TypedElement to the Classifier that defines its 
type.

M od elE le men t

nam e : N am e Ty pe
ann ota t io n : A nn ota t ion Ty pe
/ qu alif ied N am e : N a m e Ty p e

v erif y ()
is F rozen ()
f ind R e qu ire dE lem en ts ()
is V is ib le()
is R e qu ire dB e c au s e ()

Names p ac e

look up E le me n t( )
r es o lv eQuali f i edN am e()
n a me Is Vali d()
f in d E le men ts By Ty p e ()

Ty pe dE leme nt

Cla s s if ier

G en era liza ble E le me nt

v is ib ilit y : V is ib ilit y K ind
is Ab s t rac t : bo ole an
is R o ot : b oo le an
is L ea f : bo ole an
/ allSup ert y pe s : G e neralizableE lem en t

loo k u pE lem en tEx te nd ed ()
f ind E lem ents By Ty peEx tended()

0 . . *

0 . . *

+de pe nd en t

0 . . *

/ Dep en ds O n

+pro v id er

0 . . *

0. .1

0. . *

+c ont ainer

0. .1

+c on taine dE lem ent

0. . *
{o rde red }

Co nta ins

0. . *

1

+ty pe dE lem en t
0. . *

+ ty pe
1

I s O f Ty p e

0. . *

0. . *

+ s upe r ty pe
0. . *

{o rdered}

G e ne ralizes

+s u bty p e

0. . *
3-14     OMG-MOF V1.3                              March 2000  



3

• DependsOn - this derived Association relates a ModelElement to others that its 
definition depends on. (It is derived from Contains, Generalizes, IsOfType, and 
other Associations not shown here.)

3.3.4 The MOF Model Containment Hierarchy

The most important relationship in the MOF Model is the Contains Association. 
Containment is a utility Association that is used to relate (for example) Classes to their 
Operations and Attributes, Operations to their Parameters and so on. While the class 
diagram shows that only ModelElement objects which are subtypes of Namespace can 
contain any other ModelElements, the MOF Model restricts the legal containments to 
eliminate various nonsensical and problematical cases. 

Table 3-5 defines the legal ModelElement containments in matrix form. The row 
headings list all non-abstract subtypes of Namespace (i.e., possible containers) and the 
column headings list all non-abstract ModelElements (i.e., possible contained 
elements). For each combination of container and contained, the corresponding table 
cell is either “Y” showing that containment is legal or “N” showing that it is not.

3.4 MOF Model Classes

3.4.1 ModelElement  abstract

ModelElement classifies the elementary, atomic constructs of models. ModelElement is 
the root Class within the MOF Model.

Table 3-5 The ModelElement Containment Matrix

P
ac

ka
ge

C
la

ss

D
at

aT
yp

e

A
ss

oc
ia

ti
on

A
tt

ri
bu

te

R
ef

er
en

ce

O
p

er
at

io
n

E
xc

ep
ti

on

P
ar

am
et

er

A
ss

oc
ia

ti
on

 E
nd

C
on

st
ra

in
t

C
on

st
an

t

T
yp

e 
A

lia
s

Ta
g

Package Y Y Y N N N N Y N N Y Y N Y

Class N Y Y N Y Y Y Y N N Y Y N Y

DataType N N N N N N N N N N Y N Y Y

Association N N N N N N N N N Y Y N N Y

Operation N N N N N N N N Y N Y N N Y

Exception N N N N N N N N Y N N N N Y
OMG-MOF V1.3           MOF Model Classes           March 2000 3-15



3

SuperClasses

None. (While the CORBA IDL for ModelElement inherits from Reflective::RefObject, 
this is not generalization in the MOF Model sense. Rather it is an artifact of the IDL 
mapping.)

Attributes

name

annotation

qualifiedName

Provides a meta-modeler supplied name that uniquely identifies the ModelElement 
in the context of the ModelElement’s containing Namespace. When choosing a 
ModelElement’s name, the meta-modeler should consider the rules for translating 
names into identifiers in the relevant mappings (e.g., Section 5.7.1, “Generated 
IDL Identifiers,” on page 5-39).

type: NameType

multiplicity: exactly one

Provides an informal description of the ModelElement..

type: AnnotationType

multiplicity: exactly one

Provides a unique name for the ModelElement within the context of its outermost 
containing Package. The qualifiedName is a list of NameType values consisting of 
the names of the ModelElement, its container, its container’s container and so on 
until a non-contained element is reached. The first member of the list is the name 
of the non-contained element.

type: NameType

multiplicity: one or more; ordered; non-unique

changeable: no

derived from: [S-12]
3-16     OMG-MOF V1.3                              March 2000  



3

References

container

requiredElements

constraints

Identifies the Namespace that contains the ModelElement. Since the Contains 
Association is a Composite Association, any ModelElement can have at most one 
container, and the containment graph is strictly tree shaped.

type: Namespace

defined by: Contains::container

multiplicity: zero or one

inverse: ModelElement::contents

Identifies the ModelElements on whose definition the definition of this 
ModelElement depends. For a definition of dependency, see Section 3.5.9, 
“DependsOn,” on page 3-74.

type: ModelElement

defined by: DependsOn::provider

multiplicity: zero or more

Identifies the set of Constraints that apply to the ModelElement. A Constraint 
applies to all instances of the ModelElement and its sub-Classes.

type: Constraint

multiplicity: zero or more

inverse: Constraint::constrainedElements.

defined by: Constrains::provider
OMG-MOF V1.3           MOF Model Classes           March 2000 3-17



3

Operations

verify

isFrozen

Each ModelElement is capable of checking its own correctness, as defined by the 
inherent properties of meta-models described in this specification, and constraints 
that hold over the ModelElement. The client of the operation specifies whether the 
operation should propagate to any ModelElements that this ModelElement might 
contain (if it is capable of containing elements), or whether it should return after 
only checking itself. The verify operation checks inherent constraints on the object 
and its attributes plus any constraints contained by the object. The operation 
returns valid if all verification checks passed; otherwise, it returns invalid. A 
parameter returns representations of any constraint violations detected. If the 
operation returns invalid, this parameter must not be empty. When the depth 
argument is deep, and this element (and, by definition, all its dependent elements) 
are published, the operation returns published.

return type: VerifyResultKind

parameters: depth: in DepthKind

violations: out ViolationType (multiplicity: zero or 
more; unique)

isQuery: yes

Reports the freeze status of a ModelElement. A ModelElement, at any particular 
time, is either frozen or not frozen. All ModelElements of a published model are 
permanently frozen.

return type: boolean

isQuery: yes
3-18     OMG-MOF V1.3                              March 2000  



3

findRequiredElements

isVisible

Supports selecting a subset of the ModelElements that this one depends on,  based 
on their dependency categories. The “kinds” argument gives a bag of 
DependencyKinds that are of interest to the caller.  String constants for the 
standard dependency categories are given in Section 3.8, “MOF Model 
Constants,” on page 3-85 and their meanings are defined in Section 3.5.9, 
“DependsOn,” on page 3-74. In this context, the AllDep pseudo-category (i.e., 
“all”) is equivalent to passing all of the standard categories in the “kinds” 
argument, and the IndirectDep pseudo-category (i.e., “indirect”) is ignored.

If the “recursive” argument is “false”, the operation return the direct dependents 
only. If it is “true” all dependents in the transitive closure of the specified “kinds” 
are returned.

return type: ModelElement (multiplicity: zero or more; unordered, 
unique)

isQuery: yes

parameters: kinds: in DependencyKind (multiplicity: one or more; 
unordered; unique)

recursive: in boolean

operation semantics [S-4]

Returns true. This operation is reserved for future use when the MOF visibility 
rules have stabilized. Then it will determine whether the supplied otherElement is 
visible to this ModelElement.

return type: boolean

isQuery: yes

parameters: otherElement: in ModelElement

operation semantics [S-3]
OMG-MOF V1.3           MOF Model Classes           March 2000 3-19



3

isRequiredBecause

Constraints

[A ModelElement that is not a Package must have a container. [C-1]]

[The attribute values of a ModelElement which is frozen cannot be changed. [C-2]]

[A frozen ModelElement which is in a frozen Namespace can only be deleted, by 
deleting the Namespace. [C-3]]

[The link sets that express dependencies of a frozen Element on other Elements cannot 
be explicitly changed. [C-4]]

IDL

interface ModelElementClass : Reflective::RefObject {
readonly attribute ModelElementUList all_of_type_model_element;
const string MUST_BE_CONTAINED_UNLESS_PACKAGE =

"org.omg.mof:constraint.model.model_element.must_be_contained_unless_package";
const string FROZEN_ATTRIBUTES_CANNOT_BE_CHANGED =

"org.omg.mof:constraint.model.model_element.frozen_attributes_cannot_be_changed";
const string FROZEN_ELEMENTS_CANNOT_BE_DELETED =

"org.omg.mof:constraint.model.model_element.frozen_elements_cannot_be_deleted";
const string FROZEN_DEPENDENCIES_CANNOT_BE_CHANGED =

"org.omg.mof:constraint.model.model_element.frozen_dependencies_cannot_be_changed";
typedef string DependencyKind;
typedef sequence <::Model::ModelElementClass::DependencyKind>DependencyKindSet;
const DependencyKind CONTAINER_DEP = "container";
const DependencyKind CONTENTS_DEP = "contents";
const DependencyKind SIGNATURE_DEP = "signature";
const DependencyKind CONSTRAINT_DEP = "constraint";
const DependencyKind CONSTRAINED_ELEMENTS_DEP = "constrained elements";

This operation performs two functions:
• It checks whether this ModelElement directly or indirectly depends on the 

ModelElement given by “otherElement”. If it does, the operation’s result is “true;” 
otherwise, it is “false.”

• If a dependency exists (i.e., the result is “true”), the operation returns a DependencyKind 
in “reason” that categorizes the dependency.  String constants for the DependencyKind 
categories are given in Section 3.8, “MOF Model Constants,” on page 3-85 and their 
meanings are defined in Section 3.5.9, “DependsOn,” on page3-74. If the dependency is 
indirect, IndirectDep is returned. If there are multiple dependencies, any category that 
applies may be returned in “reason.” If no dependencies exist, an empty string is 
returned in “reason.”

return type: boolean

isQuery: yes

parameters: otherElement: in ModelElement
reason: out DependencyKind

operation semantics [S-5]
3-20     OMG-MOF V1.3                              March 2000  



3

const DependencyKind SPECIALIZATION_DEP = "specialization";
const DependencyKind IMPORT_DEP = "import";
const DependencyKind TYPE_DEFINITION_DEP = "type definition";
const DependencyKind REFERENCED_ENDS_DEP = "referenced ends";
const DependencyKind TAGGED_ELEMENTS_DEP = "tagged elements";
const DependencyKind INDIRECT_DEP = "indirect";
const DependencyKind ALL_DEP = "all";
enum VerifyResultKind {valid, published, invalid};
enum DepthKind {shallow, deep};
struct ViolationType {
string error_kind;
Reflective::RefObject element_in_error;
Reflective::NamedValueList values_in_error;
string error_description;
};
typedef sequence <::Model::ModelElementClass::ViolationType> ViolationTypeSet;

}; // end of interface ModelElementClass

interface ModelElement : ModelElementClass {
      NameType name ()
         raises (Reflective::MofError);
      void set_name (in NameType new_value)
         raises (Reflective::MofError);
      NameTypeList qualified_name ()
         raises (Reflective::MofError);
      AnnotationType annotation ()
         raises (Reflective::MofError);
      void set_annotation (in AnnotationType new_value)
         raises (Reflective::MofError);
      ModelElementSet required_elements ()
         raises (Reflective::MofError);
      ModelElementSet find_required_elements (
                       in ModelElementClass::DependencyKindSet kinds,
                       in boolean recursive)
         raises (Reflective::MofError);

boolean is_required_because (in ModelElement other_element,
                                   out ModelElementClass::DependencyKind reason)
         raises (Reflective::MofError);

Namespace container ()
         raises (Reflective::NotSet, Reflective::MofError);
      void set_container (in Namespace new_value)
         raises (Reflective::MofError);
      void unset_container ()
         raises (Reflective::MofError);
      ConstraintSet constraints ()
         raises (Reflective::MofError);

void set_constraints (in ConstraintSet new_value)
         raises (Reflective::MofError);
      void add_constraints (in Constraint new_element)
         raises (Reflective::MofError);
      void modify_constraints (in Constraint old_element, in Constraint new_element)
         raises (Reflective::MofError);

void remove_constraints (in Constraint old_element)
         raises (Reflective::NotFound, Reflective::MofError);
      ModelElementClass::VerifyResultKind verify (
OMG-MOF V1.3           MOF Model Classes           March 2000 3-21



3

                        in ModelElementClass::DepthKind depth,
                        out ModelElementClass::ViolationTypeSet problems)
         raises (Reflective::MofError);

boolean is_frozen ()
         raises (Reflective::MofError);

boolean is_visible (in ModelElement other_element)
         raises (Reflective::MofError);
   };

3.4.2 Namespace  abstract

The Namespace Class classifies and characterizes ModelElements that can contain 
other ModelElements. Along with containing the ModelElements, a Namespace 
defines a namespace, the allowable set of names and the naming constraints, for these 
elements.

Subclasses of the Namespace Class have mechanisms for effectively extending their 
namespace, without actually containing additional ModelElements. Thus Namespace 
can be viewed in terms of its two roles, as a container and as a namespace mechanism. 
Because only subclasses extend the namespace, the namespace and contents are 
coincident in the definition of the Namespace Class. Each Namespace has four 
collections (the latter three derivable) that are used in the MOF Model’s Constraints. 
These collections are:

• The contents (also called the direct contents), which are defined by the contents 
reference.

• All contents, the transitive closure on the contents reference.

• The extended namespace (the contents plus elements included by extension), which 
Namespace subclasses accomplish through generalization and importation.

• The extended contents (the transitive closure on the contents reference applied to 
the extended namespace).

The definitions of these collections may be found in Section 3.9.6, “OCL Helper 
functions,” on page 3-111.

SuperClasses

ModelElement

References

contents

Identifies the set of ModelElements that a Namespace contains.

class: ModelElement
3-22     OMG-MOF V1.3                              March 2000  



3

Operations

lookupElement

resolveQualifiedName

nameIsValid

defined by: Contains::containedElement

multiplicity: zero or more; ordered

inverse: ModelElement::container

Searches for an element contained by this Namespace whose name is precisely 
equal (as a string) to the supplied name. The operation either returns a 
ModelElement that satisfies the above, or raises the NameNotFound exception.

return type: ModelElement

isQuery: yes

parameters: name : in NameType

exceptions: NameNotFound

operation semantics: [S-6]

Searches for a ModelElement contained within this Namespace that is identified 
by the supplied qualifiedName. The qualifiedName is interpreted as a “path” 
starting from this Namespace.

return type: ModelElement (exactly one). If no element is found, 
an exception is raised.

isQuery: yes

parameters: qualifiedName : in NameType (multiplicity one or 
more; ordered; not unique)

exceptions: NameNotResolved

operation semantics: [S-7]

Determines whether the proposedName can be used as the name for a new 
member ModelElement in this Namespace. Specifically, it checks that the 
Namespace uniqueness rules would still be satisfied after adding such a name.

return type: boolean

isQuery: yes

parameters: proposedName : in NameType

operation semantics: [S-8]
OMG-MOF V1.3           MOF Model Classes           March 2000 3-23



3

findElementsByType

Constraints

[The names of the contents of a Namespace must not collide. [C-5]]

IDL

interface NamespaceClass : ModelElementClass {
     readonly attribute NamespaceUList all_of_type_namespace;
     const string CONTENT_NAMES_MUST_NOT_COLLIDE =
        "org.omg.mof:constraint.model.namespace.content_names_must_not_collide";

     exception NameNotFound {
         NameType name;
     };
     exception NameNotResolved {
         string explanation;
         NameTypeList rest_of_name; 
     };
}; // end of interface NamespaceClass

   interface Namespace : NamespaceClass, ModelElement {
      ModelElementUList contents ()
         raises (Reflective::MofError);

void set_contents (in ModelElementUList new_value)
         raises (Reflective::MofError);

void add_contents (in ModelElement new_element)

Returns all the ModelElements identified by the contents reference defined for this 
Namespace that are of the Class supplied. The returned list of ModelElements is a 
subset of the ModelElements contained by this Namespace. This operation can 
either return only those ModelElements that exactly match the specified class or 
those ModelElements that are instances of the specified class and one or more of 
its subclasses. 

Because ModelElement is an abstract class, invoking this operation with the 
ofType argument specified as ModelElement and the includeSubtypes argument 
set to false returns an empty list. Because ModelElement is the base type for all 
instances that can be contained by a Namespace, invoking the operation with the 
ofType argument specified as ModelElement, and includeSubtypes set to true, 
returns all the contained elements of the Namespace.

return type: ModelElement (multiplicity zero or more; ordered; 
unique)

isQuery: yes

parameters: ofType : in Class
includeSubtypes : in boolean

operation semantics: [S-9]
3-24     OMG-MOF V1.3                              March 2000  



3

         raises (Reflective::MofError);
      void add_contents_before (in ModelElement new_element,
                                in ModelElement before_element)
        raises (Reflective::NotFound, Reflective::MofError);

void modify_contents (in ModelElement old_element,
                            in ModelElement new_element)
        raises (Reflective::NotFound, Reflective::MofError);
      void remove_contents (in ModelElement old_element)
         raises (Reflective::NotFound, Reflective::MofError);

      ModelElement lookup_element (in NameType name)
         raises (NamespaceClass::NameNotFound, Reflective::MofError);
      ModelElement resolve_qualified_name (in NameTypeList qualified_name)
         raises (NamespaceClass::NameNotResolved, Reflective::MofError);
      ModelElementUList find_elements_by_type (in Class of_type,
                                               in boolean include_subtypes)
         raises (Reflective::MofError);
      boolean name_is_valid (in NameType proposed_name)
         raises (Reflective::MofError);
   };

3.4.3 GeneralizableElement  abstract

The GeneralizableElement Class classifies and characterizes ModelElements that can 
be generalized through supertyping and specialized through subtyping. A 
GeneralizableElement inherits the features of each of its supertypes, the features of the 
supertypes of the immediate supertypes, and so on (in other words all the features of 
the transitive closure of all the supertypes of the GeneralizableElement). 

When a GeneralizableElement inherits a feature, that feature name effectively becomes 
part of the namespace for the GeneralizableElement and the feature is considered part 
of the extended namespace of the Namespace. Therefore, a GeneralizableElement 
cannot have a superclass if it causes an inherited feature to have a namespace collision 
with its own features - see Constraint -- [The names of the contents of a 
GeneralizableElement should not collide with the names of the contents of any direct 
or indirect supertype. [C-8]].

To the degree that a GeneralizableElement is defined by its features, the 
superclass/subclass association defines substitutability. Any instance of a 
GeneralizableElement can be supplied wherever an instance of a superclass of that 
GeneralizableElement is expected.

SuperClasses

Namespace 
OMG-MOF V1.3           MOF Model Classes           March 2000 3-25



3

Attributes

visibility

isAbstract

isRoot

isLeaf

In the future, this Attribute will be used to limit the ability of ModelElements 
outside of this GeneralizableElement’s container to depend on it; see 
Section 3.6.6, “VisibilityKind,” on page 3-79. The rules of visibility of MOF 
ModelElements are not currently specified.

type: VisibilityKind

multiplicity: exactly one

Indicates whether the GeneralizableElement is expected to have instances. When 
isAbstract is true, any instance that is represented or classified by this 
GeneralizableElement is additionally an instance of some specialization of this 
GeneralizableElement. No operation that supports creation of instances of this 
GeneralizableElement should be available.

type: boolean

multiplicity: exactly one

Specifies whether the GeneralizableElement may have supertypes. True indicates 
that it may not have supertypes, false indicates that it may have supertypes 
(whether or not it actually has any)

type: boolean

multiplicity: exactly one

Specifies whether the GeneralizableElement may be a supertype of another 
Generalizable Element. True indicates that it may not be a supertype, false 
indicates that it may be a supertype (whether or not it actually is).

type: boolean

multiplicity: exactly one
3-26     OMG-MOF V1.3                              March 2000  



3

References

supertypes

Operations

allSupertypes

lookupElementExtended

Identifies the set of superclasses for a GeneralizableElement. Note that a 
GeneralizableElement does not have a reference to its subclasses.

class: GeneralizableElement

defined by: Generalizes::supertype

multiplicity: zero or more; ordered

Returns a list of direct and indirect supertypes of this GeneralizableElement. A 
direct supertype is a GeneralizableElement that directly generalizes this one. An 
indirect supertype is defined (recursively) as a supertype of some other direct or 
indirect supertype of the GeneralizableElement. The order of the list elements is 
determined by a depth-first traversal of the supertypes with duplicate elements 
removed.

return type: GeneralizableElement (multiplicity zero or more, 
ordered, unique)

isQuery: yes

parameters: none

operation semantics: [S-1]

Returns an element whose name matches the supplied “name.” Like the 
“lookupElement” operation on Namespace, this operation searches the contents of 
the GeneralizableElement. In addition, it tries to match the name in the contents of 
all direct and indirect supertypes of the GeneralizableElement. For Packages, a 
subclass of GeneralizableElement, the operation can also match a Namespace 
associated with an Import objects. NameNotFound is raised if no element matches 
the name.

return type: ModelElement (multiplicity exactly one)

isQuery: yes

parameters: name : in NameType

exceptions NameNotFound

operation semantics: [S-10]
OMG-MOF V1.3           MOF Model Classes           March 2000 3-27



3

findElementsByTypeExtended

Constraints

[A Generalizable Element cannot be its own direct or indirect supertype. [C-6]]

[A supertypes of a GeneralizableElement must be of the same kind as the 
GeneralizableElement itself. [C-7]]

[The names of the contents of a GeneralizableElement should not collide with the 
names of the contents of any direct or indirect supertype. [C-8]]

[Multiple inheritance must obey the “Diamond Rule”. [C-9]]

[If a Generalizable Element is marked as a “root”, it cannot have any supertypes. 
[C-10]]

[A GeneralizableElement’s immediate supertypes must all be visible to it. [C-11]]

[A GeneralizableElement cannot inherit from a GeneralizableElement defined as a 
“leaf”. [C-12]]

IDL

interface GeneralizableElementClass : NamespaceClass {
   readonly attribute GeneralizableElementUList
   all_of_type_generalizable_element;
   const string SUPERTYPE_MUST_NOT_BE_SELF =
       "org.omg.mof:constraint.model.generalizable_element.supertype_must_not_be_self";
   const string SUPERTYPE_KIND_MUST_BE_SAME =
       "org.omg.mof:constraint.model.generalizable_element.supertype_kind_must_be_same";
   const string CONTENTS_MUST_NOT_COLLIDE_WITH_SUPERTYPES 
       "org.omg.mof:constraint.model.generalizable_element”

Provides an extension of the findElementsByType defined for Namespace so that 
contained elements of all superclasses (direct and indirect) of the 
GeneralizableElement are included in the search. The order of the returned 
elements is determined by the order of the elements contained in the 
GeneralizableElements and a depth-first traversal of the superclasses. 

Subclasses can include a larger overall area for the lookup. Package, a sub class of 
GeneralizableElement, also considers the elements brought into this Namespace 
through the use of Import.

return type: ModelElement (multiplicity zero or more; ordered; 
unique)

isQuery: yes

parameters: ofType : in Class
includeSubtypes : in boolean

operation semantics: [S-11]
3-28     OMG-MOF V1.3                              March 2000  



3

       “.contents_must_not_collide_with_supertypes";
   const string DIAMOND_RULE_MUST_BE_OBEYED =
       "org.omg.mof:constraint.model.generalizable_element.diamond_rule_must_be_obeyed";
   const string NO_SUPERTYPES_ALLOWED_FOR_ROOT =
       "org.omg.mof:constraint.model.generalizable_element.no_supertypes_allowed_for_root";
   const string SUPERTYPES_MUST_BE_VISIBLE =
       "org.omg.mof:constraint.model.generalizable_element.supertypes_must_be_visible";
   const string NO_SUBTYPES_ALLOWED_FOR_LEAF =
       "org.omg.mof:constraint.model.generalizable_element.no_subtypes_allowed_for_leaf";

}; // end of interface GeneralizableElementClass

interface GeneralizableElement : GeneralizableElementClass, Namespace {
      boolean is_root ()
          raises (Reflective::MofError);
      void set_is_root (in boolean new_value)
         raises (Reflective::MofError);
      boolean is_leaf ()
         raises (Reflective::MofError);
      void set_is_leaf (in boolean new_value)
         raises (Reflective::MofError);

boolean is_abstract ()
         raises (Reflective::MofError);
      void set_is_abstract (in boolean new_value)
         raises (Reflective::MofError);
      VisibilityKind visibility ()
         raises (Reflective::MofError);
      void set_visibility (in VisibilityKind new_value)
         raises (Reflective::MofError);
      GeneralizableElementUList supertypes ()
         raises (Reflective::MofError);

void set_supertypes (in GeneralizableElementUList new_value)
         raises (Reflective::MofError);
      void add_supertypes (in GeneralizableElement new_element)
         raises (Reflective::MofError);
      void add_supertypes_before (in GeneralizableElement new_element,
                                  in GeneralizableElement before_element)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_supertypes (in GeneralizableElement old_element,
                              in GeneralizableElement new_element)
         raises (Reflective::NotFound, Reflective::MofError);
      void remove_supertypes (in GeneralizableElement old_element)

 raises (Reflective::NotFound, Reflective::MofError);
      GeneralizableElementUList all_supertypes ()
         raises (Reflective::MofError);

ModelElement lookup_element_extended (in NameType name)
         raises (NameNotFound, Reflective::MofError);

ModelElementUList find_elements_by_type_extended (in Class of_type,
                                                        in boolean include_subtypes)
         raises (Reflective::MofError);
};
OMG-MOF V1.3           MOF Model Classes           March 2000 3-29



3

3.4.4 TypedElement  abstract

The TypedElement type is an abstraction of ModelElements that require a type as part 
of their definition. A TypedElement does not itself define a type, but is associated with 
a Classifier.

SuperClasses

ModelElement

References

type

Figure 3-3 MOF Model Classifiers

Provides the representation of the type supporting the TypedElement through this 
reference.

class: Classifier

defined by: IsOfType::type

multiplicity: exactly one

GeneralizableElement

Classifier

Class

isSingleton : boolean
DataType

typeCode : TypeDescriptor

TypedElement

0..*

1

+typedElement
0..*

+type

1

IsOfType
3-30     OMG-MOF V1.3                              March 2000  



3

Constraints

[An Association cannot be the type of a TypedElement. [C-13]]

[A TypedElement can only have a type that is visible to it. [C-14]]

IDL

interface TypedElementClass : ModelElementClass {
      // get all typed_element including subtypes of typed_element
      readonly attribute TypedElementUList all_of_type_typed_element;
      const string ASSOCIATIONS_CANNOT_BE_TYPES =
       "org.omg.mof:constraint.model.typed_element.associations_cannot_be_types";
      const string TYPE_MUST_BE_VISIBLE =
       "org.omg.mof:constraint.model.typed_element.type_must_be_visible";
   }; // end of interface TypedElementClass

   interface TypedElement : TypedElementClass, ModelElement {
      Classifier type ()
         raises (Reflective::MofError);
      void set_type (in Classifier new_value)
         raises (Reflective::MofError);
   };

3.4.5 Classifier  abstract

A classifier provides a classification of instances through a set of Features it contains.

SuperClasses

GeneralizableElement

IDL

interface ClassifierClass : GeneralizableElementClass {
      readonly attribute ClassifierUList all_of_type_classifier;
}; // end of interface ClassifierClass

interface Classifier : ClassifierClass, GeneralizableElement { };

3.4.6 Class

A Class defines a classification over a set of object instances by defining the behavior 
they exhibit. This behavior is represented through operations, attributes, references, 
participation in associations, nested classes, constants, and constraints. Although the 
same or similar elements are used in other environments for representing Classes and 
their implementations, in the MOF these elements specify the class characteristics in 
an implementation-independent manner. For instance, defining a Class as having an 
attribute does not require the implementation of the Class (the software which provides 
the conformant behavior) to have an attribute, to hold the attribute value, etc. The 
OMG-MOF V1.3           MOF Model Classes           March 2000 3-31



3

implementation simply must insure that the behavior conforms to the definition of the 
attribute. The use of all the additional elements beyond operations provides a much 
richer environment for defining Class behavior. Likewise, this construct is not an 
interface. Its expressibility goes beyond interface representations. The MOF's IDL 
translation capabilities map a single Class onto two interfaces. It would be possible to 
define transformations to alternate interface representations, such as Java's interfaces.

There are, and probably always will be, divergent views among industry leaders on the 
definition of the concepts of Class, Type, and Interface. As a domain-specific modeling 
environment, so long as the MOF is clear about the meaning of Class within the MOF, 
it should remain immune from such concerns. 

SuperClasses

Classifier

Contained Elements

Class, DataType, Attribute, Reference, Operation, Exception, Constraint, Constant, Tag 
-- see [A Class may contain only Classes, DataTypes, Attributes, References, 
Operations, Exceptions, Constraints and Tags. [C-15]].

Attributes

isSingleton

Constraints

[A Class may contain only Classes, DataTypes, Attributes, References, Operations, 
Exceptions, Constraints and Tags. [C-15]]

[A Class that is marked as abstract cannot also be marked as singleton. [C-16]]

IDL

interface ClassClass : ClassifierClass {
   readonly attribute ClassUList all_of_type_class;
   readonly attribute ClassUList all_of_class_class;
   const string CLASS_CONTAINMENT_RULES =
       "org.omg.mof:constraint.model.class.class_containment_rules";
   const string ABSTRACT_CLASSES_CANNOT_BE_SINGLETON =
       "org.omg.mof:constraint.model.class.abstract_classes_cannot_be_singleton";

When isSingleton is true, at most one M1 level instance of this Class may exist 
within the M1-level extent of the Class.

type: boolean

multiplicity: exactly one
3-32     OMG-MOF V1.3                              March 2000  



3

   Class create_class (
       /* from ModelElement */ in ::Model::NameType name,
       /* from ModelElement */  in ::Model::AnnotationType annotation,
       /* from GeneralizableElement */in boolean is_root,
       /* from GeneralizableElement */ in boolean is_leaf,
/* from GeneralizableElement */ in boolean is_abstract,
     /* from GeneralizableElement */ in ::Model::VisibilityKind visibility,
     /* from Class */                in boolean is_singleton)
         raises (Reflective::MofError);
}; // end of interface ClassClass

   interface Class : ClassClass, Classifier {
      boolean is_singleton ()
         raises (Reflective::MofError);
      void set_is_singleton (in boolean new_value)
         raises (Reflective::MofError);
 };

3.4.7 DataType

The DataType model element is primarily used to represent MOF data types and native 
types, as classified and described in Section 4.2, “MOF Values,” on page 4-2. The type 
information in a DataType is currently represented as a CORBA TypeCode, which has 
an encoding that is self-contained, transmissible, and relatively compact. DataTypes are 
also used to represent the type of a non-aggregate Attribute whose effective type is a 
Class.

The types represented by DataTypes fall into two groups:

1. A DataType that requires an IDL declaration must have a “name,” which maps to an 
IDL identifier.

2. A DataType that does not require an IDL declaration must have a “name” that starts 
with a “*” character. Such a DataType can be further classified as

• a DataType for an anonymous CORBA data type (e.g., “boolean,” “char,” and so 
on),

• a DataType that denotes a non-aggregate Class (i.e., one whose “typeCode” has 
kind of tk_objRef and that has a TypeAlias linkage to a Class - see Section 3.4.8, 
“TypeAlias,” on page 3-35), or

• a DataType that denotes a named external CORBA interface or data type (e.g., a 
use of a CORBA type defined in the Interface Repository). External anonymous 
data types cannot be used.

In the last case, the IDL mapping relies on the DataType’s “typeCode” having a 
repositoryId that can be translated into a qualified name for the type.

Note – TypeCodes in a DataType are restricted to those supported by CORBA 2.2.  
(This restriction may be removed in a future revision of this document.) Furthermore, 
TypeCodes with kind of tk_null, tk_void, tk_principal and tk_except may not be used.
OMG-MOF V1.3           MOF Model Classes           March 2000 3-33



3

SuperClasses

Classifier

Contained Elements

TypeAlias, Constraint, Tag -- see [A DataType may contain only TypeAliases, 
Constraints and Tags. [C-17]].

Attributes

typeCode

Constraints

[A DataType may contain only TypeAliases, Constraints and Tags. [C-17]]

[The typeCode of a DataType must denote a CORBA 2.2 compliant object type or data 
type. [C-18]]

[Inheritance / generalization is not applicable to DataTypes. [C-19]]

[A DataType cannot be abstract. [C-20]]

IDL

interface DataTypeClass : ClassifierClass {
      readonly attribute DataTypeUList all_of_type_data_type;
      readonly attribute DataTypeUList all_of_class_data_type;
      const string DATA_TYPE_CONTAINMENT_RULES =
       "org.omg.mof:constraint.model.data_type.data_type_containment_rules";
      const string THIS_TYPECODE_NOT_SUPPORTED =
       "org.omg.mof:constraint.model.data_type.this_typecode_not_supported";
      const string DATA_TYPES_HAVE_NO_SUPERTYPES =
       "org.omg.mof:constraint.model.data_type.data_types_have_no_supertypes";
      const string DATA_TYPES_CANNOT_BE_ABSTRACT =
       "org.omg.mof:constraint.model.data_type.data_types_cannot_be_abstract";

      DataType create_data_type (
/* from ModelElement */in ::Model::NameType name,
/* from ModelElement */in ::Model::AnnotationType annotation,

This attribute uses a CORBA TypeCode type to encode a DataType’s type 
information. The TypeCode value should be such that the obvious 1-to-1 mapping 
between a TypeCode and IDL text applies. For example:
• <tk_boolean> should denote “boolean,” and 
• <tk_alias(‘Foo’,<tk_boolean>)> should denote “typedef boolean Foo.”

type: TypeDescriptor

multiplicity: exactly one
3-34     OMG-MOF V1.3                              March 2000  



3

/* from GeneralizableElement */in boolean is_root,
/* from GeneralizableElement */in boolean is_leaf,
/* from GeneralizableElement */in boolean is_abstract,
/* from GeneralizableElement */in ::Model::VisibilityKind visibility,
/* from DataType */in TypeDescriptor type_code)

         raises (Reflective::MofError);
}; // end of interface DataTypeClass

   interface DataType : DataTypeClass, Classifier {
      TypeDescriptor type_code ()
         raises (Reflective::MofError);
      void set_type_code (in TypeDescriptor new_value)
         raises (Reflective::MofError);
};

3.4.8 TypeAlias

A TypeAlias is used to relate an embedded use of a type within a DataType to the 
Classifier that defines it. This is illustrated in Figure 3-4, which shows how a non-
aggregate Class-valued Attribute would be represented in an MOF meta-model. 

Figure 3-4 A TypeAlias relates a Classifier and its use in a DataType

As Section 3.4.11, “Attribute,” on page 3-39describes, the type of a non-aggregate 
Class-valued Attribute is represented by a DataType with an “objRef” TypeCode. This 
is shown on the right hand side of Figure 3-4. Notice that D1’s “typeCode” value is an 
“objRef” TypeCode with two components. The first component is a simple name for 
the Class, and the second is the repositoryId value for the TypeCode. While a 
repositoryId with the “local” syntax has been used here, any legal repositoryId syntax 
may be used.

C1 : Class

name = “MyClass”

D1 : DataType

name = “*anon-1”

typeCode =

TA1 : TypeAlias

name = “local:ta1”

<objRef(“MyClass”, “local:ta1”)> 

IsOfType

Contains

A1 : Attribute

name = “myAttr”

IsOfType

type

type
OMG-MOF V1.3           MOF Model Classes           March 2000 3-35



3

The linkage from the use of a Classifier within the typeCode of a DataType has to be 
made by a round-about route. Any DataType instance may “contain” one or more 
TypeAlias instances, each of which has a “name” and a “type.” When the “name” of a 
TypeAlias is equal to a repositoryId in the DataType’s “typeCode,” the Classifier that is 
the TypeAlias’ “type” is the one that defines the TypeCode that the repositoryId 
belongs to.

If a TypeAlias related repositoryId belongs to a TypeCode that is embedded in the 
DataType’s “typeCode,” this means that the Classifier it relates to defines a component 
of the DataType (e.g., a member type of a struct or the content type of an array). A 
complex DataType may contain multiple TypeAliases.

SuperClasses

TypedElement 

IDL

interface TypeAliasClass : TypedElementClass {
      readonly attribute TypeAliasUList all_of_type_type_alias;
      readonly attribute TypeAliasUList all_of_class_type_alias;

      TypeAlias create_type_alias (
           /* from ModelElement */ in ::Model::NameType name,
          /* from ModelElement */ in ::Model::AnnotationType annotation)
       raises (Reflective::MofError);
   }; // end of interface TypeAliasClass

   interface TypeAlias : TypeAliasClass, TypedElement {};
); // end of interface TypeAlias

3.4.9 Feature  abstract

A Feature defines a characteristic of the ModelElement that contains it. Specifically, 
Classifiers are defined largely by a composition of Features. The Feature Class and its 
sub-Classes are illustrated in Figure 3-5.
3-36     OMG-MOF V1.3                              March 2000  



3

Figure 3-5 Feature Classes of the MOF Model

SuperClasses

ModelElement

Attributes

visibility

scope

In the future, this Attribute will be used to limit the ability of ModelElements 
outside of this Feature’s container to make use of it; see Section 3.6.6, 
“VisibilityKind,” on page 3-79. The rules of visibility of MOF ModelElements are 
not currently specified.

type: VisibilityKind

multiplicity: exactly one

The scope defines whether a Feature supports the definition of instances of the 
Classifier owning the Feature or of the Classifier as a whole. When scope is 
instanceLevel, the Feature is accessed through instances of the Feature's owning 
Classifier; when scope is classifier, the Feature is accessed through the Classifier 
itself (or through its instances). For StructuralFeatures, a scope of instanceLevel 
indicates that a value represented by the StructuralFeature is associated with each 
instance of the Classifier; a scope of classifierLevel indicates that the 
StructuralFeature value is shared by the Classifier and all its instances.

type: ScopeKind

multiplicity: exactly one
OMG-MOF V1.3           MOF Model Classes           March 2000 3-37



3

IDL

interface FeatureClass : ModelElementClass {
      readonly attribute FeatureUList all_of_type_feature;
}; // end of interface FeatureClass

interface Feature : FeatureClass, ModelElement {
      ScopeKind scope ()
          raises (Reflective::MofError);
      void set_scope (in ScopeKind new_value)
         raises (Reflective::MofError);
      VisibilityKind visibility ()
          raises (Reflective::MofError);
      void set_visibility (in VisibilityKind new_value)
         raises (Reflective::MofError);
};

3.4.10StructuralFeature  abstract

A StructuralFeature defines a static characteristic of the ModelElement that contains it. 
The attributes and references of a Class define structural properties, which provide for 
the representation of the state of its instances. 

SuperClasses

Feature, TypedElement

Attributes

multiplicity

Multiplicity defines constraints on the collection of instances or values that a 
StructuralFeature can hold. Multiplicity defines a lower and upper bound to the 
cardinality of the collection, although the upper bound can be specified as 
Unbounded. Additionally multiplicity defines two other characteristics of the 
collection: 1) a constraint on collection member ordering, and 2) a constraint on 
collection member uniqueness. 

Specifically, Multiplicity contains an isOrdered field. When isOrdered is true, then 
the ordering of the elements in the set are preserved. Typically, a mechanism is 
provided for adding elements to the collection positionally. Multiplicity also has 
an isUnique field. When isUnique is true, then the collection is constrained to hold 
no more than one of any value or instance.

type: MultiplicityType

multiplicity: exactly one
3-38     OMG-MOF V1.3                              March 2000  



3

isChangeable

IDL

interface StructuralFeatureClass : FeatureClass, TypedElementClass {
       readonly attribute StructuralFeatureUList all_of_type_structural_feature;
   }; // end of interface StructuralFeatureClass

   interface StructuralFeature : StructuralFeatureClass, Feature, TypedElement {
      MultiplicityType multiplicity ()
          raises (Reflective::MofError);
      void set multiplicity (in MultiplicityType new_value)
          raises (Reflective::MofError),
      boolean is_changeable ()
          raises (Reflective::MofError);
      void set_is_changeable (in boolean new_value)
         raises (Reflective::MofError);
   };

3.4.11Attribute  idl_substitute_name “MofAttribute”

An Attribute (referred to as a MofAttribute in the mapped IDL) defines a 
StructuralFeature which contains values for Classifiers or their instances. 

SuperClasses

StructuralFeature

Contained Elements

None (not a Namespace)

The isChangeable attribute places restrictions on the use of certain operations, 
which could change the set of values or instances of the StructuralFeature, and on 
the operations that will get generated in IDL or other language generation. For any 
elaboration, no means are automatically created which provides a means of 
altering the attribute value. When IDL is generated, for instance, the operations, 
which are normally generated for changing the StructuralFeature, will not be 
generated. However, isChangeable does not actually constrain the 
StructuralFeature to make it immutable. Any operations explicitly defined in a 
model may change the StructuralFeature values or instances (assuming the 
operation would have otherwise been able to do so).

type: boolean

multiplicity: exactly one
OMG-MOF V1.3           MOF Model Classes           March 2000 3-39



3

Attributes

isDerived

IDL

interface MofAttributeClass : StructuralFeatureClass {
      readonly attribute MofAttributeUList all_of_type_mof_attribute;
      readonly attribute MofAttributeUList all_of_class_mof_attribute;

    MofAttribute create_mof_attribute (
/* from ModelElement */ in ::Model::NameType name,
/* from ModelElement */ in ::Model::AnnotationType annotation,
/* from Feature */ in ::Model::ScopeKind scope,
/* from Feature */ in ::Model::VisibilityKind visibility,
/* from StructuralFeature */ in ::Model::MultiplicityType multiplicity,
/* from StructuralFeature */ in boolean is_changeable,
/* from MofAttribute */ in boolean is_derived)

         raises (Reflective::MofError);
   }; // end of interface MofAttributeClass

   interface MofAttribute : MofAttributeClass, StructuralFeature {
      boolean is_derived ()
          raises (Reflective::MofError);
      void set_is_derived (in boolean new_value)
         raises (Reflective::MofError);
   };

3.4.12 Reference

A Reference defines a Classifier's knowledge of, and access to, links and their 
instances defined by an Association. Although a Reference derives much of its state 
from a corresponding AssociationEnd, it provides additional information; therefore, the 
MOF cannot adequately represent some meta-models without this mechanism. The 
inherited attributes defined in StructuralFeature (multiplicity and is_changeable) are 
constrained to match the values of its corresponding AssociationEnd. However, it has 
its own visibility, name, and annotation defined. For further discussion on Reference, 
its purpose, and how it derives its attributes, see Section 3.2.2, “Associations,” on 
page 3-8.

A derived attribute is one whose values are not part of the state of the object 
instance, but whose values can be determined or computed. In a sense, all 
attributes are derived, since it is up to the class's implementation to hold or 
calculate the values. However, by convention, isDerived indicates that the derived 
state is based on other information in the model. Modification of the derived 
Attribute causes the information upon which the Attribute is derived to be 
updated.

type: boolean

multiplicity: exactly one
3-40     OMG-MOF V1.3                              March 2000  



3

Note – When creating a Reference, values for the inherited attributes of multiplicity 
and is_changeable must be supplied. These must be the same as the corresponding 
attributes on the AssociationEnd to which the Reference will subsequently be linked.

SuperClasses

StructuralFeature

References

referencedEnd

exposedEnd

Constraints

[The multiplicity for a Reference must be the same as the multiplicity for the 
referenced AssociationEnd. [C-21]]

[Classifier scoped References are not meaningful in the current M1 level computational 
model. [C-22]]

[A Reference can be changeable only if the referenced AssociationEnd is also 
changeable. [C-23]]

The referencedEnd of a Reference is the end representing the set of LinkEnds of 
principle interest to the Reference. The Reference provides access to the instances 
of that AssociationEnd's class, which are participants in that AssociationEnd's 
Association, connected through that AssociationEnd's LinkEnds. In addition, the 
Reference derives the majority of its state information - multiplicity, etc., from 
that Reference.

class: AssociationEnd

defined by: RefersTo::referencedEnd

multiplicity: exactly one

changeable: yes

The exposedEnd of a Reference is the AssociationEnd representing the end of the 
Reference's owning Classifier within the defining Association.

class AssociationEnd

defined by: Exposes::exposedEnd

multiplicity: exactly one

changeable: yes
OMG-MOF V1.3           MOF Model Classes           March 2000 3-41



3

[The type attribute of a Reference and its referenced AssociationEnd must be the same. 
[C-24]]

[A Reference is only allowed for a navigable AssociationEnd [C-25]]

[The containing Class for a Reference must be equal to or a subtype of the type of the 
Reference’s exposed AssociationEnd. [C-26]]

[The referenced AssociationEnd for a Reference must be visible from the Reference. 
[C-27]]

IDL

interface ReferenceClass : StructuralFeatureClass {
      readonly attribute ReferenceUList all_of_type_reference;
      readonly attribute ReferenceUList all_of_class_reference;
      const string REFERENCE_MULTIPLICITY_MUST_MATCH_END =
       "org.omg.mof:constraint.model.reference.reference_multiplicity_must_match_end";
      const string REFERENCE_MUST_BE_INSTANCE_SCOPED =
       "org.omg.mof:constraint.model.reference.reference_must_be_instance_scoped";
      const string CHANGEABLE_REFERENCE_MUST_HAVE_CHANGEABLE_END =
       "org.omg.mof:constraint.model.reference.changeable_reference_must_have_changeable_end";
      const string REFERENCE_TYPE_MUST_MATCH_END_TYPE =
       "org.omg.mof:constraint.model.reference.reference_type_must_match_end_type";
      const string REFERENCED_END_MUST_BE_NAVIGABLE =
       "org.omg.mof:constraint.model.reference.referenced_end_must_be_navigable";
      const string CONTAINER_MUST_MATCH_EXPOSED_TYPE =
       "org.omg.mof:constraint.model.reference.container_must_match_exposed_type";
      const string REFERENCED_END_MUST_BE_VISIBLE =
       "org.omg.mof:constraint.model.reference.referenced_end_must_be_visible";

      Reference create_reference (
/* from ModelElement */ in ::Model::NameType name,
/* from ModelElement */ in ::Model::AnnotationType annotation,
/* from Feature */ in ::Model::ScopeKind scope,
/* from Feature */ in ::Model::VisibilityKind visibility,
/* from StructuralFeature */ in ::Model::MultiplicityType, multiplicity,
/* from StructuralFeature */ in boolean is_changeable)

         raises (Reflective::MofError);
   }; // end of interface ReferenceClass

   interface Reference : ReferenceClass, StructuralFeature {
      AssociationEnd exposed_end ()
         raises (Reflective::MofError);
      void set_exposed_end (in AssociationEnd new_value)
         raises (Reflective::MofError);
      AssociationEnd referenced_end ()
         raises (Reflective::MofError);
      void set_referenced_end (in AssociationEnd new_value)
         raises (Reflective::MofError);
   };
3-42     OMG-MOF V1.3                              March 2000  



3

3.4.13BehavioralFeature  abstract

A BehavioralFeature defines a dynamic characteristic of the ModelElement that 
contains it. Because a BehavioralFeature is partially defined by the Parameters it 
contains, it is both a Feature and a Namespace.

SuperClasses

Feature, Namespace

IDL

interface BehavioralFeatureClass : FeatureClass, NamespaceClass {
readonly attribute BehavioralFeatureUList

all_of_type_behavioral_feature;
}; // end of interface BehavioralFeatureClass

interface BehavioralFeature :
BehavioralFeatureClass, Feature , Namespace {};

3.4.14 Operation

An Operation defines a dynamic feature which offers a service. The behavior of an 
operation is activated through the invocation of the operation. 

SuperClasses

BehavioralFeature

Contained Elements

Parameter, Constraint -- see [OperationContainmentRules [C-28]]

Attributes

isQuery
OMG-MOF V1.3           MOF Model Classes           March 2000 3-43



3

References

exceptions

Constraints

[An Operation may only contain Parameters, Constraints and Tags. [C-28]]

[An Operation may have at most one Parameter whose direction is “return”. [C-29]]

[The Exceptions raised by an Operation must be visible to the Operation. [C-30]]

IDL

interface OperationClass : BehavioralFeatureClass {
      readonly attribute OperationUList all_of_type_operation;
      readonly attribute OperationUList all_of_class_operation;

Defining an Operation with an isQuery value of true denotes that the behavior of 
the operation will not alter the state of the object. The state of a Classifier, for this 
definition, is the set of values of all of the Classifier's class-scope and instance-
scope StructuralFeatures.

For instance, an Operation of a Class, defined with a scope of instance, will not 
change the values or instances of any instance-scope StructuralFeature of the Class 
instance, as a result of invoking this Operation. An Operation of a Class with a 
scope of classifier will not change the values or instances of any of the classifier-
scope StructuralFeatures or instance-scope StructuralFeatures.

This attribute does not define a constraint enforced by the model, but rather a 
promise that the operation's implementation is expected to uphold. An operation 
which is not defined as isQuery equals false is not guaranteed to change the state 
of its object. The isQuery constraint does not proscribe any specific 
implementation, so long as the definition of isQuery above is observed.

type: boolean

multiplicity: exactly one

An Operation, upon encountering an error or other abnormal condition, may raise 
an Exception. The exceptions reference provides the Operation with the set of 
Exceptions it is allowed to raise.

class: Exception

defined by: CanRaise::except

multiplicity: zero or more, ordered
3-44     OMG-MOF V1.3                              March 2000  



3

      const string OPERATION_CONTAINMENT_RULES =
       "org.omg.mof:constraint.model.operation.operation_containment_rules";
      const string OPERATIONS_HAVE_AT_MOST_ONE_RETURN =
       "org.omg.mof:constraint.model.operation.operations_have_at_most_one_return";
      const string OPERATION_EXCEPTIONS_MUST_BE_VISIBLE =
       "org.omg.mof:constraint.model.operation.operation_exceptions_must_be_visible";

    Operation create_operation (
         /* from ModelElement */ in ::Model::NameType name,
         /* from ModelElement */ in ::Model::AnnotationType annotation,
         /* from Feature */ in ::Model::ScopeKind scope,
        /* from Feature */ in ::Model::VisibilityKind visibility,
      /* from Operation */ in boolean is_query)
         raises (Reflective::MofError);
}; // end of interface OperationClass

   interface Operation : OperationClass, BehavioralFeature {
      boolean is_query ()
          raises (Reflective::MofError);
      void set_is_query (in boolean new_value)
         raises (Reflective::MofError);
      MofExceptionUList exceptions ()
          raises (Reflective::MofError);

void set_exceptions (in MofExceptionUList new_value)
         raises (Reflective::MofError);
      void add_exceptions (in MofException new_element)
         raises (Reflective::MofError);
      void add_exceptions_before (in MofException new_element, in MofException before_element)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_exceptions (in MofException old_element,
                              in MofException new_element)
         raises (Reflective::NotFound, Reflective::MofError);
      void remove_exceptions (in MofException old_element)
         raises (Reflective::NotFound, Reflective::MofError);
   };

3.4.15Exception  idl_substitute_name “MofException”

An Exception (referred to as a MofException in the mapped IDL) defines an error or 
other abnormal condition. The Parameters of an Exception hold a record of an 
occurrence of the exceptional condition.

SuperClasses

BehavioralFeature

Contained Elements

Parameter; see [ExceptionContainmentRules [C-31]]
OMG-MOF V1.3           MOF Model Classes           March 2000 3-45



3

Constraints

[An Exception may only contain Parameters and Tags. [C-31]]

[An Exception’s Parameters must all have the direction “out”. [C-32]]

IDL

interface MofExceptionClass : BehavioralFeatureClass {
      readonly attribute MofExceptionUList all_of_type_mof_exception;
      readonly attribute MofExceptionUList all_of_class_mof_exception;
      const string EXCEPTION_CONTAINMENT_RULES =
       "org.omg.mof:constraint.model.mof_exception.exception_containment_rules";
      const string EXCEPTIONS_HAVE_ONLY_OUT_PARAMETERS =
       "org.omg.mof:constraint.model.mof_exception.exceptions_have_only_out_parameters";

     MofException create_mof_exception (
/* from ModelElement */ in ::Model::NameType name,
/* from ModelElement */ in ::Model::AnnotationType annotation,
 /* from Feature */ in ::Model::ScopeKind scope,
/* from Feature */ in ::Model::VisibilityKind visibility)

         raises (Reflective::MofError);
}; // end of interface MofExceptionClass

interface MofException : MofExceptionClass, BehavioralFeature {};
3-46     OMG-MOF V1.3                              March 2000  



3

Figure 3-6 MOF Model Elements for Association

3.4.16 Association

An association defines a classification over a set of links, through a relationship 
between Classifiers. Each link which is an instance of the association denotes a 
connection between object instances of the Classifiers of the Association. The MOF 
restricts associations to binary, restricting each link to two participating objects. This 
restriction also means that the association is defined between two Classifiers (which 
may be the same Classifier). The name of the Association is considered directional if it 
provides a clearer or more accurate representation of the association when stated with 
one participating class first rather than the other. For instance, Operation CanRaise 
Exception is correct; Exception CanRaise Operation is incorrect. 

The definition of an Association requires two AssociationEnds. If the name of the 
association is directional, the name is understood to read in the order: first contained 
element; association name; second contained element. These contained elements are 
AssociationEnd instances, and the reading of the subject; verb; object uses either the 
AssociationEnd name or the AssociationEnd's class name. The onus is on the MOF 
user to determine whether the name is directional, and to place the AssociationEnds in 

M odelEl ement

Names pac e

Behav ioralFeature

Operat ion

is Query : boolean Ex cept ion
<<Mof Exc ept ion>>

Feature

v is ibility : Vis ib ility Kind
s cope : ScopeKind

TypedElement

St ru c tur a lFeat ure

m ul tipl ic it y : Mul ti pl ic it y Ty pe
is C han geabl e : bo ole an

At t ribute

isD eriv ed : boolean

<<Mof At t ribute>>
R ef erence

0. . *0. . *

+exc ept

0. . *
{ ordered}

+operat ion

0. . *

CanRais e
OMG-MOF V1.3           MOF Model Classes           March 2000 3-47



3

proper order within the Association's contents to support the name direction. The 
representation of a Classifier's knowledge of its participation in an association requires 
the use of a Reference.

SuperClasses

Classifier

Contained Elements

AssociationEnd, Constraint -- see [AssociationContainmentRules [C-33]]

Attributes

isDerived

Constraints

[An Association may only contain AssociationEnds, Constraints and Tags. [C-33]]

[Inheritance / generalization is not applicable to Associations. [C-34]]

[The values for “isLeaf” and “isRoot” on an Association must be true. [C-35]]

[An Association cannot be abstract. [C-36]]

[Associations must have visibility of “public”. [C-37]]

[An Association must be binary; i.e. it must have exactly two AssociationEnds. [C-38]]

IDL

interface AssociationClass : ClassifierClass {
      readonly attribute AssociationUList all_of_type_association;
      readonly attribute AssociationUList all_of_class_association;
      const string ASSOCIATIONS_CONTAINMENT_RULES =
       "org.omg.mof:constraint.model.association.associations_containment_rules";
      const string ASSOCIATIONS_HAVE_NO_SUPERTYPES =
       "org.omg.mof:constraint.model.association.associations_have_no_supertypes";

A derived association has no Links as instances. Instead, its Links are derived 
from other information in a meta-model. The addition, removal, or modification of 
a derived Association's Link causes the information upon which the Association is 
derived to be updated. The results of such an update are expected to appear, upon 
subsequent access of the derived Association's Links, to have the same effect as an 
equivalent operation on an Association which is not derived.

type: boolean

multiplicity: exactly one
3-48     OMG-MOF V1.3                              March 2000  



3

      const string ASSOCIATIONS_MUST_BE_ROOT_AND_LEAF =
       "org.omg.mof:constraint.model.association.associations_must_be_root_and_leaf";
      const string ASSOCIATIONS_CANNOT_BE_ABSTRACT =
       "org.omg.mof:constraint.model.association.associations_cannot_be_abstract";
      const string ASSOCIATIONS_MUST_BE_PUBLIC =
       "org.omg.mof:constraint.model.association.associations_must_be_public";
      const string ASSOCIATIONS_MUST_BE_BINARY =
       "org.omg.mof:constraint.model.association.associations_must_be_binary";

   Association create_association (
       /* from ModelElement */ in ::Model::NameType name,
       /* from ModelElement */ in ::Model::AnnotationType annotation,
       /* from GeneralizableElement */ in boolean is_root,
       /* from GeneralizableElement */ in boolean is_leaf,

/* from GeneralizableElement */ in boolean is_abstract,
       /* from GeneralizableElement */ in ::Model::VisibilityKind visibility,
       /* from Association */ in boolean is_derived)
     raises (Reflective::MofError);
}; // end of interface AssociationClass

interface Association : AssociationClass, Classifier {

      boolean is_derived ()
          raises (Reflective::MofError);
      void set_is_derived (in boolean new_value)
         raises (Reflective::MofError);
};

3.4.17 AssociationEnd

An association is composed of two AssociationEnds. Each AssociationEnd defines a 
Classifier participant in the Association, the role it plays, and constraints on sets of the 
Classifier instances participating. An instance of an AssociationEnd is a LinkEnd, 
which defines a relationship between a link, in instance of an Association, and an 
instance of the AssociationEnd's Classifier, provided in its type attribute.

SuperClasses

TypedElement
OMG-MOF V1.3           MOF Model Classes           March 2000 3-49



3

Attributes

multiplicity

aggregation

isNavigable

Multiplicity defines constraints on sets of instances. Each instance of the 
Classifier defined by the opposite AssociationEnd's type defines a set which this 
multiplicity attribute constrains. Given one of those instances, x, the set is defined 
as the instances connected by LinkEnds of this AssociationEnd to that instance x. 
Refer to Section 3.6.5, “MultiplicityType,” on page 3-78 for a description on how 
the multiplicity attribute constrains a set. In its use is describing AssociationEnds, 
isUnique has been constrained to be true, as a simplification. This constraint 
means that the same two instances cannot participate in more than one Link while 
participating under the same AssociationEnd. Normally, two instances cannot be 
linked by more than one Link of an Association at all. But when the 
AssociationEnd types allow the two instances switch ends, they can form a second 
Link without violating the isUnique constraint. 

type: MultiplicityType

multiplicity: exactly one

Certain associations define aggregations - directed associations with additional 
semantics (see Section 4.8, “Aggregation Semantics,” on page 4-17). When an 
AssociationEnd is defined as composite or shared, the instance at “this” end of a 
Link is the composite or aggregate, and the instance at the “other” end is the 
component or subordinate..

type: AggregationKind

multiplicity: exactly one

The isNavigable attribute determines whether or not the AssociationEnd supports 
link “navigation”. This has two implications:
• A Class defined with an appropriate Reference supports navigation of links from one 

Class instance to another. If isNavigable is false for an AssociationEnd, no such 
References may be created.

• Setting isNavigable to false also suppress a mapping’s mechanisms for indexing links 
based on this AssociationEnd.

type: boolean

multiplicity: exactly one
3-50     OMG-MOF V1.3                              March 2000  



3

isChangeable

Operations

otherEnd

Constraints

[The type of an AssociationEnd must be Class. [C-39]]

[The “isUnique” flag in an AssociationEnd’s multiplicity must be true. [C-40]]

[An Association cannot have two AssociationEnds marked as “ordered”. [C-41]]

[An Association cannot have an aggregation semantic specified for both 
AssociationEnds. [C-42]]

IDL

interface AssociationEndClass : TypedElementClass {
    readonly attribute AssociationEndUList all_of_type_association_end;
    readonly attribute AssociationEndUList all_of_class_association_end;
    const string END_TYPE_MUST_BE_CLASS =
       "org.omg.mof:constraint.model.association_end.end_type_must_be_class";
    const string ENDS_MUST_BE_UNIQUE =
       "org.omg.mof:constraint.model.association_end.ends_must_be_unique";

The isChangeable attribute restricts the capability to perform actions that would 
modify sets of instances corresponding to this AssociationEnd (the same sets to 
which multiplicity is applied). Specifically, the set may be created when the 
instance defining the set - the instance at the opposite end of the Links - is created. 
This attribute does not make the set immutable. Instead, it affects the generation of 
operations in Model Elaboration which would allow modification of the set. For 
IDL generation, the only operation that allows the set to be modified would be one 
or more factory operations that create the instance and create the set. The modeler 
is free to define specific operations that allow modification of the set. Note that 
defining this AssociationEnd with isChangeable equals false places restrictions on 
the changeability of the other AssociationEnd, due to their interdependence..

type: boolean

multiplicity: exactly one

Provides the other AssociationEnd (i.e., not this one) in the enclosing Association.

return type: AssociationEnd

isQuery: yes

parameters: none

operation semantics: [S-2]
OMG-MOF V1.3           MOF Model Classes           March 2000 3-51



3

    const string CANNOT_HAVE_TWO_ORDERED_ENDS =
       "org.omg.mof:constraint.model.association_end.cannot_have_two_ordered_ends";
    const string CANNOT_HAVE_TWO_AGGREGATE_ENDS =
       "org.omg.mof:constraint.model.association_end.cannot_have_two_aggregate_ends";

  AssociationEnd create_association_end (
/* from ModelElement */ in ::Model::NameType name,
/* from ModelElement */ in ::Model::AnnotationType annotation,
/* from AssociationEnd */ in boolean is_navigable,
/* from AssociationEnd */ in ::Model::AggregationKind aggregation,
/* from AssociationEnd */ in ::Model::MultiplicityType multiplicity,

 /* from AssociationEnd */ in boolean is changeable)
  raises (Reflective::MofError);
}; // end of interface AssociationEndClass

interface AssociationEnd : AssociationEndClass, TypedElement {
      boolean is_navigable ()
          raises (Reflective::MofError);
      void set_is_navigable (in boolean new_value)
         raises (Reflective::MofError);
      AggregationKind aggregation ()
          raises (Reflective::MofError);
      void set_aggregation (in AggregationKind new_value)
         raises (Reflective::MofError);
      MultiplicityType multiplicity ()
         raises (Reflective::MofError);
      void set_multiplicity (in MultiplicityType new_value)
          raises (Reflective::MofError);
      boolean is changeable ()
         raises (Reflective::MofError);

void set is changeable (in boolean new value);
      AssociationEnd other_end ()
          raises (Reflective::MofError);
}; // end of interface AssociationEnd
3-52     OMG-MOF V1.3                              March 2000  



3

Figure 3-7 MOF Model Packaging

3.4.18 Package

A package is formed as a composition of ModelElements. A package defines a 
modeling unit, models are constructed and presented as packages. A model is a 
package. Packages are also uses as organizational constructs in modeling. Nesting, 
importation, and generalization are used to manage the complexity of models.

SuperClasses

GeneralizableElement

Contained Elements

Package, Class, Association, DataType, Exception, Import, Constraint, Constant -- see 
[PackageContainmentRules [C-43]]

Reference

AssociationEnd

multiplicity : MultiplicityType
aggregation : AggregationKind
isNavigable : boolean
isChangeable : boolean
/ otherEnd : AssociationEnd

TypedElement

Association

Cl assif ier

1

0..* +exposedEnd

1+referrer

0..*

/Exposes

1

0..*

+referencedEnd

1

+referent
0..*

RefersTo
OMG-MOF V1.3           MOF Model Classes           March 2000 3-53



3

Operations

externalize

internalize

Constraints

[A Package may only contain Packages, Classes, DataTypes, Associations, Exceptions, 
Constraints, Imports and Tags. [C-43]]

[Packages cannot be declared as abstract. [C-44]]

IDL

interface PackageClass : GeneralizableElementClass {
     readonly attribute PackageUList all_of_type_package;
     readonly attribute PackageUList all_of_class_package;
     const string PACKAGE_CONTAINMENT_RULES =
       "org.omg.mof:constraint.model.package.package_containment_rules";
     const string PACKAGES_CANNOT_BE_ABSTRACT =
       "org.omg.mof:constraint.model.package.packages_cannot_be_abstract";

     typedef string FormatType;

     exception FormatNotSupported {};
     exception ObjectNotExternalizable { string explanation; };
     exception IllformedExternalizedObject { string explanation; };

Externalize the Package and all of its ModelElements (transitive closure on the 
containment hierarchy) in a format specified by the format parameter, into a 
stream of type any.

return type: any

isQuery: yes

parameters: format : in FormatType

exceptions: ObjectNotExternalizable, FormatNotSupported

Reify a model encoded in “stream” in some external format specified by “format” 
as a MOF Package.

return type: Package

scope: classifier-scope

parameters: format : in FormatType
stream : in any

exceptions: FormatNotSupported, IllformedExternalizedObject
3-54     OMG-MOF V1.3                              March 2000  



3

     GeneralizableElement internalize (in PackageClass::FormatType format,
                                       in any stream)
         raises (PackageClass::FormatNotSupported,

PackageClass::IllformedExternalizedObject,
Reflective::MofError);
Package create_package (

/* from ModelElement */ in ::Model::NameType name,
/* from ModelElement */ in ::Model::AnnotationType annotation,
/* from GeneralizableElement */ in boolean is_root,
/* from GeneralizableElement */ in boolean is_leaf,
/* from GeneralizableElement */ in boolean is_abstract,
/* from GeneralizableElement */ in ::Model::VisibilityKind visibility)

         raises (Reflective::MofError);
   }; // end of interface PackageClass

   interface Package : PackageClass, GeneralizableElement {

      any externalize (in PackageClass::FormatType format)
         raises (PackageClass::ObjectNotExternalizable,
                 PackageClass::FormatNotSupported,
                 Reflective::MofError);
};

3.4.19 Import

An Import allows a Package to make use of ModelElements defined in some other 
Namespace. An Import object is related to another Namespace via the Aliases 
association. When a Package contains an Import object, it imports the associated 
Namespace. This means that ModelElements defined within the imported Namespace 
are visible in the importing Package.

An Import allows the visibility of the imported Package's contained ModelElements to 
be further restricted. An Import object represents either Package importing or Package 
clustering, depending on the “isClustered” attribute.

SuperClasses

ModelElement

Attributes

visibility

In the future, this Attribute will modify the visibility of imported ModelElements 
in the context of the importing Namespace. For a description of visibility kinds, 
see Section 3.6.6, “VisibilityKind,” on page 3-79. The MOF rules of visibility are 
not currently specified.

type: VisibilityKind

multiplicity: exactly one
OMG-MOF V1.3           MOF Model Classes           March 2000 3-55



3

isClustered

References

importedNamespace

Constraints

[The Namespace imported by an Import must be visible to the Import’s containing 
Package. [C-45]]

[It is only legal for a Package to import or cluster Packages or Classes. [C-46]]

[Packages cannot import or cluster themselves. [C-47]]

[Packages cannot import or cluster Packages or Classes that they contain. [C-48]

[Nested Packages cannot import or cluster other Packages or Classes. [C-49]9]

IDL

interface ImportClass : ModelElementClass {
      readonly attribute ImportUList all_of_type_import;
      readonly attribute ImportUList all_of_class_import;
    const string IMPORTED_NAMESPACE_MUST_BE_VISIBLE =
       "org.omg.mof:constraint.model.import.imported_namespace_must_be_visible";
    const string CAN_ONLY_IMPORT_PACKAGES_AND_CLASSES =
       "org.omg.mof:constraint.model.import.can_only_import_packages_and_classes";
    const string CANNOT_IMPORT_SELF =
       "org.omg.mof:constraint.model.import.cannot_import_self";
    const string CANNOT_IMPORT_NESTED_COMPONENTS =
       "org.omg.mof:constraint.model.import.cannot_import_nested_components";
    const string NESTED_PACKAGES_CANNOT_IMPORT =
       "org.omg.mof:constraint.model.import.nested_packages_cannot_import";

      Import create_import (
             /* from ModelElement */ in ::Model::NameType name,
             /* from ModelElement */ in ::Model::AnnotationType annotation,

The isClustered flags determines whether the Import object represents simple 
Package importation, or Package clustering.

type: boolean

multiplicity: exactly one

The Import knows about the Namespace that it references.

class: Namespace

defined by: Aliases::imported

multiplicity: exactly one
3-56     OMG-MOF V1.3                              March 2000  



3

             /* from Import */ in ::Model::VisibilityKind visibility,
             /* from Import */ in boolean is_clustered)
         raises (Reflective::MofError);
   }; // end of interface ImportClass

   interface Import : ImportClass, ModelElement {
      VisibilityKind visibility ()
          raises (Reflective::MofError);
      void set_visibility (in VisibilityKind new_value)
          raises (Reflective::MofError);
      boolean is_clustered ()
          raises (Reflective::MofError);
      void set_is_clustered (in boolean new_value)
          raises (Reflective::MofError);
      Namespace imported_namespace ()
         raises (Reflective::MofError);
      void set_imported_namespace (in Namespace new_value)
         raises (Reflective::MofError);
   };

Figure 3-8 MOF Model - Other Elements

ModelElement

Namespace

Import

visibil ity : Visibi l ityKind
isClustered : boolean

GeneralizableElement

Package

externalize()
$internalize()

1

0..*

+im porte d

1+importer

0..*

Al iases
OMG-MOF V1.3           MOF Model Classes           March 2000 3-57



3

3.4.20 Parameter

A parameter provides a means of communication with operations and other 
BehavioralFeatures. A parameter passes or communicates values of its defined type. 

SuperClasses

TypedElement

Attributes

direction

multiplicity

IDL

interface ParameterClass : TypedElementClass {
      readonly attribute ParameterUList all_of_type_parameter;
      readonly attribute ParameterUList all_of_class_parameter;

      Parameter create_parameter (
           /* from ModelElement */ in ::Model::NameType name,
           /* from ModelElement */ in ::Model::AnnotationType annotation,
           /* from Parameter */ in ::Model::DirectionKind direction,
           /* from Parameter */ in ::Model::MultiplicityType multiplicity)
          raises (Reflective::MofError);
   }; // end of interface ParameterClass

This attribute specifies the purpose of the parameter; to input a value, to output a 
value, both purposes, or to provide an operation return value.

type: DirectionKind

multiplicity: exactly one

Multiplicity defines cardinality constraints on the set of instances or values that a 
Parameter can hold. Multiplicity defines a lower and upper bound on the set, 
although the upper bound can be specified as Unbounded. Additionally, 
multiplicity defines two other characteristics of the set: 1) constraints on set 
member ordering, and 2) constraints on unique set elements. Specifically, 
Multiplicity contains an isOrdered field. When isOrdered is true, the ordering of 
the elements in the set are preserved. Multiplicity also has an isUnique field. 
When isUnique is true, the set is constrained to hold no more than one of any 
value or instance.

type: MultiplicityType

multiplicity: exactly one
3-58     OMG-MOF V1.3                              March 2000  



3

interface Parameter : ParameterClass, TypedElement {
      DirectionKind direction ()
          raises (Reflective::MofError);
      void set_direction (in DirectionKind new_value)
         raises (Reflective::MofError);
      MultiplicityType multiplicity ()
         raises (Reflective::MofError);
      void set_multiplicity (in MultiplicityType new_value)
          raises (Reflective::MofError);
   };

3.4.21 Constraint

A Constraint defines a rule that restricts the state or behavior of one or more elements 
in the meta-model. When a Constraint is attached to a ModelElement, the rule it 
encodes applies to all relevant instances of the ModelElement in a model. 

A Constraint rule, represented by the “expression” attribute, may be encoded in any 
form. The “language” attribute may be used to denote the language and encoding 
scheme used. 

While some Constraints on a model may need to be treated as invariant, it is often 
convenient for other Constraints to be relaxed, for instance while a model is being 
edited. While, the “evaluationPolicy” attribute is used to represent these two cases, this 
information is at best advisory, since the MOF specification does not currently state 
how and when Constraints should be enforced.

Note – A Constraint cannot over-ride structural integrity rules defined by other parts of 
a meta-model (e.g., multiplicity specifications) or the integrity rules defined by a 
particular mapping of the meta-model to implementation technology.

SuperClasses

ModelElement
OMG-MOF V1.3           MOF Model Classes           March 2000 3-59



3

Attributes

expression

language

evaluationPolicy

The Constraint's expression attribute provides a representation of the constraint. 
The MOF has no specific requirement to interpret this expression, or to validate it 
against the language attribute. The specific handling of the expression will 
necessarily vary with the language used. However, it is expected that for any 
language an implementation accepts, it will enforce the constraints expressed in 
that language. The expression can be represented in any format, including text or 
a composition of objects.

type any

multiplicity: exactly one

The language representing this Constraint's expression is defined in this attribute. 
Since it is a string, most any language can be represented, including format 
variances in a language (e.g., OCL as text verses OCL as a parse tree).

type: string

multiplicity: exactly one

Each constraint can be defined as immediate or deferred. For immediate 
Constraints, the constraint violation will be detected and reported within an 
operation in the chain of operations between the operation initiated by the MOF 
user and the operation that caused the constraint violation. The effect of an 
operation that violates an immediate constraint on the state of the object or objects 
being altered is implementation specific, and possibly undefined. However, if 
possible, an implementation should reverse the effects of the operation. 

For deferred Constraints, the constraint violation can only be detected when the 
Constraint is explicitly evaluated. The MOF defines an operation for such 
constraint evaluation, the verify operation. When the verify operation is invoked 
on a Constraint's container, the constraint is evaluated and a constraint violation is 
detected, if present. 

type: EvaluationKind

multiplicity: exactly one
3-60     OMG-MOF V1.3                              March 2000  



3

References

constrainedElements

Constraints

[Constraints, Tags, Imports, TypeAliases and Constants cannot be constrained. [C-50]]

[A Constraint can only constrain ModelElements that are defined by or inherited by its 
immediate container. [C-51]]

IDL

interface ConstraintClass : ModelElementClass {
     readonly attribute ConstraintUList all_of_type_constraint;
     readonly attribute ConstraintUList all_of_class_constraint;
     const string CANNOT_CONSTRAIN_THIS_ELEMENT =
       "org.omg.mof:constraint.model.constraint.cannot_constrain_this_element";
     const string CONSTRAINTS_LIMITED_TO_CONTAINER =
       "org.omg.mof:constraint.model.constraint.constraints_limited_to_container";

    enum EvaluationKind {immediate, deferred};

    Constraint create_constraint (
/* from ModelElement */ in ::Model::NameType name,
/* from ModelElement */in ::Model::AnnotationType annotation,
/* from Constraint */ in any expression,
/* from Constraint */ in string language,
/* from Constraint */ in ::Model::ConstraintClass::EvaluationKind

evaluation_policy)
         raises (Reflective::MofError);
   }; // end of interface ConstraintClass

   interface Constraint : ConstraintClass, ModelElement {
      any expression ()
          raises (Reflective::MofError);
      void set_expression (in any new_value)
          raises (Reflective::MofError);
      string language ()

The Constraint has access to the ModelElements it constrains, through this 
reference. Note that the Constraint may depend on other ModelElements not 
represented in this reference. For instance, a Constraint may state that attribute 
A::x cannot exceed A::y in magnitude. The Constraint is on A::x, although it also 
depends on A::y. The link between the Constraint and A::x will be represented in 
the meta-model, not the link between the Constraint and A::y.

class: ModelElement

defined by: Constrains::constrainedElement

multiplicity: one or more
OMG-MOF V1.3           MOF Model Classes           March 2000 3-61



3

          raises (Reflective::MofError);
      void set_language (in string new_value)
         raises (Reflective::MofError);
      ConstraintClass::EvaluationKind evaluation_policy ()
          raises (Reflective::MofError);
      void set_evaluation_policy (in ConstraintClass::EvaluationKind new_value)
         raises (Reflective::MofError);
      ModelElementSet constrained_elements ()
         raises (Reflective::MofError);

void set_constrained_elements (in ModelElementSet new_value)
          raises (Reflective::MofError);
      void add_constrained_elements (in ModelElement new_element)
          raises (Reflective::MofError);
      void modify_constrained_elements (in ModelElement old_element,
                                    in ModelElement new_element)
         raises (Reflective::NotFound, Reflective::MofError);
      void remove_constrained_elements (in ModelElement old_element)
         raises (Reflective::NotFound, Reflective::MofError);
   };

3.4.22 Constant Class

This Class provides a mechanism for defining constant values of simple data types, in 
the support of model development.

SuperClasses

TypedElement

Attributes

value

Constraints

[The type of a Constant and the type of its value must be the same. [C-52]]

[The type of a Constant must be a CORBA data type that is legal for a CORBA 2.3 
constant declaration. [C-53]]

IDL

interface ConstantClass : TypedElementClass {
    readonly attribute ConstantUList all_of_type_constant;

This Attribute gives the value of the constant.

type LiteralType

multiplicity: exactly one
3-62     OMG-MOF V1.3                              March 2000  



3

    readonly attribute ConstantUList all_of_class_constant;
    const string CONSTANTS_VALUE_MUST_MATCH_TYPE =
       "org.omg.mof:constraint.model.constant.constants_value_must_match_type";
    const string CONSTANTS_TYPE_MUST_BE_SIMPLE_DATA_TYPE =
       "org.omg.mof:constraint.model.constant.constants_type_must_be_simple_data_type";

    Constant create_constant (
         /* from ModelElement */ in ::Model::NameType name,
         /* from ModelElement */ in ::Model::AnnotationType annotation,
         /* from Constant */ in ::Model::LiteralType value)
         raises (Reflective::MofError);
}; // end of interface ConstantClass

    interface Constant : ConstantClass, TypedElement {
      LiteralType value ()
          raises (Reflective::MofError);
      void set_value (in LiteralType new_value)
         raises (Reflective::MofError);
   };

3.4.23 Tag

Tags provide a light-weight extension mechanism that allows mapping, vendor, and 
even customer specific information to be added to or associated with a meta-model. In 
essence, Tags are arbitrary name / value that can be attached to instances of most 
ModelElements.

A Tag has an attribute called “tagId” that denotes a category of meaning, and another 
attribute called “values” that parameterizes that meaning. Each Tag is related to one or 
more ModelElements by the AttachesTo Association. The Tag need not be contained 
within the meta-model of the ModelElement it “tags.”

The MOF specification does not generally define the values for the “tagId” or the 
application specific categories of meaning that they denote. The exception to this is 
Section 5.6, “Standard Tags for the IDL Mapping,” on page 5-35, which defines some 
Tags that can be used in a meta-model to “tune” the IDL produced for a meta-model by 
the mapping.

Since “tagId” values are not standardized, there is a risk that different vendors or user 
organizations will use the same values to denote different categories of meaning. If a 
“tagId” value is used to mean different things, problems can arise when meta-models 
using the value are exchanged.

To avoid such Tag collisions, it is recommended that “tagId” values should use the 
following scheme based on Java package naming. Each value should start with a prefix 
formed by reversing the Internet domain name of a “tagId” naming authority. This 
should be followed by a locally unique component.  For instance, this might be a 
standard or product name followed by a name or names that denotes the meaning. Here 
are some examples:

  "org.omg.mof.idl_prefix"

  "org.omg.mof.some_tag"
OMG-MOF V1.3           MOF Model Classes           March 2000 3-63



3

  "com.rational.rose.screen_position"

  "au.edu.dstc.elvin.event_type"

It is also recommended that “tagId” values should be spelled in all lower case using the 
underscore (“_”) character as a word separator.

Note – In defining new Tag categories, the meta-modeler should take account of the 
fact that the MOF Model has no Reference for navigating from a ModelElement to its 
attached Tags. This allows one to attach Tags to elements of a “frozen” meta-model. 
On the other hand, makes it harder for a “client” of the meta-model objects to find the 
Tags for an element. One option is to require relevant Tags to be Contained by the 
elements they AttachTo, or their parents.

SuperClasses

ModelElement 

Attributes

tagId

values

References

elements

Gives the category of meaning for the Tag. The values for this attribute and their 
associated meanings are not standardized here. See discussion above.

type: string

multiplicity: exactly one

Carries additional information (e.g. “parameters”) associated with the Tag.

type: any

multiplicity: zero or more; not ordered; not unique

The ModelElement or ModelElements that this Tag is attached to.

class: ModelElement

defined by: AttachesTo::modelElement

multiplicity: one or more
3-64     OMG-MOF V1.3                              March 2000  



3

IDL

interface TagClass : ModelElementClass {
      readonly attribute TagUList all_of_type_tag;
      readonly attribute TagUList all_of_class_tag;

      Tag create_tag (
            /* from ModelElement */ in ::Model::NameType name,
            /* from ModelElement */ in ::Model::AnnotationType annotation,
           /* from Tag */ in string tag_id,
           /* from Tag */ in AnyBag values)
         raises (Reflective::MofError);
}; // end of interface TagClass

   interface Tag : TagClass, ModelElement {
      string tag_id ()
          raises (Reflective::MofError);
      void set_tag_id (in string new_value)
         raises (Reflective::MofError);
      AnyBag values ()
         raises (Reflective::MofError);
      void set_values (in AnyBag new_value)
         raises (Reflective::MofError);

void add_values (in any new_element)
         raises (Reflective::MofError);

void modify_values (in any old_element, in any new_element)
            raises (Reflective::NotFound, Reflective::MofError);

void remove_values (in any old_element)
             raises (Reflective::NotFound, Reflective::MofError);

ModelElementUList elements ()
         raises (Reflective::MofError);

void set_elements (in ModelElementUList new_value)
          raises (Reflective::MofError);
      void add_elements (in ModelElement new_element)
          raises (Reflective::MofError);
      void add_elements_before (in ModelElement new_element, in ModelElement before_element)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_elements (in ModelElement old_element, in ModelElement new_element)
         raises (Reflective::NotFound, Reflective::MofError);
     void remove_elements (in ModelElement old_element)
         raises (Reflective::NotFound, Reflective::MofError);
   };

3.5 MOF Model Associations

3.5.1 Contains

A meta-model is defined through a composition of ModelElements. A Namespace 
defines a ModelElement which composes other ModelElements. Since Namespace has 
several subclasses, there is a sizable combinatorial set of potential Namespace-
ModelElement pairings. However, some of these pairings are not appropriate for 
building an object-oriented meta-model, such as a Class containing a Package (see 
OMG-MOF V1.3           MOF Model Associations           March 2000 3-65



3

Section 3.3.4, “The MOF Model Containment Hierarchy,” on page3-15 . This approach 
factors the container  mechanisms into one abstraction, and allows the greatest 
flexibility for future changes to the MOF Model.

Ends

container

containedElement

IDL

interface Contains : Reflective::RefAssociation {
ContainsLinkSet all_contains_links ();
boolean exists (in Namespace container, in ModelElement contained_element)

         raises (Reflective::MofError);
Namespace container (in ModelElement contained_element)

         raises (Reflective::MofError);
ModelElementUList contained_element (in Namespace container)

         raises (Reflective::MofError);
void add (in Namespace container, in ModelElement contained_element)

          raises (Reflective::MofError);
void add_before_contained_element (in Namespace container,

                                          in ModelElement contained_element,
                                          in ModelElement before)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_container (in Namespace container,
                              in ModelElement contained_element,
                              in Namespace new_container)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_contained_element (in Namespace container,
                                      in ModelElement contained_element,
                                      in ModelElement new_contained_element)
         raises (Reflective::NotFound, Reflective::MofError);

void remove (in Namespace container, in ModelElement contained_element)
         raises (Reflective::NotFound, Reflective::MofError);
   };

Each Namespace is a composition of zero or more ModelElements.

class: Namespace

multiplicity: zero or one

aggregation: Namespace forms a composite aggregation of ModelElements

Each ModelElement, with the exception of top-level packages participates in the 
association as a containedElement.

class: ModelElement

multiplicity: zero or more; ordered
3-66     OMG-MOF V1.3                              March 2000  



3

3.5.2 Generalizes

The Association defined on GeneralizableElement. A Link of this Association 
represents a supertype/subtype relationship (or a generalizes/specializes relationship).

Ends

supertype

subtype

IDL

interface Generalizes : Reflective::RefAssociation {
      GeneralizesLinkSet all_generalizes_links ();
      boolean exists (in GeneralizableElement supertype,
                      in GeneralizableElement subtype)
         raises (Reflective::MofError);
      GeneralizableElementUList supertype (in GeneralizableElement subtype)
         raises (Reflective::MofError);
      GeneralizableElementSet subtype (in GeneralizableElement supertype)
         raises (Reflective::MofError);

void add (in GeneralizableElement supertype,
                in GeneralizableElement subtype)
         raises (Reflective::MofError);
      void add_before_supertype (in GeneralizableElement supertype,
                                 in GeneralizableElement subtype,
                                 in GeneralizableElement before)
         raises (Reflective::NotFound, Reflective::MofError);
 void modify_supertype (in GeneralizableElement supertype,
                             in GeneralizableElement subtype,
                             in GeneralizableElement new_supertype)
         raises (Reflective::NotFound, Reflective::MofError);
      void modify_subtype (in GeneralizableElement supertype,
                           in GeneralizableElement subtype,
                           in GeneralizableElement new_subtype)
         raises (Reflective::NotFound, Reflective::MofError);

The GeneralizableElement that is more general is the supertype.

class: GeneralizabelElement

multiplicity: zero or more (a GeneralizableElement may have zero or 
more supertypes); ordered

The subtype is the GeneralizableElement that is more specific. The supertype 
Generalizes the subtype.

class: GeneralizableElement

multiplicity: zero or more (a GeneralizableElement may have zero 
or more subtypes)
OMG-MOF V1.3           MOF Model Associations           March 2000 3-67



3

      void remove (in GeneralizableElement supertype,
                   in GeneralizableElement subtype)
         raises (Reflective::NotFound, Reflective::MofError);
   };

3.5.3 RefersTo

A Reference derives most of its state from the AssociationEnd that it is linked to, 
based on this Association. For a Class defined with a Reference, each of its instances 
can be used to access the referenced object or objects. Those referenced objects will be 
of the Class defined by this referencedEnd AssociationEnd, playing the defined end.

Ends

referent

referencedEnd

IDL

interface RefersTo : Reflective::RefAssociation {
RefersToLinkSet all_refers_to_links ();
boolean exists (in Reference referent, in AssociationEnd referenced_end)

         raises (Reflective::MofError);
ReferenceSet referent (in AssociationEnd referenced_end)

         raises (Reflective::MofError);
AssociationEnd referenced_end (in Reference referent)

         raises (Reflective::MofError);
void add (in Reference referent, in AssociationEnd referenced_end)

         raises (Reflective::MofError);
void modify_referent (in Reference referent,

                             in AssociationEnd referenced_end,
                             in Reference new_referent)
         raises (Reflective::NotFound, Reflective::MofError);
 void modify_referenced_end (in Reference referent,

The Reference which is providing the reference through which instances playing 
the end-defined by the AssociationEnd can be accessed.

class: Reference

multiplicity: zero or more; not ordered (an AssociationEnd may or 
may not be used by any number of References).

The AssociationEnd which provides the majority of information for the Reference, 
including the LinkEnds which supply the referenced instances.

class: AssociationEnd

multiplicity: exactly one
3-68     OMG-MOF V1.3                              March 2000  



3

                                   in AssociationEnd referenced_end,
                                   in AssociationEnd new_referenced_end)
         raises (Reflective::NotFound, Reflective::MofError);

void remove (in Reference referent, in AssociationEnd referenced_end)
         raises (Reflective::NotFound, Reflective::MofError);
   };

3.5.4 Exposes  derived

A Reference defines a reference for a Class. For an instance of that class, which holds 
one or more links to some object or objects conforming to the reference, the instance 
will be playing the role (end) defined by the AssociationEnd in this Association. 
Although this association can be derived in the current MOF, the use of n-ary 
associations, where a single Class has multiple ends specification of this Association, 
is necessary. 

Ends

referrer

exposedEnd

Derivation

See [S-13].  For a given Reference, the Link of this Association is derived as follows: 

• The referrer’s Reference is the given Reference.

• The exposedEnd’s AssociationEnd is the given Reference’s referent’s container 
Association’s other AssociationEnd.

The Reference that is providing the exposedEnd’s class instances within the 
Reference’s Classifier.

class: Reference

multiplicity: zero or more; not ordered (an AssociationEnd may or 
may not be used by any number of References).

changeable: yes

The AssociationEnd representing the Reference’s owning Classifier’s end in the 
Association.

class: AssociationEnd

multiplicity: exactly one

changeable: yes
OMG-MOF V1.3           MOF Model Associations           March 2000 3-69



3

IDL

interface Exposes : Reflective::RefAssociation {
ExposesLinkSet all_exposes_links ();
boolean exists (in Reference referrer, in AssociationEnd exposed_end)

         raises (Reflective::MofError);
ReferenceSet referrer (in AssociationEnd exposed_end)

         raises (Reflective::MofError);
AssociationEnd exposed_end (in Reference referrer)

         raises (Reflective::MofError);
void add (in Reference referrer, in AssociationEnd exposed_end)

          raises (Reflective::MofError);
void modify_referrer (in Reference referrer,

                             in AssociationEnd exposed_end,
                             in Reference new_referrer)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_exposed_end (in Reference referrer,
                                in AssociationEnd exposed_end,
                                in AssociationEnd new_exposed_end)
         raises (Reflective::NotFound, Reflective::MofError);

void remove (in Reference referrer, in AssociationEnd exposed_end)
         raises (Reflective::NotFound, Reflective::MofError);
   };

3.5.5 IsOfType

A Link between a TypedElement subclass and a Classifier supports the definition of 
the TypedElement.

Ends

type

typedElements

IDL

interface IsOfType : Reflective::RefAssociation {
      IsOfTypeLinkSet all_is_of_type_links ();

The type defining the TypedElement.

class: Classifier

multiplicity: exactly one

The set of typed elements supported by a Classifier.

class: TypedElement

multiplicity: zero or more
3-70     OMG-MOF V1.3                              March 2000  



3

boolean exists (in Classifier type, in TypedElement typed_elements)
         raises (Reflective::MofError);

Classifier type (in TypedElement typed_elements)
         raises (Reflective::MofError);

TypedElementSet typed_elements (in Classifier type)
         raises (Reflective::MofError);

void add (in Classifier type, in TypedElement typed_elements)
          raises (Reflective::MofError);

void modify_type (in Classifier type,
                         in TypedElement typed_elements,
                         in Classifier new_type)
         raises (Reflective::NotFound, Reflective::MofError);
 void modify_typed_elements (in Classifier type,
                                   in TypedElement typed_elements,
                                   in TypedElement new_typed_elements)
         raises (Reflective::NotFound, Reflective::MofError);
 void remove (in Classifier type, in TypedElement typed_elements)
         raises (Reflective::NotFound, Reflective::MofError);
   };

3.5.6 CanRaise

Relates Operations to the Exceptions that they can raise.

Ends

operation

except

IDL

interface CanRaise : Reflective::RefAssociation {
CanRaiseLinkSet all_can_raise_links ();
boolean exists (in ::Model::Operation operation, in MofException except)

Given an Exception, the set of Operations which can Raise that Exception.

class: Operation

multiplicity: zero or more (an Exception may be defined that is not 
currently used by any Operation; an Exception may be 
raised by multiple Operations).

The set of Exceptions for an Operation.

class: Exception

multiplicity: zero or more (an Operation may be defined to raise no 
exception, or multiple exceptions); ordered (an 
Operation's Exceptions are ordered).
OMG-MOF V1.3           MOF Model Associations           March 2000 3-71



3

         raises (Reflective::MofError);
OperationSet operation (in MofException except)

         raises (Reflective::MofError);
MofExceptionUList except (in ::Model::Operation operation)

         raises (Reflective::MofError);
void add (in ::Model::Operation operation, in MofException except)

         raises (Reflective::MofError);
void add_before_except (in ::Model::Operation operation,

                              in MofException except,
                              in MofException before)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_operation (in Operation operation,
                             in MofException except,
                             in Operation new_operation)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_except (in ::Model::Operation operation,
                          in MofException except,
                          in MofException new_except)
         raises (Reflective::NotFound, Reflective::MofError);

void remove (in ::Model::Operation operation, in MofException except)
         raises (Reflective::NotFound, Reflective::MofError);
   };

3.5.7 Aliases

An Import aliases or imports a single Namespace.

Ends

importer

imported

IDL

interface Aliases : Reflective::RefAssociation {
AliasesLinkSet all_aliases_links ();
boolean exists (in Import importer, in Namespace imported)

         raises (Reflective::MofError);

A Namespace may be aliased by an Import, which is the importer.

class: Import

multiplicity: zero or more (a Namespace may not be aliased, or 
may be aliased by multiple Imports).

The Namespace that an Import imports or aliases.

class: Namespace

multiplicity: exactly one
3-72     OMG-MOF V1.3                              March 2000  



3

ImportSet importer (in Namespace imported)
         raises (Reflective::MofError);

Namespace imported (in Import importer)
         raises (Reflective::MofError);

void add (in Import importer, in Namespace imported)
         raises (Reflective::MofError);

void modify_importer (in Import importer,
                            in Namespace imported,
                            in Import new_importer)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_imported (in Import importer,
                            in Namespace imported,
                            in Namespace new_imported)
         raises (Reflective::NotFound, Reflective::MofError);

void remove (in Import importer, in Namespace imported)
         raises (Reflective::NotFound, Reflective::MofError);
   };

3.5.8 Constrains

Each Constraint constrains one or more ModelElements.

Ends

constraint

constrainedElement

IDL

interface Constrains : Reflective::RefAssociation {
ConstrainsLinkSet all_constrains_links ();
boolean exists (in ::Model::Constraint constraint,

                      in ModelElement constrained_element)
         raises (Reflective::MofError);

ConstraintSet constraint (in ModelElement constrained_element);

A Constraint which constrains a ModelElement.

class: Constraint

multiplicity: zero or more (a ModelElement need not be 
constrained, but could be constrained by more than 
one Constraint).

The ModelElements that a Constraint holds its constraint against.

class: ModelElement

multiplicity: one or more (a Constraint must constrain at least one 
ModelElement)
OMG-MOF V1.3           MOF Model Associations           March 2000 3-73



3

         raises (Reflective::MofError)
ModelElementSet constrained_element (in ::Model::Constraint constraint)

         raises (Reflective::MofError);
void add (in ::Model::Constraint constraint,

                in ModelElement constrained_element)
         raises (Reflective::MofError);

void modify_constraint (in ::Model::Constraint constraint,
                               in ModelElement constrained_element,
                               in Constraint new_constraint)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_constrained_element (in ::Model::Constraint constraint,
                                       in ModelElement constrained_element,
                                       in ModelElement new_constrained_element)
         raises (Reflective::NotFound, Reflective::MofError);

void remove (in ::Model::Constraint constraint,
                   in ModelElement constrained_element)
         raises (Reflective::NotFound, Reflective::MofError);
   };

3.5.9 DependsOn  derived

DependsOn is a derived Association that allows a client to identify the collection of 
ModelElements on which a given ModelElement structurally depends. The Association 
is derived from a number of other Associations in the MOF Model, as described below.

Note – The model of dependency that is embodied in in this Association is based 
solely on the structural relationships within a meta-model. In some cases, the structural 
dependencies have clear semantic parallels (e.g., the meaning of an Attribute depends 
on its type). In other cases the semantic parallel is more tenuous (e.g., a DataType only 
semantically depends on its container in the context of type identity).

Ends

dependent

This End is occupied by ModelElements that structurally depend on the 
ModelElement at the other End.

class: ModelElement

multiplicity: zero or more (a ModelElement can have no 
ModelElement depend on it, or many may depend on 
it).

changeable: no
3-74     OMG-MOF V1.3                              March 2000  



3

provider

Derivation

See [S-14]. A ModelElement (ME) depends on:

• “container” - its container Namespace from ModelElement::container

• “constraint” - any Constraints from ModelElement::constraints.

• “contents” - if ME is a Namespace, its contents from Namespace::contents.

• “specialization” - if ME is a GeneralizableElement, its supertypes from 
GeneralizableElement::supertypes.

• “import” if ME is an Import, the imported Package or Class from 
Import::importedNamespace

• “signature” - if ME is an Operation, the Exceptions it raises from 
Operation::exceptions.

• “type definition” - if ME is a TypedElement, the Classifier from 
TypedElement::type.

• “referenced ends” - if ME is a Reference, the two AssociationEnds from 
Reference::referencedEnd and Reference::exposedEnd

• “constrained elements” - if ME is a Constraint, the elements it constrains from 
Constraint::constrainedElements.

• “tagged elements” - if ME is a Tag, the elements it is attached to from 
Tag::elements.

IDL

interface DependsOn : Reflective::RefAssociation {
DependsOnLinkSet all_depends_on_links ();
boolean exists (in ModelElement dependent, in ModelElement provider)

         raises (Reflective::MofError);
ModelElementSet dependent (in ModelElement provider)

         raises (Reflective::MofError);
ModelElementSet provider (in ModelElement dependent)

         raises (Reflective::MofError);
};

This End is occupied by ModelElements that have other ModelElements that 
structurally depend on them.

class: ModelElement

multiplicity: zero or more (a ModelElement can depend on no 
other ModelElements or multiple ModelElements).

changeable: no
OMG-MOF V1.3           MOF Model Associations           March 2000 3-75



3

3.5.10 AttachesTo

This association represents Tags attached to ModelElements. A ModelElement's Tags 
are ordered, although the ordering may not be of any significance, depending on the 
meaning of the Tags. Ordering is preserved in case some Tags, in conjunction with 
some defined semantics, requires an ordering.

Ends

modelElement

tag

IDL

interface AttachesTo : Reflective::RefAssociation {
AttachesToLinkSet all_attaches_to_links ();
boolean exists (in ModelElement model_element, in ::Model::Tag tag)

         raises (Reflective::MofError);
ModelElementSet model_element (in ::Model::Tag tag)

         raises (Reflective::MofError);
TagUList tag (in ModelElement model_element)

         raises (Reflective::MofError);
void add (in ModelElement model_element, in ::Model::Tag tag)

          raises (Reflective::MofError);
void add_before_tag (in ModelElement model_element,

                            in ::Model::Tag tag,
                            in Tag before)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_model_element (in ModelElement model_element,
                                  in ::Model::Tag tag,
                                  in ModelElement new_model_element)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_tag (in ModelElement model_element,
                        in ::Model::Tag tag,
                        in Tag new_tag)

The ModelElements that an attached Tag describes, modifies, or otherwise 
associates. 

class: ModelElement

multiplicity: one or more (a Tag must be attached to at least one 
ModelElement).

The set of Tags attached to a ModelElement.

class: Tag

multiplicity: zero or more (a ModelElement need not have a Tag), 
ordered. 
3-76     OMG-MOF V1.3                              March 2000  



3

         raises (Reflective::NotFound, Reflective::MofError);
void remove (in ModelElement model_element, in ::Model::Tag tag)

         raises (Reflective::NotFound, Reflective::MofError);
   };

3.6 MOF Model Data Types

The following data types are part of the MOF Model . Each data type is represented in 
the MOF Model as an instance of the DataType class with a typecode that corresponds 
to the Data Type.

3.6.1 CORBA Basic Types

Each CORBA basic type is potentially available as an instance of DataType. The basic 
types used in the MOF Model are boolean, long, unsigned long, any, string, and 
TypeCode.

3.6.2 NameType

NameType is an unbounded string data type used to represent ModelElement names. 

IDL

typedef string NameType;

3.6.3 AnnotationType

AnnotationType is an unbounded string data type used to represent ModelElement 
annotations.

IDL

typedef string AnnotationType;

3.6.4 TypeDescriptor

A TypeDescriptor value represents a particular type. By defining TypeDescriptor as a 
CORBA TypeCode, the MOF makes use of CORBA's types and type definition 
capabilities.
OMG-MOF V1.3           MOF Model Data Types           March 2000 3-77



3

IDL

typedef CORBA::TypeCode TypeDescriptor;

3.6.5 MultiplicityType

MultiplicityType is a structure (record) type that is used to specify the multiplicity 
properties of an Attribute, Parameter, Reference, or AssociationEnd. 

Fields

lower

upper

isOrdered

isUnique

Constraints

[The “lower” bound of an MultiplicityType to be “Unbounded”. [C-54]]

[The “lower” bound of a MultiplicityType cannot exceed the “upper” bound. [C-55]]

This field gives the lower bounds on the number of elements allowed for the 
Attribute, Parameter, Reference, or AssociationEnd.

type: long

This field gives the upper bounds on the number of elements allowed for the 
Attribute, Parameter, Reference or AssociationEnd.  A value of Unbounded (see 
Section 3.8.1, “Unbounded,” on page 3-85) indicates that there is no upper bound 
on the number of elements.

type: long

This flag indicates whether the order of the elements corresponding to the 
Attribute, Parameter, Reference, or AssociationEnd has any semantic significance.

type: boolean

This flag indicates whether or not the elements corresponding to the Attribute, 
Parameter, Reference, or AssociationEnd are required (or guaranteed) to be 
unique.

type: boolean
3-78     OMG-MOF V1.3                              March 2000  



3

[The “upper” bound of a MultiplicityType cannot be less than 1. [C-56]]

[If a MultiplicityType specifies bounds of [0..1] or [1..1]) the “is_ordered” and 
“is_unique” values must be false. [C-57]]

IDL

struct MultiplicityType {
long lower;
long upper;
boolean isOrdered;
boolean isUnique;

};

const string LOWER_CANNOT_BE_NEGATIVE_OR_UNBOUNDED =
"org.omg:constraint.model.multiplicity_type.lower_cannot_be_negative_or_unbounded";

const string LOWER_CANNOT_EXCEED_UPPER =
"org.omg:constraint.model.multiplicity_type.lower_cannot_exceed_upper";

const string UPPER_MUST_BE_POSITIVE =
"org.omg:constraint.model.multiplicity_type.upper_must_be_positive";

const string MUST_BE_UNORDERED_NONUNIQUE =
"org.omg:constraint.model.multiplicity_type.must_be_unordered_nonunique";

3.6.6 VisibilityKind

This data type enumerates the three possible kinds of visibility for a ModelElement 
outside of its container. These are:

1. “public_vis,” which allows anything that can use ModelElement’s container to also 
use the ModelElement.

2. “protected_vis,” which allows use of the ModelElement within containers that 
inherit from this one’s container. 

3. “private_vis,” which denies all outside access to the ModelElement.

Note – The rules governing visibility of ModelElements in the MOF are yet to be 
specified. As an interim measure, all ModelElements are deemed to be visible, 
irrespective of the “visibility” attribute settings. The IDL mapping specification 
includes minimal preconditions on visibility to ensure that generated IDL is compilable 
(see Section 5.5, “Preconditions for IDL Generation,” on page 5-33).

IDL

enum VisibilityKind {public_vis, private_vis, protected_vis};

3.6.7 DepthKind

DepthKind enumerates the two choices of depth semantic for the “verify” operation.
OMG-MOF V1.3           MOF Model Data Types           March 2000 3-79



3

Container

ModelElement

IDL

enum DepthKind {shallow, deep};

3.6.8 DirectionKind

DirectionKind enumerates the possible directions of information transfer for Operation 
and Exception Parameters

IDL

enum DirectionKind {in_dir, out_dir, inout_dir, return_dir};

3.6.9 ScopeKind

ScopeKind enumerates the possible “scopes” for Attributes and Operations.

IDL

enum ScopeKind {instance_level, classifier_level};

3.6.10 AggregationKind

AggregationKind enumerates the possible aggregation semantics for Associations 
(specified via AssociationEnds).

Note – Aggregation semantics in the MOF is intended to be aligned with UML. 
Unfortunately, the OMG UML specification does not define the meaning of “shared” 
aggregation for UML. As an interim measure, the use of “shared” aggregation in MOF 
meta-models is discouraged.

IDL

enum AggregationKind {none, shared, composite};

3.6.11 EvaluationKind

EvaluationKind enumerates the possible models for Constraint evaluation.
3-80     OMG-MOF V1.3                              March 2000  



3

Container

Constraint

IDL

enum EvaluationKind {immediate, deferred};

3.6.12 DependencyKind

DependencyKind is a string that represents the “cause” for a particular dependency as 
expressed by the DependsOn Association. The type declaration is accompanied by a 
small number of predefined dependency types.

When a ModelElement depends on a second model element under one kind of 
dependency; and the second model element depends on a third under some other kind 
of dependency; then the first ModelElement depends on the third ModelElement. 
However, the kind of dependency cannot be specified, based on the other two 
dependency kinds, except to categorize the dependency as indirect.

Container

ModelElement

IDL

typedef string DependencyKind;

3.6.13 FormatType

FormatType is a string type whose values denoted externalization formats.

Container

Package

IDL

typedef string FormatType;

3.6.14 LiteralType

LiteralType is the type used to represent the value of Constants.
OMG-MOF V1.3           MOF Model Data Types           March 2000 3-81



3

IDL

typedef any LiteralType;

3.6.15 VerifyResultKind

VerifyResultKind enumerates the outcomes of the “verify” operation.

Container

ModelElement

IDL

enum VerifyResultKind {valid, invalid, published};

3.6.16 ViolationType

ViolationType is a structure (record) type that is used to return a description of an error 
detected during ModelElement verification. The fields have the same names and 
meanings as for the Reflective MofError exception.  Refer to Section 5.4, “Exception 
Framework,” on page 5-24 for the complete description.

Fields

errorKind

elementInError

valuesInError

This field will contain the kind string for the error being reported.

type: string

This field will give the ModelElement for the instance which the error is being 
reported (e.g., the ModelElement to which a violated Constraint belongs, or 
AssociationEnd that is underflowed).

type: Reflective::RefObject

This field gives a value or values that caused the error.

type: Reflective::NamedValueList
3-82     OMG-MOF V1.3                              March 2000  



3

errorDescription

Container

ModelElement

IDL

struct Violation {
string error_kind;
Reflective::RefObject element_in_error;
Reflective::NamedValueList values_in_error;
string error_description;

};

3.7 MOF Model Exceptions

The following exceptions are contained in the MOF Model Package. The generated 
IDL interfaces for the MOF Model make use of more exceptions, which are defined in 
the Reflective Package (see the Reflective Type Packages chapter) and assigned to 
operations based on criteria determinable during generation.

3.7.1 NameNotFound

The NameNotFound exception is raised when a lookup of a simple name has failed.

parameters: name : out NameType

The name parameter gives the string value that could not be found in the Namespace or 
extended Namespace searched by the operation.

Container

Namespace

3.7.2 NameNotResolved

The NameNotResolved exception is raised when resolution of a qualified name has 
failed.

parameters: explanation : out string

restOfName : out NameType (multiplicity: zero or more; ordered;
not unique)

This field gives a human intelligible textual description of the error

type: string
OMG-MOF V1.3           MOF Model Exceptions           March 2000 3-83



3

The restOfName parameter contains that part of the qualified name that was not 
resolved. The explanation parameter can have the following values with the 
corresponding interpretation:

• “InvalidName”: the first name in restOfName was malformed.

• “MissingName”: the first name in restOfName could not be resolved as no name 
binding exists for that name.

• “NotNameSpace”: the first name in restOfName did not resolve to a NameSpace 
when a NameSpace was expected.

• “CannotProceed”: the first name in restOfName could not be resolved (for any other 
reason).

Container

Namespace

3.7.3 ObjectNotExternalizable

An object cannot be externalized in the requested format.

parameters: explanation : out string

Container

Package

3.7.4 FormatNotSupported

The requested format for internalize/externalize is not supported.

parameters: none

Container

Package

3.7.5 IllformedExternalizedObject

The externalized form of the object does not conform to the format expected.

parameters: explanation : out string

Container

Package
3-84     OMG-MOF V1.3                              March 2000  



3

3.8 MOF Model Constants

The following Constants form part of the MOF Model.

3.8.1 Unbounded

This constant is used in the context of MultiplicityType to represented an unlimited 
upper bound on a cardinality (see Section 3.6.5, “MultiplicityType,” on page 3-78).

Container

Model

IDL

const unsigned long UNBOUNDED = -1;

3.8.2 The Standard DependencyKinds

These constants (ContainerDep, ContentsDep, SignatureDep, ConstraintDep, 
ConstrainedElementsDep, SpecializationDep, ImportDep, TypeDefinitionDep, 
ReferencedEndsDep, TaggedElementsDep, IndirectDep, and AllDep) denote the 
standard dependency categories and pseudo-categories. Refer to “ModelElement” on 
page 3-15 and Section 3.5.9, “DependsOn,” on page 3-74 for detailed explanations.

Container

ModelElement

IDL

const DependencyKind CONTAINER_DEP = "container";
const DependencyKind CONTENTS_DEP = "contents";
const DependencyKind SIGNATURE_DEP = "signature";
const DependencyKind CONSTRAINT_DEP = "constraint";
const DependencyKind CONSTRAINED_ELEMENTS_DEP = "constrained elements";
const DependencyKind SPECIALIZATION_DEP = "specialization";
const DependencyKind IMPORT_DEP = "import";
const DependencyKind TYPE_DEFINITION_DEP = "type definition";
const DependencyKind REFERENCED_ENDS_DEP = "referenced ends";
const DependencyKind TAGGED_ELEMENTS_DEP = "tagged elements";
const DependencyKind INDIRECT_DEP = "indirect";
const DependencyKind ALL_DEP = "all";
OMG-MOF V1.3           MOF Model Constants           March 2000 3-85



3

3.9 MOF Model Constraints 

3.9.1 MOF Model Constraints and other M2 Level Semantics

This section defines the semantic constraints that apply to the MOF Model. These are 
expressed as M2-level Constraints and are formally part of the MOF Model (i.e., they 
are a required part of a representation of the MOF Model as MOF meta-objects or in 
the MOF Model / XMI interchange format).

The section also provides OCL semantic specifications for most M2-level Operations, 
derived Attributes, and derived Associations in the MOF Model, and for a collection of 
“helper” functions used by them and the Constraints. These semantic specifications 
need not be present in a representation of the MOF Model. Indeed, this document does 
not specify how they should be represented.

Note – The use of OCL in the MOF Model specification does not imply a requirement 
to use OCL evaluation as part of an MOF Model server’s implementation. Furthermore, 
if that approach is used, it is anticipated that the implementor may rewrite the OCL 
rules to make evaluation more efficient. For example, the Constraint OCL could be 
rewritten as pre-conditions on the appropriate mapped update operations.

3.9.2 Notational Conventions

3.9.2.1 Notation for MOF Model Constraints

The M2-level Constraints on the MOF Model are described in the following notation:

[C-xxx] ConstraintName
evaluation policy: immediate or deferred
description: brief english description

context SomeClassifierName
inv: ...

The meaning of the above is as follows:

• “[C-xxx]” is the cross reference tag for the Constraint used elsewhere in this 
document.

• “ConstraintName” is the name for the Constraint in the MOF Model. The IDL 
mapping uses this name to produce the MofError “kind” string for the Constraint. 
These strings appear in the generated IDL for the MOF Model, as described in 
Section 5.8.17, “Constraint Template,” on page 5-90.

• The “evaluation policy” states whether the Constaint should be checked on any 
relevant update operation, or whether checking should be deferred until full meta-
model validation is triggered. It defines the Constraint’s “evaluationPolicy” value.

• The “description” is a brief non-normative synopsis of the Constraint. It could be 
used as the Constraint’s “annotation” value.
3-86     OMG-MOF V1.3                              March 2000  



3

• The OCL for the Constraint is defined using the OCL syntax defined in UML 1.3. 

The OCL for the Constraints start with a “context” clause that names a ModelElement 
in the MOF Model. This serves two purposes:

1. It defines the context in which the OCL constraint should be evaluated (i.e., the M3-
level Class or DataType whose instances are constrained by the OCL).

2. It defines the “constrainedElements” and “container” for the Constraint.

While the OCL for the Constraints are mostly expressed as invariants, this should not 
be taken literally. Instead, the Constraint OCL should be viewed as:

• a pre-condition on the relevant IDL operations for “immediate” Constraints, or

• a part of the specification of ModelElement’s “verify” Operation for “deferred” 
Constraints.

The Constraints in the MOF Model are expressed as restrictions on either Classes or 
DataTypes. Each one applies to (“Constrains”) a single Classifier, and each one is 
defined to be contained by the Classifier that it applies. The “language” attribute of 
each Constraint is either “MOF-OCL” (for those with complete OCL specifications) or 
“Other.” The “expression” attribute should be the normative OCL defined here, even if 
different (but equivalent) OCL is used in an MOF Model server’s implementation.

3.9.2.2 Notation for Operations, derived Attributes and derived Association

The semantics of M2-level Operations, derived Attributes, and derived Associations on 
the MOF Model are described in the following notation:

[O-xxx] ModelElementName
kind: classification
description: brief english description

context ClassifierName::OperationName(...) : ...
post: result = ...

or

context ClassName::AttributeName() : ...
post: result = ...

or

context ClassName::ReferenceName() : ...
post: result = ...

The meaning of the above is as follows:

• “[O-xxx]” is the cross reference tag for the semantic description that may be used 
elsewhere in this document.

• “ModelElementName” is the name of the Attribute, Operation, or Association in the 
MOF Model whose semantics is described.

• The “classification” describes the kind of the ModelElement (e.g., “readonly 
derived Attribute” or “query Operation”).
OMG-MOF V1.3           MOF Model Constraints           March 2000 3-87



3

• The “description” is a brief non-normative synopsis of the semantics.

• The OCL is defined using the OCL syntax defined in UML 1.3. The “context” 
clause names an “abstract” operation or method on an M1 level interface whose 
semantics is specified. The name of the real operation(s) or method(s) will depend 
on the mapping. The semantics are expressed as post-conditions for these methods.

3.9.2.3 Notation for Helper Functions.

OCL Helper Functions are described in the following notation:

[S-xxx] HelperName
description: brief english description

context ClassifierName::HelperName(...) : ...
post: result = ...

The meaning of the above is as follows:

• “[S-xxx]” is the cross reference tag for the helper function that may be used 
elsewhere in this document.

• “HelperName” is the name of the Helper Function.

• The “description” is a brief non-normative synopsis of the Helper’s semantics.

• The OCL for the Helper is defined using the OCL syntax defined in UML 1.3. The 
“context” clause names a notional helper function on a ModelElement whose 
semantic then specified. These notional functions are not intended to be callable by 
client code.

3.9.3 OCL Usage in the MOF Model specification

The OCL language was designed as a part of the UML specification. As such, the OCL 
semantics are specified in terms of UML concepts and constructs. Some of these 
concepts do not match MOF concepts exactly.  Accordingly, it is necessary to 
reinterpret parts of the OCL specification so that it can be used in MOF Model’s 
Constraints and other semantics aspects of the MOF Model.

3.9.3.1 UML AssociationEnds versus MOF References

In the UML version of OCL, the dot (“.”) and arrow (“->”) operators are used to access 
Attribute values, and to navigate Associations. Consider an OCL expression of the 
form:

<expr> “.” <identifier>

Assuming that “<expr>” evaluates to an object, the value of the expression is either the 
value of an Attribute named “<identifier>” for the object or another object obtained by 
navigating a link in a binary Association which has “<identifier>” as an Association 
End name.
3-88     OMG-MOF V1.3                              March 2000  



3

In this context (i.e., the definition of the MOF Model), the “<identifier>” is interpreted 
differently. In the MOF Model, the interfaces for navigating Associations are specified 
using References rather than AssociationEnds. Thus in the MOF version of OCL, link 
navigation is expressed using the name of a Reference for the “<expr>” object as the 
“<identifier>.” However, the overall meaning is analogous to the UML case.

3.9.3.2 Helper functions are not MOF Operations

In the UML version of OCL, object behavior is invoked by an expression of the form:

<expr> “.” <identifier> “(“ ... “)”

where “<identifier>” names a UML Operation or Method on the object obtained by 
evaluating “<expr>.”

In the MOF Model specification, the above expression invokes behavior defined by 
either a MOF Operation, or a helper function. The distinction between conventional 
UML and its usage here is that helper functions have no defined connection with any 
internal or external interfaces in a MOF Model server. Indeed, they need not exist at all 
as implementation artifacts.

3.9.3.3 Post-conditions on MOF Model objects

Rules [C-2], [C-3], and [C-4] are intended to define post-conditions on all operations 
on ModelElement objects. This is expressed in the MOF Model OCL by giving a Class 
rather than an Operation as the “context” for the OCL rules.  It is not clear that this is 
allowed by UML OCL.

3.9.3.4 OCL evaluation order

The UML OCL specification does not define an evaluation order for OCL expressions 
in general, and for boolean operators in particular. This is OK when OCL is used as an 
abstract specification language, as it is in the UML specification. However it causes 
problems when OCL expressions may be directly evaluated.  These problems arise in 
OCL that traverses cyclic graphs (e.g., [O-1]) or raises exceptions (e.g., [S-6]).

The MOF Model semantic specification touches on some of these issues (e.g., when 
traversing an cyclical Imports graph).  Therefore, the MOF Model usage of OCL 
makes the following assumptions about OCL expression evaluation order:

• In general, a MOF OCL expression is assumed to be evaluated by evaluating its 
sub-expressions in order, starting with the leftmost sub-expression and ending with 
the rightmost. The sub-expressions are delimited according to the standard OCL 
operator precedence rules. If evaluation of one of the sub-expressions raises an 
exception, the remaining sub-expressions are not evaluated.

• The above does not apply to the boolean operators “and,” “or,” “implies,” and “if-
then-else.” These are evaluated with short-circuiting as follows:

• In the expression “<expr1> and <expr2>,” “<expr2>” is only evaluated if 
“<expr1>” evaluates to true.
OMG-MOF V1.3           MOF Model Constraints           March 2000 3-89



3

• In the expression “<expr1> or <expr2>,” “<expr2>” is only evaluated if 
“<expr1>” evaluates to false.

• In the expression “<expr1> implies <expr2>,” “<expr2>” is only evaluated if 
“<expr1>” evaluates to true.

• In the expression “if <expr1> then <expr2> else <expr3> endif,” “<expr2>” is 
only evaluated if “<expr1>” evaluates to true, and “<expr3>” is only evaluated if 
“<expr1>” evaluates to false.

3.9.3.5 “OclType::allInstances”

In UML OCL, the type.allInstances() is defined to return:

“The set of all instances of type and all of its subtypes in existence at the 
moment in time that the expression is evaluated”.

In the MOF Model OCL, this expression is used to refer to the set of all instances that 
exist within a given outermost Package extent.  (Any OCL expression that required the 
enumeration of all instances in existence “anywhere” would be problematical, since a 
MOF repository does not exist in a closed world.)

3.9.3.6 “OclType::references”

The MOF Model OCL in rule Chapter [C-4] assumes that the signature of OclType (as 
defined in the UML OCL specification) is extended to include an operation called 
“references.” This is assumed to behave like the “attributes” operation, except that it 
returns the names of an (M3-level) Classes’ References.

3.9.3.7 Foreign types and operations

Some of the MOF Model OCL rules makes use of types and operations that are not 
predefined in OCL, not defined as Operations in the MOF Model, and not defined as 
Helper functions. Examples include:

• Some rules use operations on CORBA’s built-in Any and TypeCode data types.  
Indeed one rule uses a constructor for TypeCodes.  In each case, the intended 
meaning should be self-evident.

• Some rules use of the TypeKind enumeration type. The meaning should be self 
evident.

• Rule [C-3] makes uses of the CORBA Object::non_existent operation to assert that 
an object must continue to exist.

• Rules [C-2] and [C-4] use operations defined in the RefObject and RefBaseObject 
interfaces to access the meta-objects that represent the MOF Model. It should be 
understood that this is not intended to imply that a MOF Model server is required to 
make these objects available at runtime. 
3-90     OMG-MOF V1.3                              March 2000  



3

3.9.4 The MOF Model Constraints

[C-1] MustBeContainedUnlessPackage

format1: MUST_BE_CONTAINED_UNLESS_PACKAGE

format2: must_be_contained_unless_package

evaluation policy: deferred

description: A ModelElement that is not a Package must have a container.

context ModelElement
inv: 

not self.oclIsTypeOf(Package) implies 
self.container -> size = 1

[C-2] FrozenAttributesCannotBeChanged

format1: FROZEN_ATTRIBUTES_CANNOT_BE_CHANGED

format2: frozen_attributes_cannot_be_changed

evaluation policy: immediate

description: The attribute values of a ModelElement which is frozen cannot be 
changed.

context ModelElement
inv: 

self.isFrozen() implies 
let myTypes = self.oclType() -> allSupertypes() -> 

includes(self.oclType()) in
let myAttrs : Set(Attribute) = 

self.RefBaseObject::refMetaObject() ->
asOclType(Class) -> 
findElementsByTypeExtended(Attribute) in

myAttrs -> forAll(a | 
self.RefObject::refValue@pre(a) =

self.RefObject::refValue(a))

[C-3] FrozenElementsCannotBeDeleted

format1: FROZEN_ELEMENTS_CANNOT_BE_DELETED

format2: frozen_elements_cannot_be_deleted

evaluation policy: immediate

description: A frozen ModelElement which is in a frozen Namespace can only be 
deleted, by deleting the Namespace.

context ModelElement
post: 

(self.isFrozen@pre() and 
 self.container@pre -> notEmpty and
 self.container.isFrozen@pre()) implies
(self.container.Object::non_existent() or 
 not self.Object::non_existent())
OMG-MOF V1.3           MOF Model Constraints           March 2000 3-91



3

[C-4] FrozenDependenciesCannotBeChanged

format1: FROZEN_DEPENDENCIES_CANNOT_BE_CHANGED

format2: frozen_dependencies_cannot_be_changed

evaluation policy: immediate

description: The link sets that express dependencies of a frozen Element on other 
Elements cannot be explicitly changed.

context ModelElement
post: 

self.isFrozen() implies 
let myClasses = self.oclType() -> allSupertypes() -> 

includes(self.oclType()) in
let myRefs = Set(Reference) = 

self.RefBaseObject::refMetaObject() ->
asOclType(Class) -> 
findElementsByTypeExtended(Reference) in

let myDepRefs = myRefs -> 
select(r | 

Set{“contents”, “constraints”, “supertypes”,
“type”, “referencedEnd”, “exceptions”,
“importedNamespace”, “elements”} -> 

includes(r.name)) in
myDepRefs -> 

forAll(r | 
self.RefObject::refValue@pre(r) = 

self.RefObject::refValue(r))

[C-5] ContentNamesMustNotCollide

format1: CONTENT_NAMES_MUST_NOT_COLLIDE

format2: content_names_must_not_collide

evaluation policy: immediate

description: The names of the contents of a Namespace must not collide.

context Namespace
inv: self.contents.forAll(

e1, e2 | e1.name = e2.name implies r1 = r2)

[C-6] SupertypeMustNotBeSelf

format1: SUPERTYPE_MUST_NOT_BE_SELF

format2: supertype_must_not_be_self

evaluation policy: immediate

description: A Generalizable Element cannot be its own direct or indirect 
supertype.

context GeneralizableElement
inv: self.allSupertypes() -> forAll(s | s <> self)
3-92     OMG-MOF V1.3                              March 2000  



3

[C-7] SupertypeKindMustBeSame

format1: SUPERTYPE_KIND_MUST_BE_SAME

format2: supertype_kind_must_be_same

evaluation policy: immediate

description: A supertypes of a GeneralizableElement must be of the same kind as 
the GeneralizableElement itself.

context GeneralizableElement
inv: self.supertypes -> forAll(s | s.oclType() = self.oclType())

[C-8] ContentsMustNotCollideWithSupertypes

format1: CONTENTS_MUST_NOT_COLLIDE_WITH_SUPERTYPES

format2: contents_must_not_collide_with_supertypes

evaluation policy: immediate

description: The names of the contents of a GeneralizableElement should not 
collide with the names of the contents of any direct or indirect 
supertype.

context GeneralizableElement
inv:

let superContents = self.allSupertypes() -> 
collect(s | s.contents) in

self.contents -> 
forAll(m1 | 

   superContents -> 
forAll(m2 | 

   m1.name = m2.name implies m1 = m2))

[C-9] DiamondRuleMustBeObeyed

format1: DIAMOND_RULE_MUST_BE_OBEYED

format2: diamond_rule_must_be_obeyed

evaluation policy: immediate

description: Multiple inheritance must obey the “Diamond Rule”.

context GeneralizableElement
inv:

let superNamespaces = 
self.supertypes -> collect(s | s.extendedNamespace) in

superNamespaces -> asSet -> isUnique(s | s.name)
OMG-MOF V1.3           MOF Model Constraints           March 2000 3-93



3

[C-10] NoSupertypesAllowedForRoot

format1: NO_SUPERTYPES_ALLOWED_FOR_ROOT

format2: no_supertypes_allowed_for_root

evaluation policy: immediate

description: If a Generalizable Element is marked as a “root”, it cannot have any 
supertypes.

context GeneralizableElement
inv: self.isRoot implies self.supertypes -> isEmpty

[C-11] SupertypesMustBeVisible

format1: SUPERTYPES_MUST_BE_VISIBLE

format2: supertypes_must_be_visible

evaluation policy: deferred

description: A GeneralizableElement’s immediate supertypes must all be visible to 
it.

context GeneralizableElement
inv: self.supertypes -> forAll(s | self.isVisible(s))

[C-12] NoSubtypesAllowedForLeaf

format1: NO_SUBTYPES_ALLOWED_FOR_LEAF

format2: no_subtypes_allowed_for_leaf

evaluation policy: immediate

description: A GeneralizableElement cannot inherit from a GeneralizableElement 
defined as a “leaf”.

context GeneralizableElement
inv: self.supertypes -> forAll(s | not s.isLeaf)

[C-13] AssociationsCannotBeTypes

format1: ASSOCIATIONS_CANNOT_BE_TYPES

format2: associations_cannot_be_types

evaluation policy: immediate

description: An Association cannot be the type of a TypedElement.

context TypedElement
inv: not self.type.oclIsKindOf(Association)
3-94     OMG-MOF V1.3                              March 2000  



3

[C-14] TypeMustBeVisible

format1: TYPE_MUST_BE_VISIBLE

format2: type_must_be_visible

evaluation policy: deferred

description: A TypedElement can only have a type that is visible to it.

context TypedElement
inv: self.isVisible(self.type)

[C-15] ClassContainmentRules

format1: CLASS_CONTAINMENT_RULES

format2: class_containment_rules

evaluation policy: immediate

description: A Class may contain only Classes, DataTypes, Attributes, References, 
Operations, Exceptions, Constraints and Tags.

context Class
inv: 

Set{Class, DataType, Attribute, Reference, Operation,
Exception, Constraint, Tag} ->

includesAll(self.contentTypes())

[C-16] AbstractClassesCannotBeSingleton

format1: ABSTRACT_CLASSES_CANNOT_BE_SINGLETON

format2: abstract_classes_cannot_be_singleton

evaluation policy: deferred

description: A Class that is marked as abstract cannot also be marked as singleton. 

context Class
inv: self.isAbstract implies not self.isSingleton

[C-17] DataTypeContainmentRules

format1: DATA_TYPE_CONTAINMENT_RULES

format2: data_type_containment_rules

evaluation policy: immediate

description: A DataType may contain only TypeAliases, Constraints and Tags.

context DataType
inv: 

Set{TypeAlias, Constraint, Tag} ->
includesAll(self.contentTypes())
OMG-MOF V1.3           MOF Model Constraints           March 2000 3-95



3

[C-18] ThisTypecodeNotSupported

format1: THIS_TYPECODE_NOT_SUPPORTED

format2: this_typecode_not_supported

evaluation policy: deferred

description: The typeCode of a DataType must denote a CORBA 2.2 compliant 
object type or data type.

context DataType
inv:

self.typeCode.allTypeKinds() ->
excludes(Set{#tk_void, #tk_Principal, #tk_null, #tk_except,

  #tk_value, #tk_value_box, #tk_native,
  #tk_abstract_interface})

[C-19] DataTypesHaveNoSupertypes

format1: DATA_TYPES_HAVE_NO_SUPERTYPES

format2: data_types_have_no_supertypes

evaluation policy: immediate

description: Inheritance / generalization is not applicable to DataTypes.

context DataType
inv: self.supertypes -> isEmpty

[C-20] DataTypesCannotBeAbstract

format1: DATA_TYPES_CANNOT_BE_ABSTRACT

format2: data_types_cannot_be_abstract

evaluation policy: immediate

description: A DataType cannot be abstract.

context DataType
inv: not self.isAbstract

[C-21] ReferenceMultiplicityMustMatchEnd

format1: REFERENCE_MULTIPLICITY_MUST_MATCH_END

format2: reference_multiplicity_must_match_end

evaluation policy: deferred

description: The multiplicity for a Reference must be the same as the multiplicity 
for the referenced AssociationEnd.

context Reference
inv: self.multiplicity = self.referencedEnd.multiplicity
3-96     OMG-MOF V1.3                              March 2000  



3

[C-22] ReferenceMustBeInstanceScoped

format1: REFERENCE_MUST_BE_INSTANCE_SCOPED

format2: reference_must_be_instance_scoped

evaluation policy: immediate

description: Classifier scoped References are not meaningful in the current M1 
level computational model.

context Reference
inv: self.scope = #instance_level

[C-23] ChangeableReferenceMustHaveChangeableEnd

format1: CHANGEABLE_REFERENCE_MUST_HAVE_CHANGEABLE_E
ND

format2: changeable_reference_must_have_changeable_end

evaluation policy: deferred

description: A Reference can be changeable only if the referenced AssociationEnd 
is also changeable.

context Reference
inv: self.isChangeable = self.referencedEnd.isChangeable

[C-24] ReferenceTypeMustMatchEndType

format1: REFERENCE_TYPE_MUST_MATCH_END_TYPE

format2: reference_type_must_match_end_type

evaluation policy: deferred

description: The type attribute of a Reference and its referenced AssociationEnd 
must be the same.

context Reference
inv: self.type = self.referencedEnd.type

[C-25] ReferencedEndMustBeNavigable

format1: REFERENCED_END_MUST_BE_NAVIGABLE

format2: referenced_end_must_be_navigable

evaluation policy: deferred

description: A Reference is only allowed for a navigable AssociationEnd

context Reference
inv: self.referencedEnd.isNavigable
OMG-MOF V1.3           MOF Model Constraints           March 2000 3-97



3

[C-26] ContainerMustMatchExposedType

format1: CONTAINER_MUST_MATCH_EXPOSED_TYPE

format2: container_must_match_exposed_type

evaluation policy: deferred

description: The containing Class for a Reference must be equal to or a subtype of 
the type of the Reference’s exposed AssociationEnd.

context Reference
inv:

self.container.allSupertypes() -> including(self) ->
includes(self.referencedEnd.otherEnd.type)

[C-27] ReferencedEndMustBeVisible

format1: REFERENCED_END_MUST_BE_VISIBLE

format2: referenced_end_must_be_visible

evaluation policy: deferred

description: The referenced AssociationEnd for a Reference must be visible from 
the Reference.

context Reference
inv: self.isVisible(self.referencedEnd)

[C-28] OperationContainmentRules

format1: OPERATION_CONTAINMENT_RULES

format2: operation_containment_rules

evaluation policy: immediate

description: An Operation may only contain Parameters, Constraints and Tags.

context Operation
inv: 

Set{Parameter, Constraint, Tag} -> 
includesAll(self.contentTypes())

[C-29] OperationsHaveAtMostOneReturn

format1: OPERATIONS_HAVE_AT_MOST_ONE_RETURN

format2: operations_have_at_most_one_return

evaluation policy: immediate

description: An Operation may have at most one Parameter whose direction is 
“return”.

context Operation
inv:

self.contents -> 
select(c | c.oclIsTypeOf(Parameter)) ->

select(p : Parameter | p.direction = #return_dir) -> 
size < 2
3-98     OMG-MOF V1.3                              March 2000  



3

[C-30] OperationExceptionsMustBeVisible

format1: OPERATION_EXCEPTIONS_MUST_BE_VISIBLE

format2: operation_exceptions_must_be_visible

evaluation policy: deferred

description: The Exceptions raised by an Operation must be visible to the 
Operation.

context Operation
inv: self.exceptions -> forAll(e | self.isVisible(e))

[C-31] ExceptionContainmentRules

format1: EXCEPTION_CONTAINMENT_RULES

format2: exception_containment_rules

evaluation policy: immediate

description: An Exception may only contain Parameters and Tags.

context Exception
inv: Set{Parameter, Tag}) -> includesAll(self.contentTypes())

[C-32] ExceptionsHaveOnlyOutParameters

format1: EXCEPTIONS_HAVE_ONLY_OUT_PARAMETERS

format2: exceptions_have_only_out_parameters

evaluation policy: immediate

description: An Exception’s Parameters must all have the direction “out”.

context Exception
inv:

self.contents -> 
select(c | c.oclIsTypeOf(Parameter)) ->

forAll(p : Parameter | p.direction = #out_dir)

[C-33] AssociationContainmentRules

format1: ASSOCIATIONS_CONTAINMENT_RULES

format2: associations_containment_rules

evaluation policy: immediate

description: An Association may only contain AssociationEnds, Constraints and 
Tags.

context Association
inv: 

Set{AssociationEnd, Constraint, Tag} ->
includesAll(self.contentTypes())
OMG-MOF V1.3           MOF Model Constraints           March 2000 3-99



3

[C-34] AssociationsHaveNoSupertypes

format1: ASSOCIATIONS_HAVE_NO_SUPERTYPES

format2: associations_have_no_supertypes

evaluation policy: immediate

description: Inheritance / generalization is not applicable to Associations.

context Association
inv: self.supertypes -> isEmpty

[C-35] AssociationMustBeRootAndLeaf

format1: ASSOCIATIONS_MUST_BE_ROOT_AND_LEAF

format2: associations_must_be_root_and_leaf

evaluation policy: immediate

description: The values for “isLeaf” and “isRoot” on an Association must be true.

context Association
inv: self.isRoot and self.isLeaf 

[C-36] AssociationsCannotBeAbstract

format1: ASSOCIATIONS_CANNOT_BE_ABSTRACT

format2: associations_cannot_be_abstract

evaluation policy: immediate

description: An Association cannot be abstract.

context Association
inv: not self.isAbstract

[C-37] AssociationsMustBePublic

format1: ASSOCIATIONS_MUST_BE_PUBLIC

format2: associations_must_be_public

evaluation policy: immediate

description: Associations must have visibility of “public”.

context Association
inv: self.visibility = #public_vis
3-100     OMG-MOF V1.3                              March 2000  



3

[C-38] AssociationsMustBeBinary

format1: ASSOCIATIONS_MUST_BE_BINARY

format2: associations_must_be_binary

evaluation policy: immediate

description: An Association must be binary; i.e. it must have exactly two 
AssociationEnds.

context Association
inv: self.contents -> 

select(c | c.oclIsTypeOf(AssociationEnd)) -> size = 2

[C-39] EndTypeMustBeClass

format1: END_TYPE_MUST_BE_CLASS

format2: end_type_must_be_class

evaluation policy: immediate

description: The type of an AssociationEnd must be Class.

context AssociationEnd
inv: self.type.oclIsTypeOf(Class)

[C-40] EndsMustBeUnique

format1: ENDS_MUST_BE_UNIQUE

format2: ends_must_be_unique

evaluation policy: immediate

description: The “isUnique” flag in an AssociationEnd’s multiplicity must be true.

context AssociationEnd
inv: 

(self.multiplicity.upper > 1 or 
 self.multiplicity.upper = UNBOUNDED) implies

 self.multiplicity.isUnique

[C-41] CannotHaveTwoOrderedEnds

format1: CANNOT_HAVE_TWO_ORDERED_ENDS

format2: cannot_have_two_ordered_ends

evaluation policy: deferred

description: An Association cannot have two AssociationEnds marked as 
“ordered”.

context AssociationEnd
inv:

self.multiplicity.isOrdered implies 
not self.otherEnd.multiplicity.isOrdered
OMG-MOF V1.3           MOF Model Constraints           March 2000 3-101



3

[C-42] CannotHaveTwoAggregateEnds

format1: CANNOT_HAVE_TWO_AGGREGATE_ENDS

format2: cannot_have_two_aggregate_ends

evaluation policy: deferred

description: An Association cannot have an aggregation semantic specified for 
both AssociationEnds.

context AssociationEnd
inv: 

self.aggregation <> #none implies self.otherEnd = #none

[C-43] PackageContainmentRules

format1: PACKAGE_CONTAINMENT_RULES

format2: package_containment_rules

evaluation policy: immediate

description: A Package may only contain Packages, Classes, DataTypes, 
Associations, Exceptions, Constraints, Imports and Tags.

context Package
inv:

Set{Package, Class, DataType, Association, Exception,
Constraint, Import, Tag}) -> includesAll(self.contentTypes)

[C-44] PackagesCannotBeAbstract

format1: PACKAGES_CANNOT_BE_ABSTRACT

format2: packages_cannot_be_abstract

evaluation policy: immediate

description: Packages cannot be declared as abstract.

context Package
inv: not self.isAbstract

[C-45] ImportedNamespaceMustBeVisible

format1: IMPORTED_NAMESPACE_MUST_BE_VISIBLE

format2: imported_namespace_must_be_visible

evaluation policy: deferred

description: The Namespace imported by an Import must be visible to the Import’s 
containing Package.

context Import
inv: self.container.isVisible(self.importedNamespace)
3-102     OMG-MOF V1.3                              March 2000  



3

[C-46] CanOnlyImportPackagesAndClasses

format1: CAN_ONLY_IMPORT_PACKAGES_AND_CLASSES

format2: can_only_import_packages_and_classes

evaluation policy: immediate

description: It is only legal for a Package to import or cluster Packages or Classes.

context Import
inv:

self.imported.oclIsTypeOf(Class) or
self.imported.oclIsTypeOf(Package)

[C-47] CannotImportSelf

format1: CANNOT_IMPORT_SELF

format2: cannot_import_self

evaluation policy: deferred

description: Packages cannot import or cluster themselves.

context Import
inv: self.container <> self.imported

[C-48] CannotImportNestedComponents

format1: CANNOT_IMPORT_NESTED_COMPONENTS

format2: cannot_import_nested_components

evaluation policy: deferred

description: Packages cannot import or cluster Packages or Classes that they 
contain.

context Import
inv: not self.container.allContents() -> includes(self.imported)

[C-49] NestedPackagesCannotImport

format1: NESTED_PACKAGES_CANNOT_IMPORT

format2: nested_packages_cannot_import

evaluation policy: deferred

description: Nested Packages cannot import or cluster other Packages or Classes.

context Import
inv:

self.container -> notEmpty implies
self.container -> asSequence -> first -> container -> isEmpty
OMG-MOF V1.3           MOF Model Constraints           March 2000 3-103



3

[C-50] CannotConstrainThisElement

format1: CANNOT_CONSTRAIN_THIS_ELEMENT

format2: cannot_constrain_this_element

evaluation policy: immediate

description: Constraints, Tags, Imports, TypeAliases and Constants cannot be 
constrained.

context Constraint
inv:

self.constrainedElements -> 
forAll(c |

   not Set{Constraint, Tag, Imports, 
TypeAlias, Constant} -> 

includes(c.oclType())

[C-51] ConstraintsLimitedToContainer

format1: CONSTRAINTS_LIMITED_TO_CONTAINER

format2: constraints_limited_to_container

evaluation policy: deferred

description: A Constraint can only constrain ModelElements that are defined by or 
inherited by its immediate container.

context Constraint
inv:

self.constrainedElements ->
forAll(c | self.container.extendedNamespace() ->

includes(c))

[C-52] ConstantsValueMustMatchType

format1: CONSTANTS_VALUE_MUST_MATCH_TYPE

format2: constants_value_must_match_type

evaluation policy: deferred

description: The type of a Constant and the type of its value must be the same.

context Constant
inv: self.value.type -> equals(self.type -> mapToTypecode())
3-104     OMG-MOF V1.3                              March 2000  



3

[C-53] ConstantsTypeMustBeSimpleDataType

format1: CONSTANTS_TYPE_MUST_BE_SIMPLE_DATA_TYPE

format2: constants_type_must_be_simple_data_type

evaluation policy: immediate

description: The type of a Constant must be a CORBA data type that is legal for a 
CORBA 2.3 constant declaration.

context Constant
inv: 

self.type.oclIsKindOf(DataType) and
Set{#tk_short, #tk_ushort, #tk_long, #tk_ulong, #tk_char,

#tk_octet, #tk_float, #tk_double, #tk_boolean, #tk_string,
#tk_wchar, #tk_wstring, #tk_longlong, #tk_ulonglong,
#tk_longdouble, #tk_fixed} ->

includes(self.type.asType(DataType).typecode.
 unwindAliases().kind)

[C-54] LowerCannotBeNegativeOrUnbounded

format1: LOWER_CANNOT_BE_NEGATIVE_OR_UNBOUNDED

format2: lower_cannot_be_negative_or_unbounded

evaluation policy: immediate

description: The “lower” bound of an MultiplicityType to be “Unbounded”.

context MultiplicityType
inv: self.lower >= 0 and self.lower <> Unbounded

[C-55] LowerCannotExceedUpper

format1: LOWER_CANNOT_EXCEED_UPPER

format2: lower_cannot_exceed_upper

evaluation policy: immediate

description: The “lower” bound of a MultiplicityType cannot  exceed the “upper” 
bound.

context MultiplicityType
inv: self.lower <= self.upper or self.upper = Unbounded

[C-56] UpperMustBePositive

format1: UPPER_MUST_BE_POSITIVE

format2: upper_must_be_positive

evaluation policy: immediate

description: The “upper” bound of a MultiplicityType cannot be less than 1.

context MultiplicityType
inv: self.upper >= 1 or self.upper = Unbounded
OMG-MOF V1.3           MOF Model Constraints           March 2000 3-105



3

[C-57] MustBeUnorderedNonunique

format1: MUST_BE_UNORDERED_NONUNIQUE

format2: must_be_unordered_nonunique

evaluation policy: immediate

description: If a MultiplicityType specifies bounds of [0..1] or [1..1]) the 
“is_ordered” and “is_unique” values must be false.

context MultiplicityType
inv: 

self.upper = 1 implies
(not self.isOrdered and not self.isUnique)

3.9.5 Semantic specifications for some Operations, derived Attributes and 
Derived Associations

[S-1] allSupertypes

kind: query Operation

description: The value is the closure of the ‘Generalizes’ Association from the 
perspective of a subtype. Note that the sequence of all supertypes has 
a well defined order.

context GeneralizableElement::allSupertypes() :
Sequence(GeneralizableElement) 

post: result = self.allSupertypes2(Set{})

[S-2] otherEnd

kind: query Operation

description: The value of is the other AssociationEnd for this Association.

context AssociationEnd::otherEnd() : AssociationEnd 
post: result = self.container.contents ->

select(c | c.oclIsKindOf(AssociationEnd) and c <> self)

[S-3] isVisible

kind: query Operation

description: Determines whether or not “otherElement” is visible for the definition 
of this element. (NB: As an interim measure, the OCL states that 
everything is visible!)

context ModelElement::isVisible(
otherElement : ModelElement): boolean

post: result = true
3-106     OMG-MOF V1.3                              March 2000  



3

[S-4] findRequiredElements

kind: query Operation

description: Selects a subset of a ModelElements immediate or recursive 
dependents.

context ModelElement::isRequiredBecause(
kinds : Sequence(DependencyKind),
recursive : boolean) : Sequence(ModelElement)

post: result = 
if kinds -> includes(“all”) 
then

self.findRequiredElements(
Set{“constraint”, “container”, “constrained elements”,

“specialization”, “import”, “contents”, “signature”,
“tagged elements”, “type definition”, 
“referenced ends”})

else 
if recursive 
then 

self.recursiveFindDeps(kinds, Set{self})
else

kinds -> collect(k : self.findDepsOfKind(k)) -> asSet()
endif

endif

[S-5] isRequiredBecause

kind: query Operation

description: Returns the DependencyKind that describes the dependency between 
this element and “other”.

context ModelElement::findRequiredElements(
other : ModelElement,
reason : out DependencyKind) : boolean

post: -- NB, if there is more than one dependency between self
 -- and ‘other’, the selection of the ‘reason’ is defined 
 -- to be non-deterministic ... not deterministic as a 
 -- left to right evaluation of the OCL implies.

reason = (
if self -> isDepOfKind(“constraint”, other)
then
“constraint”

else
if self -> isDepOfKind(“container”, other)
then
“container”

else
if self -> isDepOfKind(“constrained elements”, other)
then
“constrained elements”

else
if self -> isDepOfKind(“specialization”, other)
then
“specialization”
OMG-MOF V1.3           MOF Model Constraints           March 2000 3-107



3

else
if self -> isDepOfKind(“import”, other)
then
“import”

else
if self -> isDepOfKind(“contents”, other)
then
“contents”

else
if self -> isDepOfKind(“signature”, other)
then
“signature”

else
if self -> isDepOfKind(“tagged elements”, other)
then
“tagged elements”

else
if self -> isDepOfKind(“type definition”, other)
then
“type definition”

else
if self -> isDepOfKind(“referenced ends”, other)
then
“referenced ends”

else
if self -> dependsOn() -> notEmpty()
then
“indirect”

else
“” 

endif
endif

endif
endif

endif
endif

endif
endif

endif
endif

endif) and 
result = (reason <> “”)

[S-6] lookupElement

kind: query Operation

description: Returns the ModelElement in the Namespace whose name is equal to 
“name”, or raises an exception.

context Namespace::lookupElement(name : NameType) : ModelElement
post: result = 

let elems = self.contents -> select(m | m.name = name) in
if elems -> size = 0
then

-- Raise exception NameNotFound
3-108     OMG-MOF V1.3                              March 2000  



3

else 
elems -> first  -- should only be one

endif

[S-7] resolveQualifiedName

kind: query Operation

description: Returns the ModelElement that “qualifiedName” resolves to or raises 
an exception

context Namespace::resolveQualifiedName(
qualifiedName : Sequence(NameType)) : ModelElement

pre: qualifiedName -> size >= 1
post: result = 

let elems = self.contents -> 
select(m | m.name = qualifiedName -> first) in

if elems -> size = 0
then

-- Raise exception NameNotResolved ...
else

if qualifiedName -> size = 1
then

elems -> first    -- there should only be one
else 

if not elems -> first -> oclIsOfKind(Namespace)
then

-- Raise exception NameNotResolved ...
else

let rest = qualifiedName -> 
subSequence(2, qualifiedName -> size) in

elems -> first -> resolveQualifiedName(rest)
endif

endif
endif

[S-8] nameIsValid

kind: query Operation

description: Returns true if “proposedName” is a valid name that could be used for 
a new containedElement of this Namespace.

context Namespace::nameIsValid(
proposedName : NameType) : boolean

post: result = 
self.extendedNamespace -> 

forAll(e | not e.name = proposedName)
OMG-MOF V1.3           MOF Model Constraints           March 2000 3-109



3

[S-9] findElementsByType

kind: query Operation

description: Returns a subset of the contained elements. If “includeSubtypes” is 
false, the result consists of instances of “ofType”.  If it is true, instances 
of subClasses are included.

context Namespace::findElementsByType(
ofType : Class,
includeSubtypes : boolean) : Sequence(ModelElement)

post: result =
if includeSubtypes 
then 

self.contents -> select(m | m.oclIsOfKind(ofType))
else

self.contents -> select(m | m.oclIsOfType(ofType))
endif

[S-10] lookupElementExtended

kind: query Operation

description: Returns the ModelElement whose name is equal to “name” in the 
extended namespace of this GeneralizableElement, or raises an 
exception.

context Namespace::lookupElementExtended(
name : NameType) : ModelElement

post: result = 
let elems = self -> extendedNamespace -> 

select(m | m.name = name) in
if elems -> size = 0
then

-- Raise exception NameNotFound
else

elems -> first  -- should only be one
endif

[S-11] findElementsByTypeExtended

kind: query Operation

description: Returns a subset of the contained, inherited ot imported elements. If 
“includeSubtypes” is false, the result consists of instances of 
“ofType”.  If it is true, instances of subClasses are included.

context GeneralizeableElement::findElementsByTypeExtended(
ofType : Class,
includeSubtypes : boolean) : Sequence(ModelElement)

post: result =
if includeSubtypes 
then 

self.extendedNamespace -> select(m | m.oclIsOfKind(ofType))
else

self.extendedNamespace -> select(m | m.oclIsOfType(ofType))
endif
3-110     OMG-MOF V1.3                              March 2000  



3

[S-12] qualifiedName

kind: readonly derived Attribute

description: The qualified name gives the sequence of names of the containers of 
this ModelElement starting with the outermost.

context ModelElement::qualifiedName() : Sequence(ModelElement)
post: result = 

if self.container -> notEmpty
then

self.container.qualifiedName() -> append(self.name)
else

self.name
endif

[S-13] Exposes

kind: derived Association

description: This association relates a Reference to the exposed AssociationEnd of 
an Association that corresponds to its referencedEnd.

context Reference
inv: AssociationEnd.allInstances -> 

forAll(
a | 
self.references = a implies self.exposes = a.otherEnd and
not self.references = a implies self.exposes <> a.otherEnd)

[S-14] DependsOn

kind: derived Association

description: This association relates a ModelElement to the other ModelElements 
whose definition it depends on.

context ModelElement
inv: self.findRequiredElements(“all”, true)

3.9.6 OCL Helper functions

[O-1] allSupertypes2

description: Helper function for the allSupertypes operation.

context GeneralizableElement::allSupertypes2(
visited : Set(GeneralizableElement)) :

Sequence(GeneralizableElement) 
post: result =

if (visited -> includes(self))
then

Sequence{}
else

let mySupers : Sequence(GeneralizableElement) =
self.supertypes -> 
OMG-MOF V1.3           MOF Model Constraints           March 2000 3-111



3

collect(s | 
s.allSupertypes2(visited -> 

  including(self))) in
mySupers -> 

iterate(s2 : GeneralizableElement;
a : Sequence(GeneralizableElement) = Sequence{} |
if a -> includes(s2) 
then 

a
else

a -> append(s2)
endif)

[O-2] allTypeKinds

description: Return the TypeCode’s kind and the kinds of embedded TypeCodes

context TypeCode::allTypeKinds() : Set(TCKind)
post: result =

let memberKinds = self.memberTypecodes -> 
collect(mt | mt.allTypeKinds()) in

let contentKinds = 
if Set{tk_sequence, tk_array, tk_alias} ->

includes(self.kind())
then

self.content_type().allTypeKinds()
else

Set{}
endif in

let discrimKinds =
if self.kind() = tk_union 
then

Set{self.discriminator_type().kind}
else

Set{}
endif in

Set{self.kind()) -> union(memberKinds) -> 
union(contentKinds) -> union(discrimKinds)

[O-3] memberTypecodes

description: returns the set (possibly empty) of member TypeCodes for a TypeCode

context TypeCode::memberTypecodes() : Set(TypeCode)
post: result =

if Set{tk_struct, tk_union, tk_except} -> 
includes(self.kind())

then
Set{0..self.member_count()} -> 

collect(i | self.member_type(i).allTypeKinds())
else

Set{}
endif
3-112     OMG-MOF V1.3                              March 2000  



3

[O-4] unwindAliases

description: dealiases a TypeCode

context TypeCode::unwindAliases() : TypeCode
post: result = 

if self.kind() = tk_alias then
self.content_type().unwindAliases()

else
self

endif

[O-5] extendedNamespace

description: The extendedNamespace of a Namespace is its contents, the contents 
of its supertypes and any Namespaces that it imports.

context Namespace::extendedNamespace() : Set(ModelElement)
post: result = 

self.contents

context GeneralizableElement::extendedNamespace : Set(ModelElement)
post: result =

self.contents -> 
union(self.allSupertypes() -> collect(s | s.contents))

context Package::extendedNamespace : Set(ModelElement)
post: result =

let ens = self.contents -> 
union(self.allSupertypes() -> collect(s | s.contents)) in

let imports = ens -> select(e | e.oclKindOf(Import)) -> 
collect(i : Import | i.imported) in

ens -> union(imports)

[O-6] contentTypes

description: The set of OCL types for a Namespace’s contents.

context Namespace::contentTypes() : Set(OCLType)
post: result = self.contents -> collect(m | m.oclType()) -> asSet

[O-7] mapToTypecode

description: The typecode corresponding to a Classifier.

context Classifier::mapToTypecode() : TypeCode
post: result =

if self.oclIsTypeOf(DataType)
then

self.typecode
else

new TypeCode(tk_objref,
  self -> format1Name,
  self -> repositoryId)
OMG-MOF V1.3           MOF Model Constraints           March 2000 3-113



3

[O-8] format1Name

description: The simple name of the element converted to words and reassembled 
according to the “format1” rules; see “IDL Identifier Format 1” on 
page 5-39.

context ModelElement::format1Name() : string
post: result = ... 

[O-9] repositoryId

description: The qualified name of the element converted into a standard CORBA 
repositoryId string.

context ModelElement::repositoryId() : string
post: result = ... 

[O-10] recursiveFindDeps

description: The set of ModelElements which recursively depend on this one.

context ModelElement::recursiveFindDeps(
kinds : Sequence(DependencyKind),
seen : Set(ModelElement)) : Set(ModelElement)

post: result = 
let seen2 = seen -> 

collect(m | kinds -> 
collect(k | m.findDepsOfKind(k)) -> asSet) in

if seen2 = seen 
then 

seen 
else 

self.recursiveFindDeps(kinds, seen2)
endif

[O-11] isDepOfKind

description: Returns true if this element depends on ‘other’ with a dependency of 
‘kind’.

context ModelElement::isDepOfKind(
kind : DependencyKind, 
other : ModelElement) : boolean

post: result = self -> findDepsOfKind(kind) -> includes(other)

[O-12] findDepsOfKind

description: The set of ModelElements which this one Depends on with “kind” 
dependency.

context ModelElement::findDepsOfKind(
kind : DependencyKind) : Sequence(ModelElement)

post: result =
if kind = “constraint”
then
self.constraints()
3-114     OMG-MOF V1.3                              March 2000  



3

else
if kind = “container” 
then
self.container()

else
if kind = “constrained elements” and 

self -> isOclTypeOf(Constraint)
then
self -> oclAsType(Constraint) -> constrainedElements()

else
if kind = “specialization” and 

self -> isOclKindOf(GeneralizableElement)
then
self -> oclAsType(GeneralizableElement) -> supertypes()

else
if kind = “import” and self -> isOclType(Import)
then
self -> oclAsType(Import) -> importedNamespace()

else
if kind = “contents” and self -> isOclKindOf(Namespace)
then
self -> oclAsType(Namespace) -> contents()

else
if kind = “signature” and self -> isOclTypeOf(Operation)
then
self -> oclAsType(Operation) -> exceptions()

else
if kind = “tagged elements” and 

self -> isOclTypeOf(Tag)
then
self -> asOclType(Tag) -> elements()

else
if kind = “type definition” and 

self -> isOclKindOf(TypedElement)
then
self -> asOclType(TypedElement) -> type()
if kind = “referenced ends” and 

self -> isOclKindOf(Reference)
then
let ref = self -> asOclType(Reference) in
ref -> referencedEnd() -> 
union(ref -> exposedEnd())

else
Set{}

endif
endif

endif
endif

endif
endif

endif
endif

endif
endif
OMG-MOF V1.3           MOF Model Constraints           March 2000 3-115



3

3-116     OMG-MOF V1.3                              March 2000  



The MOF Abstract Mapping 4
Contents

This chapter contains the following topics. 

4.1 Overview

This chapter describes the MOF’s M1-level information model, and the common 
principles underlying mapping specific M1-level computational models. Since it is 
intended to be independent of any mapping to implementation technology, the material 
is rather abstract.

Topic Page

“Overview” 4-1

“MOF Values” 4-2

“Semantics of Class Instances” 4-3

“Semantics of Attributes” 4-4

“Package Composition” 4-7

“Extents” 4-9

“Semantics of Associations” 4-12

“Aggregation Semantics” 4-17

“Closure Rules” 4-18

“Recommended Copy Semantics” 4-21

“Computational Semantics” 4-22
    OMG-MOF V1.3                              March 2000 4-1



4

4.2 MOF Values

A MOF meta-model is an abstract language for defining the types of meta-data. The 
M2-level constructs used in a meta-model map onto M1-level representations as MOF 
values. The types of these M1-level values can be defined using either M2-level 
Classes or M2-level DataTypes.

An M2-level Class defines an M1-level Instance type with the following properties:

• Instance typed objects have full object identity; i.e. it is always possible to reliably 
distinguish one instance (object) from another. Object identity is intrinsic and 
permanent, and is not dependent on other properties such as attribute values.

• Instance typed objects can be linked via an Association.

By contrast, an M2-level DataType defines a type with the following properties:

• Data typed values do not have full object identity; see below.

• Data typed values cannot be linked via an Association.

DataTypes typically fall into two groups:

• MOF data types (i.e., data types that are defined using the MOF primitive data types 
and constructors):

• boolean, character types, string types, numeric types

• enumerations, arrays, sequences and records.

By definition, MOF data types do not have object identity. Ideally, they should be 
available across all supported mappings with common computational semantics and 
inter-convertible representations.

• Native types (i.e., types that are defined in a type system that is (notionally) beyond 
the scope of the core MOF type system). These types will typically be specific to a 
given mapping, and hence should not be used where interoperability across middle-
ware technologies is a goal.

Native types may support object identity (in some sense). However, object identity 
is not necessarily supported in the computational model of any given mapping.

DataTypes can also be classified as modeled types and external types. A modeled type 
is one whose definition is expressed within the framework of the MOF Model. By 
contrast, an external type is defined by some type definition mechanism outside of the 
MOF Model. An example of the latter is a CORBA interface type whose definition is 
held in a CORBA Interface Repository.

Note – The current version of the MOF specification is tied to the CORBA type 
system, and represents DataTypes in a CORBA specific way. Some of the more 
complicated CORBA data types do not have an equivalent in other type systems.
4-2     OMG-MOF V1.3                              March 2000  



4

4.2.1 Semantics of Equality for MOF Values

Much of the detail of the MOF computational model depends on a notion of equality of 
values. For example, the precise formulation of the “no duplicates” rule for link sets 
depends on a definition for what it means for object type instances to be equal.

Equality of MOF Values is defined as follows:

1. Instances of Classes are equal if and only if they have the same identifier; i.e. it 
does not take into account the values of Attributes for the instances or the links 
involving the instances.

2. Values of MOF primitive data types are equal if and only if they have the same type 
and same value.

3. Values of MOF enumeration data types are equal if and only if they have the same 
type and the same enumerator.

4. Values of MOF array or sequence data types are equal if and only if they have the 
same type, the same number of members and the corresponding components are 
equal according to these rules.

5. Values of MOF record types are equal if and only if they have the same type and the 
corresponding record fields are equal according to these rules.

6. The meaning of equality of external types and native types depends on the mapping.

Note – The meaning of equality for a particular external or native type may vary 
depending on the mapping. For example, equality may be undefined in some mappings.

4.3 Semantics of Class Instances

An M1-level Instance is a value whose type is described by an M2-level Class. An 
Instance has the following properties in the MOF computational model:

• It has object identity. This has different implications depending on the mapping, but 
in general it means that many conceptually distinct Instance values can exist whose 
component values are the same.

• It has a definite lifetime. An Instance value is created in response to particular 
events in the computational model, and continues to exist until it is deleted in 
response to other events.

• It is created in a computational context known as a Class extent, and remains in that 
extent for its lifetime; see Section 4.6, “Extents,” on page 4-9.

• It can have component values defined using M2-level Attributes; see Section 4.4, 
“Semantics of Attributes,” on page 4-4.

• It can be linked to other Instances; Section 4.7, “Semantics of Associations,” on 
page 4-12.
OMG-MOF V1.3           Semantics of Class Instances           March 2000 4-3



4

Not all M2-level Classes can have corresponding M1-level Instances.  In particular, 
Instances can never be created for Classes which have “isAbstract” set to true. In 
addition, if an M2-level Class has “isSingleton” set to true, only one Instance of the 
class can exist within an extent for the Class.

4.4 Semantics of Attributes

Attributes are one of two mechanisms provided by the MOF Model for defining 
relationships between values at the M1-level. An Attribute of an M2-level Class 
defines a relation between each M1-level Instance of the Class, and values of some 
other type. The Attribute specification consists of the following properties:

• the Attribute’s “name”,
• the Attribute’s “type” which may be expressed using a Class or DataType,
• a “scope” specification,
• a “visibility” specification,
• a “multiplicity” specification,
• an “isChangeable” flag,
• an “isDerived” flag, and
• an (implicit) aggregation specification.

Many aspects of the M1-level computational semantics of Attributes depend on the 
mapping used. The following subsections describe those aspects of the semantics that 
are mapping independent.

4.4.1 Attribute name and type

The “name” and “type” of an Attribute define the basic signature of a notional binary 
relationship between a Class instance and an attribute value or values. For example, an 
Attribute declaration of the form:

class Class1 {
attribute attr_1 AttrType;

};

defines a notional relation between an M1-level type corresponding to the Class1 and 
an M1-level type corresponding to the AttrType.  The three main kinds of relation that 
can exist between for a Class and an Attribute are illustrated below in Figure 4-1. The 
figure shows cases where an Attribute’s “multiplicity” bounds are “[1..1]” (single-
valued), “[0..1]” (optional) and “[m..n]” (multi-valued) respectively. Each notional 
relation is distinguishable from others for that Class by the Attribute’s “name.”

Figure 4-1 Notional Class — Attribute Relations

single-valued Attribute optional Attribute multi-valued Attribute

Class1 AttrType

attr_1

1
Class2 AttrType

attr_2

Class3 AttrType

attr_3

0..1 m..n
4-4     OMG-MOF V1.3                              March 2000  



4

An M2-level Attribute’s “type” can be either a Class or a DataType. In the former case, 
the Class — AttrType relation relates M1-level Instances corresponding to the two 
Classes. In the latter case, it relates M1-level Instances corresponding to the Class to 
M1-level Instances corresponding to the DataType.

In the following sections, it is often necessary to talk about the type of the M1-level 
Instances on the AttrType end of a Class — AttrType relation. To make the text more 
readable, we will use the phrase “the Attribute’s M1-level base type” for this type 
rather than referring to it as “the M1-level type corresponding to the M2-level 
Attribute’s “type”. As we shall see, the phrase “the Attribute’s M1-level type” is best 
used for another purpose.

4.4.2 Multiplicity

The “multiplicity” property defines the cardinality, uniqueness and orderedness of an 
Attribute as follows:

• The “lower” and “upper” fields set the bounds on the number of elements (i.e. 
cardinality) allowed in an Attribute value; i.e. the “(collection of) AttrType” in 
Figure 4-1 and Figure 4-2 above. Discussion of multiplicity usually need to deal 
with three cases:

• If the “lower” and “upper” are both 1, the Attribute is single-valued; i.e. the 
“value” is a single instance belonging to the Attribute’s M1-level base type.

• If the “lower” is 0 and “upper” is 1, the Attribute is optional; i.e. the “value” is 
either an instance belonging to the Attribute’s M1-level base type, or nothing.

• Otherwise, the Attribute is multi-valued; i.e. its “value” is a collection of 
instances belonging to the Attribute’s M1-level base type.

• The “isUnique” flag specifies whether or not a multi-valued Attribute is allowed to 
contain duplicates; i.e. elements that are equal according to the definition in 
Section 4.2.1, “Semantics of Equality for MOF Values,” on page 4-3.

• The “isOrdered” flag specifies whether or not the order of the elements in a multi-
valued Attribute are significant.

The “multiplicity” settings of an M2-level Attribute have considerable influence on the 
M1-level Attributes values.  In particular, it determines whether the M1-level type of 
the Attribute is the M1-level base type, or a collection of that type. In addition, the 
“multiplicity” may also cause:

• runtime checks to ensure that a multi-valued Attribute’s cardinality lies within a 
given range,

• runtime checks to ensure that a multi-valued Attribute does not contain duplicate 
members, and

• mechanisms which allow the user to specify the order of the elements of a multi-
valued Attribute.

The “multiplicity” may also have considerable impact on the APIs that a mapping 
provides for accessing and updating Attribute values.
OMG-MOF V1.3           Semantics of Attributes           March 2000 4-5



4

It should be noted that when an M2-level Attribute has “isOrdered” set to true, the 
corresponding Class — AttrType relation has an associated partial ordering when 
viewed from the Class role.

4.4.3 Scope

The “scope” of an Attribute can be either “instance_level” or “classifier_level”. For an 
“instance_level” Attribute, independent relationships exist between instances of 
MyClass and instances of AttrType. For a “classifier_level” Attribute, a single instance 
of AttrType (or a collection of AttrType) is related to all instances of MyClass in the 
extent. This is illustrated in Figure 4-2.

Figure 4-2 Instance-level versus Classifier-level scoping

Note – For the classifier-level Attributes, the diagrams are intended to show that all 
MyClass instances are related to a single instance or collection of instances of 
AttrType.

4.4.4 Is_derived

The “isDerived” flag indicates whether the notional relationship between a Class 
instance and the Attribute type instances is stored or computed.

4.4.5 Aggregation

The possible aggregation semantics of an Attribute depend on its type:

• If an Attribute’s type is expressed as a DataType, it has “non-aggregate” semantics. 

• If an Attribute’s type is expressed as a Class, it has “composite” semantics.

instance-level scoped attributes classifier-level scoped attributes

MyClass AttrType

my_attr

MyClass AttrType

my_attr

1

1

MyClass AttrType

my_attr

m..n

MyClass AttrType

my_attr

0..1
MyClass 1:AttrType

MyClass 1:AttrType
my_attr

1

0..1

single-valued

optional

multi-valued
my_attr

1 m..n

c

c

1
c

4-6     OMG-MOF V1.3                              March 2000  



4

In cases where an Attribute has “composite” semantics, the Class instance which is the 
value of the Attribute is a component of the Class instance which contains the 
Attribute, not vice-versa.

Note – The above description reflects the fact that the Attribute model element does 
not have an “aggregation” attribute. A Class-valued Attribute with “non-aggregate” 
semantics is currently expressed by making the Attribute’s type a DataType, where the 
DataType’s “typeCode” is an object reference type that is linked to the Class via a 
TypeAlias.

4.4.6 Visibility and is_changeable

The “visibility” property of an Attribute determines whether or not any operations for 
the notional relation should be present. Similarly, the “isChangeable” property 
determines whether update operations are present. The presence or absence of these 
operations do not alter the semantics of the Attribute.

4.5 Package Composition

This section summarizes the meta-model composition mechanisms supported by the 
MOF Model and discusses their impact on M1-level semantics.

4.5.1 Package Nesting

Package nesting is the simplest of the MOF’s Package composition mechanisms. At the 
M2-level, Package nesting is expressed by making the outer Package the “container” of 
the nested Package. The definition of the Contains association in the MOF Model 
means than Package nesting is a strict composition relationship.

The main intended function of Package nesting is information hiding. Placing a Class 
or DataType in an inner Package rather than an outer one notionally makes it less 
visible to other meta-models. When the MOF visibility rules are defined (in a future 
revision of this specification), this information hiding will be more strongly enforced.

Nesting of Packages also affects the M1-level interfaces and implementations. The 
meaning of any element of a meta-model is potentially dependent on its context in a 
variety of ways. Thus, when the element is defined in a nested Package, its meaning 
may depend on the outer Package; e.g. on Constraints or Classifiers declared therein. 
This means that anything that uses a nested element will also implicitly depend on the 
context. To avoid potential M1-level anomalies caused by this kind of dependency, the 
MOF Model does not allow a meta-model to import a nested Package or a Classifier 
defined within a nested Package.

The M1-level semantics of Package nesting are as follows. The behavior of an M1-
level instance of a Classifier declared in a nested Package depend on state in both its 
immediate Package, and its enclosing Packages. As a result, the M1-level instance of 
the nested Classifier is inextricably tied to other instances within the outermost 
enclosing Package extent; see Section 4.6.4, “Package Extents,” on page 4-11.
OMG-MOF V1.3           Package Composition           March 2000 4-7



4

4.5.2 Package Generalization

Package generalization allows an M2-level Package to reuse all of the definitions of 
another M2-level Package. Package generalization is expressed at the M2-level by 
connecting the super-Package and sub-Package using a Generalizes link. (The MOF 
Model’s Constraints mean that Generalization is effectively an aggregation in the UML 
sense.)

The M1-level semantics of Package generalization are as follows. The behavior of M1-
level instances of the elements of an M2-level Package typically depends on M1-level 
behavior for M2-level super-Package elements. Indeed, an M1-level Package 
“instance” is  substitutable for M1-level Package instances for M2-level super-
Packages.

Package inheritance does not create any relationship between an instance of the super-
Package and an instance of the sub-Package. Therefore an M1-level Package extent is 
not related to M1-level super- or sub-Package extents; see Section 4.6.4, “Package 
Extents,” on page 4-11.

4.5.3 Package Importation

Package importing allows an M2-level Package to selectively reuse definitions from 
other M2-level Packages. Package importation is expressed at the M2-level by placing 
an Import in the importing Package that is related to the imported Package by an 
Aliases link. In this case, the M2-level Import object has its “isClustered” attribute set 
to false. Since Package importation can be cyclic, it is neither an aggregation or a 
composition in the UML sense.

Note – The MOF Model’s Constraints make it illegal for a Package to import itself, or 
for any Package to import a nested Package. Furthermore, while the MOF Model 
allows Package importation to be cyclic, the preconditions for the MOF Model to IDL 
mapping disallow most dependency cycles, including those between Packages that 
result from cyclic importation.

The M1-level semantics of Package importation are minimal. No substitutability or 
state relationships exist between the M1-level instances of an importing or imported 
Package, or between their respective extents. Indeed, an importing Package will 
typically not even share implementation code with the imported Package.

4.5.4 Package Clustering

Package clustering allows an M2-level Package to selectively reuse definitions from 
other M2-level Packages, and also share M1-level implementation infrastructure. The 
M2-level expression of Package clustering is similar to that for Package importation; 
see above. The difference is that the Import object has “isClustered” set to true.
4-8     OMG-MOF V1.3                              March 2000  



4

The M1-level semantics of Package clustering are similar to those of Package nesting 
because a cluster Package instance has its clustered Package instances as its 
components. However, unlike nested Packages, it is still possible to have a free-
standing M1-level instance of such a Package whose extent is unrelated to any extent 
of a cluster Package. 

4.6 Extents

This section introduces the concept of an “extent” in more detail, and then gives the 
formal definitions of the extent of a Class, an Association and a Package.

4.6.1 The Purpose of Extents

Current generation middleware systems typically aim to allow clients to use objects 
without knowledge of their locations or context.  However, groups of objects generally 
exist in the context of a “server” which has responsibility for managing them. The 
implementation an object often uses knowledge of its shared context with other objects 
to optimize performance, and so forth.

While statements about object location have no place in the MOF specification, the 
MOF Computational Model assumes a notion of context in many areas:

• The classifier-scoped features of an M2-level Class are notionally common to “all 
instances” of the Class.

• Mappings typically allow a client to query over “all links” in an Association 
instance.

It is impractical to define “all instances” or “all links” as meaning all instances or links 
in the known universe. Therefore, MOF specification defines logical domains of M1-
level instances that are the basis of these and other “for all” quantifications. These 
domains of M1-level instances are called extents.
OMG-MOF V1.3           Extents           March 2000 4-9



4

Figure 4-3 shows the extents defined by two “instances” (on the right) of the example 
meta-model on the left. Notice that the static nesting of Packages, Classes and 
Associations inside other Packages is mirrored in the extents (i.e., the dotted ovals).

Figure 4-3 Extents for two meta-model instances

Every Class instance or link belongs to precisely one Class or Association extent. 
These extents are part of Package extents, depending on the “lexical” structure of the 
meta-model. This means that extents are strictly hierarchical in nature. As we shall see 
in Section 5.2.1, “Meta Object Type Overview,” on page 5-2, extents are related to the 
intrinsic container semantics of meta-objects.

Note – There is no requirement that extents have any manifestation in the partitioning 
of objects between physical MOF servers. However, there are clear performance 
advantages in implementing such a partitioning.

4.6.2 Class Extents

The extent of a Class is defined to be the complete set of M1-level instances of the 
Class that share classifier-scoped properties (e.g., Attribute values). A Class instance is 
created in the context of a Class extent and remains within that extent for its entire 
lifetime (i.e., until the instance is explicitly deleted).

4.6.3 Association Extents

The extent of an Association is defined to be the complete set of M1-level links for the 
Association. A link is created in the context of an Association extent and remains 
within that extent for its entire lifetime.

P1

P2

P1::C1

P2::C2

P1::A

P1 extent 

P1 extent 

A links

A links

C1s

C1s

C2s

C2s

P2 extent 

P2 extent 
4-10     OMG-MOF V1.3                              March 2000  



4

4.6.4 Package Extents

The extent of a Package is a conglomeration of the extents of Classes, Associations 
and other Packages according to the following rules:

1. When an M2-level Package contains a Class or Association, an extent for the 
Package contains extents for the Classes and Associations.

2. When an M2-level Package contains nested Packages, an extent for the outer 
Package contains extents for the inner Packages.

3. When an M2-level Package clusters one or more other Packages, an extent for the 
cluster Package aggregates the extents for the clustered Packages.

4. When an M2-level Package inherits from another Package, an extent for the sub-
Package:

a. contains an extent for each nested Package, Class or Association in the super-
Package

b. aggregates an extent for each Package clustered by the super-Package, and

c. aggregates or contains extents by recursive application of rule Chapter 4. to the 
super-Package’s super-Packages.

When a Package inherits from another Package by more than one route, the sub-
Package extent will contain one extent for each directly or indirectly inherited Class, 
Association or nested Package. This is illustrated in Figure 4-4. Notice that the extent 
for Package P4 contains only one C1 extent.
OMG-MOF V1.3           Extents           March 2000 4-11



4

Figure 4-4 Extents for Multiply Inheriting Packages

When a Package clusters other Packages by more than one route, the outer cluster 
Package will contain one extent for all directly or indirectly clustered Packages. This is 
illustrated in Figure 4-5.  Notice that the relationship between the extents of a cluster 
Package and the extents of the clustered Packages is aggregation rather than strict 
containment. In particular, in the P4 case, the extent for P1 is not fully contained by 
either the P2 or P3 extents.

Note – The extent for an M2 Package that imports (rather than clusters) other Packages 
does not contain extents for the imported Packages or their contents.

4.7 Semantics of Associations

Associations are the MOF Model’s second mechanism for relating MOF values at the 
M1-level. A MOF M2-level Association defines a binary relation between pairs of M1-
level Instances, where the relationships in the relation are called Links. The Links for 
a given M2-level Association conceptually belong to a Link set.

Note – While the MOF Model appears to support N-ary Associations, this is not so. 
There is a Constraint that states that an Association must have precisely 2 Association 
Ends; see “AssociationsMustBeBinary” on page 3-101.

An M2-level Association definition specifies the following properties:

P1 P1 extent 

C1s

P4

P3P2

P4::C4

P1::C1

P2::C2 P3::C3

P2 extent 

C1s C2s

P3 extent 

C1s C3s

P4 extent 

C1s C2s

C3s C4s
4-12     OMG-MOF V1.3                              March 2000  



4

• an Association “name”,

• a pair of AssociationEnds which each have:

• a “name”,

•a “type” which must be a Class,
•a “multiplicity” specification,
•an “isNavigable” flag, and
•an “isChangeable” flag.

• an “isDerived” flag which determines whether the Association Links are stored 
explicitly or derived from other state.

Figure 4-5 Extents for Clusters of Clusters

P1 C1s

P4

P3P2

P4::C4

P1::C1

P2::C2 P3::C3

P2 extent 

C2s

P4 extent 

«clusters»

C1s

P3 extent 

C3sC1s

P1 extent 

C1s C3sC2s

P2 extent 

P1 extent 

P3 extent 

C4s

P1 extent P1 extent 

«clusters»«clusters»

«clusters»
OMG-MOF V1.3           Semantics of Associations           March 2000 4-13



4

4.7.1 MOF Associations in UML notation

A MOF Association is represented in UML notation as shown in Figure 4-6 below. 

Figure 4-6 An M2-level Association in UML notation

The connecting line denotes an Association between two Classes. The text of 
<Association Name>, <end1 name> and <end2 name> denote the “name” values for 
the respective Association and AssociationEnds. If the Association name is preceded 
by a forward slash, the Association has “isDerived” set to true.

The Class boxes denote the respective types of the two ends. If the two ends of an 
Association have the same type, the Association line loops around so that it connects a 
Class box to itself.

The <end1 multiplicity> and <end2 multiplicity> text give the multiplicity settings for 
the respective ends of the Association. The text that can appear here consists of an 
optional bounds specification with syntax:

<bounds>::= [<number> ‘..’] (<number> | ‘*’)

and the optional keyword “ordered.”

Finally, the navigability and aggregation of the ends of the Association are (partially) 
specified by the symbols at the respective ends of the line:

• An empty diamond indicates that the Instances at the labeled end “shares” the 
Instances at other end.

• A filled diamond indicates that the Instances at the labelled end are “composed” of 
Instances at the other end.

• An arrow head indicates that the Association is navigable from the Instance at the 
other end to the Instance at the labelled end.

<end1 multiplicity> <end2 multiplicity>

<Class1 Name> <end1 name> <end2 name>

<Association Name>

aggregation - none

aggregation - shared

aggregation - composite

navigable in direction indicated 

<Class2 Name>
4-14     OMG-MOF V1.3                              March 2000  



4

Note – There are a couple of anomalies in the mapping of UML Association notation 
to MOF Associations. First, while navigability and aggregation are orthogonal in the 
MOF, it is not possible to put both a diamond and an arrow head on the same end of a 
UML Association line. This means, for example, that it is not possible to express (the 
lack of) navigability from a component end to a composite end. Second, UML is 
imprecise about what an Association line with no arrowheads means. It can mean that 
the Association is not navigable, or alternatively that its navigability is not shown.

4.7.2 Core Association Semantics

This section defines the core semantic model for M1-level Association instances in a 
rigorous, mapping independent fashion, and enumerates some important characteristics 
that follow from the definition.

4.7.2.1 A Mathematical Model of Association State

Given an M2 Association labelled as in Figure 4-6, the mapping to M1-level Link sets 
and Links can be modeled as follows:

1. The M1-level Instances of the M2-level Classes <Class1> and <Class2> belong to 
sets Class1_Instances and Class2_Instances that represent the sets of all possible 
instances of <Class1> and <Class2>. (Note these sets are not restricted to current 
extant instances.)

2. The set All_Links is the Cartesian product of the sets Class1_Instances and 
Class2_Instances. Thus a Link, which is a member of All_Links, can be any tuple of 
the form “<c1, c2>” where “c1” and “c2” are members of Class1_Instances and 
Class2_Instances respectively.

3. The Link_Set is a subset of the set All_Links which consists of those Links that 
currently exist in the given M1-level Association.

4. If one or other of the AssociationEnds has “isOrdered” set to true, there is a partial 
ordering Before over the elements of Link_Set defined as follows. Assuming that 
<End1> of the Association is the one that is flagged as ordered:

a. For each Instance “i” in Class2_Instances, we can define a subset End2_Linksi 
of Link_Set consisting of those Links in Link_Set for which the second tuple 
member is “i”.

b. Given the End2_Linksi sets as defined in item a. above, the Before ordering is 
defined between any pair of different Links in a End2_Linksi set with 2 or more 
members. In other words, for any distinct Linkj and Linkk in End2_Linksi, we 
can say either Linkj Before Linkk, or Linkk Before Linkj.

c. The Before ordering is NOT defined between any pair of Links that belong to 
different End2_Links sets.

d. Where it is defined, the Before ordering is required to be:

i. transitive; i.e. Li Before Lj and Lj Before Lk implies that Li Before Lk, and
OMG-MOF V1.3           Semantics of Associations           March 2000 4-15



4

ii. anti-reflexive; i.e. Li Before Lj implies not Lj Before Li.

(If <End2> of the Association is ordered, substitute End2 for End1 and vice versa in 
the above.)

5. A State of an M1-level instance of an Association consists of the Link_Set and (if 
the Association is ordered) the Before ordering

6. A Well-formed State is a State in which:

a. The Links set is a subset of Valid_Links, where Valid_Links is the subset of 
All_Links where the connected Instances currently exist.

b. The End_Linksi sets as defined in item a. above conform to their respective 
Association End upper and lower bounds; i.e.

i. the number of Links in each End1_Linksi set must be greater than or equal 
to <End2.lower>, and less than or equal to <End2.upper>, and 

ii. the number of Links in each End2_Linksi set must be greater than or equal 
to <End1.lower>, and less than or equal to <End1.upper>.

Ideally, the computational semantics of M1-level Associations for a particular mapping 
should be describable as transformations from one Well-formed State to another. 
However, some mappings must be defined such that the State of an Association 
instances is not always a well-formed. For example, in the IDL mapping, deletion of an 
Instance may cause a End_Links set to contain too few Links.

The general model of an M1-level Association’s State may be further constrained by 
M2-level Constraints on the Association or other elements of the meta-model. Other 
systematic restrictions may apply in some mappings (e.g., Section 4.9.1, “The 
Reference Closure Rule,” on page 4-19 and Section 4.9.2, “The Composition Closure 
Rule,” on page 4-20.

4.7.2.2 Characteristics of M1-level Associations.

The definitions of Links and Link_Sets above mean that M1-level Association instances 
have the following characteristics:

• Links only exist between existing Instances in a Well-formed State. When an 
Instance ceases to exist, any Links involving the Instance in any Link_Set cease to 
be universally meaningful.

• A Link “<a, b>” is distinct from a Link “<b, a>”. In other words, Links are directed. 
(Whether or not the “direction” of a Link has a meaning depends on the underlying 
semantics of the reality that the M2-level Association describes.)

• Links do not have object identity, but are uniquely identified by the Instances at both 
ends.

• Since a Link_Set is defined to be a set, it cannot contain more than one copy of a 
given Link. In other words, M1-level Associations cannot contain duplicate links.

• The Before ordering on the Links in an End_Links set (where defined) can be 
represented by arranging the Links in a strictly linear sequence.
4-16     OMG-MOF V1.3                              March 2000  



4

• There can be multiple States for a given M2-level Association, each corresponding 
to a different M1-level Association instance in separate Package instances. In this 
scenario:

• a given Link can be a member of multiple Link_Sets, and

• the Before orderings of different States will be independent.

4.7.3 AssociationEnd Changeability

The “isChangeable” flag for an AssociationEnd determines whether or not the APIs for 
the Association should allow clients to change Links in an M1-level Association 
instance. The precise interpretation of this flag is mapping specific.

4.7.4 AssociationEnd Navigability

The “isNavigable” flag for an AssociationEnd determines whether or not client should 
be able to “navigate” the Links in an M1-level Association instance. The flag also 
determines whether or not the AssociationEnd can be used as a “key.” This flag’s 
interpretation (i.e., its impact on APIs) will depend on the mapping used.

4.7.5 Association Aggregation

The “aggregation” attributes of an Association’s two ends determines the aggregation 
semantics for the corresponding M1-level Association instances; see Section 4.8, 
“Aggregation Semantics,” on page 4-17. The impact of aggregation semantics are 
largely mapping specific. However, “composite” aggregation does place constraints on 
the Link_Set of a Well-formed State.

4.7.6 Derived Associations

When an M2-level Association has “isDerived” set to true, the resulting M1-level 
Association’s Link_Set is calculated from other information in the M1-level model.  
The M1-level semantics of derived Association instances is beyond the scope of the 
MOF specification.

4.8 Aggregation Semantics

As noted previously, the MOF Model provides two ways of relating MOF values; i.e. 
Associations and Attributes. In both cases, a relation has a property known as 
aggregation that determines how strongly related values are tied together.

The MOF Model currently supports three aggregation semantics; i.e. “none”, “shared” 
and “composite”, in order of increasing strength. 

Note – In practice, the semantics of aggregation are mostly concerned with the life-
cycles of related values. Since different mappings will use different strategies for 
managing the life-cycles of values, aggregation semantics are largely mapping specific.
OMG-MOF V1.3           Aggregation Semantics           March 2000 4-17



4

4.8.1 Aggregation “none”

An Attribute or Association with aggregation of “none” has the weakest form of 
relation between values. This will typically correspond to independent life-cycles for 
both parties and the use of shallow copy semantics in a mapping.

4.8.2 Aggregation “composite”

An Attribute or Association with aggregation of “composite” has the strongest form of 
relation between values. A “composite” relation involving two types is asymmetric, 
with one “end” labelled as the “composition” type and the other end labelled the 
“component” type. An instance of the first type is “composed of” instances of the 
second type.

An M1-level “composite” relation is defined to have information model semantics that 
can be loosely described as containment semantics:

1. If a value “v1” is a component of some other value “v2” in a given composite 
relation, “v1” may not be a component of any other value “v3” in any composite 
relation. In short, a value can have at most one container in any “composite” 
relation.

2. A value may not be related to itself in the closure of any “composite” relations. In 
short, a value may not directly or indirectly contain itself.

Other restrictions may apply to “composite” relations in some mappings (e.g., 
Section 4.9.2, “The Composition Closure Rule,” on page 4-20.

4.8.3 Aggregation “shared”

An Attribute or Association with aggregation of “shared” corresponds to a relation 
between values that is between “none” and “shared.”

Note – The semantics of “shared” aggregation should correspond to the semantics of 
an Aggregate in UML. Unfortunately, the OMG UML specification gives no clear 
guidance on what these semantics should be. As an interim measure, the use of 
“shared” aggregation in the MOF is discouraged.

4.9 Closure Rules

The MOF’s support for multiple Package “instances” introduces some potential 
anomalies into the computational model. These are resolved by three “closure” rules 
based on the definitions of extents in Section 4.6, “Extents,” on page 4-9.
4-18     OMG-MOF V1.3                              March 2000  



4

4.9.1 The Reference Closure Rule

Recall that a Reference value is defined as a projection of an M1-level Class instance 
in an Association. Given that Association link sets are not global, a reference’s value 
must be a projection in a particular link set. There is an “obvious” candidate link set 
for typical M1-level Class instances, namely the link set belonging to the Package 
“instance” that contains the Class instance. This is shown in Figure 4-7.

Figure 4-7 References for multiple Package instances

Figure 4-7 shows the Y instances visible to each X instance in two Package instances. 
Notice that the link set in the second Package instance contains a link to a Y instance 
belonging to the first Package instance (i.e., “<x5,y2>”). This presents no particular 
problems, since the “x5” object can find the link to “y2” by looking in the A link set 
for its containing Package instance.

However, suppose that the “<x5,y2>” had been in the A link set for the first Package 
instance. Now an instance of the X Class has to look in the link sets of both (or in the 
general case, all) Package instances to find all of the links. Alternatively, an X instance 
might only look in the link set for its owning Package instance, leading to non-intuitive 
computational semantics for Reference values. (Consider the case where there are 
References for both Association Ends.)

To avoid such non-intuitive (and arguably anomalous) semantics, the computational 
semantics for Associations includes a runtime restriction that prevents the problematic 
links from being created. This restriction is called the Reference Closure Rule:

“If Class C has a Reference R that exposes an Association End E in an 
Association A, then it is illegal to cause a link to be constructed such that 
an instance of C (or a sub-class of C) at the exposed End belongs to a 
different outermost extent to the A link set containing the link”.

The Reference Closure Rule is shown graphically by Figure 4-8 for the case of an 
Association with a Reference to one end. The Reference Closure Rule is enforced by 
runtime checks on M1-level operations that construct links (e.g., the link add and 

X A

Package P

Meta-model

Y

x1, x2,
x3, x4

y1, y2 <x1,y1> <x1,y2>
<x2,y1> <x3,y2>

x5, x6 y3
<x5,y3> <x6,y3>

Package P instance #1

Package P instance #2

/ref : Y

<x5,y2>
OMG-MOF V1.3           Closure Rules           March 2000 4-19



4

modify operations). This can be achieved by using the 
“outermost_containing_package” operations on the respective meta-objects; see 
Section 6.2, “The Reflective Interfaces,” on page 6-3. 

Figure 4-8 The Reference Closure Rule

4.9.2 The Composition Closure Rule

The MOF Model provides constructs for declaring that the instances of one meta-
model element are “composed of” instances of another; see Section 4.8, “Aggregation 
Semantics,” on page 4-17.

One of the key properties of composites is that a composite instance and its component 
instances have the same lifetime; i.e. when a composite meta-object is deleted, all of its 
components are also deleted. This is not difficult to implement when the composite 
instance and its components all belong to the same Package instance. However, a range 
of problems can arise when a composition crosses one or more outermost Package 
extent boundaries. For instance:

• How do the server implementations for the respective extents ensure that deletion is 
reliable in the face of server crash, network partition and so on?

• What are the access control implications of compositions? For example, should a 
client of one server / extent be able to implicitly delete components held in another 
server / extent?

To avoid having to deal with these difficult questions, the MOF computational model 
restricts the situations in which compositions may be formed. This restriction is called 
the Composition Closure Rule:

“The composite and component instances in a composition along with any 
links that form the composition must all belong to the same outermost 
Package extent.”

X A

Meta-model

Y
/ref : Y

x1

y2x2

y1 <x1, y1> 
<x1, y2>
<x2, y1>
<x2, y2>

OK
OK
Illegal
Illegal

A

A
A

A

4-20     OMG-MOF V1.3                              March 2000  



4

The Composition Closure Rule is shown graphically by Figur e4-3. This shows the rule 
as it applies to both composite Attributes and composite Associations.

Figure 4-9 The Composition Closure Rule

The Composite Closure Rule is enforced by runtime checks on M1-level operations 
that construct links in an Association with Composite semantics; e.g. the link add and 
modify operations. Similar checks are required for operations that update composite 
Attributes. The checks can be implemented by using the “immediate_container” and 
“outermost_containing_package” operations on the relevant meta-objects; see 
Section 6.2, “The Reflective Interfaces,” on page 6-3.

4.10 Recommended Copy Semantics

It is envisaged that some MOF mappings will provide APIs for copying metadata. The 
purpose of this section is to recommend a semantic model for such copy operations.  
Suggested semantics are given for “shallow” and “deep” copying. (A shallow copy is 
one in which conceptual components of an object are copied and other connected 
objects are not. A deep copy is one in which both components and more loosely related 
objects are copied.)

YA

Meta-model

x1

y3

y1 <x1, y1> 
<x1, y3>

OK
Illegal

X

Z

my_z : Z
z1

z2

my_z : z1

x2

my_z : z2

<x2, y2> Illegal

y2

A

A

A

OK

Illegal
OMG-MOF V1.3           Recommended Copy Semantics           March 2000 4-21



4

The following table details what objects should and should not be copied. The 
semantics are defined from the perspective of an object being copied. 

Unless otherwise stated, copying of a group of Instances related by Association or 
Attributes should give a 1-to-1 mapping between original Instances and copied 
Instances, and their respective relationships.

Note – The above suggested semantics do not cover copying of MOF values whose 
type is a native type. Those semantics will depend on whether or not the values in 
question are copyable.

4.11 Computational Semantics

4.11.1 A Style Guide for Metadata Computational Semantics

While the MOF specification gives the required computational semantics for M1-level 
metadata, it does not (and should not) state that these semantics constitute the only 
behavior. It is envisaged that vendor and end-user implementations of metadata servers 
may support additional semantics. In addition, the computational semantics of M2-
level derived Attributes, derived Associations and Operations are not specified at all in 
the standardized part of the MOF Model.

In theory, the complete computational semantics of a meta-model server can include 
any behavior that the implementer chooses. The purpose of the section is to set down 
some conventions to guide the implementer.

Table 4-1 Copy semantics for different kinds of relationships.

Construct Target type Aggregation Shallow Copy Deep Copy

Attribute Instance none
The Attribute value in the copy 
will be the same Instance value as 
in the original.

The Attribute value in the copy will 
be the same Instance value as in the 
original.

Attribute MOF data type none

The Attribute value in the copy 
will be the same data value as in 
the original. Embedded Instance 
values will be the same as in the 
original.

The Attribute value in the copy will 
be the same data value as in the 
original. Embedded Instance values 
will be the same as in the original. 

Attribute Instance composite
The Attribute value in the copy 
will be a shallow copy of the 
Instance value as in the original.

The Attribute value in the copy will 
be a deep copy of the Instance value 
in the original.

Association Instance none No link is created. A link is created from the copy to 
the original link target.

Association Instance shared A link is created from the copy to 
the original link target.

A link is created from the copy to a 
deep copy of the original link 
target.

Association Instance composite
A link is created from the copy to 
a shallow copy of the original link 
target.

A link is created from the copy to a 
deep copy of the original link 
target.
4-22     OMG-MOF V1.3                              March 2000  



4

4.11.2 Access operations should not change metadata

Many operations on Instance and Associations are provided to support access to the 
public state of a model; e.g. the “get” operations for Attributes, the “query” operations 
for Associations. For normal (non-derived) Attributes and Associations, the standard 
computational semantics of an access operations are to simply return the corresponding 
value or collection. For derived Attributes and Associations, there are no standard 
semantics at all.

In general, it is bad style for an access operation to have observable side-
effects on the primary metadata. Similarly, it is bad style for an Operation 
with “isQuery” true to have such side-effects. 

The rationale for this rule is that the user would not expect an access operation to have 
visible side-effects.

Note – It may be reasonable (for example) for an Attribute “get” operation to update a 
private counter Attribute that records the number of accesses. The legitimacy of this 
kind of behavior depends on whether or not the state modified can be classified as 
“primary” metadata.

4.11.3 Update operations should only change the nominated metadata

The standard semantics of metadata update operations define which metadata is 
expected to be modified by the operation. However, there is no explicit requirement 
that other metadata should not be changed.

It is bad style for an update operation for a non-derived Attribute, 
Reference or Association to change any primary metadata other than that 
which is identified by the standard semantics. 

The rationale for this rule is that the user would not expect such changes to occur.

Note – This rule is not intended to apply to operations for derived Attributes, 
References or Associations, or to Operations with “isQuery” false.

4.11.4 Derived Elements should behave like non-derived Elements

M2-level Attributes and Associations can be defined as being derived from other 
information in a meta-model (i.e., by setting the respective “isDerived” flag to true). 
The required M1-level behavior of derived Elements is identical to that for equivalent 
non-derived Elements. Behavior that contradicts the semantics in this chapter and in 
the relevant mapping specification is non-conformant.

However, since derived Attributes and Associations have to be implemented using 
mechanisms that are beyond the scope of the MOF Model, conformance is ultimately 
the responsibility of the meta-model implementer.
OMG-MOF V1.3           Computational Semantics           March 2000 4-23



4

It is recommended that implementer defined M1-level operations for derived Elements 
should have MOF conformant behavior. The alternative (non-conformant behavior) 
tends to break the illusion that the Attribute or Association is “real,” and should be 
avoided. If the required semantics are unimplementable, the meta-model is incorrect.

4.11.5 Constraint evaluation should not have side-effects

The MOF specification does not define how Constraints defined in a meta-model 
should be evaluated. In particular, it does not define whether Constraint evaluation can 
change the metadata.

It is bad style for the evaluation of a Constraint to change metadata. 

The rationale is two fold. First, Constraints are provided as mechanism for specifying 
metadata correctness, not as a mechanism for defining behavior. Second, since the 
MOF specification does not say when Constraint evaluation should occur (in all cases), 
side-effects in Constraint evaluation could be a major source of interoperability 
problems.

4.11.6 Access operations should avoid raising Constraint exceptions

The MOF specification does not define when deferred Constraint evaluation should 
occur. In theory, it can occur at any time, including when the user invokes an access 
operation.

It is bad style for an access operation on a non-derived Attribute, 
Reference or Association to raise an exception to indicate that the 
metadata is structurally inconsistent or that a Constraint has been violated.

The rationale is that an application program that is reading metadata (rather than 
updating it) is typically not in a position to do anything about the violation of deferred 
structural constraints or model specific Constraint. Alternatively, an application may 
try to access the metadata, knowing that it is inconsistent, so that it can then correct it.

It is bad style for an access operation on a derived Attribute, Reference or 
Association to raise a similar exception unless the inconsistency makes it 
impossible to calculate the required derived value(s). The same rule 
applies to Operations with “isQuery” true.

The rationale being less prescriptive about derived access operations is that the 
formulae used to derive the value(s) will typically have certain assumptions about the 
consistency of the metadata.
4-24     OMG-MOF V1.3                              March 2000  



MOF to IDL Mapping 5
Contents

This chapter contains the following topics. 

5.1 Overview

This chapter defines the standard mapping from a model defined using the MOF Model 
onto CORBA IDL. The resulting interfaces are designed to allow a user to create, 
update and access instances of the model using CORBA client programs. While the 
standard IDL mapping implies detailed functional semantics for an object server for a 
mapped model, it does not define the implementation.

Note that while the mapping specification is defined to be easy to automate, a 
conformant MOF implementation is not required to support automatic IDL generation.

Topic Page

“Overview” 5-1

“Meta Objects and Interfaces” 5-2

“Computational Semantics for the IDL Mapping” 5-6

“Exception Framework” 5-23

“Preconditions for IDL Generation” 5-32

“Standard Tags for the IDL Mapping” 5-35

“Generated IDL Issues” 5-38

“IDL Mapping Templates” 5-46
   OMG-MOF V1.3                           March 2000 5-1



5

5.2 Meta Objects and Interfaces

This section describes the different kinds meta-objects that represent MOF-based meta-
data in a CORBA environment.

5.2.1 Meta Object Type Overview

The MOF to IDL mapping and the Reflective module share a common, object-centric 
model of meta-data with five kinds of M1-level meta-object; that is, “instance” objects, 
“class proxy” objects, “association” objects, “package” objects and “package factory” 
objects. The relationships between M2-level concepts and M1-level objects is 
illustrated by the example in Figure 5-1.

Figure 5-1 Relationships between M1 and M2 level

The example shows how a simple M2-level meta-model (on the left) maps onto the five 
kinds of M1-level meta-object (in the center). The right of the diagram shows the 
intrinsic conglomeration relationships that exist between the meta-objects in a Package 
“instance.” (As noted, in Section 4.6, “Extents,” on page4-9 , these relationships do not 
always have strict containment semantics.)

Note – These intrinsic conglomeration relationships exist for all M1-level meta-
objects. They have no explicit meaning in connection with the represented meta-data. 
Rather, they are provided to assist the management of meta-objects. (The intrinsic 
conglomeration relationships should not be confused with the M1-level composition 
relationships that correspond to M2-level composite Associations and Attributes.)

5.2.1.1 Package objects and Package Factory objects

M2-level

C
A

Package P

C_Class

A

P

C

P_Factory

Instance

Class

Association

Package

Package 

Proxy

Factory

M1-level Interfaces M1-level Instances

A

P_Factory

C_Class

P

C

1
*

1

«creates»

Conceptual
Meta-model
5-2    OMG-MOF V1.3                           March 2000  



5

The instances of an M2-level Package are represented as Package objects. A Package 
object is little more than a “directory” of read-only attributes that give access to a 
collection of meta-objects described by a meta-model. The attributes of a Package 
object refer to “static” objects. In particular, there is

• one Package attribute for each M2-level Packages that is nested or clustered by the 
Package (none are present in the example above), 

• one Class Proxy attribute for each M2-level Class in the Package, and

• one Association attribute for each M2-level Association in the Package.

The number and types of the static objects, and the corresponding attributes in an M1-
level Package interface is determined by the M2-level Package specification. The 
objects cannot be directly created, destroyed, added or removed by a client. 

While there is a usually a one-to-one correspondence between the Packages’ reference 
attributes and the static objects, this need not be the case. The correspondence is 
actually determined by the extent relationships as described in Section 4.6.4, “Package 
Extents,” on page 4-11. Thus, for example, when an M2-level Package is clustered by 
more than one route, there should be one M1-level Package object that is accessed via 
two attributes.

A Package object is typically obtained by invoking a “create” operation on a Package 
Factory objects. This creates the Package object, and all of the necessary static objects. 
The arguments to the “create” operation are used to initialize any classifier-scoped 
Attributes defined within the M2-level Package.

5.2.1.2 Class Proxy objects

As stated above, a Package object contains one (and only one) Class Proxy object for 
each M2-level Class in the M2-level Package. A Class Proxy object serves a number of 
purposes:

• it is a factory object for producing Instance objects in the Package “instance,”

• it is the intrinsic container for Instance objects, and 

• it holds the state of any classifier-scoped Attributes for the M2-level Class.

The interface of a Class Proxy object provides operations for accessing and updating 
the classifier-scoped attribute state. Other operations allow a client to invoke classifier-
scoped Operations.

The interface also provides a factory operation allows the client to create Instance 
objects. It also gives read-only access to the set of extant Instance objects contained by 
the Class Proxy object.
OMG-MOF V1.3        Meta Objects and Interfaces         March 2000 5-3



5

5.2.1.3 Instance objects

The instances of an M2-level Class are represented by Instance objects. An Instance 
object holds the state corresponding to the instance-scoped M2-level Attributes for the 
Class, and any other “hidden” state implied by the Class specification. Generally 
speaking, many Instance objects can exist within a given Package “instance.”

As described above, Instance objects are always contained by a Class Proxy object. 
The Class Proxy provides a factory operation for creating Instance objects that takes 
initial values for the instance-scoped Attributes as parameters. When an Instance object 
is created, it is automatically added to the Class Proxy container. An Instance is 
removed from the container when it is destroyed.

The interface for an Instance object inherits from the corresponding Class Proxy 
interface. In addition it provides:

• operations to access and update the instance-scoped Attributes,

• operations to invoke the instance-scoped Operations,

• operations to access and update Associations via Reference,

• operations that support object identity for the Instance, and

• an operation for deleting the Instance object.

5.2.1.4 Association objects

Links that correspond to M2-level Associations are not represented as meta-objects. 
Instead, an M1-level Association object holds a collection of links (i.e., the link set) 
corresponding to an M2-level Association. The Association object is a “static” object 
that is contained by a Package object, as described previously. Its interfaces provides:

• operations for querying the link set,

• operations for adding, modify and removing links from the set, and

• an operation that returns the entire link set.

5.2.2 The Meta Object Interface Hierarchy

This section describes the patterns of interface inheritance in the CORBA IDL 
generated by the MOF to IDL mapping. The patterns are illustrated in Figure 5-2. 
5-4    OMG-MOF V1.3                           March 2000  



5

Figure 5-2 Generated IDL Inheritance Patterns

Figure 5-2 shows an example MOF meta-model expressed in UML (on the left) that 
consists of two Packages P1 and P2. The first Package P1 contains Classes C1 and C2, 
where C2 is a subclass of C1 and an Association A that connects C1 and C2. The 
second Package P2 is then defined as a subpackage of P1. 

The UML class diagram (on the right) shows the inheritance graph for the generated 
interfaces corresponding to the example meta-model.

The root of the inheritance graph is a group of four predefined interfaces that make up 
the Reflective module; see Section 6.2, “The Reflective Interfaces,” on page6-3 . These 
interfaces collectively provide:

• operations that implement meta-object identity,

• operations for finding a meta-object’s containing package instance(s),

• an operation for finding a meta-object’s M2-level description, and

• operations for exercising the functionality of a meta-object independent of its 
generated interface.

Note – The interfaces in the Reflective module are all designed to be “abstract;” that 
is, it is not anticipated that they should be the “most derived” type of any meta-object.

C2

C1

Package P1

P1 P2

A

Meta-model Definition

C1Class

P2

P1

C2

C1C2Class

A

c1_ref : C1Class
c2_ref : C2Class
a_ref : A

RefPackage RefAssociation RefObject

RefBaseObject

Inheritance in Generated Interfaces
OMG-MOF V1.3        Meta Objects and Interfaces         March 2000 5-5



5

The interfaces for the Package objects, Association objects, Class Proxy objects and 
Instance objects provide functionality as described previously. The inheritance patterns 
are as follows:

• All Package object interfaces inherit (directly or indirectly) from RefPackage.

• All Association object interfaces inherit from RefAssociation.

• All Class Proxy interfaces inherit (directly or indirectly) from RefObject.

• All Instance interfaces inherit from the corresponding Class Proxy interfaces.

• When an M2-level Package P2 inherits from another P1, the corresponding interface 
P2 inherits from P1.

• When an M2-level Class C2 inherits from another C1:

• the Class Proxy interface for C2 inherits from the Class Proxy for C1, and

• the Instance interface for C2 inherits from the Instance for C1.

The diamond pattern of interface inheritance is virtually unavoidable. The C2’s Class 
Proxy needs to inherit the interface features for C1’s classifier-scoped Attributes and 
Operations. Similarly, C2’s Instance interface needs to inherit the instance-scoped 
interface features.

Note – The IDL mapping supports some Tags for specifying addition IDL supertypes 
of various generated interfaces; see Section 5.6.3, “Tags for Specifying IDL 
Inheritance,” on page5-37 . The effect of these Tags on the inheritance graph is defined 
by the relevant IDL templates; see Section 5.8.4, “Package Template,” on page 5-50, 
Section 5.8.6, “Class Template,” on page 5-53, Section 5.8.7, “Class Proxy Template,” 
on page 5-54, and Section 5.8.10, “Association Template,” on page 5-58.

5.3 Computational Semantics for the IDL Mapping

This section specializes the MOF’s general computational semantics (see Chapter 4, 
“The MOF Abstract Mapping”) for the MOF to IDL mapping.

5.3.1 Value Types and Equality in the IDL Mapping

The IDL mapping defines all MOF Instance types as CORBA object types that are 
descended from the “RefObject” interface; see Section 6.2.4, 
“Reflective::RefAssociation,” on page 6-22. Equality of Instance objects should be 
implemented as follows:

• Existing Instance objects are equal if and only if the “refMofId” operation defined 
by Section 6.2.3, “Reflective::RefObject,” on page 6-9 returns the same string for 
both objects.

• Non-existent Instance objects are deemed to be equal if and only if they have the 
same object reference; that is, when the “Object::_is_equivalent” operation returns 
true.
5-6    OMG-MOF V1.3                           March 2000  



5

Note – An implementation must take care when comparing Instance object values to 
distinguish between non-existent (i.e., deleted) Instance objects and objects that may 
only be temporarily inaccessible. An operation should only raise an exception for a 
non-existent Instance object when it cannot be performed. In particular, an operation 
that replaces or removes defunct links or Instance values should not complain that the 
Instance being removed is defunct.

The MOF data types supported in the IDL mapping are the following CORBA data 
types:

• Primitive types - boolean, char, octet, wchar, short, unsigned short, long, 
unsigned long, long long, unsigned long long, float, double, long double, 
fixed, strings, and wide strings.

• Constructed types - arrays, sequences, enumerations and records.

• Type aliases - typedefs.

The native types supported in the IDL mapping are:

• CORBA union types.

• CORBA’s Any and TypeCode data types.

• Ordinary CORBA object types (i.e., object types that are not descended from the 
“RefObject” interface).

Note – The IDL mapping currently does not support CORBA 2.3 value types, box 
types and abstract interface types.

Equality semantics for the standard MOF data values are as previously defined in 
Section 4.2.1, “Semantics of Equality for MOF Values,” on page 4-3. The standard 
rules are extended with the following rules for instances of IDL specific native types 
and CORBA object references:

• CORBA TypeCode values are equal if and only if they are equal according to the 
definition of TypeCode::equal in the CORBA Core specification.

• CORBA Any values are equal if and only they have equal types (according to the 
definition of TypeCode::equal), and their embedded values are equal according to 
the MOF definitions of data type equality.

• Ordinary CORBA object references and embedded object references for Instance 
objects are equal if and only if “Object::_is_equivalent” operation returns true.

The rule for CORBA object references applies both to “ordinary” object references and 
to object references for Instance objects. Similarly, it applies equally whether the 
object reference is the complete value, a component of a constructed value, or 
embedded within an Any value.
OMG-MOF V1.3        Computational Semantics for the IDL Mapping         March 2000 5-7



5

5.3.2 Lifecycle Semantics for the IDL Mapping

This section defines the IDL mapping’s computational model for meta-object creation 
and deletion. It also gives definitions of copy semantics, though these should currently 
be viewed as indicative rather than normative.

5.3.2.1 Package object creation and deletion semantics

An M1-level Package object for a non-nested M2-level Package is created by invoking 
the create operation provided by the corresponding PackageFactory object. This create 
operation requires the caller to supply the values for all non-derived classifier-scoped 
Attributes. If the supplied initial values do not have the correct multiplicity or if they 
individually or collectively violate immediate Constraints defined in the metamodel, 
the create operation should raise an exception.

Instances of the following dependent M1-level objects are automatically created along 
with each M1-level Package object:

• An M1-level Package object is created for each nested Package within the 
outermost Package extent.

• An M1-level Package object is created for each clustered Package within the 
outermost Package extent.

• An M1-level Class Proxy object is created for each Class within the outermost 
Package extent.

• An M1-level Association object is created for each Association within the 
outermost Package extent.

The object references for the dependent Package and Class objects provide the “ref” 
attributes in the respective Package objects. The objects are initialized so that the 
outermost_package and enclosing_package operations return the appropriate M1-level 
Package objects.

Note – If an M2-level Package P2 clusters an existing top-level M2 Package P1, the 
above rules mean that two kinds of M1-level P1 Package objects can exist. If the user 
calls create on a P2 Package Factory object, the resulting P2 Package object will have 
its own dependent P1 Package object. On the other hand, if the user calls create on a 
P1 Package Factory, the resulting P1 Package object will be an outermost Package 
object. These two kinds of P1 Package objects behave identically, apart from their 
respective “refOutermostPackage” and “refOutermostPackage” operations; see 
Section 6.2.3, “Reflective::RefObject,” on page 6-9.

When an M1-level Class Proxy objects is created, the values of the non-derived 
classifier-level Attributes are initialized from the corresponding create operation 
arguments. The “all_of_type” and “all_of_kind” collections will initially be empty, 
since no M1-level Instance objects will have been created in the Class Proxy extent.
5-8    OMG-MOF V1.3                           March 2000  



5

Note – An implementation may support other mechanisms for creating or recreating 
outermost M1-level Package objects. Any such mechanism must also (re-)create and 
initialize the necessary dependent objects as above.

An outermost M1-level Package object can be destroyed using the “refDelete” 
operation; see Section 6.2.3, “Reflective::RefObject,” on page 6-9. The required 
computational semantics for deleting an outermost Package object are straightforward. 
The following things must occur (in an unspecified order):

• The binding between the outermost Package object and its object reference(s) must 
be revoked.

• The bindings between all dependent Package, Association and Class Proxy objects 
and their object references must be revoked.

• All Instance objects within the extent of the outermost Package object must be 
destroyed as described below.

Note – A typical implementation will delete the metadata and reclaim the space used 
to store it. However, this behavior is not essential and in some situations it could be 
undesirable.

Dependent M1-level Package objects, M1-level Association objects and M1-level Class 
Proxy objects cannot be directly destroyed by the user. An implementation of the 
“refDelete” operation for these objects is required to raise an exception when called by 
client code. (The operations may be used to implement outermost Package deletion, but 
this is beyond the scope of this specification.)

5.3.2.2 Instance object lifecycle semantics

An M1-level Instance object can be created by invoking the appropriate create 
operation. Suitable create operations are present on both M1-level Class Proxy objects 
and M1-level Instance objects, depending on the M2-level Class inheritance graph. A 
create operation requires the caller to supply values for all non-derived instance-scoped 
Attributes for the Instance object. If any value does not conform to the Attribute’s 
multiplicity or if they individually or collectively violate any immediate Constraints on 
the meta-model, an exception is raised.

An Instance object is created within the extent of a Class Proxy object for the 
Instance’s M2-level Class. The Class Proxy can be found as follows:

1. Find the outermost Package extent containing the object on which the create 
operation was invoked.

2. Within that extent, find the one and only Class Proxy object for the M2 Class whose 
instance is being created.

If no Class Proxy can be find by the above, the create request violates the Supertype 
Closure Rule (see Section 5.3.8, “The Supertype Closure Rule,” on page 5-22) and an 
exception is raised.
OMG-MOF V1.3        Computational Semantics for the IDL Mapping         March 2000 5-9



5

Creation of an Instance object will also fail if the corresponding M2-level Class is 
abstract. Similarly, it will fail if the M2-level Class is a “singleton” Class and an 
Instance object for that Class already exists within the Class Proxy’s extent. In either 
case, an exception is raised.

When an Instance object is (successfully) created within the extent of a Class Proxy 
object, it becomes part of collection returned by the Class Proxy object’s “all_of_kind” 
operation. The Instance object remains a member of that collection for its lifetime; that 
is, until it is deleted.

An Instance object will be deleted in the following three situations:

• when a client invokes the “refDelete” operation on the Instance object; see 
Section 6.2.3, “Reflective::RefObject,” on page 6-9.

• when the Package object for the Instance object’s outermost Package extent is 
deleted (see above), and

• when the Instance is a component of a “composite” Instance that is deleted. This 
applies to composites formed by both Associations and Attributes.

When an Instance object is deleted the following things must occur:

• The binding between the Instance object and its object reference(s) must be 
revoked.

• The Instance object must be removed from its Class Proxy object’s “all_of_type” 
collection.

• Any Instance objects that are components of the object being deleted must also be 
deleted.

• Links involving the deleted Instance object should be deleted as per the “Link 
lifecycle semantics” specification below.

An implementation will typically delete the state of an Instance object that has been 
deleted, and reclaim any associated space.

Note – When an Instance object is deleted, corresponding object reference values in 
non-composite Attributes of other objects become “dangling” references. These 
dangling references should not be automatically expunged or converted to nil object 
references, since doing so potentially destroys information and creates new structural 
errors. Instead, it is the user’s responsibility to ensure that dangling references in 
Attributes are tidied up in the most appropriate way.

5.3.2.3 Link lifecycle semantics

Links can be created and deleted in various ways. These include:

• by the user operations on M1-level Association objects; see Section 5.3.3, 
“Association Access and Update Semantics for the IDL Mapping,” on page 5-11,
5-10    OMG-MOF V1.3                           March 2000  



5

• by the user operations corresponding to References on M1-level Instance objects; 
see Section 5.3.4, “Attribute Access and Update Semantics for the IDL Mapping,” 
on page 5-15,

• by the user copying metadata (using some vendor specific API); see Section 4.10, 
“Recommended Copy Semantics,” on page 4-21,

• by the user deleting one or other linked Instance objects; see Section 5.3.2.2, 
“Instance object lifecycle semantics,” on page 5-9, and 

• when the server notices that a linked Instance object no longer exists.

A link is created within the extent of an Association object, and becomes part of the 
collection returned by the Association object’s “links()” operation. A link remains 
within the extent in which it was created for the lifetime of the link; that is, until it is 
deleted. When a link is deleted, it is removed from the “links” collection. Removing a 
link does not affect the lifecycle of the linked Instance objects.

According to Section 4.7.2.2, “Characteristics of M1-level Associations.,” on 
page 4-16, deletion of an Instance object causes any links for that object to become 
meaningless. Ideally, a well-formed M1-level Association instance should not contain 
such links. In practice, the immediate removal of meaningless links from an M1-level 
Association instance cannot always be implemented, in particular in the case of links 
that cross outermost Package extent boundaries.

Instead, a meta-object server is required to behave as follows.  When an Instance 
object is deleted:

• all links referring to the Instance object that belong to Association instances within 
the same outermost Package extent as the Instance object must also be deleted, and

• any links referring to the Instance object that belong to Association instances in 
another outermost Package extent as the Instance object may also be deleted.

Note – The above semantics means that an Association instance can legally contain 
links that refer to defunct Instance objects in other extents.

5.3.3 Association Access and Update Semantics for the IDL Mapping

This section describes the computational semantics of the Association object access 
and update operations defined in the MOF to IDL Mapping and the Reflective 
interfaces. With a couple of exceptions, these semantics transform one Well-formed 
State (as defined in Section 4.7.2.1, “A Mathematical Model of Association State,” on 
page 4-15) to another. The exceptions are as follows:

• Deletion of an Instance object in another outermost Package extent may cause an 
Association instance to contain links that are not members of Valid_Links.

• Deletion of an Instance object can cause an End_Links set to contain fewer links 
than is required.
OMG-MOF V1.3        Computational Semantics for the IDL Mapping         March 2000 5-11



5

M1-level Instance objects are passed as CORBA object reference values in IDL 
mapped operations. However, since the Association State model requires that Links 
connect Instances, it is not legal to pass the CORBA nil object reference value as a 
parameter to any operation on an M1-level Association.

Note – While the semantics of Associations are described (below) in terms of sets of 
pairs of M1-level Instance objects, this should not be read as implying any particular 
implementation approach.

5.3.3.1 Access Operations

There are three kinds of link access operations in the M1-level Association interface 
generated by the IDL mapping:

• The “all_links” operation returns the current Link_Set for an Association object.

• The “<end_name>” operations return a projection of the corresponding End_Links 
sets.

• The “exists” operation tests for the existence of a given Link in the Link_Set.

These operations are defined to be side-effect free; that is, they do not modify the State 
of the Association instance.

5.3.3.2 Link Addition Operations

The operations for adding links to an M1-level Association vary, depend on whether it 
has an ordered M2-level AssociationEnd:

• For an unordered Association, the “add” operation adds a Link to the Link_Set.

• For an ordered Association, the “add” and “add_before” operations both add a Link 
between a pair of Instances to the Link_Set.  In the “add” case, the new Link is 
added after existing Links.  In the “add_before” case, the new Link is added 
immediately before the link selected by the “before” argument.

More precisely, assuming that the first AssociationEnd is the ordered one and the 
new Link connects Instances i and j.  The Before mapping is updated as follows:

• For “add”, all Links that were in End2_Linksj prior to the operation are Before the 
new Link when it completes.

• For “add_before”, the Before_Link connects the “before” and j Instances.  For all 
Links that were in End2_Linksj and were Before the Before_Link prior to the 
operation, the pre-existing Link is Before the new Link after the operation. For all 
other Links that were in End2_Linksj prior to the operation, the new Link is 
Before the pre-existing Link after the operation.

• In both cases, the ordering of the other End2_Links sets are unchanged.

A number of constraints apply to the link addition operations:

• A new Link can only be added between extant Instances; i.e., the new Link must be 
a member of Valid_Links.
5-12    OMG-MOF V1.3                           March 2000  



5

• An operation cannot add a Link that is already a member of the Link_Set.

• An operation cannot add a Link if it would make the number of members of either 
End1_Linksi or End2_Linksj greater than the respective AssociationEnd’s “upper” 
bound.

• An operation cannot add a Link that creates a Composition cycle, or that violates 
the Composition or Reference Closure rules.

5.3.3.3 Link Modification Operations

There are two “modify” operations for replacing an existing Link in the Link_Set of an 
M1-level Association. One operation (in effect) modifies the Instance at the first end of 
a Link, and the second modifies the Instance at the second end. While the operation 
signatures do not vary, the semantics of the “modify” operations depend on whether 
the M2-level Association has an ordered AssociationEnd.

• In the non-ordered case, a “modify” operation is almost identical to a “remove” 
operation followed by an “add” operation. The only difference is in the bounds 
checking; see below.

• In the ordered case, a “modify” operation can differ from an “add” followed by a 
“remove” in the way that the Before ordering is handled.  Specifically, if we assume 
that the first AssociationEnd is the ordered one, the Before mapping is updated as 
follows:

• For “modify_<end1_name>(i, j, k)”, the new Link (between k and j) occupies the 
same position in the Before ordering of End2_Linksj as the Link (between i and j) 
that it replaces.

• For “modify_<end2_name>(i, j, k)”, the new Link (between i and k) becomes the 
last Link in the Before ordering of End2_Linksk.

• In both cases, the ordering of the other End2_Links sets are unchanged.

A number of constraints apply to the link modification operations:

• The Link that is replaced by the “modify” operation must be a member of Link_Set. 
However, it need not be a member of Valid_Links.

• The replacement Link that is created by a “modify” operation must be a member of 
Valid_Links.

• The replacement Link cannot already be a member of the Link_Set.

• A “modify” operation cannot produce a Link that would make the number of 
members in either the End1_Linksk or End2_Linksk sets greater than the respective 
AssociationEnd’s “upper” bound.

• A “modify” operation cannot remove a Link if doing so would make the number of 
members of End1_Linksi or End2_Linksj less than the respective AssociationEnd’s 
“lower” bound. (However, a Link can be produced in this situation.)

• A “modify” operations cannot produce a Link that creates a Composition cycle, or 
that violates the Composition or Reference Closure rules.
OMG-MOF V1.3        Computational Semantics for the IDL Mapping         March 2000 5-13



5

Note – A modify operation of the form “modify_<end1_name>(i, j, i)” is treated as a 
“no-op.” In particular, it does not trigger checking of “lower” or “upper” bounds.

5.3.3.4 Link Removal Operations

The “remove” operation can be used to delete an exist Link (between i and j) from the 
Link_Set of an M1-level Association. The constraints that apply to the link removal 
operation are:

• The operation cannot remove a Link if doing so would make the number of 
members of End1_Linksi or End2_Linksj less than the respective AssociationEnd’s 
“lower” bound.

• The operation cannot remove a Link that is not a member of the Link_Set. However, 
it should succeed if the Link is a member of Link_Set but not of Valid_Links.

5.3.3.5 Changeability, Navigability and Derivedness

The operation descriptions given above assume that the AssociationEnds of the M2-
level Association have been defined with “isChangeable” and “isNavigable” set to true. 
If this is not so, the main impact is that certain operations are suppressed:

• If an AssociationEnd of an Association is defined as non-changeable (i.e., when its 
“isChangeable” flag is set to false), the IDL mapping suppresses various link update 
operations. The “add,” “add_before,” and “remove” operations are suppressed if 
either AssociationEnd is non-changeable. Furthermore, the “modify_<end_name>” 
operation is suppressed for any AssociationEnd that is non-changeable, along with 
any related Reference-based operations.

• If an AssociationEnd of an Association is defined as non-navigable (i.e., when its 
“isNavigable” flag is set to false) the IDL mapping suppresses any link operations 
that depend on the ability to search based on that AssociationEnd. Specifically, it 
suppresses the “<assoc_end>”, “add_before_<end>”, “modify_<end>” operations.

Setting “isDerived” to be true for an M2-level Association is a “hint” that an M1-level 
Association’s Link_Set and Before mapping should be computed from other M1-level 
information.  Apart from this, the IDL mapping makes no distinction between derived 
and non-derived Associations. Equivalent IDL interfaces are generated in each case, 
and the semantics are defined to be equivalent. If a derived Association’s operations 
are coded by hand, it is the programmer’s responsibility to ensure that they implement 
the required semantics.

Some combinations of the Association and AssociationEnd flags result in generated 
interfaces that are of little use.  For example:

• Setting “isChangeable” to be false on one AssociationEnd and not the other results 
in an M1-level Association that supports one “modify” operation but no “add” or 
“remove” operations.

• Setting “isChangeable” to be false on an Association which has “isDerived” set to 
false results in a “stored” Association with no operations to update the Link_Set.
5-14    OMG-MOF V1.3                           March 2000  



5

5.3.4 Attribute Access and Update Semantics for the IDL Mapping

The IDL mapping maps M2-level Attributes to a variety of operations, depending on 
the Attribute’s “multiplicity” settings. There are three major cases:

• single-valued with bounds of [1..1]), 

• optional with bounds of [0..1], and 

• multi-valued.

Unlike Associations, the CORBA “nil” object reference is a legal (and logically 
distinct) value for any Class or object reference-valued Attribute. When an accessor 
operation returns a “nil” object reference, this does not necessarily mean that the 
Attribute has no value(s). In addition, the lifecycle semantics for Attributes in the IDL 
mapping mean that an accessor operation can return a reference for a non-existent 
object.

Note – While the semantics of Attributes are described (below) in terms of notional 
relations between M1-level values, this should not be read as implying any particular 
implementation approach.

5.3.4.1 Single-valued Attributes

The interfaces and semantics for single-valued Attributes are the simplest to describe. 
A single-valued Attribute (i.e., one whose “lower” and “upper” bounds are set to one) 
is mapped to two IDL operations: 1) “<attr_name>” and 2) “set_<attr_name>.”

The “<attr_name>” operation returns the current value of the named Attribute for an 
M1-level Instance object.  In the single-valued case, this is a single Instance of the 
Attribute’s M1-level base type as mapped by the IDL mapping.  In the terminology of 
Section 4.4.1, “Attribute name and type,” on page 4-4, the operation returns the M1-
level value that is related to the Instance object by the notional “<attr_name>” Class — 
AttrType relation.

The “set_<attr_name>” operation replaces the current value of the named Attribute for 
an M1-level Instance with a new value. As before, the new value is a single Instance of 
the Attribute’s M1-level base type as mapped by the IDL mapping.  The operation 
replaces the existing Class — AttrType relationship with a new one between the 
Instance object and the new value.

The behavior of “set_<attr_name>” for an Class-valued Attribute (i.e., one with 
“composite” aggregation semantics) is constrained as follows:

• The new value supplied must be either a reference to an existing Instance object or 
a nil object reference.

• The new value (i.e., the component Instance) must not already be a component of 
another Instance object.

• The composite and component Instance objects must belong to the same outermost 
M1-level Package extent (i.e., the Composition Closure rule must not be violated).
OMG-MOF V1.3        Computational Semantics for the IDL Mapping         March 2000 5-15



5

• Creating the new Class — AttrType relationship must not create a composition 
cycle.

5.3.4.2 Optional Attributes

The interfaces and semantics for optional Attributes are also relatively straight-
forward. An optional Attribute (i.e., one whose “lower” bound is 0 and whose “upper” 
bound is 1) maps to three operations: 

• “<attr_name>”

• “set_<attr_name>”

• “unset_<attr_name>”

The IDL mapping treats an M1-level optional Attribute as having two states. In the 
“set” state, the Attribute has a value which is an instance of the Attribute’s M1-level 
base type. In the “unset” state, the Attribute has no value.

In the single-valued case, “<attr_name>” simply returns the current M1-level value for 
the Attribute. In the optional case, the semantics depend on whether the Attribute is 
currently “set” or “unset.”

• If the Attribute is “set” (i.e., there is a Class — AttrType relationship between the 
Instance object and some other value), the “<attr_name>” operation returns the 
related value.

• If the Attribute is “unset” (i.e., there is no Class — AttrType relationship with the 
Instance object in the “class” role), the “<attr_name>” operation raises an 
exception.

The “set_<attr_name>” operation behaves exactly as in the single-valued case; it 
replaces the existing Class — AttrType relationship (if any) with a relationship with 
the new value. As a consequence, the Attribute enters the “set” state. The structural 
constraints for “set_<attr_name>” in the single-valued case apply here as well.

The “unset_<attr_name>” operation removes the Class — AttrType relationship, if it 
exists, leaving the Attribute in the “unset” state.

5.3.4.3 Multi-valued Attributes

The interfaces and semantics for multi-valued Attributes are relatively complicated, 
and depend to a considerable extent on the settings of the “isOrdered” and “isUnique” 
fields of the M2-level Attribute’s “multiplicity” property.

M1-level operations on multi-valued Attributes can be divided into two groups. The 
“<attr_name>” and “set_<attr_name>” operations access and update the Attribute’s 
state as a single value, transferring it as a CORBA sequence type. The other operations 
treat the Attribute’s state as a collection of values, and update it by adding, modifying 
or removing individual elements of the collection.
5-16    OMG-MOF V1.3                           March 2000  



5

The “<attr_name>” and “set_<attr_name>” operations transfer an Attribute’s M1-level 
state using a “collection” type. This is a named IDL sequence type whose base type is 
the Attribute’s M1-level base type, and whose name is determined by the “name” of the 
Attribute’s “type” and the settings of the “isOrdered” and “isUnique” flags; for details, 
see Section 5.7.1.6, “Literal String Values,” on page 5-42.

The “<attr_name>” operation returns the multi-valued Attribute’s value as a sequence 
using the IDL type described above.  The contents of the result comprise the collection 
of base type instances related to the Instance object by the Class — AttrType relation. 
If “isOrdered” is true, the order of the Class — AttrType relationships determines the 
order of the elements in the sequence. If the collection is empty, the returned value is a 
zero length sequence.

The “set_<attr_name>” operation replaces the multi-valued Attribute’s value with a 
new collection of base type instances. If the Attribute is ordered, the order of the 
elements in the parameter value determines the order of the new Class — AttrType 
relationships.

A number of restrictions apply to the “set_<attr_name>” operation for multi-valued 
Attributes. These are as follows:

• If the Attribute’s “multiplicity” has the “isUnique” flag set to true, no two base type 
instances in the collection may be equal.

• If the Attribute’s “multiplicity” has a “lower” value greater than zero, there must be 
at least that many elements in the collection.

• If the Attribute’s “multiplicity” has a “upper” value other than the “UNBOUNDED” 
value (i.e., -1), there can be at most that many elements in the collection.

If the Attribute has composite semantics (i.e., the Attribute’s “type” is expressed using 
a Class) the following restrictions also apply:

• Each element (i.e., Instance object) in the new value collection must be either a 
reference to an existing Instance object or a nil object reference.

• No element of the new value collection can already be a component of another 
Instance object.

• The composite and every component Instance objects must belong to the same 
outermost M1-level Package extent (i.e., the Composition Closure rule must not be 
violated).

• Creating the new Class — AttrType relationships must not create any composition 
cycles.

The IDL mapping can define up to 7 additional operations for a multi-valued Attribute. 
There are up to 3 operations for adding new element values to an Attribute collection, 
up to 2 for modifying them and up to 2 for removing them. The subset that is available 
for a given Attribute depends on the “isUnique” and “isOrdered” flags in the M2-level 
Attribute’s “multiplicity.” This is shown in Table 5-1 on page 5-18.
OMG-MOF V1.3        Computational Semantics for the IDL Mapping         March 2000 5-17



5

When “isOrdered” is set to false, the operations provided are the basic ones for adding, 
modifying, or removing element values. Given that the collection is unordered, there is 
no need to specify the position at which a new element value is added, or (in the false, 
false case) which of a number of equal element values should be modified or removed.  
The semantics of the operations for an unordered Attribute are as follows:

• The “add_<attr_name>” operation creates a new Class — AttrType relationship 
between the Instance object and the M1-level base type instance being added to the 
Attribute collection.

• The “modify_<attr_name>” operation replaces the Class — AttrType relationship 
between the Instance object and the M1-level base type instance being modified 
with another for the new element value.

• The “remove_<attr_name>” operation removes the Class — AttrType relationship 
between the Instance object and the M1-level base type instance being removed 
from the Attribute collection. Removing the instance decreases the Attribute 
collection’s length rather than leaving a “hole.”

These three operations must also respect the restrictions listed above for the multi-
valued “set_<attr_name>” operation.

When “isOrdered” is set to true, the “add_<attr_name>,” “modify_<attr_name>,” and 
“remove_<attr_name>” operations take on additional semantics:

• The “add_<attr_name>” operation must ensure that the newly added element 
appears as the last element in the Attribute collection.

• The “modify_<attr_name>” operation must ensure that the replacement M1-level 
base type instance appears in the same position in the Attribute collection as the 
value that it replaces.  When “isUnique” is set to false, the collection may contain 
duplicates. In this case, the operation should replace the first example of the 
instance in the ordered Attribute collection.

• When “isUnique” is set to false, the “remove_<attr_name>” operation should 
removes the first example of the instance in the ordered Attribute collection.

Table 5-1 Element Update Operations for Multi-valued Attributes

isOrdered isUnique Operations available

false false add_<attr_name>, modify_<attr_name>, 
remove_<attr_name>

false true add_<attr_name>, modify_<attr_name>, 
remove_<attr_name>

true false add_<attr_name>, add_<attr_name>_before, 
add_<attr_name>_at, modify_<attr_name>, 
modify_<attr_name>_at, remove_<attr_name>, 
remove_<attr_name>_at

true true add_<attr_name>, add_<attr_name>_before, 
modify_<attr_name>, remove_<attr_name>
5-18    OMG-MOF V1.3                           March 2000  



5

In addition, the client is provided with extra operations for order sensitive element 
update:

• The “add_<attr_name>_before” operation is similar to the “add_<attr_name>” 
operation, except that the new instance is added to the Attribute collection before an 
existing element designated by the caller. When “isUnique” is false, the operation is 
defined to replace the first example of the instance in the Attribute collection.

• When “isOrdered” is true and “isUnique” is false, the “add_<attr_name>_at,” 
“modify_<attr_name>_at,” and “remove_<attr_name>_at” are provided to allow the 
client to update the collection in the presence of duplicates. These operations 
specify an element insertion point or an element to be modified to be removed by 
giving an position index. For the purposes of these operations, the elements in an 
Attribute collection are numbered starting from zero according to the defined order 
of the members of the collection. The operations are as follows:

• add_<attr_name>_at - inserts the new M1-level base type instance so that it 
appears at the position given. The instance originally at that position, and all 
instances will have their position indexes increased by one.

• modify_<attr_name>_at - replaces the M1-level base type instance at the 
position.

• remove_<attr_name>_at - removes the M1-level base type instance at the 
position given. Any instances in the collection that follow the removed instance 
will have their position indexes decreased by one (i.e., the operation does not 
leave a “hole” in the Attribute collection).

These five additional operations must also respect the restrictions listed above for the 
multi-valued “set_<attr_name>” operation.

5.3.4.4 Changeability and Derivedness

The previous semantic descriptions assume the M2-level Attribute has “isChangeable” 
set to true and “isDerived” set to false. This subsection describes what happens if this 
is not the case.

If an Attribute has “isChangeable” set to false, the effect on the IDL mapping is that all 
generated operations for updating the Attribute’s state are suppressed. This does not 
preclude the existence of other mechanisms for updating the Attribute’s state.

Setting an Attribute’s “isDerived” flag to true, has no effect on the IDL mapping. The 
operations generated for the derived and non-derived cases are equivalent and they are 
defined to have equivalent semantics. If a derived Attribute’s operations are coded by 
hand, it is the programmer’s responsibility to ensure that they implement the required 
semantics.

5.3.4.5 Classifier scoped Attributes

The previous semantic descriptions assume the M2-level Attribute has “scope” set to 
“instance_level.” When an Attribute’s “scope” is “classifier_level,” we can model the 
notional relation that defines the M1-level Attribute state as a relation between the 
OMG-MOF V1.3        Computational Semantics for the IDL Mapping         March 2000 5-19



5

Class extent and the AttrType; see Section 4.4.3, “Scope,” on page 4-6. In the IDL 
mapping, this translates to a notional relation between a Class Proxy object and 
instances of the Attribute’s M1-level base type.

On this basis, an Attribute whose “scope” is “classifier_level” differs from one whose 
“scope” is “instance_level” in the following respects:

• The notional Class Proxy — AttrType relation supplies the value or values accessed 
and updated by “classifier_level” scoped Attribute operations.

• When the Attribute has aggregation semantics of “composite”:

• the Composition Closure rule means that the Class Proxy object and M1-level 
Attribute value Instances must belong to the same extent, and

• checking for composition cycles is unnecessary. The Class Proxy object that holds 
the Attribute value(s) is not an Instance, and thus cannot be a “component” in this 
sense.

5.3.4.6 Inherited Attributes

The previous semantic descriptions apply equally to Attributes defined within an M2-
level Class, and Attribute inherited from supertypes of the Class.

5.3.4.7 Life-cycle Semantics for Attributes

The previous semantic descriptions say nothing about how an Attribute gets its initial 
value or values. (With the exception of the single-valued case of the “<attr_name>” 
operation, the semantic descriptions would “work” if no notional relationships existed 
initially.) In fact, the IDL mapping ensures that all M1-level Attributes get a client-
supplied initial value:

• All “instance_level” scoped Attribute values for a M1-level Instance object are 
initialized from the parameters to the “create_<class_name>” operation.

• All “classifier_level” scoped Attribute values within the extent of an outermost M1-
level Package are initialized from the parameters to the “create_<package_name>” 
operation.

An M1-level Attribute only exists while the M1-level Instance object or Class Proxy 
object that it belongs to exists. When the object is deleted, the notional relationships 
disappear as well. 

Attributes with “composite” aggregation semantics have special life-cycle. When an 
object with a composite Attribute is deleted, the Instance object or objects that form its 
value are also deleted. 

Note that unlike Associations, when an Instance object is deleted, the delete operation 
should make no attempt to tidy up “dangling references” to it.
5-20    OMG-MOF V1.3                           March 2000  



5

5.3.5 Reference Semantics for the IDL Mapping

The IDL mapping maps References into a hybrid that combines an Attribute style 
interface with Association access and update semantics. In each case, a Reference 
operation maps fairly directly onto an Association operation as shown in Figure 5-2 
below.

In practice, an implementation also needs to transform exceptions reported for the 
Association operations into exceptions that apply from the Reference perspective. In 
addition, a “quality” implementation would ensure that Reference operations did not 
leave the Association object in a half way state following an exception.

Table 5-2 Semantic mapping of Reference operations to Association Operations

Multiplicity Reference Operation Association Operation(s) 
(assuming  that the referenced AssociationEnd is the 2nd one)

optional i.<reference_name>() temp = a.<referenced_end_name>(i)
if temp.size > 0 then
  temp[0]
else
  raise NotSet

single- and
multi-valued

i.<reference_name>() a.<referenced_end_name>(i)

optional i.set_<reference_name>(new) old = a.<reference_end_name>(i)
if old.size > 0 then
  a.modify_<reference_end_name>(i, old[0], new)
else
  a.add(i, new)

optional i.unset_<reference_name>() old = a.<reference_end_name>(i)
if old.size > 0 then
  a.remove(i, old[0])

single-valued i.set_<reference_name>(new) old = a.<ref_end_name>(i)
a.modify_<ref_end_name>(i, old, new)

multi-valued i.set_<reference_name>(new) old = a.<ref_end_name>(i)
for j in 0 .. (old.size - 1) do
  a.remove(i, old[j])
for j in 0 .. (old.size - 1) do
  a.add(i, new[j])

multi-valued i.add_<reference_name>(new) a.add(i, new)

multi-valued i.add_before_<reference_name>(new, 
before)

a.add_before_<referenced_end_name>(i, new, before)

multi-valued i.modify_<reference_name>(old, new) a.modify_<referenced_end_name>(i, old, new)

multi-valued i.remove_<reference_name>(old) a.remove_<referenced_end_name>(i, old)
OMG-MOF V1.3        Computational Semantics for the IDL Mapping         March 2000 5-21



5

Note – The above semantic mapping description is not intended as implying any 
particular implementation approach.

5.3.6 Cluster Semantics for the IDL Mapping

The impact of clusters on the IDL mapping semantics are largely described elsewhere. 
At the M1-level, a clustered Package behaves identically to a nested Package in terms 
of life-cycle and extent rules. The only significant difference is that clustering is not 
always a strict composition relationship at the M1-level; see Section 4.6.4, “Package 
Extents,” on page 4-11. In the IDL mapping, this means that two or more Package 
“ref” attributes to point at the same clustered Package instance.

5.3.7 Atomicity Semantics for the IDL Mapping

All operations defined by the IDL mapping (including the Reflective versions) are 
required to be atomic and idempotent:

• If an operation succeeds, state changes required by the specification should be 
made, except as noted below:

• When an Instance object is deleted, deletion of any component Instance objects 
may occur asynchronously.

• When an Instance object is deleted, removal of links to the deleted Instance object 
may occur asynchronously.

• If an operation fails (e.g., by raising an exception), no externally visible changes 
should be caused by the failed operation.

• When the invocation of two or more operations overlaps in time, the resultant 
behavior should be semantically equivalent to the sequential invocation of the 
operations in some order.

Note – The IDL mapping specification does not require a transactional or persistent 
implementation of a meta-data server.

5.3.8 The Supertype Closure Rule

The inheritance pattern for Instance and Class Proxy interfaces has an important 
consequence when one M2-level Class is a sub-Class of a second one.

Recall that each Class Proxy interface defines a factory operation for the corresponding 
Instance object, and that it also inherits from the Class Proxy interfaces for any M2-
level super-Classes. Taken together, this means that any Class Proxy object has 
operations for creating Instance objects for both the M2-level Class, and all of its M2-
level super-Classes.

Normally, this artifact of the IDL inheritance hierarchy is just a convenience. However, 
problems arise when an M2-level Class (e.g., P2::C2) has a super-Class that is 
imported from another M2-level Package (e.g., P1::C1); see Figure 5-3 on page 5-23. 
5-22    OMG-MOF V1.3                           March 2000  



5

The Class Proxy interface corresponding to the C2 Class now has a factory operation 
to create instances of a Class from another Package, and therefore would appear to 
require all of the mechanisms for creating, accessing, updating and deleting these 
instances. This is not what Package importing is defined to mean.

The adopted solution to this problem is to add an extra restriction to the MOF 
computational semantics. This restriction is known as the Supertype Closure Rule.

Supertype Closure Rule

Suppose that the Package extent for a non-nested M2-level Package P contains a Class 
Proxy object which has a create operation for instances of Class C. This create 
operation can be used if and only if the M2-level closure of the Package P under 
generalization and clustering includes the M2-level Class C.

In other words, a factory operation for instances of an M2-level Class will only work 
within a Package instance with the machinery for supporting the Class. The Supertype 
Closure Rule is illustrated in Figure 5-3.

Figure 5-3 Supertype Closure Rule

5.3.9 Copy Semantics for the IDL Mapping

The IDL mapping currently defines no APIs for copying meta-data. Copy semantics 
are therefore beyond the scope of this chapter.

P1::C1

P1

P2

Meta-model Definition

«imports»

P3

P2::C2 P3::C3

«clusters»

P1 Instance P2 Instance

C2
extent

C1
Proxy

C2
Proxy

C1
Proxy

C1
extent

C1
Proxy

C1
extent

C3
Proxy

C3
extent

P3 Instance
OMG-MOF V1.3        Computational Semantics for the IDL Mapping         March 2000 5-23



5

5.4 Exception Framework

This section describes the way that Exceptions are organized in the MOF to IDL 
mapping. These exceptions are raised in a variety of CORBA interfaces, including: 

• Reflective interfaces: (see Section 6.2.2, “Reflective::RefBaseObject,” on page 6-5, 
Section 6.2.3, “Reflective::RefObject,” on page 6-9, Section 6.2.4, 
“Reflective::RefAssociation,” on page 6-22, Section 6.2.5, 
“Reflective::RefPackage,” on page 6-28, and 

• Model interfaces (see Section 3.4, “MOF Model Classes,” on page 3-15 and 
Section 3.5, “MOF Model Associations,” on page 3-65).

• Specific interfaces produced by the mapping templates (see Section 5.8, “IDL 
Mapping Templates,” on page 5-44).

The exceptional conditions that arise in the context of the MOF to IDL mapping are 
classified into 5 groups:

1. Structural errors - this group covers those situations where the basic structural 
consistency rules for the metadata are (or would be) violated. For example, when 
there are too many or too few elements in a collection value.

2. Constraint errors - this group covers violations of metadata consistency rules 
specified in the metamodel using Constraints.

3. Usage errors - this group covers those situations where a client tries to use the MOF 
interfaces in a meaningless way. For example, giving a ‘position’ for a collection 
element that is outside of the collection bounds.

4. Reflective errors - this group covers errors that can only occur when using the 
Reflective interfaces. For example, calling “refInvokeOperation” on an Attribute. 
These errors are the notional equivalent of runtime type errors.

5. Semantic errors - this group covers errors not covered above (i.e., implementation 
specific errors).

The complexity of the MOF means that the number of exceptional conditions is (at 
least in theory) unbounded. The precise set of possible exceptional conditions for just 
one operation in the mapped interfaces can be very hard to define. Constraint and 
Semantic errors are particularly difficult to tie down. Furthermore, including lots of 
exceptions in an IDL operation signature can make client code inordinately complex.

To solve these problems, the MOF IDL mapping defines the MofError exception that 
covers most of the exceptional conditions that might arise. 

struct NamedValueType {
string name;
ValueType value;

};
typedef sequence < NamedValueType > NamedValueList;
exception MofError {

string error_kind;
RefBaseObject element_in_error;
5-24    OMG-MOF V1.3                           March 2000  



5

NamedValueList extra_info;
string error_description;

};

The fields of the MofError exception are defined as follows:

• error_kind is a string that denotes the particular kind of exceptional condition that 
is being raised. The formation of values for this field is discussed below.

• element_in_error is the DesignatorType for the object or feature that is deemed to 
be in error for this error condition. The detailed specifications of the error 
conditions below define which meta-object should be returned in each case. In 
situations where no M2-level meta-objects are available, this field may contain a nil 
object reference.

• extra_info is a list of name / value pairs that provides the client with extra 
information about the error condition. 

The list consists of zero or more standardized name / value pairs, followed by any 
implementation specific pairs. For the standardized part of the list, the sequence of 
the pairs and the values (including casing) of the names are mandatory. This allows 
clients to extract list elements by position or by matching names. It is recommended 
that implementers take the same approach for the implementation specific part of 
the list.

• error_description is a human readable diagnostic message. The contents of this 
field are not specified by this document.

Note – The standardized name / value pairs for the extra_info field represent a 
compromise between the anticipated cost of implementation and the provision of 
useful information to the caller. Implementers are encouraged to provide additional 
information. Similarly, implementers are encouraged to provide detailed and 
informative diagnostics in the error_description field.

5.4.1 Error_kind string values

The values of the error_kind field or MofError are structured using Java’s reversed 
domain name syntax:

“org.omg.mof:structural.composition_cycle”
“au.edu.dstc.mofamatic:botched_assertion”

The values for each group of errors are as follows:

• Structural and Reflective errors: the prefix “org.omg.mof:” followed by either 
“structural.” or “reflective.” and then the specific error name in lowercase with 
underscores between words. These values are defined as constants in the IDL for 
the Reflective module.
OMG-MOF V1.3        Exception Framework         March 2000 5-25



5

• Constraint errors: the IDL prefix for the metamodel (if any), followed by 
“:constraint.” followed by the qualified constraint name using the Format2 
convention. For example, a Constraint named “MyConstraint” declared in 
“PackageA::ClassB,” the error kind string value is:

“:constraint.package_a.class_b.my_constraint”

or with an IDL prefix of “com.acme”, it is:

“com.acme:constraint.package_a.class_b.my_constraint”

See Section 5.8.17, “Constraint Template,” on page 5-90 for the definitive 
specification.

• Usage errors: not applicable. None of these error conditions are signalled using 
MofError.

• Semantic errors: an implementation specific prefix, followed by “:semantic.” 
followed by an implementation specific string. It is strongly recommended that the 
implementation specific part follow the conventions above (i.e., reverse domain 
names, all lowercase, periods for qualification and underscores between words).

5.4.2 Structural Errors

All structural errors are signalled using MofError. With the exception of “Underflow,” 
the consistency rules covered by the structural errors are either pre- or post-conditions 
on operations.

The MOF IDL mapping defines the structural errors as defined in Table 5-3.

Table 5-3 Structural Errors signalled using MofError

Structural error “Element_in_error” Standard “extra_info” Description

Underflow Attribute, Parameter, or 
Association End defining 
the Multiplicity that is 
violated.

none "Underflow" arises when a collection or 
projection contains fewer values than is 
required by the corresponding 
Multiplicity.lower.

Note that the evaluation “underflow” is 
context dependent. For an operation 
which takes a collection value as a 
parameter, or whose net effect is to 
decrease the number of elements in a 
multi-valued Attribute or a projection of a 
Link set, “underflow” is treated as an 
immediate constraint. In other cases, 
“underflow” is treated as a deferred 
constraint.
5-26    OMG-MOF V1.3                           March 2000  



5

.

Table 5-3 Structural Errors signalled using MofError (continued)

Structural error “Element_in_error” Standard “extra_info” Description

Overflow Attribute, Parameter, or 
Association End defining 
the Multiplicity that is 
violated.

none "Overflow" arises when a collection or 
projection contains more values than is 
allowed by the corresponding 
Multiplicity.upper.

Duplicate Attribute, Parameter, or 
Association End defining 
the Multiplicity that is 
violated.

“duplicate” : Any(<Value>)
A value that appears more 
than once in the unique 
collection / projection.

"Duplicate" arises when a collection or 
projection whose corresponding 
Multiplicity.is_unique is true contains 
duplicate values. For example, when two 
or more values at different positions in 
the collection or projection that are 
“equal” according to the definitions in 
Section 4.2.1, “Semantics of Equality for 
MOF Values,” on page 4-3. 

Reference Closure Reference for which the 
closure rule is violated.

“external” : Any(<Instance>)
An Instance that violates a 
closure rule with respect to 
the Association being 
updated.

"Reference Closure" can arise when an 
Association extent contains a link for an 
Instance object belonging to another 
outermost Package extent. More 
particularly, this happens when the 
Instance object's M2-level Class (or a 
super-Class ancestor) has a Reference to 
the M2-level Association. See 
Section 4.9.1, “The Reference Closure 
Rule,” on page 4-19.

Composition Closure Attribute or Association for 
which the closure rule is 
violated.

“external” : Any(<Instance>)
An Instance that was passed 
as or within in an operation 
parameter that violates the 
closure rule.

"Composition Closure" arises when an 
Instance object is member of a composite 
which crosses an outermost Package 
extent boundary. See Section 4.9.2, “The 
Composition Closure Rule,” on page 4-20

Supertype Closure Class of the object that 
cannot be created.

none "Supertype Closure" arises when a client 
attempts to create an Instance object in a 
Package extent that does not support its 
M2-level Class. See Section 5.3.8, “The 
Supertype Closure Rule,” on page 5-22.

Composition Cycle Attribute, Reference or 
Association that is being 
updated to form the cycle..

“cyclic” : Any(<Instance>)
A composite Instance passed 
as or within a parameter that 
would become cyclic as a 
result of this operation.

"Composition Cycle" arises when an 
Instance object is a component of itself 
via one or more relationships defined by 
composite Associations or composite 
Attributes.

Nil Object Reference or Association 
End for which the nil object 
reference was supplied.

none "Nil Object" arises when a Association 
operation is passed a CORBA nil object 
reference.
OMG-MOF V1.3        Exception Framework         March 2000 5-27



5

Note – There are no mandatory ‘extra_info’ pairs for "Overflow" and "Underflow" 
because the error conditions occur in such a wide range of contexts that it is difficult to 
come up with a set that is universally applicable. Vendors are encouraged to innovate 
by defining non-standard pairs.

The following IDL constants define the corresponding error_kind strings.

const string UNDERFLOW_VIOLATION = 
"org.omg.mof:structural.underflow";

const string OVERFLOW_VIOLATION = 
"org.omg.mof:structural.overflow";

const string DUPLICATE_VIOLATION = 
"org.omg.mof:structural.duplicate";

const string REFERENCE_CLOSURE_VIOLATION = 
"org.omg.mof:structural.reference_closure";

const string SUPERTYPE_CLOSURE_VIOLATION =
"org.omg.mof:structural.supertype_closure";

const string COMPOSITION_CYCLE_VIOLATION = 
"org.omg.mof:structural.composition_cycle";

const string COMPOSITION_CLOSURE_VIOLATION = 
"org.omg.mof:structural.composition_closure";

const string NIL_OBJECT_VIOLATION = 
"org.omg.mof:structural.nil_object";

const string INACCESSIBLE_OBJECT_VIOLATION = 
"org.omg.mof:structural.inaccessible_object";

const string INVALID_OBJECT_VIOLATION = 
"org.omg.mof:structural.invalid_object";

const string ALREADY_EXISTS_VIOLATION = 
"org.omg.mof:structural.already_exists";

Inaccessible Object Attribute, Parameter, 
Reference or Association 
End for which the 
inaccessible object was 
detected.

“inaccessible” : 
Any(<RefObject>)
An Instance object that was 
inaccessible.

"Inaccessible Object" arises when an 
operation tries to use an Instance object 
only to find that it is currently 
inaccessible.

Invalid Object Attribute, Parameter, 
Reference or Association 
End for which the invalid 
object was detected.

“invalid” :
 Any(<RefBaseObject>)
An object reference for a 
MOF meta-object that does 
not exist.

"Invalid Object" can arise when an object 
operation detects a reference for a non-
existent (i.e.,deleted) object.

Already Exists Class of the object that 
already exists

“existing” : Any(<Instance>)
The pre-existing singleton 
Instance object for the extent.

“Already Exists” arises when a client 
attempts create a second Instance object 
for an M2-level Class with “isSingleton” 
of true.

Table 5-3 Structural Errors signalled using MofError (continued)

Structural error “Element_in_error” Standard “extra_info” Description
5-28    OMG-MOF V1.3                           March 2000  



5

5.4.3 Constraint Errors

Constraint errors occur when a consistency rule is defined as a Constraint in the 
metamodel. 

All Constraint errors are signalled by raising MofError. The fields of the MofError 
exception are defined as follows:

• The error_kind string is defined by the IDL mapping rules (see Section 5.8.17, 
“Constraint Template,” on page 5-90).

• The element_in_error is the designator for the Constraint that has been violated.

• The value of the extra_info field is implementation specific. Where possible, the 
implementation should provide the constrained object(s) or value(s) for which the 
constraint is violated.

Constraints can be defined with an “evaluationPolicy” of “immediate” or “deferred.” In 
the former case, violations of the rule are likely to be reported when a constrained 
object is created or updated. In the latter case, violations are likely to be reported when 
deferred Constraint checking is triggered.

Note – The above statements assume that constraint checking is implemented 
according to the spirit of Section 4.6, “Extents,” on page 4-9.

5.4.4 Semantic Errors

The Semantic error group is the “catch all” for otherwise unclassified implementation 
specific errors. Semantic errors are signaled by raising the MofError exception with 
appropriate. Possible sources of this error include:

• additional metadata consistency rules that are not specified in the metamodel,

• implementation specific access control violations,

• resource limitations in a metadata server, and

• internal errors in a metadata server.

The values of the MofError exception fields for a Semantic error are implementation 
specific:

• Implementors should define a unique strings for the error_kind field to distinguish 
the different kinds of Semantic error. These values should conform to the pattern 
described in Section 5.4.1, “Error_kind string values,” on page 5-25.” 

• The values and meanings of the element_in_error and extra_info fields should 
be defined as appropriate.
OMG-MOF V1.3        Exception Framework         March 2000 5-29



5

5.4.5 Usage Errors

The Usage error group indicate inappropriate use of the MOF IDL interfaces. They can 
arise when a client is using either the Reflective interfaces, or the interfaces generated 
by the IDL mapping.

The Usage errors are signalled using their own exceptions,

Note – The members of a collection value containing size elements are numbered {0, 
1,... size - 1} for the purposes of the positional update operations. The positional 
modify / remove operations are defined to modify or remove the member indexed by 
the position (i.e., position values in the range 0 to size - 1 inclusive are valid). The 
positional add operation is defined to insert a member before the member indicated by 
the position. In this case, position values in the range 0 to size inclusive are valid, 
with size meaning "insert at the end."

The IDL declarations for the Usage error exception are as follows:

exception NotFound {};
exception NotSet {};
exception BadPosition {

unsigned long current_size;
};

5.4.6 Reflective Errors

Reflective error conditions occur exclusively in operations in the Reflective interfaces. 
They occur when a Reflective operation is invoked with parameters that contradict the 
target object's description in the metamodel. When the client uses interfaces generated 
by the IDL mapping, the static type checking based on the specific IDL signatures 
should prevent the equivalent errors from occurring.

Table 5-4 Usage Exceptions

Usage Exception Arguments Description

NotFound none NotFound is raised by modify and remove operations on multi-
valued Attributes, References and Associations when the argument 
that should identify the member or link to be removed does not 
match any value that is currently there.

NotSet none NotSet is raised when a client attempts to read the element value of 
an optional collection (i.e., one with bounds of [0..1]) when the 
collection is empty.

BadPosition none BadPosition is raised by a positional add, modify or remove 
operation is supplied with a ‘position’ argument whose value is 
out of range. The collection’s current size is returned in the 
exception’s ‘current_size’ field. This will be 0 if the collection is 
empty, 1 if it contains a single member and so on.
5-30    OMG-MOF V1.3                           March 2000  



5

In most cases, the MofError exception is used to signal reflective errors. Table 5-5 
lists the Reflective errors that are signalled using MofError, along with the MofError 
field specifications and descriptions. All are pre-conditions for the respective 
operations.

Table 5-5 Reflective Errors signalled using MofError

Reflective 
error

“Element_in_error” Standard “extra_info” Description

Invalid 
Designator

ModelElement that is 
invalid

none "Invalid Designator" arises when a "feature" 
parameter:
• is not a Model::ModelElement, or
• does not denote an accessible CORBA object.

Wrong 
Designator 
Kind

ModelElement that has the 
wrong kind

none "Wrong Designator Kind" arises when the 
supplied designator has an inappropriate most-
derived type. For example, when a 
Model::Attribute is supplied where a 
Model::Operation is required.

Unknown 
Designator

ModelElement that is not 
known.

none "Unknown Designator" arises when the supplied 
designator does not belong in this context. For 
example, when a Model::Attribute is not a 
member of this Instance’s Class or its 
superClasses.

Abstract Class Class that is abstract. none “Abstract Class” arises when a client calls 
“refCreateInstance” for a Class that is defined as 
abstract.

Not Changeable ModelElement that has 
“isChangeable” = false

none "Not Changeable" arises when an update 
operation is attempted on something that is 
defined by the metamodel to be not changeable.

Not Navigable AssociationEnd that has 
“isNavigable” = false

none "Not Navigable" arises when RefAssociation 
operations are attempted for an AssociationEnd 
that is defined by the meta-model to be not 
navigable.

Not Public ModelElement that has 
“visibility” = "private_vis" 
or "protected_vis"

none "Not Public" arises when an operation is 
attempted for a "private" or "protected" feature.

Wrong Scope Attribute or Operation 
with “scope” = 
“instance_level”

none "Wrong Scope" arises when an attempt is made 
to use an instance-level Attribute or Operation 
from a Class proxy object.

Wrong 
Multiplicity

Reference or Attribute 
used in error

none "Wrong Multiplicity" arises when a reflective 
operation is requested where the corresponding 
specific operation does not exist for this feature’s 
multiplicity. For example:
• a member update on a [0..1] or [1..1] feature,
• a unset on a feature that is not [0..1],
• an add_value_at on an unordered feature.
OMG-MOF V1.3        Exception Framework         March 2000 5-31



5

The following IDL defines the error_kind strings for the above Reflective errors:

const string INVALID_DESIGNATOR_VIOLATION =
"org.omg.mof:reflective.invalid_designator";

const string WRONG_DESIGNATOR_DESIGNATOR_VIOLATION =
"org.omg.mof:reflective.wrong_designator_kind";

const string UNKNOWN_DESIGNATOR_VIOLATION =
"org.omg.mof:reflective.unknown_designator";

const string ABSTRACT_CLASS_VIOLATION =
"org.omg.mof:reflective.abstract_class";

const string NOT_CHANGEABLE_VIOLATION =
"org.omg.mof:reflective.not_changeable";

const string NOT_NAVIGABLE_VIOLATION =
"org.omg.mof:reflective.not_navigable";

const string NOT_PUBLIC_VIOLATION =
"org.omg.mof:reflective.not_public";

const string WRONG_SCOPE_VIOLATION =
"org.omg.mof:reflective.wrong_scope";

const string WRONG_MULTIPLICITY_VIOLATION =
"org.omg.mof:reflective.wrong_multiplicity";

const string WRONG_TYPE_VIOLATION = 
"org.omg.mof:reflective.wrong_type";

const string WRONG_NUMBER_PARAMETERS_VIOLATION = 
"org.omg.mof:reflective.wrong_number_parameters";

Wrong Type Attribute, Reference, 
AssociationEnd, or 
Parameter for the value 
that is in error.

“invalid_value” : Any

The value or object whose 
type is incorrect in this 
context. (The first version is 
used when the value in error 
was passed as an Any, and the 
second when it was passed as 
a RefObject.)

“expected_type” : 
Any(TypeCode)
The CORBA TypeCode that 
the value should have been.

“Wrong Type” arises when a RefObject or an 
Any value has the wrong type for context in 
which it was supplied. For example;
• A RefObject whose most derived type is 

incorrect; e.g., has the wrong M2-level Class 
or is a Class proxy instead of Instance, or vice 
versa.

• An Any value that contains an single value 
where a sequence is required, or vice versa.

• An Any value that contains a single value or 
sequence of values of the wrong CORBA 
type.

Wrong Number 
Parameters

Class or Operation for 
which the wrong number 
of actual parameters was 
supplied.

“number_expected” :
Any(Unsigned Long)
The expected number of 
actual parameters.

“Wrong Number Parameters” arises when a 
client calls “refCreateInstance” or 
“refInvokeOperation” with too few or too many 
parameters.

Invalid Deletion A nil object reference none “Invalid Deletion” arises when a client calls 
“refDelete” on a meta-object that cannot be 
deleted this way; i.e., an Association object, a 
Class Proxy object or a dependent Package 
object.

Table 5-5 Reflective Errors signalled using MofError

Reflective 
error

“Element_in_error” Standard “extra_info” Description
5-32    OMG-MOF V1.3                           March 2000  



5

const string INVALID_DELETION_VIOLATION =
“org.omg.mof:reflective.invalid_deletion”;

Other Exception

There is one exception to this. When an Operation defined in the metamodel raises an 
Exception that is also defined in the metamodel; see below.

The OtherException exception is raised when a call to “refInvokeOperation” results 
in an error condition that correspond to an M2-level Exception defined for the 
Operation in the metamodel. 

exception OtherException {
DesignatorType exception_designator;
ValuesType exception_args;

};

The arguments to the OtherException exception are as follows:

• exception_designator gives the designator for the M2-level Exception raised.

• exception_args is an ordered list of CORBA Any values that represent the 
arguments of the Exception raised. The encoding of this field is defined in the 
specification of the “refInvokeOperation” on page 6-20.

Note – When an error condition could be expressed as either a Reflective error a 
Structural error, the latter takes precedence. For example, if one end of Link in a call to 
“refAddLink” is a nil object reference, this should be signalled as “Nil Object” rather 
than “Wrong Type”

5.5 Preconditions for IDL Generation

The IDL mapping may not produce valid CORBA IDL if any of the following 
preconditions on the input meta-model is not satisfied:

• The MOF Model constraints, as defined above, must all be satisfied for the input 
meta-model.

• The input meta-model must be structurally consistent.

• The visible Names within a NameSpace must conform to the standard CORBA IDL 
identifier syntax. The original Names of Model Elements that have a valid substitute 
Name are excepted from this precondition; (see Section 5.6.2.1, “Substitute Name,” 
on page 5-37). No such requirement applies to Model Elements such as Tags, 
TypeAliases and some DataTypes whose names are not visible in the IDL mapping. 
However, for these “invisible” elements it is advisable to use a naming convention 
that minimizes the risk of name collision.

• The visible Names within a NameSpace must be unique after name substitution (see 
Section 5.6.2.1, “Substitute Name,” on page 5-37) application of the Format1 or 
Format2 name rewriting algorithms and other name mangling specified in the 
mapping.
OMG-MOF V1.3        Preconditions for IDL Generation         March 2000 5-33



5

• A DataType’s “typeCode” must not be an anonymous non-primitive type. It cannot 
have a kind of tk_array, tk_sequence, tk_string, tk_wstring or tk_fixed (with the 
exception of the TypeCodes for the IDL “string” and “wstring” types).

• A DataType’s “typeCode” must follow the conventions for expressing types and 
linking them to their definitions that are described in Section 3.4.7, “DataType,” on 
page 3-33 and Section 3.4.8, “TypeAlias,” on page 3-35. In addition:

• When DataType’s “name” does not start with “*”, its Format 1 rendering must be 
identical to the type name in the DataType’s “typeCode.”

• Whenever some embedded type in a DataType’s “typeCode” is linked (via a 
TypeAlias) to a defining Classifier, the Format 1 rendering of the Classifier’s 
“name” must be identical to the embedded type’s name in the TypeCode.

• If the Classifier in the previous case is a DataType, the Classifier’s “typeCode” 
value must be identical to the embedded type’s TypeCode.

• A nested Package may not be used as a subtype or supertype.

• A nested Package may not import or be imported by another Package.

• The following interim visibility definitions and constraints apply to the IDL 
mapping:

• A ModelElement is visible to another ModelElement only if the former has 
visibility of “public_vis.”

• A ModelElement declared within another top-level Package is visible within a 
top-level Package only if the former Package is imported, clustered or inherited 
by the latter Package.

• One ModelElement can only depend on another (in the sense of the M2-level 
DependsOn Association) if the latter is visible from the former within the 
definition of visibility immediately above.

• After name substitution (see Section 5.6.2.1, “Substitute Name,” on page 5-37), 
the name of an Import must equal the name of its “importedNamespace.”

• A Class may not be nested within another Class.

• A Class may not be imported.

• If a Constraint is contained by a DataType or Operation, its name must also be 
unique in the DataType or Operation’s container Namespace.

• Model Elements in a meta-model cannot be cyclically dependent except as follows:

• A dependency cycle consisting of one or more Classes is legal, provided they all 
have the same container.

• A dependency cycle consisting of one or more Classes and one or more 
DataTypes or Exceptions, is legal provided they all have the same container.

Note – This precludes circular importing and circular clustering. It also precludes 
recursion between “pure” DataTypes. (The two exceptions correspond to cases that can 
be expressed in OMG IDL using forward interface declarations.)
5-34    OMG-MOF V1.3                           March 2000  



5

CORBA 2.3 adds an additional IDL constraint: “The name of an interface or a module 
may not be redefined within the immediate scope of the interface of the module.” For 
example: 

module M {
typedef short M; // Error: M is the name of the module

// in the scope of which the typedef is
interface I {

void i (in short j);
// Error: i clashes with the interface

};
};

The IDL templates in this specification do not contain any patterns of this form. 
However, poor choice of names in a meta-model may generate IDL that violates this 
constraint. In particular, the same name should not be used for both a container and its 
contents. For example, a Package should not have the same name as one of its Classes, 
DataTypes, or Associations. A Class should not have the same name as one of its 
Attributes or References. An Association should not have the same name as one of its 
AssociationEnds.

5.6 Standard Tags for the IDL Mapping

This section defines the standard Tags that apply to the Model to IDL mapping. Other 
Tags may be attached to the elements of a meta-model, but the meaning of these Tags 
is not specified. Similarly, this section does not specify the meaning of the Tags below 
in contexts apart from the Model to IDL mapping.

All standard Tag identifiers for the IDL mapping start with the prefix string:

“org.omg.mof.idl_”

Table 5-6 shows the conventions used to describe the standard Tags and their 
properties.

Table 5-6 Notation for Describing Standard Tags

tag id: A string that denotes the semantic category for the tag.

attaches to: Gives the kind(s) of Model::ModelElement that this category of 
tag can be meaningfully attached to.

values: Gives the number and types of the tag’s values (i.e., 
parameters), if any. (Tag parameters are expressed as an 
unordered sequence of CORBA “any” values.)

meaning: Describes the meaning of the tag in this context.
OMG-MOF V1.3        Standard Tags for the IDL Mapping         March 2000 5-35



5

Note – Many of these Tags significantly alter the interface signatures of the generated 
IDL. It is prudent for an IDL generator to only respect IDL mapping Tags when they 
are contained within the respective meta-model. Otherwise, it may not be possible to 
determine which Tags were in effect when the meta-data server was generated. This 
would make it hard for a client to infer the meaning of generated IDL at runtime. It 
would also make problems for automatic server and client generators.

5.6.1 Tags for Specifying IDL #pragma prefix

This tag allows the meta-modeler to specify the CORBA Interface Repository 
Identifier prefix for the generated IDL. This is essential when a MOF meta-model is 
used as the authoritative source for IDL for some other OMG standard.

5.6.1.1 IDL Prefix

5.6.2 Tags for Providing Substitute Identifiers

There are some situations when the IDL identifiers produced by the IDL mapping 
templates will result in name collisions. The following tag allows a meta-modeler to 
provide a substitute for a model element’s name that will be used in IDL generation. 

idl generation: Defines the tag’s impact on the generated IDL.

restrictions: Tag usage restrictions - for example: “at most one tag of this 
kind per element,” or “tag must be contained by the meta-
model.”

tag id: “org.omg.mof.idl_prefix”

attaches to: Model::Package

values: a String

meaning: This tag supplies a RepositoryId prefix that is used for the entire 
module generated for the Package.

idl generation: A #pragma prefix is inserted into the IDL before the “module” 
declaration for the Package.

restrictions: [1] A Prefix tag should only be attached to a non-nested 
Package.
[2] A Prefix tag contained by a Package takes precedence over 
one that is not contained.

Table 5-6 Notation for Describing Standard Tags

tag id: A string that denotes the semantic category for the tag.
5-36    OMG-MOF V1.3                           March 2000  



5

5.6.2.1 Substitute Name

5.6.3 Tags for Specifying IDL Inheritance

The following tags allow the meta-modeler to specify that a generated interface inherits 
from one or more additional IDL interfaces. These tags allow the definition of MOF-
based meta-models that are upwards compatible with pre-existing meta-data interfaces 
expressed in CORBA IDL.

5.6.3.1 Instance Supertypes

tag id: “org.omg.mof.idl_substitute_name”

attaches to: Model::ModelElement

values: a String

meaning: The String is the substitute name to be used in place of the 
model element’s name.

idl generation: Wherever the IDL mapping makes use of a model element’s 
name, the substitute name should be used in its place. This 
substitution occurs before application of format1, format2, and 
other name mangling.

restrictions: The preconditions described in Section 5.5, “Preconditions for 
IDL Generation,” on page 5-33 apply to the substitute name. 
For example:
[1] it must be a syntactically valid IDL identifier, and
[2] all identifiers produced from it must be unique in their 
respective scopes after formatting and name mangling, as per 
the IDL mapping specification.
[3] in addition, there should be at most one Substitute Name 
tag per ModelElement.

tag id: “org.omg.mof.idl_instance_supertypes”

attaches to: Model::Class

values: one or more TypeCodes (order is significant)

meaning: The TypeCodes identify one or more IDL interfaces that the 
“instance” interface for this Class should inherit from.

idl generation: The specified interfaces are added to the “instance” interface’s 
inheritance list following the other supertypes defined by the 
templates. They appear in the order given.

restrictions: [1] The TypeCodes must have kind of ‘tk_objref’.
[2] There should be at most one Instance Supertypes tag per 
Class.
OMG-MOF V1.3        Standard Tags for the IDL Mapping         March 2000 5-37



5

5.6.3.2 Class Proxy Supertypes

5.6.3.3 Association Supertypes

5.6.3.4 Package Supertypes

tag id: “org.omg.mof.idl_class_proxy_supertypes”

attaches to: Model::Class

values: one or more TypeCodes (order is significant)

meaning: The TypeCodes identify one or more IDL interfaces that the 
“class proxy” interface for this Class should inherit from.

idl generation: The specified interfaces are added to the “class proxy” 
interface’s inheritance list following the other supertypes 
defined by the templates. They appear in the order given.

restrictions: [1] The TypeCodes must have kind of ‘tk_objref.’
[2] There should be at most one Class Proxy Supertypes tag 
per Class.

tag id: “org.omg.mof.idl_association_supertypes”

attaches to: Model::Association

values: one or more TypeCodes (order is significant)

meaning: The TypeCodes identify one or more IDL interfaces that the 
interface for this Association should inherit from.

idl generation: The specified interfaces are added to the “association” 
interface’s inheritance list following the other supertypes 
defined by the templates. They appear in the order given.

restrictions: [1] The TypeCodes must have kind of ‘tk_objref.’
[2] There should be at most one Association Supertypes tag 
per Association.

tag id: “org.omg.mof.idl_package_supertypes”

attaches to: Model::Package

values: one or more TypeCodes (order is significant)
5-38    OMG-MOF V1.3                           March 2000  



5

5.7 Generated IDL Issues

During the design of the MOF Model to IDL mapping, several design decisions were 
made which are explained in this section.

5.7.1 Generated IDL Identifiers

Identifier naming is an important issue for automatically generated IDL, especially 
when that IDL is intended to be used by applications written by human programmers. 
The mapping has to reach a balance between conflicting requirements:

• Syntactic correctness - all identifiers in the mapped IDL must conform to the 
defined CORBA IDL syntax, and they must all conform to the CORBA scoping and 
upper/lower casing restrictions. 

• User friendliness - identifiers should convey as much information as possible 
without being overly long.

• Conformance to existing conventions - identifiers should conform to existing 
stylistic conventions.

The OMG conventions for IDL identifiers (see “OMG IDL Style Guide: ab/98-06-03”) 
are based on the notion that an identifier is formed from one or more words in some 
natural language. The conventions allow digits to be used in words and take account of 
acronyms. The Style Guide then specifies three different styles for putting some words 
together as an identifier. In particular:

• Identifiers for IDL module, interface and types are capitalized. If the name consists 
of multiple words, each word is capitalized in the identifier.

• Identifiers for IDL operations, attributes, formal parameters, struct and exception 
members, and union branches are all lower-case. If the name consists of multiple 
words, the words are separated by underscores (“_”) in the identifier.

• Identifiers for IDL constant and enumerator names are all upper-case. If the name 
consists of multiple words, the words are separated by underscores (“_”) in the 
identifier.

5.7.1.1 Rules for splitting MOF Model::ModelElement names into "words"

meaning: The TypeCodes identify one or more IDL interfaces that the 
interface for this Package should inherit from.

idl generation: The specified interfaces are added to the “package” interface’s 
inheritance list following the other supertypes defined by the 
templates. They appear in the order given.

restrictions: [1] The TypeCodes must have kind of ‘tk_objref.’
[2] There should be at most one Package Supertypes tag per 
Package.
OMG-MOF V1.3        Generated IDL Issues         March 2000 5-39



5

According to the MOF Model, the “name” of a ModelElement is an instance of the 
NameType (i.e., a CORBA string). With a small number of exceptions, the IDL 
mapping needs to be able to convert these NameType instances into CORBA IDL 
identifiers for use in a variety of contexts. 

Since the MOF Model (like the UML meta-model) does not restrict the strings that can 
be used as ModelElement “name,” mapping them to meaningful IDL identifiers is not 
possible in the most general case. For example, names that include graphic characters 
or accented letters do not map to IDL identifiers.

The IDL mapping requires that those names needing to be mapped consist only of 
unaccented upper- and lower-case Latin letters, the digits ‘0’ to ‘9,’ hyphens (‘-’), 
underscores (‘_’), and white-space characters. In addition, it must be possible to split a 
name into “words” according to the following specification.

A "word" is defined to be an upper-case letter, followed optionally by more upper-case 
letters and digits and then optionally by lower-case letters and digits. An underscore 
(“_”), hyphen (“-”) or white space character will terminate a word. This is expressed 
more formally by the following mini-grammar:

word ::= [A-Z][A-Z0-9]*[a-z0-9]*

          | [a-z][a-z0-9]*

whitespace ::= SP, CR, NL, HT, VT, etc

term ::= { ‘_’ | ‘-’ | whitespace }*

identifier ::= [term] word { [term] word }* [term]

The sequence of “words” for a name can then be formed into OMG IDL identifiers 
according to the 3 formats below.

5.7.1.2 IDL Identifier Format 1

In Format 1, the first letter of each word is converted into upper case, and other letters 
remain the same case as input. The words are not separated by other characters. 
Table 5-7 lists some examples of Format 1 identifiers. 

Format 1 is used by the IDL mapping to produce the names of modules and interfaces.

Table 5-7 Format 1 Identifiers

Name Name split into words Identifier in Format 1

foo "foo" Foo

foo_bar "foo" "bar" FooBar

ALPHAbeticalOrder "ALPHAbetical" "Order" ALPHAbeticalOrder

-a1B2c3-d4- "a1" "B2c3" "d4" A1B2c3D4

DSTC pty ltd "DSTC" "pty" "ltd" DSTCPtyLtd
5-40    OMG-MOF V1.3                           March 2000  



5

5.7.1.3 IDL Identifier Format 2

In Format 2, all letters in each word are converted into lower case. Each word is 
separated by an underscore "_". Table 5-8lists some examples of Format 2 identifiers. 

Format 2 is used by the IDL mapping for identifiers for IDL operations, exceptions, 
attributes, formal parameters, exception members and members of generated struct 
types.

5.7.1.4 IDL Identifier Format 3

In Format 3, all letters in each word are converted into upper case. Each word is 
separated by an underscore "_". Table 5-9lists some examples of Format 3 identifiers.

Format 3 is used by the IDL mapping for identifiers for IDL constants.

5.7.1.5 Identifiers in TypeCodes

DataTypes are used to specify various kinds of types for use in Attribute and Parameter 
definitions. These types are encoded using the CORBA TypeCode type, and contain 
embedded names of types, struct members, union arms and enumerators. 

Unlike ModelElement names, the names embedded in TypeCodes are constrained by 
the CORBA Core specification to be valid identifiers. For this reason alone, they are 
not reformatted by the IDL mapping. (If the IDL mapping did reformat these names, 

Table 5-8 Format 2 Identifiers

Name Name split into words Identifier in Format 2

foo "foo" foo

foo_bar "foo" "bar" foo_bar

ALPHAbeticalOrder "ALPHAbetical" "Order" alphabetical_order

-a1B2c3_d4_ "a1" "B2c3" "d4" a1_b2c3_d4

DSTC     pty    ltd "DSTC" "pty" "ltd" dstc_pty_ltd

Table 5-9 Format 3 Identifiers

Name Name split into words Identifier in Format 3

foo "foo" FOO

foo_bar "foo" "bar" FOO_BAR

ALPHAbeticalOrder "ALPHAbetical" "Order" ALPHABETICAL_ORDER

-a1B2c3_d4_ "a1" "B2c3" "d4" A1_B2C3_D4

DSTC     pty    ltd "DSTC" "pty" "ltd" DSTC_PTY_LTD
OMG-MOF V1.3        Generated IDL Issues         March 2000 5-41



5

the resulting IDL would declare types that do not match the TypeCode. Among other 
things, a reflective client would need to reinterpret the DataType’s “typeCode” field in 
order to produce an Any value of the correct type. This is clearly undesirable.)

There are a couple of cases that require further specification:

• When the IDL mapping produces a qualified name for an external type encoded as 
a DataType, the components of the name are not subject to reformatting.

• When the IDL mapping produces collections types corresponding to a DataType, 
the corresponding identifiers are formatted according to the Format 1 rules.

5.7.1.6 Literal String Values

Literal string values (in string valued Constants) are not re-formatted and appear in the 
generated IDL exactly as specified by the Constant’s “value” attribute.

5.7.2 Generation Rules for Collection Types

The MOF Model allows Attributes, AssociationEnds, References and Parameters to 
being single-, optional- or multi-valued depending on the ModelElement’s base type 
and its multiplicity.

At various places in the mapped interfaces, it is necessary to pass collections that 
represent values for the optional- or multi-valued cases. The IDL types for such a 
collection is a typedef alias for an unbounded CORBA sequence of the collection 
base type. The name of the typedef depends on the corresponding ModelElement’s 
multiplicity specification.

For example, if the ModelElement is ordered and unique, then the collection type is a 
unique list (or UList). The typedef name for a unique list takes the form 
<ClassifierType>UList (i.e., the name of the collection base type followed by the 
characters “UList”). For example, if an M2-level Operation returns an ordered, unique 
list of Class "Foo," then IDL result type for the corresponding operation to be called 
“FooUList” with the declaration:

typedef sequence <Foo> FooUList;

There are four distinct collection type suffixes corresponding to the combinations of 
the "isOrdered" and "isUnique" flags for an element’s “multiplicity” attribute. The 
appropriate suffix should be generated whenever <CollectionKind> appears in the IDL 
templates below.

Table 5-10 Collection Kinds

Multiplicity Flags Collection Kind Suffix

none bag Bag
5-42    OMG-MOF V1.3                           March 2000  



5

Note that the MOF Model specification includes a relevant Constraint on multiplicity 
values; see the “MustBeUnorderedNonunique” constraint in Section 3.9.4, “The MOF 
Model Constraints,” on pag e3-91. This states that when a feature’s multiplicity bounds 
are [0..1], both the “isOrdered” and “isUnique” are set to false. As a consequence, the 
<CollectionKind> suffix for a [0..1] collection type is always “Bag”.

Similar collection kind naming conventions are used for DataTypes. Thus for a set of 
some enumeration type, the mapping would produce the following:

 enum SomeEnum {e1, e2};
typedef sequence <SomeEnum> SomeEnumSet;

When the DataType is a built-in CORBA type, the base name for the type is defined as 
follows:

The declarations for collection types will appear in one of three places.

• If the collection’s base type is defined somewhere within the top-level Package 
being generated, collection type declarations appear immediately following the base 
type’s introduction; see Section 5.8.16, “DataType Template,” on page 5-89 or 
SSection 5.8.5, “Class Forward Declaration Template,” on page 5-53. 

ordered list List

unique set Set

ordered, unique unique list (ordered set) UList

Table 5-11 Base Names for Built-in CORBA Types

Built-in CORBA type Base name 

short Short

long Long

unsigned short UShort

unsigned long ULong

float Float

double Double

boolean Boolean

char Char

string String

octet Octet

any Any

TypeCode TypeCode

 Object Object

Table 5-10 Collection Kinds
OMG-MOF V1.3        Generated IDL Issues         March 2000 5-43



5

• If the base type is imported or inherited from another Package, the collection type 
declarations at the beginning of the IDL module for the Package that imports or 
inherits the type’s Package; see Section 5.8.2, “Package Module Template,” on 
page 5-46.

• If the base type is a CORBA built-in type, or a CORBA type with an external (non-
MOF) declaration, the collection type declarations appear at the beginning of the 
IDL module for the outermost Package; see Section 5.8.2, “Package Module 
Template,” on page 5-46.

Since CORBA sequence types require considerable run-time support code in some 
language bindings, collection type declarations must only be generated if they are 
needed within the IDL for the current outermost Package.

Operations produced by the IDL mapping with collection parameters must ensure that 
the sequence values supplied and returned have an appropriate number of elements. 
When collection parameters are sets or unique lists, operations must also ensure that 
the sequence values contains no duplicates.

5.7.3 IDL Identifier Qualification

To avoid scoping errors within the mapped IDL, identifier names must be either fully 
qualified, or partially qualified to an appropriate level. This specification leaves the 
choice between the use of fully or partially qualified identifiers to the implementer.

5.7.4 File Organization and #include statements

This specification does not prescribe how the generated IDL is organized into files. 
Therefore, the generation rules do not contain any “#include” statements. An 
implementer must decide how to organize the generated IDL into files, and must 
generate appropriate “#include” statements to ensure that the resultant IDL can 
compile. Similarly, the implementer must generate “#ifndef” guards as required by the 
OMG style rules.

5.8 IDL Mapping Templates

Model specific IDL is produced by traversing the containment hierarchy of a top-level 
M2-level Package. The CORBA module structure of the resulting IDL directly reflects 
the containment hierarchy of the source Package. If element X contains element Y in 
the source model, then the IDL corresponding to X will have the IDL corresponding to 
Y embedded in it (assuming that IDL is produced for Y).

The IDL mapping supports the containment hierarchy for ModelElements as described 
in Section 3.3.4, “The MOF Model Containment Hierarchy,” on page 3-15, except as 
stated in Section 5.5, “Preconditions for IDL Generation,” on page 5-33. Further 
restrictions on meta-models that can be successfully mapped are described in the same 
section.
5-44    OMG-MOF V1.3                           March 2000  



5

The mapping rules are described in terms of IDL templates. Each Template describes 
the maximum IDL which could be generated when mapping MOF Model objects. In 
any specific case, the actual IDL generated will depend on the properties of the 
corresponding MOF Model object.

Throughout the following Template descriptions, the IDL is said to be "generated by" 
the Templates. Clearly the Templates do not generate IDL in a literal sense. Instead, 
the reader should imagine that each Template is a parameter to a hypothetical generator 
function. When it is called with the appropriate kind of MOF ModelElement object as 
a second parameter, the function "elaborates" the template to produce an appropriate 
fragment of CORBA IDL. A similar “elaboration” process gives the required semantics 
for the IDL from the descriptions following the templates and the specifications given 
earlier in Section 5.3, “Computational Semantics for the IDL Mapping,” on page 5-6.

Note – The Template approach used here is a notational convenience, not a required or 
suggested implementation strategy.

5.8.1 Template Notation

The following table is a guide to interpreting the IDL generation templates.

Table 5-12 IDL Generation Templates Guide

Appearance (by 
example) Meaning

typedef The literal characters in bold font should be generated.

<AttributeType> The characters should be substituted for the described 
identifier using Identifier Format 1. The <> do not appear 
in the generated IDL.

<attribute_name> The characters should be substituted for the described 
identifier using the Identifier Format 2. The <> do not 
appear in the generated IDL.

<CONSTANT_NAME
>

The characters should be substituted for the described 
identifier using the Identifier Format 3. The <> do not 
appear in the generated IDL.

<CONSTANTVALUE> The characters should be substituted for the described 
identifier without formatting (i.e., as is). Typically, these 
are literal values. The <> do not appear in the generated 
IDL.

<<XYZ TEMPLATE>> Apply the named template. The <<>> do not appear in the 
generated IDL.
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-45



5

5.8.2 Package Module Template

This section describes the rules for mapping an MOF Package object to a CORBA IDL 
module as expressed in the Package Module Template.

The Package Module Template generates a CORBA IDL module that contains the IDL 
for each of the M2-level Constants, DataTypes, Exceptions, Constraints, Imports, 
Classes, and Associations in an M2-level Package. It also contains the IDL for the M1-
level Package and Package Factory interfaces, and type declarations for various 
collection types. Most of this is defined in subsidiary templates. IDL generation is 
suppressed if the Package “visibility” is not “public_vis.”

5.8.2.1 Template

<<ANNOTATION TEMPLATE>>

// if this Package has visibility of private or protected, no IDL is

// generated for it

module <PackageName> {

// if this Package is a “top-level” Package, generate any collection types

// for built-in types that are required by the IDL for this Package and 

// its contents

typedef sequence < <BuiltinType> > <BuiltinTypeName><CollectionKind>;

// if the Package has superPackages, generate any collection

// types for inherited types that are required by the IDL for this Package

// and its contents

typedef sequence < <InheritedType> > <InheritedType><CollectionKind>;

// if the Package has Imports, generate any collection types for

// imported or clustered types that are required by the IDL for this Package

// and its contents

some phrase ,  . . . The ellipsis characters “. . .” following the “,” indicate that 
this generates a comma separated list of “some phrase”. It 
is implicit that there is no comma at the end of the list.

[ some phrase ] The square bracket characters “[]” surrounding a phrase in 
a template indicate that the phrase may or may not be 
required, depending on context.

// for each parameter Gives the rules on when and how to perform the IDL 
generation, or some general commentary on the process. 
The rules themselves do not appear in the generated IDL.

Table 5-12 IDL Generation Templates Guide
5-46    OMG-MOF V1.3                           March 2000  



5

typedef sequence < <ImportedType> > <ImportedType><CollectionKind>;

interface <PackageName>Package;    // forward declaration

// for each Class contained in the Package

<<CLASS FORWARD DECLARATION TEMPLATE>>

// for each Package, DataType, Exception, Class, Association, Constraint, 

// and Constant contained by the Package, generate the appropriate IDL

<<PACKAGE MODULE TEMPLATE>>

<<DATATYPE TEMPLATE>>

<<EXCEPTION TEMPLATE>>

<<CLASS TEMPLATE>>

<<ASSOCIATION TEMPLATE>>

<<CONSTRAINT TEMPLATE>>

<<CONSTANT TEMPLATE>>

// Generate the Package Factory interface

<<PACKAGE FACTORY TEMPLATE>>

// Generate the Package interface

<<PACKAGE TEMPLATE>>

}; // end of module <PackageName>

Description

The Package Module Template starts by rendering the M2-level Package’s “annotation” 
attribute as a comment using the Annotation Template. This is followed by the IDL 
module header for the Package’s module. The module name is <PackageName>.

The first group of declarations within the module are the sequence type declarations 
for collection types:

• If the M2-level Package is a top-level Package, the template generates collection 
types for the MOF built-in types as required. 

• If the M2-level Package has superPackages, the template generates collection types 
for inherited Classes and DataTypes as required.

• If the M2-level Package has Imports, the template generates collection types for any 
Classes and DataTypes in the imported or clustered Packages.

Note – Collection types should only be generated if they are going to be used within 
the current outermost module.
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-47



5

After the collection types, the template generates forward declarations for some IDL 
interfaces. First, it forward declares the M1-level Package interface, giving it the name 
<PackageName>Package. Then, it forward declares the Class proxy and Instance 
interfaces for all M2-level Classes in the current M2-level Package’s “contents” using 
the template defined in Section 5.8.5, “Class Forward Declaration Template,” on 
page 5-53.

Next, IDL must be generated for the current M2-level Package’s “contents” as follows:

• For nested Packages, use the template defined in Section 5.8.2, “Package Module 
Template,” on page 5-46.

• For Classes, use the template defined in Section 5.8.6, “Class Template,” on 
page 5-53.

• For Associations, use the template defined in Section 5.8.10, “Association 
Template,” on page 5-58.

• For Constants, use the template defined in Section 5.8.13, “Operation Template,” on 
page 5-85.

• For Exceptions, use the template defined in Section 5.8.14, “Exception Template,” 
on page 5-88.

• For DataTypes, use the template defined in Section 5.8.16, “DataType Template,” 
on page 5-89.

• For Constraints, use the template defined in Section 5.8.17, “Constraint Template,” 
on page 5-90.

The IDL for the contained ModelElements must be generated in an order that reflects 
their dependencies. For example, the IDL for a DataType should appear before the IDL 
for other ModelElements that use it.

Finally, the Package Module Template generates the Package Factory and Package 
interfaces for the current M2-level Package using the templates respectively defined in 
Section 5.8.3, “Package Factory Template,” on page 5-48 and Section 5.8.4, “Package 
Template,” on page 5-50.

5.8.3 Package Factory Template

The Package Factory Template defines the IDL generation rules for the Package 
Factory interface; see Section 5.2.1.1, “Package objects and Package Factory objects,” 
on page 5-2 and Section 5.2.2, “The Meta Object Interface Hierarchy,” on page 5-4.

A Package Factory interface is generated for top-level M2 Packages only. The interface 
is named <PackageName>PackageFactory and it contains a single "factory" 
operation, as described below.

Template

// if the this Package is top-level

interface <PackageName>PackageFactory 
5-48    OMG-MOF V1.3                           March 2000  



5

{

      <PackageName>Package create_<package_name>_package (

// for each non-derived class-level Attribute of any directly or 

// indirectly contained Class within this Package and its closure

// under Package generalization and clustering.

in <AttributeType>[<CollectionKind>] 

<qualified_attribute_name>, ...

)

raises (Reflective::MofError);

};

IDL Supertypes

none

Operations

create_<package_name>_package

The parameters for “create_<package_name>_package” give the initial values for any 
non-derived classifier-scoped Attributes for all Classes that belong to this M2-level 
Package’s extent. 

As Attributes in different Classes can have the same name, the parameter name 
<qualified_attribute_name> is qualified relative to the Package (e.g., 
“class1_attribute1”).

When the Attribute multiplicity is not [1..1], the <AttributeType> has an appropriate 
CollectionKind suffix appended; see Section 5.7.1.6, “Literal String Values,” on 
page 5-42. 

The parameters are declared in a sequence defined by a recursive depth-first traversal 
of the Package's ancestors clusters and components, visiting a Package's supertypes 
before its contents. The following ordering rules apply:

The “create_<package_name>_package” operation creates a new Package object that 
is an instance of this M2-level Package.

reflective analog: none

return type: <PackageName>Package

parameters: <qualified_attribute_name> : 
in <AttributeType>[<CollectionKind>], 
...

exceptions: MofError (Overflow, Underflow, Duplicate)
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-49



5

1. A Package’s supertype Packages are processed before the “contents” of the 
Package.

2. The supertype Packages are processed in the order defined by the “Generalizes” 
association.

3. Classes, Imports (with “isClustered” set to true) and nested Packages within a 
Package are processed in the order of the “Contains” association.

4. A Class’s superclasses are processed before the “contents” of the Class.

5. Any Class superclasses are processed in the order of the “Generalizes” association.

6. An Import with “isClustered” set to true is processed by processing the clustered 
Package.

7. Attributes within a Class are processed in the order of the “Contains” association.

8. When an Attribute is encountered that has already been encountered during the 
traversal, generation of another initialization parameter is suppressed.

The MofError exception can be raised if there is an Structural, Constraint or Semantic 
errors. In particular, “Overflow,” “Underflow,” and “Duplicate” occur if an Attribute 
initialization parameter does not conform to the respective Attribute’s multiplicity 
specification.

5.8.4 Package Template

The Package Factory Template defines the IDL generation rules for the Package 
interface; see Section 5.2.1.1, “Package objects and Package Factory objects,” on 
page 5-2 and Section 5.2.2, “The Meta Object Interface Hierarchy,” on page 5-4.

A Package interface is named <PackageName>Package and it contains read-only IDL 
attributes giving the dependent Package, Association and Class proxy objects for a 
Package object.

Template

interface <PackageName>Package :

// if Package has no super-Packages

Reflective::RefPackage

// else for each public super-Package (in order)

<SuperPackage>Package, ...

// if Package has a “Package Supertypes” Tag

//     for each supertype defined by the Tag (in order)

, <PackageSupertypeName>, ...

{

// for each Package for an Import where:

//    is_clustered == true and
5-50    OMG-MOF V1.3                           March 2000  



5

//    Import.visibility == public and

//    importedNamespace.visibility == public

readonly attribute <ClusteredPackageName>Package

<clustered_package_name>_ref;

// for each public contained Package

readonly attribute <NestedPackageName>Package

<nested_package_name>_ref;

// for each public contained Class

readonly attribute <ClassName>Class <class_name>_ref;

// for each public contained Association

readonly attribute <AssociationName> <association_name>_ref;

     };

Supertypes

If the M2-level Package inherits from other M2-level Packages with “visibility” of 
“public_vis,” the Package interface inherits from the interfaces corresponding super-
Packages. Otherwise, the Package interface inherits from Reflective::RefPackage.

If the M2-level Package has a “Package Supertypes” Tag (see Section 5.6.3, “Tags for 
Specifying IDL Inheritance,” on page 5-37), the generated Package interface also 
inherits from the IDL interfaces specified by the Tag.

Attributes

clustered_package_name>_ref
An attribute of this form is generated for each public clustered Package of the current 
M2-level Package. The attribute is generated if and only if 

1. the Import’s “isClustered” flag is true, 

2. the Import’s “visibility” is “public_vis”, 

3. the Import’s “importedNamespace” is a Package, and 

4. the clustered Package has “visibility” of “public_vis.”

The attribute holds the object reference for the M1-level Package’s M1-level clustered 
Package object. 

reflective analog: ref_package_ref(<clustered_package_designator>); 
Section 6.2.5, “Reflective::RefPackage,” on page 6-28.

type: <ClusteredPackageName>Package

multiplicity: exactly one

changeable: no
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-51



5

<nested_package_name>_ref
An attribute of this form is generated for each nested Package in the current M2-level 
Package whose “visibility” is “public_vis”. The attribute holds the object reference for 
the M1-level Package’s M1-level nested Package object.

<class_name>_ref
An attribute of this form is generated for each Class in the current Package whose 
“visibility” is “public_vis.” The attribute holds the object reference for the M1-level 
Package’s M1-level Class Proxy object.

<association_name>_ref
An attribute of this form is generated for each Association in the current Package 
whose “visibility” is “public_vis.” The attribute holds the object reference for the M1-
level Package’s M1-level Association object.

Operations

none

reflective analog: ref_package_ref(<nested_package_designator>); 
Section 6.2.5, “Reflective::RefPackage,” on page 6-28.

type: <NestedPackageName>Package

multiplicity: exactly one

changeable: no

reflective analog: ref_class_ref(<class_designator>)

type: <ClassName>Class

multiplicity: exactly one

changeable: no

reflective analog: ref_package_ref(<association_desi
gnator>); 

type: <AssociationName>

multiplicity: exactly one

changeable: no
5-52    OMG-MOF V1.3                           March 2000  



5

5.8.5 Class Forward Declaration Template 

The Class Forward Declaration Template defines the IDL generation rules for the 
forward interface declarations for an M2-level Class whose “visibility” is “public_vis.” 
It also produces any Class collection type declarations required by the IDL of the 
containing Package(s).

Template

// if the Class has visibility of protected or private, no IDL

// is generated.

interface <ClassName>Class;

interface <ClassName>;

// generate type declarations for any collections of this Class that

// will be used by the IDL being generated

typedef sequence < <ClassName> > <ClassName>Set;

typedef sequence < <ClassName> > <ClassName>Bag;

typedef sequence < <ClassName> > <ClassName>List;

typedef sequence < <ClassName> > <ClassName>UList;

Description

The Class Forward Declaration Template generates a forward declaration for the 
Instance and Class proxy interfaces for an M2-level Class. These have IDL identifiers 
<ClassName> and <ClassName>Class respectively. If any collection types for this 
Class are required, their declarations should follow the forward declarations.

Note – Collection types should only be generated if they are going to be used within 
the current outermost module.

5.8.6 Class Template

The Class Template defines the IDL generation rules for an M2-level Class whose 
“visibility” is “public_vis.” The IDL is generated within the module for the Class’s 
containing Package and consists of a comment followed by the complete Classes Class 
Proxy and Instance interfaces.

Template

// if the Class has visibility of protected or private, no IDL

// is generated
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-53



5

<<ANNOTATION TEMPLATE>>

<<CLASS PROXY TEMPLATE>>

<<INSTANCE TEMPLATE>>

Description

See Section 5.8.7, “Class Proxy Template,” on page 5-54 and Section 5.8.6, “Class 
Template,” on page 5-53.

5.8.7 Class Proxy Template

The Class Proxy Template defines the IDL generation rules for the <ClassName>Class 
interface for an M2-level Class whose “visibility” is “public_vis.” This interface has 
operations for any classifier-scoped Attributes and Operations, along with a factory 
operation and IDL attributes that give access to the extant Instance objects. It also 
contains IDL declarations corresponding to any DataTypes, Exceptions, Constants, and 
Constraints in the M2-level Class.

Template

interface <ClassName>Class :

// if Class has no super-Classes

Reflective::RefObject

// else for each super-Class

<SuperClass>Class, ...

// if Class has a “Class Proxy Supertypes” Tag

//     for each supertype defined by the Tag (in order)

, <ClassProxySupertypeName>, ...

{

// all <ClassName> including subclasses of <ClassName>

readonly attribute <ClassName>Set all_of_type_<class_name>;

// if the Class is not abstract

// all <ClassName> excluding subclasses of <ClassName>

readonly attribute <ClassName>Set all_of_class_<class_name>;

// for each Constant, DataType, Exception, Constraint,

// classifier-scoped Attribute and classifier-scoped Operation

// in the Class, generate the appropriate IDL

<<DATATYPE TEMPLATE>>

<<CONSTRAINT TEMPLATE>>

<<CONSTANT TEMPLATE>>

<<EXCEPTION TEMPLATE>>
5-54    OMG-MOF V1.3                           March 2000  



5

<<ATTRIBUTE TEMPLATE>> // public classifier-level only

<<OPERATION TEMPLATE>> // public classifier-level only

// if the Class is not abstract

<<CLASS CREATE TEMPLATE>>

}; // end of interface <ClassName>Class

Supertypes

If the M2-level Class inherits from other M2-level Classes, the generated Class Proxy 
interface inherits from the corresponding supertype Class Proxy interfaces. Otherwise, 
the Class Proxy interface inherits from Reflective::RefObject.

If the M2-level Class has a “Class Proxy Supertypes” Tag (see Section 5.6.3, “Tags for 
Specifying IDL Inheritance,” on page 5-37), the generated Class Proxy interface also 
inherits from the IDL interfaces specified by the Tag.

Attributes

all_of_class_<class_name>
The “all_of_class_<class_name>” attribute gives all Instance objects in the current 
extent for the corresponding M2-level Class. The attribute is only generated if 
“isAbstract” is false for the Class. 

The value of this attribute mirrors the definition of Instance object lifetimes; see 
Section 5.3.2.2, “Instance object lifecycle semantics,” on page 5-9. It does not include 
any deleted Instance objects.

reflective analog: ref_all_objects(<class_designator>, false)

type: <ClassName> (multiplicity zero or more, unique, non 
ordered)

multiplicity: exactly one

changeable: no
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-55



5

all_of_type_<class_name>
The “all_of_type_<class_name>” attribute gives all Instance objects in the current 
extent for the corresponding M2-level Class or for any M2-level subClasses.

The value of this attribute mirrors the definition of Instance object lifetimes; see 
Section 5.3.2.2, “Instance object lifecycle semantics,” on page 5-9. It does not include 
any deleted Instance objects.

Operations

The operations for a <ClassName>Class interface are produced by the Attribute, 
Operation and Class Create Templates. Note that the operations for the M2-level 
Classes instance-scoped features do not appear in this interface.

5.8.8 Instance Template

The Instance Template defines the IDL generation rules for the <ClassName> interface 
for an M2-level Class whose “visibility” is “public_vis.” This interface contains 
operations for the M2-level Classes instance-scoped Attributes and Operations, along 
with any References. 

Template

interface <ClassName> :

// (The Instance interface inherits the Class Proxy interface

// for the Class and Instance interfaces for any super-Classes)

<ClassName>Class

// for each super-Class of this Class (in order)

, <SuperClassName>, ...

// if Class has an “Instance Supertypes” Tag

//     for each supertype defined by the Tag (in order)

, <InstanceSupertypeName>, ...

{

// for each Attribute, Reference, Operation contained in 

// this Class, generate the appropriate IDL

<<ATTRIBUTE TEMPLATE>> // public instance-level only

<<REFERENCE TEMPLATE>> // public only

reflective analog: ref_all_objects(<class_designator>, true)

type: <ClassName> (multiplicity zero or more, unique, non 
ordered)

multiplicity: exactly one

changeable: no
5-56    OMG-MOF V1.3                           March 2000  



5

<<OPERATION TEMPLATE>> // public instance-level only

}; // end of interface <ClassName>

Supertypes

The Instance interface for an M2-level Class inherits from the Class’es Class Proxy 
interface, along with the Instance interfaces for all of its M2-level super-Classes.

If the M2-level Class has an “Instance Supertypes” Tag (see Section 5.6.3, “Tags for 
Specifying IDL Inheritance,” on page 5-37), the generated Instance interface also 
inherits from the IDL interfaces specified by the Tag.

Attributes

none

Operations

The operations for an Instance interface are generated by the Attribute, Reference, and 
Operation Templates. Note that the operations for instance-scoped Attributes and 
Operations only appear here.

5.8.9 Class Create Template

The Class Create Template defines the IDL generation rules for the Instance factory 
operation for a non-abstract M2-level Class whose “visibility” is “public_vis.”

Template

<ClassName> create_<class_name> (

// for each non-derived direct or inherited attribute

in <AttributeType>[<CollectionKind>] <attribute_name>, ...

)

raises (Reflective::MofError);

Operations

create_<class_name>

The “create_<class_name>” operation creates new Instance objects for the M2-level 
Class (i.e., instances of the Class's <ClassName> interface).

reflective analog: ref_create_instance(<class_designator>, <attr_name>,...)

return type: <ClassName>
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-57



5

The parameters to “create_<class_name>” provide initial values for the M2-level 
Class's non-derived attributes. Parameter declarations are generated in an order defined 
by a recursive depth-first traversal of the inheritance graph. More precisely,

1. a Classes’ super-Classes are processed before the Classes’ Attributes,

2. super-Classes are processed in the order of the “Generalizes” association, 

3. the Attributes of each Class or super-Class are processed in the order of the 
“Contains” association,

4. when an Attribute is encountered with a “scope” value of “classifier_level” or an 
“isDerived” value of true no parameter is generated, and

5. when an Attribute is encountered a second or subsequent time, no additional 
parameter is generated.

When an Attribute has multiplicity bounds other than [1..1], the type of the 
corresponding initial value parameter’s type will be a collection type; see 
Section 5.7.1.6, “Literal String Values,” on page 5-42.

“Overflow,” “Underflow,” and “Duplicate” occur if an argument that gives the initial 
value for an Attribute does not match the Attribute’s multiplicity specification.

“Composition Closure” occurs if the initial value for a “composite” Attribute contains 
an Instance object in another extent; see Section 4.9.2, “The Composition Closure 
Rule,” on page 4-20.

“Supertype Closure” occurs if the extent for the current object cannot create Instance 
objects for this super-Class; see Section 5.3.8, “The Supertype Closure Rule,” on 
page 5-22.

“Already Created” occurs if the M2-level Class has “isSingleton” set to true, and this 
object’s extent already includes an Instance object for the Class.

5.8.10 Association Template

The Association Template defines the generation rules for the Association interface 
corresponding to an M2-level Association whose “visibility” is “public_vis.” This 
interface contains the IDL operations for accessing and updating the Association's M1-
level link set.

Template

// If the Association has visibility of protected or private,

// no IDL is generated

parameters: in <AttrTypeName>[<CollectionType>] <attr_name>, ...

exceptions: MofError (Overflow, Underflow, Duplicate, Composition 
Closure, Supertype Closure, Already Created)
5-58    OMG-MOF V1.3                           March 2000  



5

// data types for Association <AssociationName>

struct <AssociationName>Link {

<AssociationEnd1ClassName> <associationend1_name>;

<AssociationEnd2ClassName> <associationend2_name>;

};

typedef sequence < <AssociationName>Link > 

<AssociationName>LinkSet;

<<ANNOTATION TEMPLATE>>

interface <AssociationName> : Reflective::RefAssociation

// if Association has an “Association Supertypes” Tag

//     for each supertype defined by the Tag (in order)

, <AssociationSupertypeName>, ...

{

// list of associated elements

<AssociationName>LinkSet all_<association_name>_links ()

raises (Reflective::MofError);

boolean exists (

in <AssociationEnd1Class> <association_end1_name>,

in <AssociationEnd2Class> <association_end2_name>)

raises (Reflective::MofError);

// if association_end1 is_navigable

<AssociationEnd1Class>[<CollectionKind>] <association_end1_name> (

in <AssociationEnd2Class> <association_end2_name>)

raises (Reflective::MofError);

// if association_end2 is_navigable 

<AssociationEnd2Class>[<CollectionKind>] <association_end2_name> (

in <AssociationEnd1Class> <association_end1_name>)

raises (Reflective::MofError);

// if association_end1 is_changeable 

// and association_end2 is_changeable

void add (

in <AssociationEnd1Class> <association_end1_name>, 

in <AssociationEnd2Class> <association_end2_name>)

raises (Reflective::MofError);
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-59



5

// if association_end1 is_changeable and is_navigable

// and association_end2 is_changeable

// and association_end1 has upper > 1 and is_ordered

void add_before_<association_end1_name> (

in <AssociationEnd1Class> <association_end1_name>,

in <AssociationEnd2Class> <association_end2_name>,

in <AssociationEnd1Class> before)

raises (Reflective::NotFound, Reflective::MofError);

// if association_end1 is_changeable

// and association_end2 is_changeable and is_navigable

// and association_end2 has upper > 1 and is_ordered

void add_before_<association_end2_name> (

in <AssociationEnd1Class> <association_end1_name>,

in <AssociationEnd2Class> <association_end2_name>,

in <AssociationEnd2Class> before)

raises (Reflective::NotFound, Reflective::MofError);

// if association_end1 is_navigable and is_changeable

void modify_<association_end1_name> (

in <AssociationEnd1Class> <association_end1_name>,

in <AssociationEnd2Class> <association_end2_name>,

in <AssociationEnd1Class> new_<association_end1_name>)

raises (Reflective::NotFound, Reflective::MofError);

// if association_end2 is_navigable and is_changeable

void modify_<association_end2_name> (

in <AssociationEnd1Class> <association_end1_name>,

in <AssociationEnd2Class> <association_end2_name>,

in <AssociationEnd2Class> new_<association_end2_name>)

raises (Reflective::NotFound, Reflective::MofError);

// if association_end1 is_changeable 

// and association_end2 is_changeable

void remove (

in <AssociationEnd1Class> <association_end1_name>, 

in <AssociationEnd2Class> <association_end2_name>)

raises (Reflective::NotFound, Reflective::MofError);

};
5-60    OMG-MOF V1.3                           March 2000  



5

DataTypes

The Association Template generates data type declarations to that are used to pass a 
link set for the M2-level Association. The <AssociationName>Link and 
<AssociationName>LinkSet type declarations precede the Association interface 
declaration.

Supertypes

Every generated Association interface inherits from Reflective::RefAssociation. If the 
M2-level Association has an “Association Supertypes” Tag (see Section 5.6.3, “Tags 
for Specifying IDL Inheritance,” on page 5-37), the generated Association interface 
also inherits from the IDL interfaces specified by the Tag.

Attributes

none

Operations

all_<association_name>_links

The “all_<association_name>_links” operation creates new Instance objects for the 
M2-level Class (i.e., instances of the Class's <ClassName> interface).

The “all_<association_name>_links” operation returns the current link set for this 
Association expressed using the <AssociationName>LinkSet type.

While the definitions in Section 4.7.2.1, “A Mathematical Model of Association State,” 
on page 4-15 state that an ordered Association implies a partial ordering over the 
LinkSet, the result of the “all_<association_name>_links” operation is defined to be a 
Set. A client should not draw any conclusions from the ordering of the returned links.

The operation’s signature raises Reflective::MofError to allow Constraint error and 
Semantic error conditions to be signalled.

reflective analog: ref_all_links()

return type: <AssociationName>LinkSet

parameters: none

query: yes

exceptions: MofError()
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-61



5

exists

The “exists” operation queries whether a link currently exists between a given pair of 
Instance objects in the current M1-level Association extent.

The parameters to the “exists” operation are a pair of Instance values of the appropriate 
type for the Association. Since MOF link relationships are implicitly directional, the 
order of the parameters is significant.

“Invalid Object”, “Nil Object” and “Inaccessible Object” occurs if either of the 
parameters is a non-existent, nil or inaccessible Instance object.

<association_end1_name>

The “<association_end1_name>”operation queries the Instance object or objects that 
are related to a particular Instance object by a link in the current M1-level Association 
extent. When “isNavigable” is set to false for the AssociationEnd, the 
“<association_end1_name>” operation is suppressed.

The <association_end1_name> parameter is the Instance object from which the caller 
wants to “navigate.” “Invalid Object,” “Nil Object,” and “Inaccessible Object” occur 
when the parameter is a non-existent, nil object or inaccessible Instance object.

The result type of the operation depends on the multiplicity of <AssociationEnd2>. If 
it has bounds of [1..1], the result type is the Instance type corresponding to the 
AssociationEnd’s “type.” Otherwise, it is a collection of the same Instance type, as 
described in Section 5.7.1.6, “Literal String Values,” on page 5-42.

reflective analog: ref_link_exists(
    Link{<assoc_end1_name>, <assoc_end2_name>})

return type: boolean

parameters: in <AssocEnd1ClassName> <assoc_end1_name>
in <AssocEnd2ClassName> <assoc_end2_name>

query: yes

exceptions: MofError (Invalid Object, Nil Object, Inaccessible Object)

reflective analog: ref_query(
    <assoc_end1_designator>, <assoc_end1_name>)

return type: <AssocEnd2ClassName>[<CollectionType>]

parameters: in <AssocEnd1ClassName> <assoc_end1_name>

query: yes

exceptions: MofError (Invalid Object, Nil Object, Inaccessible Object, 
Underflow)
5-62    OMG-MOF V1.3                           March 2000  



5

“Underflow” occurs when <AssociationEnd2> has bounds [1..1] and the Instance 
object given by the parameter is not related in the current Association extent. It should 
not occur in other cases where the result type is a collection type. (If there is a 
multiplicity underflow, it is signalled by returning a collection value with too few 
elements as opposed to raising an exception.)

<association_end2_name>

This operation is the equivalent of “<association_end1_name>,” with the “end1” and 
“end2” interchanged.

add

The “add” operation creates a link in this Association between a pair of Instance 
objects. When “isChangeable” is set to false for either of the M2-level Association’s 
AssociationEnd, the “add” operation is suppressed.

The two parameters to the “add” operation give the Instance objects at the two ends of 
the new link. “Invalid Object,” “Nil Object,” and “Inaccessible Object” occur if either 
of the parameter values is a non-existent, nil or inaccessible Instance object.

If one or other end of the Association has “isOrdered” set to true, the new link must be 
added so that it is the last member of the projection for the ordered AssociationEnd. 
The operation must also preserve ordering of the existing members of the ordered 
projection.

“Overflow” occurs when adding the new link would cause the size of the projection of 
either the first or second parameter object to exceed the upper bound for the opposite 
AssociationEnd. “Duplicate” occurs when the link set for the current Association 
extent already contains the link whose creation is requested.

“Reference Closure” occurs when either (or both) of the AssociationEnds has 
References, and the corresponding Instance object parameter does not belong to the 
same outermost Package extent as the Association object; see Section 4.9.1, “The 
Reference Closure Rule,” on page 4-19.

“Composition Closure” occurs when either AssociationEnd has “aggregation” set to 
“composite”, and either of the Instance object parameters does not belong to the same 
outermost Package extent as this Association object; see Section 4.9.2, “The 
Composition Closure Rule,” on page 4-20.

reflective analog: ref_add_link(
    Link{<assoc_end1_name>, <assoc_end2_name>})

return type: none

parameters: in <AssocEnd1ClassName> <assoc_end1_name>
in <AssocEnd2ClassName> <assoc_end2_name>

exceptions: MofError (Invalid Object, Nil Object, Inaccessible Object, 
Overflow, Duplicate, Reference Closure, Composition Closure, 
Composition Cycle)
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-63



5

“Composition Cycle” occurs when adding the new link would create a cycle of 
composite / component relationships such that one of the Instance object parameters is 
a (ultimately) component of itself; see Section 4.8.2, “Aggregation “composite”,” on 
page 4-18.

add_before_<association_end1_name>

The “add_before_<association_end1_name>”operation creates a link between a pair of 
Instance objects at a given place in this Association. This operation is only generated 
when “isChangeable” a true for both AssociationEnds, and when the first 
AssociationEnd is  multi-valued, ordered and navigable.

The first two parameters to the “add_before_<association_end1_name>” operation give 
the Instance objects at the two ends of the new link. “Invalid Object”, “Nil Object” and 
“Inaccessible Object” occur if either of the parameter values is a non-existent, nil or 
inaccessible Instance object.

The third parameter (“before”) gives an Instance object that determines the point at 
which the new link is inserted. “Invalid Object”, “Nil Object” and “Inaccessible 
Object” also apply to the “before” parameter value.

The “before” value should be present in the projection of the “<assoc_end2_name>” 
parameter value. If this so, the insertion point for the new link is immediately before 
the “before” value, otherwise the “NotFound” error occurs.

“Overflow,” “Duplicate,” “Reference Closure,” “Composition Closure,” and 
“Composition Cycle” occur as described for the “add” operation above.

add_before_<association_end2_name>

This operation is the equivalent of “add_before_<association_end1_name>,” with the 
“end1” and “end2” interchanged.

reflective analog: ref_add_link_before(
    Link{<assoc_end1_name>, <assoc_end2_name>},
    <assoc_end1_designator>,
    before); 
(See Section 6.2.4, “Reflective::RefAssociation,” on page 6-22).

return type: none

parameters: in <AssocEnd1ClassName> <assoc_end1_name>
in <AssocEnd2ClassName> <assoc_end2_name>
in <AssociationEnd1ClassName> before

exceptions: NotFound, MofError (Invalid Object, Nil Object, Inaccessible 
Object, Overflow, Duplicate, Reference Closure, Composition 
Closure, Composition Cycle)
5-64    OMG-MOF V1.3                           March 2000  



5

Note – The preconditions for generating the “add_before_<association_end1_name>” 
and “add_before_<association_end2_name>” operations are such that at most one of 
them may appear in an Association interface.

modify_<association_end1_name>

The “modify_<association_end1_name>”operation updates a link between a pair of 
Instance objects, replacing the Instance at AssociationEnd1 with a new Instance object. 
When AssociationEnd1 has “isChangeable” or “isNavigable” set to false, this operation 
is suppressed.

The first two parameters to the “modify_<association_end1_name>” operation should 
give the Instance objects at the ends of an existing link. “Invalid Object,” “Nil Object,” 
and “Inaccessible Object” occur if either of the parameter values are non-existent, nil 
or inaccessible Instance objects. “NotFound” occurs if the link does not exist in the 
current extent.

The third parameter (“new_<assoc_end1_name>”) gives the Instance object that is to 
replace the Instance at AssociationEnd1 for the selected link. “Invalid Object,” “Nil 
Object,” and “Inaccessible Object” also occurs if this parameter’s value is a non-
existent, nil or inaccessible Instance object.

If the “<assoc_end1_name>” and “new_<assoc_end1_name>” parameters give the 
same Instance object, this operation is required to have no effect on the Association’s 
link set.

Note – The following error conditions apply to the state of the M1-level Association 
after the completion of the operation, not to any intermediate states.

“Underflow” occurs if completion of the operation would leave the M1-level 
Association in a state where

size(Projection(<assoc_end1_name>)) less than <AssocEnd2>.lower

reflective analog: ref_modify_link(
    Link{<assoc_end1_name>, <assoc_end2_name>},
    <assoc_end1_designator>
    new_<assoc_end1_name>); 
(see Section 6.2.4, “Reflective::RefAssociation,” on page 6-22).

return type: none

parameters: in <AssocEnd1ClassName> <assoc_end1_name>
in <AssocEnd2ClassName> <assoc_end2_name>
in <AssocEnd2ClassName> new_<assoc_end1_name>

exceptions: NotFound, MofError (Invalid Object, Nil Object, Inaccessible 
Object, Overflow, Underflow, Duplicate, Reference Closure, 
Composition Closure, Composition Cycle)
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-65



5

“Overflow” occurs if completion of the operation would leave the M1-level 
Association in a state where

size(Projection(new_<assoc_end1_name>)) greater than

<AssocEnd2>.upper

Note that the “Underflow” condition for the “new_<assoc_end1_name>” Instance 
should be treated as a deferred constraint.

“Duplicate” occurs if the operation would create a duplicate link in this M1-level 
Association extent. Similarly, “Composition Cycle” occurs if the operation creates a 
link that (on completion of the operation) would make the “<assoc_end2_name>” or 
“new_<assoc_end1_name>” objects components of themselves.

“Reference Closure” and “Composition Closure” occur if the operation would create a 
link that violates the corresponding closure rules; see Section 4.9.1, “The Reference 
Closure Rule,” on page 4-19 and Section 4.9.2, “The Composition Closure Rule,” on 
page 4-20.

If either AssociationEnd has “isOrdered” set to true, this operation must preserve 
ordering of the remaining members in the relevant projections of the ordered end. In 
addition:

• If AssociationEnd1 is ordered, the projection of “<assoc_end2_name>” must have 
“new_<assoc_end1_name>” in the position taken by “<assoc_end1_name>”.

• If AssociationEnd2 is ordered, the projection of “new_<assoc_end1_name>” must 
have “<assoc_end2_name>” as the last member.

modify_<association_end2_name>

This operation is the equivalent of “modify_<association_end1_name>”, with the 
“end1” and “end2” interchanged.

remove

The “remove” operation removes a link between a pair of Instance objects in the 
current Association extent. When either AssociationEnd or AssociationEnd2 has 
“isChangeable” set to false, the “remove” operation is suppressed.

The two parameters to this operation give the Instance objects at both ends of the link 
that is to be removed from the current Association object’s link set. “Nil Object” 
occurs if either parameter value is a nil object reference.

reflective analog: ref_remove_link(
    Link{<assoc_end1_name>, <assoc_end2_name>}); 
(see Section 6.2.4, “Reflective::RefAssociation,” on page 6-22).

return type: none

parameters: in <AssocEnd1ClassName> <assoc_end1_name>
in <AssocEnd2ClassName> <assoc_end2_name>

exceptions: NotFound, MofError (Nil Object, Underflow)
5-66    OMG-MOF V1.3                           March 2000  



5

“NotFound” occurs if the link to be deleted does not exist in the current Association 
extent.

Note – “Invalid Object” and “Inaccessible Object” does occur here. The “remove” 
operation needs to be capable of deleting links that involve Instance objects that have 
been deleted or that are inaccessible In the latter case, an implementation can usually 
fall back on local comparison of object references. If that fails (e.g., because there are 
multiple references for an Instance object) the implementation will typically be unable 
to distinguish the case from “NotFound”.

“Underflow” occurs if deleting the link would cause the size of the projection of either 
the “<assoc_end1_name>” or “<assoc_end2_name>” parameter value to be less than 
the corresponding “lower” bound.

If either AssociationEnd1 or AssociationEnd2 has “isOrdered” set to true, the 
“remove” operation must preserve the ordering of the remaining members of the 
corresponding projection.

5.8.11 Attribute Template

The Attribute Template defines the generation rules for M2-level Attributes whose 
“visibility” is “public_vis.” The Attribute Template declares operations to query and 
update the value of an Attribute. These operations appear on different interfaces, 
depending on the Attribute’s “scope”:

• IDL operations for instance-scoped Attributes appear in the Instance 
(“<ClassName>”) interface for the Attribute’s containing Class.

• IDL operations for classifier-scoped Attributes appear in the Class Proxy 
(“<ClassName>Class”) interface for the Attribute’s containing Class, and are 
inherited by the Instance interface.

The operations generated for an Attribute and their signatures depend heavily on the 
Attribute’s properties. For the purposes of defining the generated IDL, Attribute 
multiplicities fall into three groups:

• single-valued Attributes: multiplicity bounds are [1..1],

• optional-valued Attributes: multiplicity bounds are [0..1], and

• multi-valued Attributes: any other multiplicity.

Template

// if Attribute visibility is private or protected no IDL  

// is generated

<<ANNOTATION TEMPLATE>>

// if lower = 0 and upper = 1

<AttributeType> <attribute_name> ()
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-67



5

raises (Reflective::NotSet, Reflective::MofError);

// if lower = 1 and upper = 1

<AttributeType> <attribute_name> ()

raises (Reflective::MofError);

// if upper > 1

<AttributeType><CollectionKind> <attribute_name> ()

raises (Reflective::MofError);

// if upper = 1 and is_changeable

void set_<attribute_name> (in <AttributeType> new_value)

raises (Reflective::MofError);

// if upper > 1 and is_changeable

void set_<attribute_name> (
in <AttributeType><CollectionKind> new_value)

raises (Reflective::MofError);

// if lower = 0 and upper = 1 and is_changeable

void unset_<attribute_name> ()

raises (Reflective::MofError);

// if upper > 1 and is_changeable

void add_<attribute_name> (in <AttributeType> new_element)

raises (Reflective::MofError);

// if upper > 1 and is_changeable and is_ordered

void add_<attribute_name>_before (

in <AttributeType> new_element,

in <AttributeType> before_element)

raises (Reflective::NotFound, Reflective::MofError);

// if upper > 1 and is_changeable and is_ordered and not is_unique

void add_<attribute_name>_at (

in <AttributeType> new_element,

in unsigned long position)

raises (Reflective::BadPosition, Reflective::MofError);

// if upper > 1 and is_changeable

void modify_<attribute_name> (

in <AttributeType> old_element,

in <AttributeType> new_element)

raises (Reflective::NotFound, Reflective::MofError);

// if upper > 1 and is_changeable and is_ordered and not is_unique
5-68    OMG-MOF V1.3                           March 2000  



5

void modify_<attribute_name>_at (

in <AttributeType> new_element,

in unsigned long position)

raises (Reflective::BadPosition, Reflective::MofError);

// if upper > 1 and upper != lower and is_changeable

void remove_<attribute_name> (

in <AttributeType> old_element)

raises (Reflective::NotFound, Reflective::MofError);

// if upper > 1 and upper != lower and is_changeable and

// is_ordered and not is_unique

void remove_<attribute_name>_at (in unsigned long position)

raises (Reflective::BadPosition, Reflective::MofError) ;

Operations

<attribute_name>

The “<attribute_name>” operation returns the value of the named Attribute.

The signature of the “<attribute_name>” operation depends on the Attribute’s 
multiplicity as indicated above. Its behavior is as follows:

• In the [0..1] case, the operation either returns the Attribute’s optional value, or 
raises the NotSet exception to indicate that the optional value is not present.

• In the [1..1] case, the operation simply returns the Attribute’s single value.

• In other cases, the operations returns the Attribute’s collection value. In the case 
where the collection is empty the result value will be a sequence with length zero. 
No exception is raised in this case.

If the Attribute is instance-scoped, the operation is only available on Instance objects, 
and invoking it returns a value that is related to this Instance object. If the Attribute is 
classifier-scoped the operation can be invoked on both Class Proxy and Instance 
objects. In both cases, the operation returns a value that is related to all Instances for 

reflective 
analog:

ref_value(<attribute_designator>);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: [0..1] - <AttributeType>
[1..1] - <AttributeType>
other - <AttributeType><CollectionKind>

parameters: none

query: yes

exceptions: [0..1] - Unset, MofError
[1..1] - MofError
other - MofError
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-69



5

the Attribute’s Class in the current extent. For a more detailed comparison of classifier 
versus instance-scoped Attributes, see Section 4.4, “Semantics of Attributes,” on 
page 4-4.

The MofError exception may be raised to signal meta-model defined Constraint errors 
and implementation specific Semantic errors. However, an implementation generally 
should avoid doing this, for the reasons given in Section 4.11.6, “Access operations 
should avoid raising Constraint exceptions,” on page 4-24.

set_<attribute_name>

The “set_<attribute_name>” operation sets the value of the named Attribute.

The signature of the “set_<attribute_name>” operation depends on the Attribute’s 
multiplicity as indicated above. Its behavior is as follows:

• In the single and optional-valued cases, the operation assigns the single value given 
by “new_value” to the named Attribute.

• In the multi-valued case, the operation assigns the collection value given by 
“new_value” parameter to the named Attribute.

When the Attribute has a lower bound of 0, its value can legally be empty:

• In the optional-valued case, the Attribute’s value is set to “empty” by invoking the 
“unset_<attribute_name>” operation described below.

• In the [0..N] case (where N is not 1), the Attribute’s value is set to empty by 
invoking “set_<attribute_name>” with a zero length sequence as the parameter.

“Composition Closure” and “Composition Cycle” are only possible when the type of 
the Attribute is a Class, and the Attribute has “composite” aggregation semantics:

• “Composition Closure” occurs when “new_value” or one of its members (in the 
multi-valued case) belongs to a different outermost Package extent to this object.

reflective analog: ref_set_value(<attribute_designator>, new_value);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none

parameters: [0..1] - in <AttributeType> new_value
[1..1] - in <AttributeType> new_value
other - in <AttributeType><CollectionKind> new_value

exceptions: [0..1] - MofError (Invalid Object, Inaccessible Object,
            Composition Closure, Composition Cycle)
[1..1] - MofError (Invalid Object, Inaccessible Object,
            Composition Closure, Composition Cycle)
other - MofError (Overflow, Underflow, Duplicate,
            Invalid Object, Inaccessible Object,
            Composition Closure, Composition Cycle)
5-70    OMG-MOF V1.3                           March 2000  



5

• “Composition Cycle” occurs when the operation would result in this object having 
itself as a direct or indirect component.

“Overflow,” “Underflow,” and “Duplicate” can only occur in the case of a multi-valued 
Attribute:

• “Overflow” occurs if the number of members in the “new_value” collection is 
greater than the Attribute’s upper bound. 

• “Underflow” occurs if the number of members in the “new_value” collection is less 
than the Attribute’s lower bound. 

• “Duplicate” occurs if the Attribute has “isUnique” set to true and the “new_value” 
collection contains duplicate values.

“Invalid Object” and “Inaccessible Object” occur when some Instance object is found 
to be non-existent or inaccessible. An implementation should only signal one these 
conditions when it prevents other consistency checking (e.g., testing for composition 
cycles).

unset_<attribute_name>

The “unset_<attribute_name>” operation sets the value of an optional-valued Attribute 
to empty. This operation is suppressed in the single-valued and multi-valued cases.

The “unset_<attribute_name>” operation is the only way to update an optional-valued 
Attribute to the “empty” state.

The MofError exception may be raised to signal meta-model defined Constraint errors 
and implementation specific Semantic errors.

add_<attribute_name>

The “add_<attribute_name>” operation updates a multi-valued Attribute by adding a 
new member value to its collection value. This operation is suppressed for optional and 
single-valued Attributes and for Attributes with “isChangeable” set to false.

reflective analog: ref_unset_value(<attribute_designator>);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none

parameters: none

exceptions: MofError

reflective analog: ref_add_value(<attribute_designator>, new_element);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none

parameters: in <AttributeType> new_element

exceptions: MofError (Overflow, Duplicate, Invalid Object, Inaccessible 
Object, Composition Closure, Composition Cycle)
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-71



5

The “add_<attribute_name>” operation adds “new_element” to the collection of a 
changeable multi-valued Attribute. If the Attribute’s “multiplicity” has “isOrdered” set 
to true, the “new_element” is added after that current last element of the collection.

“Overflow” occurs if adding another element to the collection makes the number of 
elements it contains greater than the Attribute’s upper bound.

“Duplicate” occurs if the Attribute’s “multiplicity” has “isOrdered” set to true, and the 
“new_element” value is equal to an element of the Attribute’s current value.

“Composition Closure” and “Composition Cycle” are only possible when the type of 
the Attribute is a Class, and the Attribute has “composite” aggregation semantics:

• “Composition Closure” occurs when “new_element” belongs to a different 
outermost Package extent to this object.

• “Composition Cycle” occurs when the operation would result in this object being a 
direct or indirect component of itself.

“Invalid Object” and “Inaccessible Object” occur when some Instance Object is found 
to be non-existent or inaccessible. An implementation should only signal one these 
conditions when it prevents other consistency checking (e.g., testing for composition 
cycles).

add_<attribute_name>_before

The “add_<attribute_name>_before” operation updates a multi-valued Attribute by 
adding a new element at given position in its current collection value. The operation is 
suppressed for optional and single-valued Attributes, and for Attributes with 
“isChangeable” or “isOrdered” set to false.

The “add_<attribute_name>_before” operation adds “new_element” to the collection at 
a given place within the collection value of an ordered, changeable, multi-valued 
Attribute. Insertion is required to preserve the initial order of the collection’s elements.

The “new_element” is inserted before the first occurrence in the Attribute’s collection 
of the value supplied as the “before_element” parameter (i.e., the occurrence with the 
smallest index). “NotFound” occurs when the “before_element” value is not present in 
the collection. 

“Overflow,” “Duplicate,” “Composition Closure,” and “Composition Cycle” occur in 
equivalent situations to those for “add_<attribute_name>” above.

reflective analog: ref_add_value_before(
    <attribute_designator>, new_element, before_element);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none

parameters: in <AttributeType> new_element
in <AttributeType> before_element

exceptions: NotFound, MofError (Overflow, Duplicate, Invalid Object, 
Inaccessible Object, Composition Closure, Composition Cycle)
5-72    OMG-MOF V1.3                           March 2000  



5

“Invalid Object” and “Inaccessible Object” occur when some Instance object is found 
to be non-existent or inaccessible. An implementation should only signal one these 
conditions when it prevents other consistency checking (e.g., testing for composition 
cycles).

add_<attribute_name>_at

The “add_<attribute_name>_at” operation updates a multi-valued Attribute by adding a 
new element at given position in its current collection value. It is provided for non-
unique Attributes where an insertion point must be specified using an index. The 
operation is suppressed for optional and single-valued Attributes, for Attributes with 
“isChangeable” or “isOrdered” set to false, and for Attributes with “isUnique” set to 
true.

The “add_<attribute_name>_at” operation adds “new_element” at a given point within 
the collection value of an ordered, non-unique changeable, multi-valued Attribute. 
Insertion is required to preserve the initial order of the collection’s elements.

The insertion point is given by the value of the “position” parameter. This is the index 
of the collection member before which “new_element” should be inserted, with zero 
being the index for the first member. A “position” value equal to the current number of 
elements means that “new_element” should be added to the end of the collection. 
“BadPosition” occurs when the “position” value is greater than the number of elements 
in the collection. (It is not possible to create a collection value with “gaps” by adding 
elements with “position” values larger that the collection size.)

“Overflow,” “Duplicate,” “Composition Closure,” and “Composition Cycle” occur in 
equivalent situations to those described for “add_<attribute_name>” above.

“Invalid Object” and “Inaccessible Object” occur when some Instance object is found 
to be non-existent or inaccessible. An implementation should only signal one these 
conditions when it prevents other consistency checking (e.g., testing for composition 
cycles).

reflective analog: ref_add_value_at(
    <attribute_designator>, new_element, position);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none

parameters: in <AttributeType> new_element
in unsigned long position

exceptions: BadPosition, MofError (Overflow, Duplicate, Invalid Object, 
Inaccessible Object, Composition Closure, Composition Cycle)
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-73



5

modify_<attribute_name>

The “modify_<attribute_name>” operation updates a multi-valued Attribute by 
replacing an existing member of its collection value. This operation is suppressed for 
optional and single-valued Attributes and for Attributes with “isChangeable” set to 
false.

The “modify_<attribute_name>” operation replaces an occurrence of the value passed 
in the “old_element” parameter with the value of “new_element.” “NotFound” occurs 
if the “old_element” value is not present in the Attribute’s initial collection value.

If the Attribute has “isOrdered” set to true, the operation is required to preserve the 
initial order of the collection’s elements. If it also has “isUnique” set to false, then the 
operation is defined to replace the first occurrence (i.e., the one with the smallest 
index).

“Duplicate,” “Composition Closure,” and “Composition Cycle” occur in similar 
situations to those described for “add_<attribute_name>” above.

“Invalid Object” and “Inaccessible Object” occur when some Instance object is found 
to be non-existent or inaccessible. An implementation should only signal one these 
conditions when it prevents other consistency checking (e.g., testing for composition 
cycles).

modify_<attribute_name>_at

The “modify_<attribute_name>_at” operation updates a multi-valued Attribute by 
replacing a member of its collection value at a given position. It is provided for non-
unique Attributes where the member to be modified must be specified using an index. 
This operation is suppressed for optional and single-valued Attributes and for 
Attributes with “isChangeable” set to false.

reflective 
analog:

ref_modify_value(
    <attribute_designator>, 
    old_element, new_element);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none

parameters: in <AttributeType> old_element
in <AttributeType> new_element

exceptions: NotFound, MofError (Duplicate, Invalid Object, Inaccessible 
Object, Composition Closure, Composition Cycle)

reflective analog: ref_modify_value_at(
    <attribute_designator>, 
    new_element, position);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none
5-74    OMG-MOF V1.3                           March 2000  



5

The “modify_<attribute_name>_at” operation replaces the value whose index in the 
collection is given by the “position” parameter. “BadPosition” occurs if the “position” 
parameter is greater than or equal to the number of elements in the Attribute collection.

The replacement value is given by the “new_value” parameter. The operation is 
required to preserve the order of the collection’s elements.

“Duplicate,” “Composition Closure,” and “Composition Cycle” occur in similar 
situations to those described for “add_<attribute_name>” above.

“Invalid Object” and “Inaccessible Object” occur when some Instance object is found 
to be non-existent or inaccessible. An implementation should only signal one these 
conditions when it prevents other consistency checking (e.g., testing for composition 
cycles).

remove_<attribute_name>

The “remove_<attribute_name>” operation removes an existing member from a multi-
valued Attribute. This operation is suppressed for optional and single-valued Attributes 
and for Attributes with “isChangeable” set to false. It is also suppressed when the 
lower and upper bounds are equal.

The “remove_<attribute_name>” operation removes an occurrence of the value passed 
in the “old_element” parameter. “NotFound” occurs if the “old_element” value is not 
present in the Attribute’s collection value.

If the Attribute has “isOrdered” set to true, the operation is required to preserve the 
initial order of the collection’s elements. If it also has “isUnique” set to false, then the 
operation is defined to remove the first occurrence (i.e., the one with the smallest 
index).

“Underflow” occurs if removing an element makes the number of elements in the 
collection less than the Attribute’s lower bound.

parameters: in <AttributeType> new_element
in unsigned long position

exceptions: BadPosition, MofError (Duplicate, Invalid Object, Inaccessible 
Object, Composition Closure, Composition Cycle)

reflective analog: ref_remove_value(<attribute_designator>, old_element);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none

parameters: in <AttributeType> old_element

exceptions: NotFound, MofError(Underflow)
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-75



5

Note – The “remove_<attribute_name>” operation should not signal an exception if it 
finds that some Instance object is non-existent or inaccessible. If the object in question 
is the object to be removed from the Attribute, it should be removed. Otherwise, the 
condition should be silently ignored.

remove_<attribute_name>_at

The “remove_<attribute_name>_at” operation removes the member at a given position 
from a multi-valued Attribute. This operation is suppressed for optional and single-
valued Attributes, and for Attributes with “isChangeable” or “isOrdered” set to false or 
“isUnique” set to true. It is also suppressed when the lower and upper bounds are 
equal.

The “remove_<attribute_name>_at” operation removes the element of an Attribute’s 
collection value whose (zero based) index is given by the “position” parameter. 
“BadPosition” occurs if the “position” value is greater than or equal to the number of 
elements in the Attribute’s collection value.

“Underflow” occurs if removing an element makes the number of elements in the 
collection less than the Attribute’s lower bound.

5.8.12 Reference Template

The Reference Template defines the IDL generation rules for a Reference whose 
“visibility” is “public_vis”. The IDL generated for a Reference is declared within the 
scope of <ClassName>Class interface definition. The IDL generated by the Reference 
Template provides the operations to return the value of the Reference as well as 
operations to modify it. The IDL generated is dependent upon the multiplicity, 
mutability, and ordering of the specified Reference.

The Reference Template defines the IDL generation rules for References. It declares 
operations on the Instance interface to query and update links in the Association object 
for the current extent.

The operations generated for a Reference and their signatures depend heavily on the 
properties of the referenced AssociationEnd which are also mirrored on the Reference 
itself. For the purposes of defining the generated IDL, Reference multiplicities fall into 
three groups:

• single-valued References: multiplicity bounds are [1..1],

• optional-valued References: multiplicity bounds are [0..1], and

reflective analog: ref_remove_value_at(<attribute_designator>, position);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none

parameters: in unsigned long position

exceptions: BadPosition, MofError(Underflow)
5-76    OMG-MOF V1.3                           March 2000  



5

• multi-valued References: any other multiplicity.

The generated operations for a Reference are designed to have similar signatures and 
behaviors to those for an instance-scoped Attribute with the same multiplicity and 
changeability settings. 

Note – Recall that Reference is only well formed if the referenced AssociationEnd has 
“isNavigable” set to true. Similarly, a Reference’s “isChangeable” can only be true if 
the referenced AssociationEnd’s “isChangeable” is also true.

Template

// If the Reference has visibility of protected or private, no IDL

// is generated

<<ANNOTATION TEMPLATE>>

// operations to return the Reference value

// if lower = 0 and upper = 1

<ReferenceClass> <reference_name> ()

raises (Reflective::NotSet, Reflective::MofError);

// if lower = 1 and upper = 1

<ReferenceClass> <reference_name> ()

raises (Reflective::MofError);

// if upper > 1

<ReferenceClass><Multiplicity> <reference_name> ()

raises (Reflective::MofError);

// operations to modify the Reference value

// if upper = 1 and is_changeable

void set_<reference_name> (

in <ReferenceClass> new_value)

raises (Reflective::MofError);

// if upper > 1 and is_changeable

void set_<reference_name> (

in <ReferenceClass><Multiplicity> new_value)

raises (Reflective::MofError);

// if lower = 0 and upper = 1 and is_changeable
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-77



5

void unset_<reference_name> ()

raises (Reflective::MofError);

// if upper > 1 and is_changeable

void add_<reference_name> (

in <ReferenceClass> new_element)

raises (Reflective::MofError);

// if upper > 1 and is_changeable and is_ordered

void add_<reference_name>_before (

in <ReferenceClass> new_element,

in <ReferenceClass> before_element)

raises (Reflective::NotFound, Reflective::MofError);

// if upper > 1 and is_changeable 

void modify_<reference_name> (

in <ReferenceClass> old_element,

in <ReferenceClass> new_element)

raises (Reflective::NotFound, Reflective::MofError);

// if upper > 1 and lower != upper and is_changeble

void remove_<reference_name> (

in <ReferenceClass> old_element)

raises (Reflective::NotFound, Reflective::MofError);

<reference_name>

The “<reference_name>” operation reads the value of Reference. The signature of the 
operation depends on the multiplicity of the Reference.

The “<reference_name>” operation’s signature is determined by the multiplicity of the 
Reference, and hence the referenced AssociationEnd, as shown above. 

reflective analog: ref_value(<reference_designator>);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: [0..1] - <ReferenceClass>
[1..1] - <ReferenceClass>
other - <ReferenceClass><CollectionKind>

parameters: none

exceptions: [0..1] - NotSet, MofError
[1..1] - MofError (Underflow)
other - MofError
5-78    OMG-MOF V1.3                           March 2000  



5

In each case, the operation calculates and returns the projection of “this” object in the 
link set of the referenced AssociationEnd’s Association for the current outermost 
extent:

• In the [0..1] case, the operation returns the projected Instance object if there is one, 
and raises the Reflective::NotSet exception if there is not.

• In the [1..1] case, the operation normally returns a single Instance object. However, 
if the projection contains no elements, this is signalled as a Reflective::MofError 
exception with “error_kind” of “Underflow.”

• In other cases, the operation returns the projection using a sequence value. If the 
projection is empty the result is a sequence of length zero. If it contains fewer 
elements than the Reference’s lower bound, those that it does contain are returned.

Note – Under no circumstances should the “<reference_name>” operation return a nil 
object reference or a sequence that includes a nil object reference.

set_<reference_name>

The “set_<reference_name>” operation assigns a new value to a Reference. The 
signature of the operation depends on the multiplicity of the Reference. If 
“isChangeable” is set to false for the Reference, this operation is suppressed.

The “set_<reference_name>” operation’s signature is determined by the multiplicity of 
the Reference, and hence the referenced AssociationEnd, as shown above. 

In each case, the operation replaces the set of links in the extent for the referenced 
AssociationEnd’s Association. The behavior is as follows:

reflective analog: ref_set_value(<reference_designator>, new_value);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none

parameters: [0..1] - in <ReferenceClass> new_value
[1..1] - in <ReferenceClass> new_value
other - in <ReferenceClass><CollectionKind> new_value

exceptions: [0..1] - MofError (Overflow, Underflow, Invalid Object, 
            Nil Object, Inaccessible Object, 
            Composition Closure, Composition Cycle,
            Reference Closure)
[1..1] - MofError (Overflow, Underflow, Invalid Object,  
            Nil Object, Inaccessible Object, 
            Composition Closure, Composition Cycle,
            Reference Closure)
other - MofError (Overflow, Underflow, Duplicate, 
            Nil Object, Inaccessible Object, 
            Invalid Object, Composition Closure,
            Composition Cycle, Reference Closure)
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-79



5

• In the [0..1] and [1..1] case, the caller passes a single Instance object in the 
“new_value” parameter that is used to create the replacement link.

• In other cases, the “new_value” parameter is a sequence of Instance objects that are 
used to create the replacement links. If the sequence is empty, no replacement links 
will be created.

The projection for an optional-valued Reference can only be set to “empty” using the 
“unset_<reference_name>” operation; see below.

The ordering semantics of the “set_<reference_name>” operation depend on the setting 
of “isOrdered” in the “multiplicity” for the Reference’s “referencedEnd” and 
“exposedEnd” AssociationEnds:

• If neither of the AssociationEnds has “isOrdered” set to true, the Association has no 
ordering semantics.

• If the “referencedEnd” AssociationEnd has “isOrdered” set to true, the order of the 
elements of the projection of “this” Instance after the operation has completed must 
be the same as the order of the elements of the “new_value” parameter.

• If the “exposedEnd” AssociationEnd has “isOrdered” set to true, the order of the 
elements of the “new_value” parameter (if it is multi-valued) are irrelevant. Instead, 
the operation is required to preserve the ordering of the projections that contained 
“this” object, both before and after the update, as follows:

• If “this” object is in a projection of some other Instance object before the 
operation but not afterwards, the order of the projection must be preserved, with 
“this” object removed.

• If “this” object is in a projection of some other Instance object after the operation 
but not before, the order of the projection must be preserved, and “this” object 
must be added at the end of the projection.

• If “this” object is in a projection of some other Instance object both before and 
after the operation, the “before” and “after” versions of the projection must be 
identical.

• It is impossible for both of the AssociationEnds to have “isOrdered” set to true.

A large number of error conditions can occur, depending on “new_value,” the current 
state of the Association and the multiplicity of the Reference’s “referencedEnd” and 
“exposedEnd” AssociationEnds:

• “Invalid Object,” “Nil Object,” and “Inaccessible Object” occur if any of the 
supplied Instance objects is a non-existent, nil or inaccessible Instance object.

• “Overflow” can occur in two cases. First, it occurs when the “new_value” parameter 
contains more elements than is allowed by the “referencedEnd”’s upper bound. 
Second, it occurs when the projection of an element of “new_value” after 
completion of the operation would have more elements than is allowed by the 
“exposedEnd”’s upper bound.

• “Duplicate” occurs for a multi-valued Reference when the “new_value” parameter 
collection contains two or more occurrences of the same Instance object.
5-80    OMG-MOF V1.3                           March 2000  



5

• “Underflow” can also occur in two cases. First it occurs when the “new_value” 
parameter contains fewer elements that is allowed by the “referencedEnd”’s lower 
bound. Second, it occurs when the projection of an element of “new_value” after 
completion of the operation would have fewer elements than is allowed by the 
“exposedEnd”’s lower bound, and fewer elements than it had before the operation 
commenced.

• “Reference Closure” occurs when “new_value” (in the [0..1], [1..1] case) or one of 
its elements (in the “other” case) belongs in a different outermost extent to “this” 
object.

• “Composition Closure” occurs in the same situation as “Reference Closure,” where 
the referenced Association has composite aggregation semantics.

• “Composition Cycle” occurs when the referenced Association has composite 
aggregation semantics, and the update would make “this” object a component of 
itself.

unset_<reference_name>

The “unset_<reference_name>” operation sets an optional-valued Reference to empty. 
If “isChangeable” is set to false for the Reference, or if the bounds are not [0..1], this 
operation is suppressed.

The “unset_<reference_name>” operation removes the link for this object from the link 
set of the referenced Association, should it exist. If no such link exists, the operation 
does nothing.

If the “exposedEnd” AssociationEnd has “isOrdered” set to true, the operation 
preserves the ordering of the projection that initially contains “this” Instance object.

reflective analog: ref_reset_value(<reference_designator>);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none

parameters: none

exceptions: MofError
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-81



5

add_<reference_name>

The “add_<reference_name>” operation adds the “new_element” Instance to a multi-
valued Reference collection by creating a link in the corresponding Association’s link 
set. “Invalid Object,” “Nil Object,” or “Inaccessible Object” occur if the 
“new_element” parameter is a non-existent, nil or inaccessible Instance object.

If the “referencedEnd” AssociationEnd has “isOrdered” set to true, the new link should 
be created so that “new_element” is the last element of the projection of “this” object. 
Alternatively, if the “exposedEnd” AssociationEnd has “isOrdered” set to true, the new 
link should be created so that “this” object is the last element of the projection of the 
“new_element” object. In either case, the operation should preserve the order of other 
elements in the respective ordered projections.

“Overflow” occurs if the number of elements in the projections of either the “this” 
object or the “new_element” object already equals the respective AssociationEnd’s 
upper bound.

“Duplicate” occurs if the operation would create a duplicate link in the link set for the 
referenced Association. For example, when the “new_element” value is a duplicate of 
a value in the current Reference collection.

“Reference Closure,” “Composition Closure,” and “Composition Cycle” all occur in 
similar situations to those described above for the “set_<reference_name>” operation.

The “add_<reference_name>” operation adds an Instance object to a Reference 
collection. If “isChangeable” is set to false for the Reference, or the Reference’s 
upper bound is 1, this operation is suppressed.

reflective analog: ref_add_value(<reference_designator>, new_element);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none

parameters: in <ReferenceClass> new_element

exceptions: MofError (Overflow, Duplicate, Invalid Object, Nil Object, 
Inaccessible Object, Reference Closure, Composition 
Closure, Composition Cycle)
5-82    OMG-MOF V1.3                           March 2000  



5

add_<reference_name>_before

The “add_<reference_name>_before” operation is a more specialized version of the 
“add_<reference_name>” operation described previously. It creates a link between 
“this” object and the “new_element” Instance object so that it appears in a designated 
place in “this” object’s projection.

The “before_element” parameter gives the Instance object in the projection of “this” 
before which the “new_element” object should be inserted. “Invalid Object,” “Nil 
Object,” and “Inaccessible Object” occur if either “new_element” or “before_element” 
is a non-existent, nil or inaccessible Instance object. “Not Found” occurs if 
“before_element” is not present in the projection of “this” object.

The new link is created such that the “new_element” object appears immediately 
before the “before_element” value in the projection of “this” object. Apart from this, 
the order of the projection’s elements is unchanged.

“Overflow,” “Duplicate,” “Reference Closure,” “Composition Closure” and 
“Composition Cycle” all occur in equivalent situations to those described above for the 
“add_<reference_name>” and “set_<reference_name>” operations.

modify_<reference_name>

The “modify_<reference_name>” operation updates a Reference collection, replacing 
one element with another. If the Reference is not multi-valued or its “isChangeable” 
multiplicity flag is set to false, this operation is suppressed.

The “add_<reference_name>_before” operation adds an Instance object at a 
particular place in an ordered Reference collection. If “isChangeable” or 
“isOrdered” is set to false for the Reference, this operation is suppressed.

reflective analog: ref_add_value_before(
    <reference_designator>, 
    new_element, before_element);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none

parameters: in <ReferenceClass> new_element
in <ReferenceClass> before_element

exceptions: NotFound, MofError (Overflow, Duplicate, Invalid Object, 
Nil Object, Inaccessible Object, Reference Closure, 
Composition Closure, Composition Cycle)

reflective analog: ref_modify_value(
    <reference_designator>, 
    old_element, new_element);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-83



5

The “modify_<reference_name>” operation updates the link set so that the projection 
of “this” object has “new_element” in place of “old_element.” The operation is 
notionally equivalent to either

<the_association>.modify_<association_end1>(

old_element, <this>, new_element)

or

<the_association>.modify_<association_end2>(

<this>, old_element, new_element)

where <the_association> is the current outermost extent’s M1-level Association object 
for the referenced M2-level Association.

The “old_element” and “new_element” parameters must both give usable Instance 
objects. “Invalid Object”, “Nil Object” or “Inaccessible Object” occur if either is a 
non-existent, nil or inaccessible object.

The “old_element” object must be an element of the projection of “this” object; that is, 
a link must already exist between “this” and “old_element .” “NotFound” occurs if this 
is not the case. If “old_element” and “new_element” are the same Instance object, the 
operation is required to do nothing at all.

If the referenced Association is ordered, the operation is required to preserve ordering 
as follows:

• If the “referencedEnd” AssociationEnd has “isOrdered” set to true, the order of the 
elements in the projection of “this” object should be preserved, with “new_element” 
occupying the same position as “old_element” did before the update.

• If the “exposedEnd” AssociationEnd has “isOrdered” set to true, the order of the 
elements in the projections of “old_element” and “new_element” should be 
preserved, except that “this” is removed from the former projection and added to the 
end of the latter projection.

“Overflow” occurs when the number of elements in the projection of “new_element” 
would be greater than the upper bound for the “exposedEnd” AssociationEnd.

“Underflow” occur when the number of elements in the projection of “old_element” 
would be decreased, and it would be less than the lower bound of the “exposedEnd” 
AssociationEnd. (In the case where “old_element” and “new_element” are the same 
object, the operation does not alter the number of elements in the projection. Hence 
“Overflow” cannot be signalled, even if the number of elements is less than the bound.)

parameters: in <ReferenceClass> old_element
in <ReferenceClass> new_element

exceptions: NotFound, MofError (Underflow, Overflow, Duplicate, Invalid 
Object, Nil Object, Inaccessible Object, Reference Closure, 
Composition Closure, Composition Cycle)
5-84    OMG-MOF V1.3                           March 2000  



5

“Duplicate” occurs if the “modify_<reference_name>” operation would introduce a 
duplicate into the projection. (Care should be taken to avoid signalling “Duplicate” in 
the case where “old_element” and “new_element” are the same object.)

“Reference Closure”, “Composition Closure” and “Composition Cycle” all occur in 
equivalent situations to those described above for the “add_<reference_name>” and 
“set_<reference_name>” operations.

remove_<reference_name>

The “remove_<reference_name>” operation updates a Reference collection by 
removing an element. If the Reference is not multi-valued or its “isChangeable” 
multiplicity flag is set to false, this operation is suppressed. It is also suppressed if the 
Reference’s lower and upper bounds are equal.

The “remove_<reference_name>” operation updates the link set (i.e., by removing a 
link) so that the projection of “this” object no longer contains “old_element.” 
“NotFound” occurs if there is no link to be deleted.

Note – The “remove_<reference_name>” operation should be able to cope with 
removal of a link when the object at the other end of a link is non-existent or 
inaccessible.

If the referenced Association is ordered, the operation is required to preserve the 
ordering of the projection with the ordered collection value.

“Underflow” occur when the number of elements in the projections of “old_element” 
and “this” would be less than the lower bounds of the respective AssociationEnds.

5.8.13 Operation Template

The Operation Template defines the IDL generation rules for M2-level Operations 
whose “visibility” is “public_vis.” It generates an IDL operation within the scope of an 
Instance or Class Proxy interface, depending on the scope of the M2-level Operation.

Template

// If the Operation has visibility of protected or private, no IDL

// is generated

reflective analog: ref_remove_value(
    <reference_designator>, old_element);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: none

parameters: in <ReferenceClass> old_element

exceptions: NotFound, MofError (Underflow)
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-85



5

<<ANNOTATION TEMPLATE>>

// if Operation contains no “return” Parameter 

void <operation_name>(

// else 

<ReturnParamType>[<CollectionKind>] <operation_name>(

// for each contained “in”, “out” or “inout” Parameter

<direction> <ParamType>[<CollectionKind>] <param_name>, ...

    )

    raises (

 // for each Exception raised by the Operation

<ExceptionName>, ... // (a trailing comma is required)

Reflective::MofError);

// for each Constraint contained by this Operation

<<CONSTRAINT_TEMPLATE>>

<operation_name>

An “<operation_name>” operation invokes an implementation specific method to 
perform the behavior implied by the M2-level Operation model element.

An “<operation_name>” operation invokes an implementation specific method. While 
the behavior of the method itself is beyond the scope of the IDL mapping, the 
signature of the IDL operation is defined by the mapping, along with some parameter 
checking semantics.

The return type for an “<operation_name>” operation is generated from the M2-level 
Operation’s (optional) return Parameter. For example, the contained Parameter object 
whose “direction” attribute has the value “return_dir”. The return type is as follows:

• If there is no return Parameter, the return type is “void”.

reflective analog: ref_invoke_operation(
    <reference_designator>, old_element);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-9).

return type: no return param - void
[0..1] return param - <ParamType>Bag <param_name>
[1..1] return param - <ParamType> <param_name>
other return param - <ParamType><CollectionKind>

<param_name>

parameters: <direction> <ParamType>[<CollectionKind>], ...

exceptions: <ExceptionName>, ...
MofError (Overflow, Underflow, Duplicate, Invalid Object)
5-86    OMG-MOF V1.3                           March 2000  



5

• If the return Parameter has “multiplicity” bounds of “[1..1]”, the return type is the 
“type” of the Parameter; i.e., <ParameterType>.

• If the return Parameter some other “multiplicity” bounds, the return type is a 
collection type determined by the bounds. For example, 
<ParameterType><CollectionKind>, as described in Section 5.7.1.6, “Literal String 
Values,” on page 5-42.

The parameter declarations for an “<operation_name>” operation are generated from 
the M2-level Operation’s Parameter, excluding the return Parameter (if any). For each 
non-return Parameter of the Operation, in the defined order, the “<operation_name>” 
declaration has a parameter declaration consisting of the following:

• The “<direction>” is produced by rendering the Parameter’s “direction” as “in,” 
“out,” or “inout” as appropriate.

• The “<ParameterType>[<CollectionKind>]” is produced from the Parameter’s 
“type” and “multiplicity” as follows:

• If the Parameter has “multiplicity” bounds of “[1..1]”, the <CollectionKind> is 
omitted.

• If the Parameter has “multiplicity” bounds other than “[1..1]”, <CollectionKind> 
is generated according to Section 5.7.1.6, “Literal String Values,” on page 5-42.

• The “<parameter_name>” is produced by rendering the Parameter’s name.

The list of exceptions raised by an “<operation_name>” operation is generated from 
the M2-level Operation’s “exceptions”. The generated “raises” list consists of an 
appropriately qualified identifier for each M2-level Exception in the Operation’s 
“exceptions” list, followed by the qualified identifier for the MofError exception. The 
“raises” list should of course be comma separated as required by the syntax for OMG 
IDL.

While meta-model specific error conditions should be signalled by raising exceptions 
corresponding to the Operation’s “exceptions” list, MofError is used to signal the 
following structural errors relating to the values supplied by the caller for “in” and 
“inout” parameters.

• “Overflow” occurs when the supplied collection value for a multi-valued parameter 
has more elements than is allowed by the M2-level Parameter’s upper bound.

• “Underflow” occurs when the supplied collection value for a multi-valued 
parameter has fewer elements than is allowed by the M2-level Parameter’s lower 
bound.

• “Duplicate” occurs when a multi-valued M2-level Parameter has “isUnique” set to 
true, and the supplied collection value contains members that are equal according to 
the definitions in Section 4.9, “Closure Rules,” on page 4-18.

• “Invalid Object” can occur if an Instance object typed parameter value or element is 
a reference to a non-existent (i.e., deleted) or inaccessible object. This condition 
will occur if duplicate checking finds an Instance object that it cannot test for 
equality. It can also occur if the semantics of the Operation require an Instance 
object reference to be usable.
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-87



5

Like all other operations that have MofError in their signature, an “<operation_name>” 
operation can use MofError to signal Constraint errors and Semantic errors.

5.8.14 Exception Template

The Exception template defines the IDL generation rules for M2-level Exceptions 
whose “visibility” is “public_vis.”

Template

// If the Exception has visibility of protected or private, no IDL

// is generated

<<ANNOTATION TEMPLATE>>

exception <ExceptionName> {

// for each Parameter

<ParameterType>[<CollectionKind>] <parameter_name>; ...

};

Description

The generated IDL for an M2-level Exception is an IDL exception. The declaration 
appears within an IDL interface or module corresponding to the Exception’s M2-level 
container. In the case of an M2-level Class, this is the Class Proxy interface so that the 
IDL exception is available to be raised by classifier-scoped Operations.

The fields of the IDL exception are generated from the Exception’s Parameters in a 
way that is similar to Operation Parameters:

• An Exception Parameter whose multiplicity has a “[1..1]” bound is mapped to a 
field whose type is “<ParameterType>”.

• An Exception Parameter whose multiplicity has any other bound is mapped to a 
field whose type is of the form “<ParameterType><CollectionKind>,” generated 
according to the rules in Section 5.7.1.6, “Literal String Values,” on page 5-42.

5.8.15 Constant Template

The Constant Template defines the rules for generating IDL constant declarations from 
M2-level Constants.

Template

<<ANNOTATION TEMPLATE>>

const <ConstantType> <CONSTANT_NAME> = <CONSTANTVALUE>;
5-88    OMG-MOF V1.3                           March 2000  



5

The generated IDL for an M2-level Constant is an IDL constant declaration. The IDL 
appears an interface or module corresponding to the Constant’s M2-level container. In 
the container is a Class, the declaration appears within the Class Proxy interface.

The IDL generation process needs to produce a valid IDL literal value of the 
appropriate type from the Constant’s “value.”

5.8.16 DataType Template

The DataType Template defines the rules for generating IDL for an M2-level DataType 
whose “visibility” is “public_vis.” This typically consists of an IDL type declaration 
for the data type, followed by one or more collection type declarations, as required.

Note – If the IDL mapping preconditions are strictly observed, the template will only 
generate IDL declarations for the DataType’s type in cases where this is appropriate.

Template

// If the DataType’s name does not a map to a valid IDL identifier,

// valid name, no IDL is generated

// If the DataType’s visibility is protected or private, no IDL

// is generated

<<ANNOTATION TEMPLATE>>

// generate the DataType’s type declaration

// if the DataType’s typecode kind is tk_alias

typedef <TYPECODE.CONTENTS.TYPESPEC> <datatype_name>;

// else

//    the DataType’s typecode kind is for a named IDL data type

//    (i.e., a struct, union or enumeration type)

<TYPECODE.TYPESPEC>;

// For each Constraint contained by this DataType

<<CONSTRAINT_TEMPLATE>>

// if collection types for the DataType are used within the 

// current outermost Package, for each collection type:

typedef sequence < <DataTypeName> > <DataTypeName><CollectionKind>;
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-89



5

Description

A DataType template only generates IDL type declarations for named M2-level 
DataTypes that represent CORBA data types:

• A DataType whose name does not map to a valid identifier represents a use of an 
anonymous data type. This does not require an IDL data type declaration, or any 
collection type declarations at this point. If they are required, the collection type 
declarations will appear at the beginning of the outermost module.

• A DataType whose “typeCode” kind is “tk_objref” represents a use of either a Class 
or an externally defined CORBA interface. In either case, the DataType template 
generates nothing.

The generation process is effectively a “reverse compilation” of the DataType’s 
“typeCode” into OMG IDL text. The process is not spelled out in detail here, but can 
be inferred from the syntax of type declarations in IDL, the structure of TypeCodes and 
the restrictions that the MOF Model and the IDL mapping place on them.

If a DataType is used in an M2-level Attribute, Reference, AssociationEnd or 
Parameter with a multiplicity other than “[1..1]”, it is likely that the generated IDL for 
the current meta-model will contain a reference to one or more collection types for the 
DataType’s mapped type. If this is so, the template also generates sequence type 
declarations for the required collection types; see Section 5.7.2, “Generation Rules for 
Collection Types,” on page 5-42.

Note – In the interests of IDL footprint size, the DataType template should only 
generate collection type declarations if they are needed.

Finally, if a DataType contains any Constraints, the corresponding constraint name 
strings need to be generated.

5.8.17 Constraint Template

The Constraint template defines the rules for generating the requisite error kind string 
declaration for an M2-level Constraint.

Template

<<ANNOTATION TEMPLATE>>

const string <CONSTRAINT_NAME> = "<constraint.string>";

Description

The Constraint template generates an IDL string constant whose name is based on the 
M2-level Constraint name. If the Constraint is contained by an M2-level DataType or 
Operation, the constant declaration is generated within the scope of the Constraint 
5-90    OMG-MOF V1.3                           March 2000  



5

container’s container. If this results in a name collision, the meta-modeler can solve the 
problem using a substitute name tag as described in Section 5.6.2.1, “Substitute 
Name,” on page 5-37.

The “<constraint.string>” value is generated to match the following syntax (expressed 
in EBNF):

<constraint.string> ::= [ <IDL prefix> ] ‘:constraint.’ 

( <container_name> ‘.’ )+ <constraint_name>

The components of the error kind string value are as follows:

• If the meta-model has an IDL prefix (see Section 5.6.1.1, “IDL Prefix,” on 
page 5-36), the string starts with the value of this prefix.

• Next there is a colon (“:”) to separate the prefix from the rest of the string.

• Next there is the fixed string “constraint” to indicate that the class of error, followed 
by a period (“.”).

• Next there are a series of Format 2 renderings of the names of the Constraint’s 
enclosing containers. These are separated by period (“.”) characters, and followed 
another period.

• The value ends with the Format 2 rendering of the name of the Constraint itself.

5.8.18 Annotation Template

The Annotation template optionally generates IDL comments for an M2-level 
ModelElement’s “annotation”. This template should be regarded as indicative rather 
than normative.

Template

// Annotation comments may optionally be suppressed by the IDL

// generator

// Annotation comments may use the "/*…*/" style 

/* <line 1 of the ANNOTATION>

   <line 2 of the ANNOTATION>

   . . . 

   <line N of the ANNOTATION> */

// or the "//" style

// <line 1 of ANNOTATION>

// <line 2 of ANNOTATION>

// . . .
OMG-MOF V1.3        IDL Mapping Templates         March 2000 5-91



5

// <line N of the ANNOTATION>

Description

The Annotation template optionally includes the “annotation” for a ModelElement in 
the generated IDL as an IDL comment. It is anticipated that a vendor’s IDL generator 
would give some control over the way that these comments are generated. For example, 
allowing the user to

• suppressing the comments completely,

• choose between the two styles of comments, and

• choose whether or not to respect embedded line breaks and other markup.
5-92    OMG-MOF V1.3                           March 2000  



The Reflective Module 6
Note – See page 6-8 for errata, marked with changebar.

Contents

This chapter contains the following topics. 

6.1 Introduction

One of the advantages of meta-objects (in the general sense) is that they allow a 
program to use objects without prior knowledge of the objects' interfaces. In the MOF 
context, an object's M2-level meta-object allows a program to “discover” the nature of 
any M1-level MOF object, both at a syntactic level and at a deeper level. With this 
information in hand, the MOF’s Reflective interfaces allow a program to:

• create, update, access, navigate and invoke operations on M1-level Instance objects,

• query and update links using M1-level Association objects, and 

• navigate an M1-level Package structure

without using meta-model specific interfaces. 

Topic Page

“Introduction” 6-1

“The Reflective Interfaces” 6-3

“The CORBA IDL for the Reflective Interfaces” 6-29
    OMG-MOF V1.3  - errata                           October 2001 6-1



6

Note – The functionality above is all available through the "model specific" interfaces 
defined by the IDL mapping described in this chapter. The Reflective interfaces do not 
allow a program to access or update MOF objects contrary to their meta-object 
descriptions. For example, they cannot be used to create, access or update Attributes 
that do not exist, or to bypass Constraint checking.

In addition, the Reflective interfaces allow the program to:

• find an M1-level object's M2-level meta-object,

• find a MOF object’s container(s) and enclosing Package(s),

• test for MOF object identity, and

• delete a MOF object.

Note – While many of these capabilities are correctly described as reflective, the MOF 
does not offer the full repertoire of reflective programming features.  Since it does not 
define object behavior, the MOF does not define interfaces for reflective behavior 
modification. Even if it did, these interfaces could not be implemented in many 
CORBA contexts.

The CORBA Interface Repository (IR) and the Dynamic Invocation Interface (DII), 
provide similar capabilities in the context of a CORBA object's Interface.  However, 
using the IR and DII for this purpose means that the user cannot make use of the richer 
semantic information in models defined using the MOF meta-model.  For example, the 
IR can tell the user that the “Model::Contains” IDL interface has an operation called 
“exists;” however, it is only by using MOF meta-objects that the user knows that the 
“exists” operation tests whether one object “contains” another one.

The MOF Reflective module contains four "abstract" interfaces that are inherited by 
the M1-level interfaces for a model that are generated from a meta-model by the IDL 
mapping. 

1. The Reflective::RefObject interface provides common operations for M1-level 
Instance objects and Class Proxy objects. 

2. The Reflective::RefAssociation interface provides common operations for M1-level 
Association objects. 

3. The Reflective::RefPackage interface provides a common operations for M1-level 
Package objects. 

4. The Reflective::RefBaseObject interface provides common operations for all MOF 
objects.

Since the M2-level interfaces for the MOF Model are generated by this means, they 
also inherit from the Reflective interfaces.
6-2     OMG-MOF V1.3  - errata                           October 2001  



6

6.2 The Reflective Interfaces

This section describes the interfaces defined in the "Reflective" module. These 
interfaces are modeled on the interfaces that are produced by the IDL mapping. 
However, there are some important differences:

• Reflective operations pass the values of Attributes and References, and of the 
Parameters to Operations and Exceptions as CORBA Any values. The mapped 
versions of these operations pass the values using precise types according to the 
meta-model.

• Reflective operations on Associations pass Instance objects with the type 
RefObject. The mapped versions of these operations pass Instance objects using 
their true types.

• The "target" feature for a Reflective operation is passed as a "designator" parameter 
whose type is a MOF meta-object. In the mapped case, the target is implicit in the 
mapped operation name.

As stated previously, the Reflective versions of operations which are defined in the 
mapped IDL do not allow a program to violate the information and computational 
models implied by the meta-model definition. This includes not allowing operations 
that, while meaningful for a model, are not possible using the mapped interfaces. For 
example, while it might be meaningful to call “refSetValue” on an optional Attribute 
passing an "empty" argument (encoded appropriately), this is not allowed: the program 
must use “refSetValue.”

This section consists of a subsection that explains some common patterns that are used 
for encoding parameters used by many Reflective operations. The remaining four 
subsections describe each Reflective interface in turn.

6.2.1 Reflective Argument Encoding Patterns.

The Reflective module make heavy use of the CORBA Any type to provide meta-
model independent interfaces. This section defines some common patterns used 
throughout the Reflective interfaces for encoding parameter values in Anys.

Note – It is important that the type information (expressed as CORBA TypeCodes) in 
the encoded Anys be precisely as specified below. In particular, collection type aliases 
and their names are mandatory.

If the base type of the value-defining feature is a DataType, the TypeCode in the 
encoded Any must be the full TypeCode for the base type. Type aliases must not be 
optimized away, and all optional names (e.g., of struct types, fields, and so on) must be 
present. (Optimization of type information in Anys should done at the ORB level if at 
all.)
OMG-MOF V1.3 - errata          The Reflective Interfaces          October 2001 6-3



6

Note – The IDL templates can cause multiple copies of a collection type to be declared 
in the generated IDL for a composite meta-model. Since the copies are logically 
identical, MOF client and server code needs to take care when extracting collection 
values from Anys. In particular, if the stub-generated extraction operations will fail if 
the "wrong" copy of a collection type is used, the code may need to use DynAny 
instead.

6.2.1.1 The Standard Value Encoding Pattern

This pattern is used for encoding complete values as ValueTypes. It is used in most 
cases where a reflective operation requires or provides a complete value for an element 
that may be collection valued (depending on the multiplicity). Examples that use this 
pattern are values for Operation arguments and results, values for Exception fields and 
Attribute initial values in a create operation.

6.2.1.2 The Alternate Value Encoding Pattern

The standard pattern for encoding complete values (above) does not fit well with the 
IDL templates for the specific "get" and "set" operations. To improve the alignment 
between the reflective and specific interfaces, the following alternative pattern is used 
for the “The “The  operation fetches the current value of the Attribute or Reference 
denoted by the "feature" argument. If this object is a Class proxy, only classifier 
scoped Attributes can be fetched.” operation fetches the current value of the Attribute 
or Reference denoted by the "feature" argument. If this object is a Class proxy, only 
classifier scoped Attributes can be fetched.” and “The “refSetValue” operation assigns 
a new value to an Attribute or Reference for an object. The assigned value must be a 
single value or a collection value depending on the feature’s multiplicity.” operations 
for Attributes and References.

Table 6-1 Standard Value Encoding Pattern

Bounds ValueType Encoding Notes

[0..1] Any(alias(seq(<type>, 0)))
where the alias name is <typeName>Bag

An "optional" feature value with no elements is 
encoded as zero length sequence.

[1..1] Any(<type>)

others Any(alias(seq(<type>, 0)))
where the alias name is 
<typeName><CollectionKind>

A "multi-valued" feature value with no elements 
is encoded as a zero length sequence.
6-4     OMG-MOF V1.3  - errata                           October 2001  



6

.

6.2.1.3 The Value Member Encoding Pattern

The following pattern is used in the reflective versions of the add, modify and remove 
operations that operate on the individual members of a multi-valued Attribute or 
Reference. The pattern is simply to encode the member as an Any containing an 
instance of the feature’s base type. For example:

Any(<type>)

6.2.1.4 The Link Encoding Pattern

Some of the operations in the RefAssociation interface use the "generic" Link type to 
pass link values; see Section 6.3.2, “Data Types,” on page 6-30. While the Link type 
uses RefObject rather than Any, a pattern is still required to describe the encoding.

The "generic" Link type is declared as a sequence of RefObject values with an upper 
bound of 2. The standard encoding of a link for a given Association is:

Link(<assocEnd1Type>, <assocEnd2Type>)

In other words, the sequence value contains precisely two elements, and the elements 
appear in the order of the corresponding AssociationEnds in the Association.

6.2.2 Reflective::RefBaseObject  abstract

The RefBaseObject interface is inherited by the other three reflective interfaces. It 
provides common operations for testing for object identity, returning an object's meta-
object, and returning its "repository container" as required for implementing structural 
constraints such as the MOF's type closure rule and composition restrictions.

Supertypes

none (root object)

Table 6-2 Alternate Value Encoding Pattern

Bounds ValueType Encoding Notes

[0..1] Any(<type>) An "optional" feature value with no elements is handled 
as follows:
• the ref_get_value() raises Unset when the value is empty
• the ref_unset_value() is used to set value to no elements

[1..1] Any(<type>)

others Any(alias(seq(<type>, 0)))
where the alias name is 
<typeName><CollectionKind>

A "multi-valued" feature value with no elements is 
encoded as a zero length sequence.
OMG-MOF V1.3 - errata          The Reflective Interfaces          October 2001 6-5



6

Operations

refMofId

The “refMofId” operation returns this object’s permanent unique identifier string.

Every MOF object has a permanent, unique MOF identifier associated with it. This 
identifier is generated and bound to the object when it is created and cannot be 
changed for the lifetime of the object. The primary purpose of the MOF identifier is to 
serve as a label that can be compared to definitively establish an object’s identity.

An MOF implementation must ensure that no two distinct MOF objects within the 
extent of an outermost Package object ever have the same MOF identifier. This 
invariant must hold for the lifetime of the extent.

A group of outermost Package extents can only be safely federated if the respective 
implementations can ensure the above invariant applies across the entire federation. A 
federation of extents in which the invariant does not hold is not MOF compliant.

The MOF specification does not mandate a scheme for achieving this. Instead, the 
following approach is recommended:

1. Choose an appropriate scheme (or schemes) for allocating unique identifiers. This 
will depend on the nature of the federation.

2. Define a textual syntax for MOF identifier strings of the form:

<scheme-prefix> ":" <scheme-specific-part>

where <scheme-prefix> is either standardized elsewhere, or a vendor or user 
specific string that is unlikely to clash with other prefixes.

In the absence of a more appropriate identifier generation scheme, it is recommended 
that the following scheme based on the DCE UUID algorithm and textual encoding be 
used. The recommended DCE UUID-based identifier syntax is:

"DCE" ":" <printable-form-of-dce-uuid> [":" <decimal-digits>]

For example:

"DCE:d62207a2-011e-11ce-88b4-0800090b5d3e"

"DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:1234"

specific analog: none

return type: string

isQuery: yes

parameters: none

exceptions: none
6-6     OMG-MOF V1.3  - errata                           October 2001  



6

The first case would be used when it is acceptable to generate a new DCE UUID for 
each MOF object. The second case might be used when the overheads of doing this are 
too large, or the required rate of UUID generation is too high. In this case, the UUID 
would denote an extent incarnation, and the suffix would be a local object sequence 
number for the extent incarnation does not repeat during the latter’s lifetime.

refMetaObject

The “refMetaObject” operation returns the Model::ModelElement object that describes 
this object in its metamodel specification.

If the object’s meta-object is unavailable, the return value may be a CORBA nil object 
reference.

refItself

The “refItself” operation tests whether this object and another RefBaseObject provided 
as an argument are the same CORBA object.

"Invalid Object" occurs if the "otherObject" is not a valid object, or if it is inaccessible.

refImmediatePackage

The “RefImmediatePackage” operation returns the RefPackage object for the Package 
that most immediately contains or aggregates this object.

specific analog: none

return type: DesignatorType

isQuery: yes

parameters: none

exceptions: none

specific analog: none

return type: boolean

isQuery: yes

parameters: otherObject : in RefBaseObject

exceptions: MofError (Invalid Object)

specific analog: none

return type: RefPackage

isQuery: yes

parameters: none

exceptions: none
OMG-MOF V1.3 - errata          The Reflective Interfaces          October 2001 6-7



6

If this object has no containing or aggregating Package (i.e., it is the RefPackage object 
for an outermost Package), then the return value is a CORBA nil object reference. In 
complex cases where there is more than one immediate aggregating Package (see 
Section 4.6, “Extents,” on page 4-9 and Section 5.2.1, “Meta Object Type Overview,” 
on page 5-2, the return value may be any of them.

refOutermostPackage

The “refOutermostPackage” operation returns the RefPackage object for the Package 
that ultimately contains this object.

If this object is the RefPackage object for an outermost Package, then the return value 
is this object.

refDelete

The “refDelete” operation destroys this object, including the objects it contains directly 
or transitively (see Section 5.3.2, “Lifecycle Semantics for the IDL Mapping,” on 
page 5-8 and Section 4.8, “Aggregation Semantics,” on page 4-17). 

The semantics of this operation depend on this RefBaseObject’s most derived type; see 
Section 5.2.1, “Meta Object Type Overview,” on page 5-2. Five sub-cases of 
RefBaseObject need to be considered here:

• outermost (i.e., non-nested, non-dependent) Package objects,

• nested or dependent Package objects,

• Association objects,

• Class proxy objects, and

• Instance objects.

Ordinary clients may only use “refDelete” to delete instances of outermost Package 
objects and Instance objects.

specific analog: none

return type: RefPackage

isQuery: yes

parameters: none

exceptions: none

specific analog: none

return type: none

parameters: none

exceptions: MofError (Invalid Deletion)
6-8     OMG-MOF V1.3  - errata                           October 2001  



6

• Deletion of an outermost Package causes all objects within its extent to be deleted; 
see Section 5.3.2.1, “Package object creation and deletion semantics,” on page 5-8.

• Deletion of an Instance object deletes it and its component closure; see 
Section 5.3.2.2, “Instance object lifecycle semantics,” on page 5-9.

"Invalid Deletion" occurs if an ordinary client invokes “refDelete” on a nested or 
dependent Package object, an Association object, or a Class proxy object.

As part of the deletion of an outermost Package, a Package object’s implementation 
may use the “refDelete” operation to delete nested or dependent Package objects, 
Association objects and Class proxy objects as well as Instance objects.

Interface

interface RefBaseObject {
string ref_mof_id ();
DesignatorType ref_meta_object ();
boolean ref_itself (in RefBaseObject other_object);
RefPackage ref_immediate_package ();
RefPackage ref_outermost_package ();
void ref_delete ()

raises (MofError);
}; // end of RefBaseObject

6.2.3 Reflective::RefObject  abstract

The RefObject interface provides the meta-object description of an object that inherits 
from it, provides generic operations for testing for object identity and type 
membership, and a range of operations for accessing and updating the object in a 
model independent way.

The model assumed by the interface is that an object has structural features and 
operations. The model allows structural features to have single values or collection 
values. In the latter case, the collection values may have ordering or uniqueness 
semantics. There is provision for creation of new object instances, and for obtaining 
the set of objects that exist in a context.

Supertypes

RefBaseObject

Operations

refIsInstanceOf
OMG-MOF V1.3 - errata          The Reflective Interfaces          October 2001 6-9



6

This operation tests whether this RefObject is an instance of the Class described by the 
"someClass" meta-object. If the "considerSubtypes" argument is true, an object whose 
Class is a subclass of the Class described by "someClass" will be considered as an 
instance of the Class.

refCreateInstance

This operation creates a new instance of the Class for the RefObject's most derived 
interface. The operation can be called on a Class proxy object or an Instance object. 
The "args" list gives the initial values for the new Instance object’s instance scoped, 
non-derived Attributes.

The members of the "args" list correspond 1-to-1 to the parameters for the specific 
create operation. They must be encoded as per Section 6.2.1.1, “The Standard Value 
Encoding Pattern,” on page6-4 . "Wrong Type" and "Wrong Number Parameters" when 
the "args" list has the wrong length or is incorrectly encoded.

"Abstract Class" occurs when “refCreateInstance” is called to create an instance of an 
"abstract Class. The remaining error conditions are directly equivalent to error 
conditions for the specific "create" operation.

refAllObjects

The “refAllObjects” operation returns the set of all Instances in the current extent 
whose type is given by this object’s Class. The operation can be called on a Class 
proxy object or an Instance object.

specific analog: none

return type: boolean

isQuery: yes

parameters: someClass : in DesignatorType 
considerSubtypes : in boolean

exceptions: MofError (Invalid Designator, Wrong Designator Kind)

specific analog: create_<class_name>(...); (see Section 5.8.9, “Class Create 
Template,” on page 5-57).

return type: RefObject

parameters: args : in ValueType (multiplicity: zero or more; ordered)

exceptions: MofError (Overflow, Underflow, Duplicate, Composition 
Closure, Supertype Closure, Already Created, Abstract Class, 
Wrong Type, Wrong Number Parameters)
6-10     OMG-MOF V1.3  - errata                           October 2001  



6

If "includeSubtypes" is true, the Instance objects for any subClasses of the M2 level 
Class are also included in the result set. This case is equivalent to the specific 
"all_of_type_<class_name>".

If the M2 level Class has “isAbstract” set to true, the result of

ref_all_objects(false)

is an empty set.

refValue

The “refValue” operation fetches the current value of the Attribute or Reference 
denoted by the "feature" argument. If this object is a Class proxy, only classifier 
scoped Attributes can be fetched.

The result for the “refValue” operation is encoded as per Section 6.2.1.2, “The 
Alternate Value Encoding Pattern,” on page 6-4.

"NotSet" occurs when the feature’s multiplicity is [0..1] and its value is unset (i.e., an 
empty collection). This should not occur with other multiplicities.

specific analog: attribute all_of_type_<class_name>; 
attribute all_of_class_<class_name>;
(See Section 5.8.6, “Class Template,” on page 5-53).

return type: RefObject (multiplicity zero or more; unique; unordered)

isQuery: yes

parameters: includeSubtypes : in boolean

exceptions: none

specific analog: <reference_name>(); (see Section 5.8.13, “Operation 
Template,” on page 5-85). 

<attribute_name>(); (see Section 5.8.11, “Attribute Template,” 
on page 5-67).

return type: ValueType

isQuery: yes

parameters: feature : in DesignatorType

exceptions: NotSet, MofError (Invalid Designator, Wrong Designator 
Kind, Unknown Designator, Not Public, Wrong Scope, 
Underflow)
OMG-MOF V1.3 - errata          The Reflective Interfaces          October 2001 6-11



6

"Invalid Designator," "Wrong Designator Kind," "Unknown Designator," "Not Public," 
and "Wrong Scope" all occur in cases where the "feature" argument does not denote an 
Attribute or Reference accessible from this object.

"Underflow" occurs when the feature is a Reference with multiplicity is [1..1] and its 
value has not been initialized. This should not occur for an Attribute or with other 
multiplicities.

refSetValue

The “refSetValue” operation assigns a new value to an Attribute or Reference for an 
object. The assigned value must be a single value or a collection value depending on 
the feature’s multiplicity.

The "newValue" parameter must be encoded as per Section 6.2.1.2, “The Alternate 
Value Encoding Pattern,” on page 6-4. "Wrong Type" occurs when this parameter is 
incorrectly encoded.

"Invalid Designator," "Wrong Designator Kind," "Unknown Designator," "Not Public," 
"Wrong Scope," and "Not Changeable" all occur in situations where the "feature" 
parameter does not denote a changeable Attribute or Reference that is accessible from 
this object. 

The remaining error conditions are directly equivalent to error conditions for the 
"set_<feature_name>" operation.

refUnsetValue

The “refUnsetValue” operation resets an optional Attribute or Reference to contain no 
elements. This operation can only be used when the feature’s multiplicity is [0..1].

specific analog: set_<reference_name>(newValue); (see Section 5.8.12, 
“Reference Template,” on page 5-76).

set_<attribute_name>(newValue); (see Section 5.8.11, 
“Attribute Template,” on page 5-67).

return type: none

parameters: feature : in DesignatorType
newValue : in ValueType

exceptions: MofError (Invalid Designator, Wrong Designator Kind, 
Unknown Designator, Not Public, Wrong Scope, Not 
Changeable, Underflow, Overflow, Duplicate, Reference 
Closure, Composition Closure, Composition Cycle, Invalid 
Object, Nil Object, Inaccessible Object, Wrong Type)
6-12     OMG-MOF V1.3  - errata                           October 2001  



6

"Invalid Designator," "Wrong Designator Kind," "Unknown Designator," "Not Public," 
"Wrong Scope," "Not Changeable," and "Wrong Multiplicity" all occur in situations 
where the "feature" parameter does not denote an Attribute or Reference for which 
"unset_<feature_name>" is allowed.

"Underflow" occurs in the same situation as for the "unset_< feature_name>" operation. 
For example, when "feature" is a Reference whose exposed Association End has a non-
zero lower bound.

refAddValue

The “refAddValue” operation adds a new element to the current value of an Attribute 
or Reference with multiplicity that allows multiple values. If the Attribute or Reference 
is ordered, the new element is added at the end of the current value.

The "newElement" parameter should contain a single value of the feature’s base type. 
"Wrong Type" occurs when it does not.

specific analog: unset_<reference_name>(); (see Section 5.8.12, “Reference 
Template,” on page 5-76).

unset_<attribute_name>(); (see Section 5.8.11, “Attribute 
Template,” on page 5-67).

return type: none

parameters: feature : in DesignatorType

exceptions: MofError (Invalid Designator, Wrong Designator Kind, 
Unknown Designator, Not Public, Wrong Scope, Not 
Changeable, Wrong Multiplicity, Underflow)

specific analog: add_<reference_name>(newElement); (see Section 5.8.12, 
“Reference Template,” on page 5-76).

add_<attribute_name>(newElement); (see Section 5.8.11, 
“Attribute Template,” on page 5-67).

return type: none

parameters: feature : in DesignatorType
newElement : in ValueType

exceptions: MofError (Invalid Designator, Wrong Designator Kind, 
Unknown Designator, Not Public, Wrong Scope, Not 
Changeable, Wrong Multiplicity, Overflow, Duplicate, Invalid 
Object, Nil Object, Inaccessible Object, Reference Closure, 
Composition Closure, Composition Cycle, Wrong Type)
OMG-MOF V1.3 - errata          The Reflective Interfaces          October 2001 6-13



6

"Invalid Designator," "Wrong Designator Kind," "Unknown Designator," "Not Public," 
"Wrong Scope," "Not Changeable," and "Wrong Multiplicity" all occur when the 
"feature" parameter does not designate a Reference or Attribute for which the 
"add_<feature_name>" operation is allowed. 

The remaining error conditions are directly equivalent to error conditions for the 
"add_<feature_name>" operation.

refAddValueBefore

The “refAddValueBefore” operation is similar to “refAddValue” except that the caller 
specifies an existing element before which the new element is to be added. This 
operation can only be used for Attributes and References that are multi-valued and 
ordered. If the feature is non-unique (and therefore an Attribute), the insertion is made 
before the first element that matches, starting from the beginning of the collection.

The "newElement" and "beforeElement" parameters should each contain a single value 
of the feature’s base type. "Wrong Type" occurs when it does not.

"Invalid Designator," "Wrong Designator Kind," "Unknown Designator," "Not Public," 
"Wrong Scope,", "Not Changeable," and "Wrong Multiplicity" all occur when the 
"feature" parameter does not designate a Reference or Attribute for which the 
"add_<feature_name>_before" operation is allowed. 

The remaining error conditions are directly equivalent to error conditions for the 
"add_<feature_name>_before" operation.

refAddValueAt

The “refAddValueAt” operation is similar to “refAddValueBefore” except that the 
caller explicitly gives the position of the insertion. The operation is only applicable to 
multi-valued ordered, non-unique Attributes.

specific analog: add_<ref_name>_before(newElement, beforeElement); 
(see Section 5.8.12, “Reference Template,” on page 5-76)

add_<attr_name>_before(newElement, beforeElement); 
(see Section 5.8.11, “Attribute Template,” on page 5-67)

return type: none

parameters: feature : in DesignatorType
newElement : in ValueType
beforeElement : in ValueType

exceptions: NotFound, MofError (Invalid Designator, Wrong Designator Kind, 
Unknown Designator, Not Public, Wrong Scope, Not Changeable, 
Wrong Multiplicity, Overflow, Duplicate, Invalid Object, Nil Object, 
Inaccessible Object, Reference Closure, Composition Closure, 
Composition Cycle, Wrong Type)
6-14     OMG-MOF V1.3  - errata                           October 2001  



6

The "newElement" parameter should contain a single value of the Attribute’s base type. 
"Wrong Type" occurs if it is not.

The "position" parameter is interpreted the same way as for the corresponding specific 
operation. "Bad Position" occurs if the position parameter’s value is out of range, as 
defined for the "add_<feature_name>_at" operation (i.e., if it is greater than the size of 
the collection before the operation is invoke).

"Invalid Designator," "Wrong Designator Kind," "Unknown Designator," "Not Public," 
"Wrong Scope," "Not Changeable," and "Wrong Multiplicity" all occur when "feature" 
does not designate an Attribute for which the "add_<feature_name>_at" operation is 
allowed. 

The remaining error conditions are directly equivalent to error conditions for the 
specific "add_<feature_name>_at" operation.

refModifyValue

The “refModifyValue” operation replaces one element of a multi-valued Attribute or 
Reference with a new value. If the feature is an ordered and non-unique (and therefore 
an Attribute), the element modified is the first one that matches, starting from the 
beginning of the collection.

specific analog: add_<ref_name>_at(newElement, position); 
(see Section 5.8.12, “Reference Template,” on page 5-76)

add_<attr_name>_at(newElement, position); 
(see Section 5.8.11, “Attribute Template,” on page 5-67

return type: none

parameters: feature : in DesignatorType
newElement : in ValueType
position : in unsigned long

exceptions: BadPosition, MofError (Invalid Designator, Wrong Designator Kind, 
Unknown Designator, Not Public, Wrong Scope, Not Changeable, 
Wrong Multiplicity, Overflow, Duplicate, Invalid Object, Nil Object, 
Inaccessible Object, Reference Closure, Composition Closure, 
Composition Cycle, Wrong Type)
OMG-MOF V1.3 - errata          The Reflective Interfaces          October 2001 6-15



6

The "newElement" and "oldElement" parameters should contain a single value of the 
feature’s base type. "Wrong Type" occurs if it is not.

The "oldElement" parameter should be an existing element of the collection being 
updated. "Not Found" occurs if it is not.

"Invalid Designator," "Wrong Designator Kind," "Unknown Designator," "Not Public," 
"Wrong Scope," "Not Changeable," and "Wrong Multiplicity" all occur when the 
"feature" parameter does not designate a Reference or Attribute that supports the 
"modify_<feature_name>" operation. 

The remaining error conditions are directly equivalent to error conditions for the 
"modify_<feature_name>" operation.

refModifyValueAt

The “refModifyValueAt” operation is similar to the “refModifyValue” operation, 
except that the element to be modified is specified by position. The operation is only 
applicable to multi-valued, ordered, non-unique Attributes.

specific analog: modify_<ref_name>(oldElement, newElement); 
(see Section 5.8.12, “Reference Template,” on page 5-76)

modify_<attr_name>(oldElement, newElement); 
(see Section 5.8.11, “Attribute Template,” on page 5-67)

return type: none

parameters: feature : in DesignatorType
oldElement : in ValueType
newElement : in ValueType

exceptions: NotFound, MofError (Invalid Designator, Wrong Designator Kind, 
Unknown Designator, Not Public, Wrong Scope, Not Changeable, 
Wrong Multiplicity, Underflow, Overflow, Duplicate, Invalid Object, 
Nil Object, Inaccessible Object, Reference Closure, Composition 
Closure, Composition Cycle, Wrong Type)
6-16     OMG-MOF V1.3  - errata                           October 2001  



6

The "newElement" parameter should contain a single value of the Attribute’s base type. 
"Wrong Type" occurs if it is not.

The "position" parameter is interpreted in the same way as for the corresponding 
specific operation. "Bad Position" occurs if the position parameter’s value is out of 
range, as defined for the "modify_<feature_name>_at" operation (i.e., if it is greater 
than or equal to the size of the collection).

"Invalid Designator," "Wrong Designator Kind," "Unknown Designator," "Not Public," 
"Wrong Scope," "Not Changeable," and "Wrong Multiplicity" all occur when "feature" 
does not designate an Attribute for which the "modify_<feature_name>_at" operation 
is allowed. 

The remaining error conditions are directly equivalent to error conditions for the 
specific "modify_<feature_name>_at" operation.

refRemoveValue

The “refRemoveValue” operation removes an element of a multi-valued Attribute or 
Reference. The operation is only applicable when the upper bound is not equal to the 
lower bound. When the feature is ordered and non-unique (and therefore an Attribute) 
the element removed is the first one in the collection that matches, starting from the 
beginning of the collection.

specific analog: modify_<ref_name>_at(newElement, position); 
(see Section 5.8.12, “Reference Template,” on page 5-76)

modify_<attr_name>_at(newElement, position); 
(see Section 5.8.11, “Attribute Template,” on page 5-67)

return type: none

parameters: feature : in DesignatorType
newElement : in ValueType
position : in unsigned long

exceptions: BadPosition, MofError (Invalid Designator, Wrong Designator Kind, 
Unknown Designator, Not Public, Wrong Scope, Not Changeable, 
Wrong Multiplicity, Underflow, Overflow, Duplicate, Invalid Object, 
Nil Object, Inaccessible Object, Reference Closure, Composition 
Closure, Composition Cycle, Wrong Type)
OMG-MOF V1.3 - errata          The Reflective Interfaces          October 2001 6-17



6

The "oldElement" parameter should contain a single value of the Attribute’s base type. 
"Wrong Type" occurs if it is not.

"Not Found" occurs if the value in the "oldElement" parameter is not a member of the 
collection.

"Invalid Designator," "Wrong Designator Kind," "Unknown Designator," "Not Public," 
"Wrong Scope," "Not Changeable," and "Wrong Multiplicity" all occur when "feature" 
does not designate an Attribute or Reference for which the "remove_< feature_name>" 
operation is allowed. 

The remaining error conditions are directly equivalent to error conditions for the 
specific "remove_<feature_name>" operation.

refRemoveValueAt

The “refRemoveValueAt” operation is similar to the “refRemoveValue” operation 
except that the element to be modified is specified by position. Furthermore, the 
operation is only applicable to ordered, non-unique Attributes.

specific analog: remove_<reference_name>(oldElement); (see Section 5.8.12, 
“Reference Template,” on page 5-76)

remove_<attribute_name>(oldElement); (see Section 5.8.11, “Attribute 
Template,” on page 5-67)

return type: none

parameters: feature : in DesignatorType
oldElement : in ValueType

exceptions: NotFound, MofError (Invalid Designator, Wrong Designator Kind, 
Unknown Designator, Not Public, Wrong Scope, Not Changeable, 
Wrong Multiplicity, Underflow, Duplicate, Invalid Object, Nil Object, 
Inaccessible Object, Reference Closure, Composition Closure, 
Composition Cycle, Wrong Type)

specific analog: remove_<reference_name>_at(position); (see Section 5.8.12, 
“Reference Template,” on page 5-76)

remove_<attribute_name>_at(position); (see Section 5.8.11, “Attribute 
Template,” on page 5-67)
6-18     OMG-MOF V1.3  - errata                           October 2001  



6

The "position" parameter is interpreted in the same way as for the corresponding 
specific operation. "Bad Position" occurs if the position parameter’s value is out of 
range, as defined for the "remove_<feature_name>_at" operation (i.e., if it is greater 
than or equal to the size of the collection before the operation is called).

"Invalid Designator," "Wrong Designator Kind," "Unknown Designator," "Not Public," 
"Wrong Scope," "Not Changeable," and "Wrong Multiplicity" all occur when "feature" 
does not designate an Attribute for which the "remove_<feature_name>_at" operation 
is allowed. 

The remaining error conditions are directly equivalent to error conditions for the 
specific "remove_<feature_name>_at" operation.

refImmediateComposite

The “refImmediateComposite” operation returns the "immediate composite" object for 
this Instance as specified below.

The immediate composite object C returned by this operation is an Instance object 
such that:

• C is related to this object via a relation R defined by an Attribute or Association,

• the aggregation semantics of the relation R are "composite", and

• this object fills the role of "component" in its relationship with C.

If the immediate object C does not exist, or if "this" object is a Class proxy object 
rather than an Instance object, a CORBA nil object reference is returned.

Note – If the composite relationship R corresponds to a "classifier-level" scoped M2-
level Attribute, the immediate composite object C will be the Class Proxy object that 
holds the Attribute value.

return type: none

parameters: feature : in DesignatorType
position : in unsigned long

exceptions: BadPosition, MofError (Invalid Designator, Wrong Designator Kind, 
Unknown Designator, Not Public, Wrong Scope, Not Changeable, 
Wrong Multiplicity, Underflow, Duplicate, Invalid Object, Nil Object, 
Inaccessible Object, Reference Closure, Composition Closure, 
Composition Cycle, Wrong Type)

specific analog: none

return type: RefObject

isQuery: yes

exceptions: none
OMG-MOF V1.3 - errata          The Reflective Interfaces          October 2001 6-19



6

refOutermostComposite

The “refOutermostComposite” operation returns the "outermost composite" for this 
object as defined below.

The outermost composite object C returned by this operation is an Instance object such 
that:

• There is a chain of zero or more immediate composite relationships (as described 
for “The “refImmediateComposite” operation returns the "immediate composite" 
object for this Instance as specified below.” above) connecting "this" object to C, 
and

• C does not have an immediate composite.

The above definition is such that if "this" object is not a component of any other 
object, it will be returned.

If "this" object is a Class proxy object, a CORBA nil object reference is returned.

Note – As with “refImmediateComposite” if the last composite relationship in the 
chain corresponds to a "classifier-level" scoped M2 level Attribute, the outermost 
composite object C will be the Class Proxy object that holds the Attribute value.

refInvokeOperation

The “refInvokeOperation” operation invokes a metamodel defined Operation on the 
Instance or Class proxy object with the arguments supplied.

specific analog: none

return type: RefObject

isQuery: yes

exceptions: none

specific analog: none

return type: ValueType (multiplicity: zero or more; ordered; not unique)

parameters: requestedOperation : in DesignatorType 
args : inout ValueType (multiplicity: zero or more; ordered; 
non-unique)

exceptions: OtherException, MofError (Invalid Designator, Wrong 
Designator Kind, Unknown Designator, Not Public, Wrong 
Scope, Overflow, Underflow, Duplicate, Wrong Number 
Parameters, Wrong Type)
6-20     OMG-MOF V1.3  - errata                           October 2001  



6

The "args" parameter is used to pass the values of all of the Operation’s Parameters 
which have directions "in," "out," or "inout" but not the "return" Parameter. There must 
be a distinct parameter value (real or dummy) in the "args" list for every "in," "out," 
and "inout" Parameter. "Wrong Number Parameters" occurs if this is not so.

The parameter values in "args" must appear in the order of the Operation’s "in," "out," 
and "inout" Parameters as defined in the metamodel.

The "args" member values provided by the caller for "in" and "inout" Parameter 
positions must be encoded depending on the Parameter’s type and multiplicity as per 
the Section 6.2.1.1, “The Standard Value Encoding Pattern,” on page 6-4. "Wrong 
Type" occurs if any of these values have the wrong type for the corresponding 
Parameter. "Underflow," "Overflow," or "Duplicate" occur when one of the supplied 
values does not fit the multiplicity specified by the corresponding Parameter. 

The caller must provide a dummy "args" member value in each "out" Parameter 
position. This value may be any legal CORBA Any value.

The "args" member values passed back to the caller for "out" and "inout" Parameter 
positions are likewise encoded depending on the Parameter’s type and multiplicity as 
per Section 6.2.1.1, “The Standard Value Encoding Pattern,” on page6-4 . Note that the 
values passed back to the caller the "in" Parameter positions of the "args" list are 
dummies whose content is undefined.

If the Operation defines a result (i.e., a Parameter with direction "return"), the result 
for a “The “refInvokeOperation” operation invokes a metamodel defined Operation on 
the Instance or Class proxy object with the arguments supplied.” call gives the result 
value. This is encoded depending on the "return" Parameter’s type and multiplicity as 
per Section 6.2.1.1, “The Standard Value Encoding Pattern,” on page 6-4. When the 
Operation does not define a result, the result of a “The “refInvokeOperation” operation 
invokes a metamodel defined Operation on the Instance or Class proxy object with the 
arguments supplied.” call is a dummy value whose content is undefined.

Note – In the cases above where dummy values are used, it is recommended that "light 
weight" Any values are used. (We would recommend the use of an Any value whose 
type kind is tk_null. However, there is currently some question as to whether the CDR 
standard defines an encoding for this value.)

"OtherException" occurs when a “refInvokeOperation” invocation needs to signal an 
Operation specific Exception. The "exception_designator" field of "OtherException" 
will denote the Exception raised, and the "exception_args" list will give the values for 
any Exception fields. The "exception_args" list will have one member value for each 
Parameter of the Exception in the order defined by the meta-model. The member 
values will be encoded depending on the corresponding Exception Parameter’s type 
and multiplicity as per Section 6.2.1.1, “The Standard Value Encoding Pattern,” on 
page 6-4.

"Invalid Designator," "Wrong Designator Kind," "Unknown Designator," "Not Public," 
and "Wrong Scope" all occur when "requestedOperation" does not designate an 
Operation that can be invoked using this object. 
OMG-MOF V1.3 - errata          The Reflective Interfaces          October 2001 6-21



6

Interface

interface RefObject : RefBaseObject {
    boolean ref_is_instance_of (in DesignatorType some_class,
                                in boolean consider_subtypes);
    RefObject ref_create_instance (in ValueTypeList args)
      raises (MofError);
    RefObjectSet ref_all_objects (in boolean include_subtypes);
    void ref_set_value (in DesignatorType feature,
                        in ValueType new_value)
      raises (MofError);
    ValueType ref_value (in DesignatorType feature)
      raises (NotSet, MofError);
void ref_unset_value ()
      raises (MofError);
void ref_add_value (in DesignatorType feature,
                        in ValueType new_element)
      raises (MofError);
    void ref_add_value_before (in DesignatorType feature,
                               in ValueType new_element,
                               in ValueType before_element)
      raises (NotFound, MofError);
void ref_add_value_at (in DesignatorType feature,
                           in ValueType new_element,
                           in unsigned long position)
      raises (BadPosition, MofError);
void ref_modify_value (in DesignatorType feature,
                           in ValueType old_element,
                           in ValueType new_element)
      raises (NotFound, MofError);
    void ref_modify_value_at (in DesignatorType feature,
                              in ValueType new_element,
                              in unsigned long position)
      raises (BadPosition, MofError);
void ref_remove_value (in DesignatorType feature,
                           in ValueType old_element)
      raises (NotFound, MofError);
    void ref_remove_value_at (in DesignatorType feature,
                              in unsigned long position)
      raises (BadPosition, MofError);
RefObject ref_immediate_composite ();
     RefObject ref_outermost_composite ();
ValueType ref_invoke_operation (
              in DesignatorType requested_operation,
              inout ValueTypeList args)
       raises (OtherException, MofError);
}; // end of interface RefObject

6.2.4 Reflective::RefAssociation  abstract

The RefAssociation interface provides the meta-object description of an association 
that inherits from it. It also provides generic operations querying and updating the links 
that belong to the association.
6-22     OMG-MOF V1.3  - errata                           October 2001  



6

The model of association supported by this interface is of collection of two ended 
asymmetric links between objects. The links may be viewed as ordered on one or other 
of the ends, and there may be some form of cardinality constraints on either end. 

The RefAssociation interface is designed to be used with associations that contain no 
duplicate links, though this is not an absolute requirement. There is no assumption that 
different association objects for a given association type are mutually aware. Links are 
modeled as having no object identity. 

A data model that required "heavy weight" links with object identity (e.g., so that 
attributes could be attached to them) would need to represent them as RefObject 
instances.The RefAssociation interface could be used to manage light weight links 
between heavy weight link objects and the objects they connect. Similar techniques 
could be used to represent N-ary associations. However, in both cases better 
performance would be achieved using a purpose built reflective layer.

Supertypes

RefBaseObject

Operations

refAllLinks

The “refAllLinks” operation returns all links in the link set for this Association object.

This operation returns the current link set for the current Association extent as defined 
for the specific version of this operation. The links are encoded as per Sectio n6.2.1.4, 
“The Link Encoding Pattern,” on page 6-5.

refLinkExists

The “refLinkExists” operation returns true if and only if the supplied link is a member 
of the link set for this Association object.

specific analog: all_links(); (see Section 5.8.10, “Association Template,” 
on page 5-58)

return type: Link (multiplicity zero or more, unordered, unique)

isQuery: yes

parameters: none

exceptions: none

specific analog: link_exists(someLink); (see Section 5.8.10, 
“Association Template,” on page 5-58)

return type: boolean
OMG-MOF V1.3 - errata          The Reflective Interfaces          October 2001 6-23



6

The "someLink" parameter should be encoded as per Section 6.2.1.4, “The Link 
Encoding Pattern,” on page 6-5. "Wrong Type" occurs if the link encoding is not 
correct.

refQuery

The “refQuery” operation returns a list containing all Instance objects that are linked to 
the supplied "queryObject" by links in the extent of this Association object, where the 
links all have the "queryObject" at the "queryEnd."

The "queryEnd" parameter must designate an AssociationEnd for this Association 
object. "Invalid Designator," "Wrong Designator Kind," and "Unknown Designator" 
occur in cases where this is not so.

The "queryObject" parameter must be an Instance object whose type is compatible 
with the type of the "queryEnd" of the Association. "Wrong Type" is raised if it the 
parameter has the wrong type.

"Invalid Object," "Nil Object," or "Inaccessible Object" is raised if the "queryObject" 
parameter it is a non-existent, nil or inaccessible Instance object.

While the result of this operation is declared as a ordered set of links, the ordering only 
has meaning if the other AssociationEnd (i.e., not the "queryEnd") is defined ordered.

refAddLink

The “refAddLink” operation adds "newLink" into the set of links in the extent of this 
Association object. If one or other of the Association’s Ends is ordered, the link is 
inserted after the last link with respect to that ordering.

isQuery: yes

parameters: someLink : in Link

exceptions: MofError(WrongType)

specific analog: <endName> (queryObject); (see Section 5.8.10, “Association 
Template,” on page 5-58)

return type: RefObject (Multiplicity zero or more; ordered; unique)

isQuery: yes

parameters: queryEnd : in DesignatorType 
queryObject : in RefObject

exceptions: MofError (Invalid Designator, Wrong Designator Kind, 
Unknown Designator, Wrong Type, Invalid Object, Nil Object, 
Inaccessible Object)
6-24     OMG-MOF V1.3  - errata                           October 2001  



6

The "newLink" parameter should be encoded as per Section 6.2.1.4, “The Link 
Encoding Pattern,” on page 6-5. "Wrong Type" occurs if the link encoding is not 
correct.

Both RefObject members of the "newLink" parameter should be valid Instance objects. 
"Invalid Object," "Nil Object," or "Inaccessible Object" is raised if either one is a non-
existent, nil or inaccessible Instance object.

"Not Changeable" occurs if this operation is invoked on an Association that has 
“isChangeable” set to false on either Association End.

"Overflow," "Duplicate," "Reference Closure," "Composition Closure," and 
"Composition Cycle" are directly equivalent to error conditions for the corresponding 
specific "add" operation.

refAddLinkBefore

The “refAddLinkBefore” operation adds "newLink" into the link set of an ordered 
Association object. The link insertion point is immediately before the link whose 
"positionEnd" matches the "before" Instance.

The "newLink" parameter should be encoded as per Section 6.2.1.4, “The Link 
Encoding Pattern,” on page 6-5. "Wrong Type" occurs if the link’s encoding is not 
correct.

specific analog: add(newLink[0], newLink[1]); (see Section 5.8.10, 
“Association Template,” on page 5-58)

return type: none

parameters: newLink : in Link

exceptions: MofError (Not Changeable, Overflow, Duplicate, Reference 
Closure, Composition Closure, Composition Cycle, Wrong 
Type, Invalid Object, Nil Object, Inaccessible Object)

specific analog: add_before_<endName>(newLink[0], newLink[1], before);
(see Section 5.8.10, “Association Template,” on page 5-58)

return type: none

parameters: newLink : in Link
positionEnd : in DesignatorType
before : in RefObject

exceptions: NotFound, MofError (Invalid Designator, Wrong Designator Kind, 
Unknown Designator, Not Changeable, Not Navigable, Overflow, 
Duplicate, Reference Closure, Composition Closure, Wrong Type, 
Invalid Object, Nil Object, Inaccessible Object)
OMG-MOF V1.3 - errata          The Reflective Interfaces          October 2001 6-25



6

The "positionEnd" parameter should denote an AssociationEnd of this object’s 
Association. One of "Invalid Designator," "Wrong Designator Kind," or "Unknown 
Designator" occurs if thus is not the case. 

"Not Changeable" occurs if this operation is invoked on an Association that has 
“isChangeable” set to false on either Association End. "Not Navigable" occurs if the 
"positionEnd" AssociationEnd has “isNavigable” set to false.

The "before" parameter should be an Instance object that is type compatible with the 
type of the AssociationEnd denoted by "positionEnd." "Wrong Type" occurs if this is 
not the case.

The remaining error conditions are directly equivalent to error conditions for the 
corresponding "add_before_<endName>" operation.

refModifyLink

The “refModifyLink” operation updates the "oldLink" in the Association object’s link 
set, replacing the Instance object at "positionEnd" with "newObject."

The "oldLink" parameter should be encoded as per Section 6.2.1.4, “The Link 
Encoding Pattern,” on page 6-5. "Wrong Type" occurs if the link’s encoding is not 
correct.

The "positionEnd" parameter should denote an AssociationEnd of this object’s 
Association. One of "Invalid Designator," "Wrong Designator Kind," or "Unknown 
Designator" occurs if thus is not the case. 

"Not Changeable" occurs if the "positionEnd" AssociationEnd that has “isChangeable” 
set to false. "Not Navigable" occurs if it has “isNavigable” set to false.

The "newObject" parameter should be an Instance object that is type compatible with 
the type of the AssociationEnd denoted by "positionEnd." "Wrong Type" occurs if this 
is not the case.

The remaining error conditions are directly equivalent to error conditions for the 
corresponding "modify_<endName>" operation. Note that any structural constraints 
notionally apply to the final state following the operation, and not to any intermediate 
states.

specific analog: modify_<endName>(oldLink[0], oldLink[1], newObject);
(see Section 5.8.10, “Association Template,” on page 5-58)

return type: none

parameters: oldLink : in Link
positionEnd : in DesignatorType
newObject : in RefObject

exceptions: NotFound, MofError (Invalid Designator, Wrong Designator Kind, 
Unknown Designator, Not Changeable, Underflow, Overflow, 
Duplicate, Reference Closure, Composition Closure, Wrong Type, 
Invalid Object, Nil Object, Inaccessible Object)
6-26     OMG-MOF V1.3  - errata                           October 2001  



6

refRemoveLink

The “refRemoveLink” operation removes the "oldLink" from the association.

"Not Changeable" occurs if this operation is invoked on an Association that has 
“isChangeable” set to false for either AssociationEnd. 

The "oldLink" parameter should be encoded as per Section 6.2.1.4, “The Link 
Encoding Pattern,” on page 6-5. "Wrong Type" occurs if the link’s encoding is not 
correct.

"NotFound," "Nil Object," and Underflow" are directly equivalent to error conditions 
for the corresponding specific "remove" operation. "Invalid Object" and "Inaccessible 
Object" cannot occur, as in the specific operation.

Interface

interface RefAssociation : RefBaseObject {
    LinkSet ref_all_links ();
boolean ref_link_exists (in Link some_link)
      raises (MofError);
RefObjectUList ref_query (in DesignatorType query_end,
                              in RefObject query_object)
      raises (MofError);
    void ref_add_link (in Link new_link)
      raises (MofError);
    void ref_add_link_before (in Link new_link,
                              in DesignatorType position_end,
                              in RefObject before)
      raises (NotFound, MofError);
    void ref_modify_link (in Link old_link,
                          in DesignatorType position_end,
                          in RefObject new_object)
      raises (NotFound, MofError);
    void ref_remove_link (in Link old_link)
      raises (NotFound, MofError);
  }; // end of interface RefAssociation

specific analog: remove(oldLink[0], oldLink[1]); (see Section 5.8.11, 
“Attribute Template,” on page 5-67)

return type: none

parameters: oldLink : in Link

exceptions: NotFound, MofError (Not Changeable, Underflow, Wrong 
Type, Nil Object)
OMG-MOF V1.3 - errata          The Reflective Interfaces          October 2001 6-27



6

6.2.5 Reflective::RefPackage  abstract

The RefPackage interface is an abstraction for accessing a collection of objects and 
their associations. The interface provides an operation to access the meta-object 
description for the package, and operations to access the package instance's class proxy 
objects (one for each Class) and its association objects.

Supertypes

RefBaseObject 

Operations

refClassRef

The “refClassRef” operation returns the Class proxy object for a given Class.

The "class" parameter should designate the M2 level Class whose Class proxy object is 
to be returned. "Invalid Designator," "Wrong Designator Kind," "Unknown 
Designator" occur in various situations where this is not the case.

refAssociationRef

The “refAssociationRef” operation returns an Association object for a given 
Association.

specific analog: readonly attribute <ClassName>_class_ref; (see 
Section 5.8.10, “Association Template,” on page 5-58)

return type: RefObject

isQuery: yes

parameters: class : in DesignatorType

exceptions: MofError (Invalid Designator, Wrong Designator Kind, 
Unknown Designator)

specific analog: readonly attribute <AssociationName>_ref; (see
Section 5.8.10, “Association Template,” on page 5-58)

return type: RefAssociation

isQuery: yes

parameters: association : DesignatorType

exceptions: MofError (Invalid Designator, Wrong Designator Kind, 
Unknown Designator)
6-28     OMG-MOF V1.3  - errata                           October 2001  



6

The "association" parameter should designate the M2 level Association whose 
Association object is to be returned. "Invalid Designator," "Wrong Designator Kind," 
"Unknown Designator" occur in various situations where this is not the case.

refPackageRef

The “refPackageRef” operation returns a Package object for a nested or clustered 
Package.

The "package" parameter should designate the M2 level Package whose Package object 
is to be returned. It must either be nested within the Package for this Package object, or 
imported with “isClustered” set to true. "Invalid Designator," "Wrong Designator 
Kind," "Unknown Designator" occur in the situations where this is not the case.

Interface

interface RefPackage : RefBaseObject {

   RefObject ref_class_ref (in DesignatorType type)
      raises (MofError);

   RefAssociation ref_association_ref (
        in DesignatorType association)
      raises (MofError);

    RefPackage ref_package_ref (in DesignatorType package)
      raises (InvalidDesignator)

}; // end of interface RefPackage

6.3 The CORBA IDL for the Reflective Interfaces

This section describes the relevant excerpts of the CORBA IDL for the Reflective 
module.

6.3.1 Introduction

The Reflective module starts with forward declarations of the three object types 
RefObject, RefAssociation, and RefPackage.

specific analog: readonly attribute <PackageName>_ref; (see Section 5.8.10, 
“Association Template,” on page 5-58)

return type: RefPackage

isQuery: yes

parameters: package : DesignatorType

exceptions: MofError (Invalid Designator, Wrong Designator Kind, 
Unknown Designator)
OMG-MOF V1.3 - errata          The CORBA IDL for the Reflective Interfaces          October 2001 6-29



6

module Reflective {
  interface RefBaseObject;
  
  interface RefObject;
  typedef sequence < RefObject > RefObjectUList;
  
  interface RefAssociation;
  
  interface RefPackage;

6.3.2  Data Types

Operations on the Reflective interfaces need to identify the elements (e.g., attributes, 
operations, roles, classes, etc.) that they apply to. Some exceptions have similar 
requirements. The type DesignatorType is used to denote uses of RefObject with this 
meaning.

typedef RefObject DesignatorType;

Values of attributes, operation parameters, and results etc. are passed using the 
CORBA "any" data type. The type ValueType is used to denote uses of "any" with this 
meaning. The encoding of values using the "any" type is model specific.

typedef any ValueType;

Links are expressed as bounded sequences of (two) RefObject values.

typedef sequence <RefObject, 2> Link;
typedef sequence <Link> LinkSet;
6-30     OMG-MOF V1.3  - errata                           October 2001  



Glossary
This glossary defines the terms that are used to describe the Unified Modeling 
Language (UML) and the Meta Object Facility (MOF). In addition to UML and MOF 
specific terminology, it includes related terms from OMG standards and object-
oriented analysis and design methods, as well as the domain of object repositories and 
meta data managers. Glossary entries are organized alphabetically and MOF specific 
entries are identified as ‘[MOF]’.

Notation Conventions

The entries in the glossary usually begin with a lowercase letter. An initial uppercase 
letter is used when a word is usually capitalized in standard practice. Acronyms are all 
capitalized, unless they traditionally appear in all lowercase.

When one or more words in a multi-word term is enclosed in brackets, it indicates that 
those words are optional when referring to the term. For example, use case [class] may 
be referred to as simply use case.

The following conventions are used in this glossary:

• Contrast: <term>
Refers to a term that has an opposed or substantively different meaning.

• See: <term>
Refers to a related term that has a similar, but not synonymous meaning.

• Synonym: <term>
Indicates that the term has the same meaning as another term, which is referenced.

• Acronym: <term>
Indicates that the term is an acronym. The reader is usually referred to the spelled-
out term for the definition, unless the spelled-out term is rarely used.
                OMG-MOF V1.3                                  March 2000 1



Glossary Terms

abstract class A class that cannot be directly instantiated. Contrast: 
concrete class.

abstraction The essential characteristics of an entity that 
distinguish it from all other kinds of entities. An 
abstraction defines a boundary relative to the 
perspective of the viewer. 

action The specification of an executable statement that 
forms an abstraction of a computational procedure. 
An action typically results in a change in the state of 
the system, and can be realized by sending a message 
to an object or modifying a link or a value of an 
attribute. 

action sequence An expression that resolves to a sequence of actions.

action state A state that represents the execution of an atomic 
action, typically the invocation of an operation.

activation The execution of an action.

active class A class whose instances are active objects. See: active 
object. 

active object An object that owns a thread and can initiate control 
activity. An instance of active class. See: active class, 
thread.

activity graph A special case of a state machine that is used to 
model processes involving one or more classifiers. 
Contrast: statechart diagram.

actor [class] A coherent set of roles that users of use cases play 
when interacting with these use cases. An actor has 
one role for each use case with which it 
communicates. 

actual parameter Synonym: argument.
2                 OMG-MOF V1.3                                  March 2000 



aggregate [class] A class that represents the “whole” in an aggregation 
(whole-part) relationship. See: aggregation.

aggregation A special form of association that specifies a whole-
part relationship between the aggregate (whole) and a 
component part. See: composition.

analysis The part of the software development process whose 
primary purpose is to formulate a model of the 
problem domain. Analysis focuses what to do, design 
focuses on how to do it. Contrast: design.

analysis time Refers to something that occurs during an analysis 
phase of the software development process. See: 
design time, modeling time. 

architecture The organizational structure and associated behavior 
of a system. An architecture can be recursively 
decomposed into parts that interact through interfaces, 
relationships that connect parts, and constraints for 
assembling parts. Parts that interact through interfaces 
include classes, components and subsystems.

argument A binding for a parameter that resolves to a run-time 
instance. Synonym: actual parameter. Contrast: 
parameter.

artifact A piece of information that is used or produced by a 
software development process. An artifact can be a 
model, a description, or software. Synonym: product.

association The semantic relationship between two or more 
classifiers that specifies connections among their 
instances.

association class A model element that has both association and class 
properties. An association class can be seen as an 
association that also has class properties, or as a class 
that also has association properties. 

association end The endpoint of an association, which connects the 
association to a classifier. 
OMG-MOF V1.3                 March 2000 3



attribute A feature within a classifier that describes a range of 
values that instances of the classifier may hold.

behavior The observable effects of an operation or event, 
including its results.

behavioral feature A dynamic feature of a model element, such as an 
operation or method.

behavioral model 
aspect

A model aspect that emphasizes the behavior of the 
instances in a system, including their methods, 
collaborations, and state histories. 

binary association An association between two classes. A special case of 
an n-ary association.

binding The creation of a model element from a template by 
supplying arguments for the parameters of the 
template.

boolean An enumeration whose values are true and false. 

boolean expression An expression that evaluates to a boolean value. 

cardinality The number of elements in a set. Contrast: 
multiplicity.

child In a generalization relationship, the specialization of 
another element, the parent. See: subclass, subtype. 
Contrast: parent.

call An action state that invokes an operation on a 
classifier.

class A description of a set of objects that share the same 
attributes, operations, methods, relationships, and 
semantics. A class may use a set of interfaces to 
specify collections of operations it provides to its 
environment. See: interface. 

classifier A mechanism that describes behavioral and structural 
features. Classifiers include interfaces, classes, 
datatypes, and components. 
4                 OMG-MOF V1.3                                  March 2000 



classification The assignment of an object to a classifier. See 
dynamic classification, multiple classification and 
static classification. 

class diagram A diagram that shows a collection of declarative 
(static) model elements, such as classes, types, and 
their contents and relationships. 

client A classifier that requests a service from another 
classifier. Contrast: supplier. 

collaboration The specification of how an operation or classifier, 
such as a use case, is realized by a set of classifiers 
and associations playing specific roles used in a 
specific way. The collaboration defines an interaction. 
See: interaction. 

collaboration diagram A diagram that shows interactions organized around 
the structure of a model, using either classifiers and 
associations or instances and links. Unlike a sequence 
diagram, a collaboration diagram shows the 
relationships among the instances. Sequence diagrams 
and collaboration diagrams express similar 
information, but show it in different ways. See: 
sequence diagram. 

comment An annotation attached to an element or a collection 
of elements. A note has no semantics. Contrast: 
constraint.

compile time Refers to something that occurs during the 
compilation of a software module. See: modeling 
time, run time.

component A physical, replaceable part of a system that packages 
implementation and provides the realization of a set 
of interfaces. A component represents a physical 
piece of implementation of a system, including 
software code (source, binary or executable) or 
equivalents such as scripts or command files.
OMG-MOF V1.3                 March 2000 5



component diagram A diagram that shows the organizations and 
dependencies among components.

composite [class] A class that is related to one or more classes by a 
composition relationship. See: composition.

composite 
aggregation

Synonym: composition. 

composite state A state that consists of either concurrent (orthogonal) 
substates or sequential (disjoint) substates. See: 
substate.

composition A form of aggregation association with strong 
ownership and coincident lifetime as part of the 
whole. Parts with non-fixed multiplicity may be 
created after the composite itself, but once created 
they live and die with it (i.e., they share lifetimes). 
Such parts can also be explicitly removed before the 
death of the composite. Composition may be 
recursive. Synonym: composite aggregation. 

concrete class A class that can be directly instantiated. Contrast: 
abstract class.

concurrency The occurrence of two or more activities during the 
same time interval. Concurrency can be achieved by 
interleaving or simultaneously executing two or more 
threads. See: thread. 

concurrent substate A substate that can be held simultaneously with other 
substates contained in the same composite state. See: 
composite state. Contrast: disjoint substate. 

constraint A semantic condition or restriction. Certain 
constraints are predefined in the UML, others may be 
user defined. Constraints are one of three extensibility 
mechanisms in UML. See: tagged value, stereotype. 

container 1. An instance that exists to contain other instances, 
and that provides operations to access or iterate over 
its contents. (for example, arrays, lists, sets). 2. A 
component that exists to contain other components.
6                 OMG-MOF V1.3                                  March 2000 



containment 
hierarchy

A namespace hierarchy consisting of model elements, 
and the containment relationships that exist between 
them. A containment hierarchy forms a graph.

context A view of a set of related modeling elements for a 
particular purpose, such as specifying an operation. 

datatype A descriptor of a set of values that lack identity and 
whose operations do not have side effects. Datatypes 
include primitive pre-defined types and user-definable 
types. Pre-defined types include numbers, string and 
time. User-definable types include enumerations.

defining model [MOF] The model on which a repository is based. Any 
number of repositories can have the same defining 
model.

delegation The ability of an object to issue a message to another 
object in response to a message. Delegation can be 
used as an alternative to inheritance. Contrast: 
inheritance.

dependency A relationship between two modeling elements, in 
which a change to one modeling element (the 
independent element) will affect the other modeling 
element (the dependent element). 

deployment diagram A diagram that shows the configuration of run-time 
processing nodes and the components, processes, and 
objects that live on them. Components represent run-
time manifestations of code units. See: component 
diagrams.

derived element A model element that can be computed from another 
element, but that is shown for clarity or that is 
included for design purposes even though it adds no 
semantic information. 
OMG-MOF V1.3                 March 2000 7



design The part of the software development process whose 
primary purpose is to decide how the system will be 
implemented. During design strategic and tactical 
decisions are made to meet the required functional 
and quality requirements of a system. 

design time Refers to something that occurs during a design phase 
of the software development process. See: modeling 
time. Contrast: analysis time. 

development process A set of partially ordered steps performed for a given 
purpose during software development, such as 
constructing models or implementing models. 

diagram A graphical presentation of a collection of model 
elements, most often rendered as a connected graph of 
arcs (relationships) and vertices (other model 
elements). UML supports the following diagrams: 
class diagram, object diagram, use case diagram, 
sequence diagram, collaboration diagram, state 
diagram, activity diagram, component diagram, and 
deployment diagram.

disjoint substate A substate that cannot be held simultaneously with 
other substates contained in the same composite state. 
See: composite state. Contrast: concurrent substate.

distribution unit A set of objects or components that are allocated to a 
process or a processor as a group. A distribution unit 
can be represented by a run-time composite or an 
aggregate. 

domain An area of knowledge or activity characterized by a 
set of concepts and terminology understood by 
practitioners in that area. 

dynamic 
classification

A semantic variation of generalization in which an 
object may change its classifier. Contrast: static 
classification.

element An atomic constituent of a model. 
8                 OMG-MOF V1.3                                  March 2000 



entry action An action executed upon entering a state in a state 
machine
regardless of the transition taken to reach that state.

enumeration A list of named values used as the range of a 
particular attribute type. For example, RGBColor = 
{red, green, blue}. Boolean is a predefined 
enumeration with values from the set {false, true}.

event The specification of a significant occurrence that has 
a location in time and space. In the context of state 
diagrams, an event is an occurrence that can trigger a 
transition. 

exit action An action executed upon exiting a state in a state 
machine
regardless of the transition taken to exit that state.

export In the context of packages, to make an element visible 
outside its enclosing namespace. See: visibility. 
Contrast: export [OMA], import. 

expression A string that evaluates to a value of a particular type. 
For example, the expression “(7 + 5 * 3)” evaluates to 
a value of type number. 

extend A relationship from an extension use case to a base 
use case, specifying how the behavior defined for the 
extension use case augments (subject to conditions 
specified in the extension) the behavior defined for 
the base use case. The behavior is inserted at the 
location defined by the extension point in the base use 
case. The base use case does not depend on 
performing the behavior of the extension use case. 
See extension point, include.

facade A stereotyped package containing only references to 
model elements owned by another package. It is used 
to provide a ‘public view’ of some of the contents of 
a package.

feature A property, like operation or attribute, which is 
encapsulated within a classifier, such as an interface, a 
class, or a datatype.
OMG-MOF V1.3                 March 2000 9



final state A special kind of state signifying that the enclosing
composite state or the entire state machine is 
completed.

fire To execute a state transition. See: transition. 

focus of control A symbol on a sequence diagram that shows the 
period of time during which an object is performing 
an action, either directly or through a subordinate 
procedure. 

formal parameter Synonym: parameter.

framework 1. A stereotyped package consisting mainly of 
patterns. See: pattern.

2. An architectural pattern that provides an extensible 
template for for applications within a specific domain. 

generalizable element A model element that may participate in a 
generalization relationship. See: generalization. 

generalization A taxonomic relationship between a more general 
element and a more specific element. The more 
specific element is fully consistent with the more 
general element and contains additional information. 
An instance of the more specific element may be used 
where the more general element is allowed. See: 
inheritance.

guard condition A condition that must be satisfied in order to enable 
an associated transition to fire.

implementation A definition of how something is constructed or 
computed. For example, a class is an implementation 
of a type, a method is an implementation of an 
operation. 

implementation 
inheritance

The inheritance of the implementation of a more 
specific element. Includes inheritance of the interface. 
Contrast: interface inheritance. 
10                 OMG-MOF V1.3                                  March 2000 



import In the context of packages, a dependency that shows 
the packages whose classes may be referenced within 
a given package (including packages recursively 
embedded within it). Contrast: export. 

include A relationship from a base use case to an inclusion 
use case, specifying how the behavior for the base use 
case contains the behavior of the inclusion use case. 
The behavior is included at the location which is 
defined in the base use case. The base use case 
depends on performing the behavior of the inclusion 
use case, but not on its structure (i.e., attributes or 
operations). See extend.

inheritance The mechanism by which more specific elements 
incorporate structure and behavior of more general 
elements related by behavior. See generalization.

instance An entity to which a set of operations can be applied 
and which has a state that stores the effects of the 
operations. See: object. 

interaction A specification of how stimuli are sent between 
instances to perform a specific task. The interaction is 
defined in the context of a collaboration. See 
collaboration.

interaction diagram A generic term that applies to several types of 
diagrams that emphasize object interactions. These 
include collaboration diagrams and sequence 
diagrams.

interface A named set of operations that characterize the 
behavior of an element.

interface inheritance The inheritance of the interface of a more specific 
element. Does not include inheritance of the 
implementation. Contrast: implementation 
inheritance. 

internal transition A transition signifying a response to an event without 
changing the state of an object.
OMG-MOF V1.3                 March 2000 11



layer The organization of classifiers or packages at the 
same level of abstraction. A layer represents a 
horizontal slice through an architecture, whereas a 
partition represents a vertical slice. Contrast: 
partition.

link A semantic connection among a tuple of objects. An 
instance of an association. See: association. 

link end An instance of an association end. See: association 
end. 

message A specification of the conveyance of information from 
one instance to another, with the expectation that 
activity will ensue. A message may specify the raising 
of a signal or the call of an operation.

metaclass A class whose instances are classes. Metaclasses are 
typically used to construct metamodels. 

meta-metamodel A model that defines the language for expressing a 
metamodel. The relationship between a meta-
metamodel and a metamodel is analogous to the 
relationship between a metamodel and a model. 

metamodel A model that defines the language for expressing a 
model.

metaobject A generic term for all metaentities in a metamodeling 
language. For example, metatypes, metaclasses, 
metaattributes, and metaassociations.

method The implementation of an operation. It specifies the 
algorithm or procedure associated with an operation.

model 

[MOF]

An abstraction of a physical system, with a certain 
purpose.. See: physical system. 

Usage note: In the context of the MOF specification, 
which describes a meta-metamodel, for brevity the 
meta-metamodel is frequently to as simply the model.
12                 OMG-MOF V1.3                                  March 2000 



model aspect A dimension of modeling that emphasizes particular 
qualities of the metamodel. For example, the 
structural model aspect emphasizes the structural 
qualities of the metamodel. 

model elaboration The process of generating a repository type from a 
published model. Includes the generation of interfaces 
and implementations which allows repositories to be 
instantiated and populated based on, and in 
compliance with, the model elaborated. 

model element

[MOF]

An element that is an abstraction drawn from the 
system being modeled. Contrast: view element.

In the MOF specification model elements are 
considered to be metaobjects.

modeling time Refers to something that occurs during a modeling 
phase of the software development process. It 
includes analysis time and design time. Usage note: 
When discussing object systems, it is often important 
to distinguish between modeling-time and run-time 
concerns. See: analysis time, design time. Contrast: 
run time. 

module A software unit of storage and manipulation. Modules 
include source code modules, binary code modules, 
and executable code modules. See: component. 

multiple classification A semantic variation of generalization in which an 
object may belong directly to more than one classifier. 
See: static classification, dynamic classification. 

multiple inheritance A semantic variation of generalization in which a type 
may have more than one supertype. Contrast: single 
inheritance. 
OMG-MOF V1.3                 March 2000 13



multiplicity A specification of the range of allowable cardinalities 
that a set may assume. Multiplicity specifications may 
be given for roles within associations, parts within 
composites, repetitions, and other purposes. 
Essentially a multiplicity is a (possibly infinite) subset 
of the non-negative integers. Contrast: cardinality.   

multi-valued [MOF] A model element with multiplicity defined whose 
Multiplicity Type:: upper attribute is set to a number 
greater than one. The term multi-valued does not 
pertain to the number of values held by an attribute, 
parameter, etc. at any point in time. Contrast: single-
valued.

n-ary association An association among three or more classes. Each 
instance of the association is an n-tuple of values 
from the respective classes. Contrast: binary 
association. 

name A string used to identify a model element. 

namespace A part of the model in which the names may be 
defined and used. Within a namespace, each name has 
a unique meaning. See: name. 

node A node is classifier that represents a run-time 
computational resource, which generally has at least a 
memory and often processing capability. Run-time 
objects and components may reside on nodes. 

object An entity with a well-defined boundary and identity 
that encapsulates state and behavior. State is 
represented by attributes and relationships, behavior is 
represented by operations, methods, and state 
machines. An object is an instance of a class. See: 
class, instance. 

object diagram A diagram that encompasses objects and their 
relationships at a point in time. An object diagram 
may be considered a special case of a class diagram 
or a collaboration diagram. See: class diagram, 
collaboration diagram. 
14                 OMG-MOF V1.3                                  March 2000 



object flow state A state in an activity graph that represents the passing 
of an object from the output of actions in one state to 
the input of actions in another state.

object lifeline A line in a sequence diagram that represents the 
existence of an object over a period of time. See: 
sequence diagram. 

operation A service that can be requested from an object to 
effect behavior. An operation has a signature, which 
may restrict the actual parameters that are possible.

package A general purpose mechanism for organizing 
elements into groups. Packages may be nested within 
other packages.

parameter The specification of a variable that can be changed, 
passed, or returned. A parameter may include a name, 
type, and direction. Parameters are used for 
operations, messages, and events. Synonyms: formal 
parameter. Contrast: argument.

parameterized 
element

The descriptor for a class with one or more unbound 
parameters. Synonym: template.

parent In a generalization relationship, the generalization of 
another element, the child. See: subclass, subtype. 
Contrast: child.

participate The connection of a model element to a relationship 
or to a reified relationship. For example, a class 
participates in an association, an actor participates in 
a use case.

partition 1. activity graphs: A portion of an activity graphs that 
organizes the responsibilities for actions.  See: 
swimlane.
2. architecture: A set of related classifiers or packages 
at the same level of abstraction or across layers in a 
layered architecture. A partition represents a vertical 
slice through an architecture, whereas a layer 
represents a horizontal slice. Contrast: layer.

pattern A template collaboration.
OMG-MOF V1.3                 March 2000 15



persistent object An object that exists after the process or thread that 
created it has ceased to exist.

postcondition A constraint that must be true at the completion of an 
operation. 

precondition A constraint that must be true when an operation is 
invoked. 

primitive type A pre-defined basic datatype without any 
substructure, such as an integer or a string. 

process 1. A heavyweight unit of concurrency and execution 
in an operating system. Contrast: thread, which 
includes heavyweight and lightweight processes. If 
necessary, an implementation distinction can be made 
using stereotypes.
2. A software development process—the steps and 
guidelines by which to develop a system.
3. To execute an algorithm or otherwise handle 
something dynamically.

projection A mapping from a set to a subset of it. 

property A named value denoting a characteristic of an 
element. A property has semantic impact. Certain 
properties are predefined in the UML; others may be 
user defined. See: tagged value.

pseudo-state A vertex in a state machine that has the form of a 
state, but doesn’t behave as a state. Pseudo-states 
include initial and history vertices.   

physical system 1. The subject of a model. 
2. A collection of connected physical units, which can 
include software, hardware and people, that are 
organized to accomplish a specific purpose. A 
physical system can be described by one or more 
models, possibly from different viewpoints. Contrast: 
system.
16                 OMG-MOF V1.3                                  March 2000 



published model 
[MOF]

A model which has been frozen, and becomes 
available for instantiating repositories and for the 
support in defining other models. A frozen model’s 
model elements cannot be changed.

qualifier An association attribute or tuple of attributes whose 
values partition the set of objects related to an object 
across an association. 

receive [a message] The handling of a stimulus passed from a sender 
instance. See: sender, receiver. 

receiver [object] The object handling a stimulus passed from a sender 
object. Contrast: sender. 

reception A declaration that a classifier is prepared to react to 
the receipt of a signal.

reference 1. A denotation of a model element. 
2. A named slot within a classifier that facilitates 
navigation to other classifiers. Synonym: pointer.

refinement A relationship that represents a fuller specification of 
something that has already been specified at a certain 
level of detail. For example, a design class is a 
refinement of an analysis class. 

relationship A semantic connection among model elements. 
Examples of relationships include associations and 
generalizations.

repository A facility for storing object models, interfaces, and 
implementations.

requirement A desired feature, property, or behavior of a system. 

responsibility A contract or obligation of a classifier. 

reuse The use of a pre-existing artifact. 
OMG-MOF V1.3                 March 2000 17



role The named specific behavior of an entity participating 
in a particular context. A role may be static (e.g., an 
association end) or dynamic (e.g., a collaboration 
role). 

run time The period of time during which a computer program 
executes. Contrast: modeling time.   

scenario A specific sequence of actions that illustrates 
behaviors. A scenario may be used to illustrate an 
interaction or the execution of a use case instance. 
See: interaction. 

schema [MOF] In the context of the MOF, a schema is analogous to a 
package which is a container of model elements. 
Schema corresponds to an MOF package. Contrast: 
metamodel, package.

semantic variation 
point

A point of variation in the semantics of a metamodel. 
It provides an intentional degree of freedom for the 
interpretation of the metamodel semantics. 

send [a message] The passing of a stimulus from a sender instance to a 
receiver instance. See: sender, receiver. 

sender [object] The object passing a stimulus to a receiver object. 
Contrast: receiver. 

sequence diagram A diagram that shows object interactions arranged in 
time sequence. In particular, it shows the objects 
participating in the interaction and the sequence of 
messages exchanged. Unlike a collaboration diagram, 
a sequence diagram includes time sequences but does 
not include object relationships. A sequence diagram 
can exist in a generic form (describes all possible 
scenarios) and in an instance form (describes one 
actual scenario). Sequence diagrams and collaboration 
diagrams express similar information, but show it in 
different ways. See: collaboration diagram.
18                 OMG-MOF V1.3                                  March 2000 



signal The specification of an asynchronous stimulus 
communicated between instances. Signals may have 
parameters. 

signature The name and parameters of a behavioral feature. A 
signature may include an optional returned parameter.

single inheritance A semantic variation of generalization in which a type 
may have only one supertype. Synonym: multiple 
inheritance [OMA]. Contrast: multiple inheritance.

single valued [MOF] A model element with multiplicity defined is single 
valued when its Multiplicity Type:: upper attribute is 
set to one. The term single-valued does not pertain to 
the number of values held by an attribute, parameter, 
etc., at any point in time, since a single-valued 
attribute (for instance, with a multiplicity lower bound 
of zero) may have no value. Contrast: multi-valued.

specification A declarative description of what something is or 
does. Contrast: implementation. 

state A condition or situation during the life of an object 
during which it satisfies some condition, performs 
some activity, or waits for some event. Contrast: state 
[OMA]. 

statechart diagram A diagram that shows a state machine. See: state 
machine. 

state machine A behavior that specifies the sequences of states that 
an object or an interaction goes through during its life 
in response to events, together with its responses and 
actions. 

static classification A semantic variation of generalization in which an 
object may not change classifier. Contrast: dynamic 
classification. 
OMG-MOF V1.3                 March 2000 19



stereotype A new type of modeling element that extends the 
semantics of the metamodel. Stereotypes must be 
based on certain existing types or classes in the 
metamodel. Stereotypes may extend the semantics, 
but not the structure of pre-existing types and classes. 
Certain stereotypes are predefined in the UML, others 
may be user defined. Stereotypes are one of three 
extensibility mechanisms in UML. See: constraint, 
tagged value. 

stimulus The passing of information from one instance to 
another, such as raising a signal or invoking an 
operation. The receipt of a signal is normally 
considered an event. See: message.

string A sequence of text characters. The details of string 
representation depend on implementation, and may 
include character sets that support international 
characters and graphics. 

structural feature A static feature of a model element, such as an 
attribute. 

structural model 
aspect

A model aspect that emphasizes the structure of the 
objects in a system, including their types, classes, 
relationships, attributes, and operations. 

subactivity state A state in an activity graph that represents the 
execution of a non-atomic sequence of steps that has 
some duration.

subclass In a generalization relationship, the specialization of 
another class; the superclass. See: generalization. 
Contrast: superclass. 

submachine state A state in a state machine which is equivalent to a
composite state but its contents is described by 
another state machine.

substate A state that is part of a composite state. See: 
concurrent state, disjoint state. 

subpackage A package that is contained in another package.
20                 OMG-MOF V1.3                                  March 2000 



subsystem A grouping of model elements that represents a 
behavioral unit in a physical system. A subsystem 
offers interfaces and has operations. In addition, the 
model elements of a subsystem can be partitioned into 
specification and realization elements. See package. 
See: physical system. 

subtype In a generalization relationship, the specialization of 
another type; the supertype. See: generalization. 
Contrast: supertype. 

superclass In a generalization relationship, the generalization of 
another class; the subclass. See: generalization. 
Contrast: subclass. 

supertype In a generalization relationship, the generalization of 
another type; the subtype. See: generalization. 
Contrast: subtype. 

supplier A classifier that provides services that can be invoked 
by others. Contrast: client. 

swimlane A partition on a activity diagram for organizing the 
responsibilities for actions. Swimlanes typically 
correspond to organizational units in a business 
model. See: partition.

synch state A vertex in a state machine used for synchronizing 
the
concurrent regions of a state machine.

system A top-level subsystem in a model. Contrast: physical 
system.

tagged value The explicit definition of a property as a name-value 
pair. In a tagged value, the name is referred as the tag. 
Certain tags are predefined in the UML; others may 
be user defined. Tagged values are one of three 
extensibility mechanisms in UML. See: constraint, 
stereotype. 

template Synonym: parameterized element. 
OMG-MOF V1.3                 March 2000 21



thread [of control] A single path of execution through a program, a 
dynamic model, or some other representation of 
control flow. Also, a stereotype for the 
implementation of an active object as lightweight 
process. See process. 

time event An event that denotes the time elapsed since the 
current state was entered. See: event.

time expression An expression that resolves to an absolute or relative 
value of time. 

timing mark A denotation for the time at which an event or 
message occurs. Timing marks may be used in 
constraints.

top level A stereotype of package denoting the top-most 
package in a containment hierarchy. The topLevel 
stereotype defines the outer limit for looking up 
names, as namespaces “see” outwards. For example, 
opLevel subsystem represents the top of the 
subsystem containment hierarchy.

trace A dependency that indicates a historical or process 
relationship between two elements that represent the 
same concept without specific rules for deriving one 
from the other.

transient object An object that exists only during the execution of the 
process or thread that created it.

transition A relationship between two states indicating that an 
object in the first state will perform certain specified 
actions and enter the second state when a specified 
event occurs and specified conditions are satisfied. On 
such a change of state, the transition is said to fire. 

type A stereotype of class that is used to specify a domain 
of instances (objects) together with the operations 
applicable to the objects. A type may not contain any 
methods. See: class, instance. Contrast: interface.
22                 OMG-MOF V1.3                                  March 2000 



type expression An expression that evaluates to a reference to one or 
more types. 

uninterpreted A placeholder for a type or types whose 
implementation is not specified by the UML. Every 
uninterpreted value has a corresponding string 
representation. See: any [CORBA]. 

usage A dependency in which one element (the client) 
requires the presence of another element (the 
supplier) for its correct functioning or 
implementation.

use case [class] The specification of a sequence of actions, including 
variants, that a system (or other entity) can perform, 
interacting with actors of the system. See: use case 
instances. 

use case diagram A diagram that shows the relationships among actors 
and use cases within a system. 

use case instance The performance of a sequence of actions being 
specified in a use case. An instance of a use case. See: 
use case class. 

use case model A model that describes a system’s functional 
requirements in terms of use cases.

utility A stereotype that groups global variables and 
procedures in the form of a class declaration. The 
utility attributes and operations become global 
variables and global procedures, respectively. A utility 
is not a fundamental modeling construct, but a 
programming convenience. 

value An element of a type domain.

vertex A source or a target for a transition in a state machine. 
A vertex can be either a state or a pseudo-state. See: 
state, pseudo-state. 
OMG-MOF V1.3                 March 2000 23



view A projection of a model, which is seen from a given 
perspective or vantage point and omits entities that are 
not relevant to this perspective. 

view element A view element is a textual and/or graphical 
projection of a collection of model elements. 

view projection A projection of model elements onto view elements. 
A view projection provides a location and a style for 
each view element. 

visibility An enumeration whose value (public, protected, or 
private) denotes how the model element to which it 
refers may be seen outside its enclosing namespace.
24                 OMG-MOF V1.3                                  March 2000 



XMI for the MOF A
Note – The copyright information was added as comments to the XML document. 

The first section of this Appendix gives a rendering of the MOF Model as an XML 
document encoded using the XML production rules defined in the OMG XMI 
specification. This XML document is an encoding of the normative MOF Model. The 
second section of this Appendix gives the normative XMI DTD for MOF meta-model 
interchange.

The XML document and the DTD were produced automatically using XMI compliant 
tools.

 A.1 The MOF Model in XML
 <?xml version = ’1.0’ encoding = ’ISO-8859-1’ ?>
<!DOCTYPE XMI SYSTEM ’mof.dtd’>
<XMI xmi.version=’1.0’>

<!-- Meta Object Facility (MOF) Specification                        -->
<!-- Version 1.3.1                                                   -->
<!-- November 2001                                                   -->
<!-- Object Management Group, Inc.                                   -->
<!-- Appendix A: XMI for the MOF                                     -->

<!-- Copyright 1997-1999, DSTC (Cooperative Research Centre for      -->
<!--    Enterprise Distributed Systems Technology)                   -->
<!-- Copyright 1997-1999, Electronic Data Systems                    -->
<!-- Copyright 1997-1999, IBM Corporation                            -->
<!-- Copyright 1997-1999, International Computers Limited            -->
<!-- Copyright 1997-1999, Objectivity Inc.                           -->
<!-- Copyright 2000, Object Management Group                         -->
<!-- Copyright 1997-1999, Oracle Corporation                         -->
OMG-MOF, v1.3.1                                November 2001 A-1



A

<!-- Copyright 1997-1999, Platinum Technology Inc.                   -->
<!-- Copyright 1997-1999, Rational Software Corporation              -->
<!-- Copyright 1997-1999, System Software Associates                 -->
<!-- Copyright 1997-1999, Unisys Corporation                         -->

<!-- The companies listed above have granted to the Object           -->
<!-- Management Group, Inc. (OMG) a nonexclusive, royalty-free,      -->
<!-- paid up, worldwide license to copy and distribute this          -->
<!-- document and to modify this document and distribute copies      -->
<!-- of the modified version. Each of the copyright holders          -->
<!-- listed above has agreed that no person shall be deemed to       -->
<!-- have infringed the copyright in the included material of        -->
<!-- any such copyright holder by reason of having used the          -->
<!-- specification set forth herein or having conformed any          -->
<!-- computer software to the specification.                         -->

 <XMI.header>
  <XMI.metamodel xmi.name=’org.omg.mof.Model’ xmi.version=’1.1’/>
 </XMI.header>
 <XMI.content>
  
  <!-- _______________________________________________________________ -->
  <!--                                                                 -->
  <!-- Contents of Package: Model                                      -->
  <!--                                                                 -->
  <!-- _______________________________________________________________ -->

  <Model.Package xmi.id=’a1’>
   <Model.ModelElement.name>Model</Model.ModelElement.name>
   <Model.ModelElement.annotation></Model.ModelElement.annotation>
   <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
   <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
   <Model.GeneralizableElement.isRoot xmi.value=’false’/>
   <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
   <Model.Namespace.contents>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of DataType: NameType                                  -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.DataType xmi.id=’a97’>
     <Model.ModelElement.name>NameType</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.DataType.typeCode>
      <XMI.CorbaTypeCode>
A-2 OMG-MOF, v1.3.1                                November 2001



A

       <XMI.CorbaTcAlias xmi.tcName=’NameType’
           xmi.tcId=’IDL:org.omg.mof/Model/NameType:1.0’>
        <XMI.CorbaTypeCode>
         <XMI.CorbaTcString xmi.tcLength=’0’/>
        </XMI.CorbaTypeCode>
       </XMI.CorbaTcAlias>
      </XMI.CorbaTypeCode>
     </Model.DataType.typeCode>
    </Model.DataType>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of DataType: AnnotationType                            -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.DataType xmi.id=’a109’>
     <Model.ModelElement.name>AnnotationType</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.DataType.typeCode>
      <XMI.CorbaTypeCode>
       <XMI.CorbaTcAlias xmi.tcName=’AnnotationType’
           xmi.tcId=’IDL:org.omg.mof/Model/AnnotationType:1.0’>
        <XMI.CorbaTypeCode>
         <XMI.CorbaTcString xmi.tcLength=’0’/>
        </XMI.CorbaTypeCode>
       </XMI.CorbaTcAlias>
      </XMI.CorbaTypeCode>
     </Model.DataType.typeCode>
    </Model.DataType>
    
    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Class: ModelElement                                 -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a29’>
     <Model.ModelElement.name>ModelElement</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’true’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.ModelElement.constraints>
      <Model.Constraint xmi.idref=’c1’/>
OMG-MOF, v1.3.1                                November 2001 A-3



A

      <Model.Constraint xmi.idref=’c2’/>
      <Model.Constraint xmi.idref=’c3’/>
      <Model.Constraint xmi.idref=’c4’/>
     </Model.ModelElement.constraints>
     <Model.Namespace.contents>
      <Model.Constraint xmi.id=’c1’>
       
<Model.ModelElement.name>MustBeContainedUnlessPackage</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         not self.oclIsTypeOf(Package) implies
         self.container -&gt; size = 1
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’deferred’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c2’>
       
<Model.ModelElement.name>FrozenAttributesCannotBeChanged</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         self.isFrozen() implies
         let myTypes = self.oclType() -&gt; allSupertypes() -&gt;
         includes(self.oclType()) in
         let myAttrs : Set(Attribute) =
         self.RefBaseObject::refMetaObject() -&gt;
         asOclType(Class) -&gt;
         findElementsByTypeExtended(Attribute) in
         myAttrs -&gt; forAll(a |
         self.RefObject::refValue@pre(a) =
         self.RefObject::refValue(a))
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c3’>
       
<Model.ModelElement.name>FrozenElementsCannotBeDeleted</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
A-4 OMG-MOF, v1.3.1                                November 2001



A

       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         post:
         (self.isFrozen@pre() and
         self.container@pre -&gt; notEmpty and
         self.container.isFrozen@pre()) implies
         (self.container.Object::non_existent() or
         not self.Object::non_existent())
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c4’>
       
<Model.ModelElement.name>FrozenDependenciesCannotBeChanged</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         post:
         self.isFrozen() implies
         let myClasses = self.oclType() -&gt; allSupertypes() -&gt;
         includes(self.oclType()) in
         let myRefs = Set(Reference) =
         self.RefBaseObject::refMetaObject() -&gt;
         asOclType(Class) -&gt;
         findElementsByTypeExtended(Reference) in
         let myDepRefs = myRefs -&gt;
         select(r |
         Set{"contents", "constraints", "supertypes",
         "type", "referencedEnd", "exceptions",
         "importedNamespace", "elements"} -&gt;
         includes(r.name)) in
         myDepRefs -&gt;
         forAll(r |
         self.RefObject::refValue@pre(r) =
         self.RefObject::refValue(r))
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Attribute>
       <Model.ModelElement.name>name</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
OMG-MOF, v1.3.1                                November 2001 A-5



A

       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a97’/> <!-- Model.NameType -->
       </Model.TypedElement.type>
      </Model.Attribute>
      <Model.Attribute>
       <Model.ModelElement.name>qualifiedName</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>true</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’false’/>
       <Model.Attribute.isDerived xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a97’/> <!-- Model.NameType -->
       </Model.TypedElement.type>
      </Model.Attribute>
      <Model.Attribute>
       <Model.ModelElement.name>annotation</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a109’/> <!-- Model.AnnotationType -->
       </Model.TypedElement.type>
      </Model.Attribute>
      <Model.Reference>
       <Model.ModelElement.name>requiredElements</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
A-6 OMG-MOF, v1.3.1                                November 2001



A

       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>0</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>true</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
       </Model.TypedElement.type>
       <Model.Reference.referencedEnd>
        <Model.AssociationEnd xmi.idref=’a131’/> <!-- Model.DependsOn.provider -->
       </Model.Reference.referencedEnd>
      </Model.Reference>
    
      <!-- _______________________________________________________________ -->
      <!--                                                                 -->
      <!-- Contents of DataType: DependencyKind                            -->
      <!--                                                                 -->
      <!-- _______________________________________________________________ -->

      <Model.DataType xmi.id=’a116’>
       <Model.ModelElement.name>DependencyKind</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
       <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
       <Model.GeneralizableElement.isRoot xmi.value=’false’/>
       <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
       <Model.DataType.typeCode>
        <XMI.CorbaTypeCode>
         <XMI.CorbaTcAlias xmi.tcName=’DependencyKind’
           xmi.tcId=’IDL:org.omg.mof/Model/ModelElementClass/DependencyKind:1.0’>
          <XMI.CorbaTypeCode>
           <XMI.CorbaTcString xmi.tcLength=’0’/>
          </XMI.CorbaTypeCode>
         </XMI.CorbaTcAlias>
        </XMI.CorbaTypeCode>
       </Model.DataType.typeCode>
      </Model.DataType>

      <Model.Constant>
       <Model.ModelElement.name>ContainerDep</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constant.value>
        <XMI.any xmi.type="string" 
xmi.name="Model.ModelElement.DependencyKind">container</XMI.any>
       </Model.Constant.value>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a116’/> <!-- ModelElement.DependencyKind -->
OMG-MOF, v1.3.1                                November 2001 A-7



A

       </Model.TypedElement.type>
      </Model.Constant>
      <Model.Constant>
       <Model.ModelElement.name>ContentsDep</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constant.value>
        <XMI.any xmi.type="string" 
xmi.name="Model.ModelElement.DependencyKind">contents</XMI.any>
       </Model.Constant.value>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a116’/> <!-- ModelElement.DependencyKind -->
       </Model.TypedElement.type>
      </Model.Constant>
      <Model.Constant>
       <Model.ModelElement.name>SignatureDep</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constant.value>
        <XMI.any xmi.type="string" 
xmi.name="Model.ModelElement.DependencyKind">signature</XMI.any>
       </Model.Constant.value>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a116’/> <!-- ModelElement.DependencyKind -->
       </Model.TypedElement.type>
      </Model.Constant>
      <Model.Constant>
       <Model.ModelElement.name>ConstraintDep</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constant.value>
        <XMI.any xmi.type="string" 
xmi.name="Model.ModelElement.DependencyKind">constraint</XMI.any>
       </Model.Constant.value>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a116’/> <!-- ModelElement.DependencyKind -->
       </Model.TypedElement.type>
      </Model.Constant>
      <Model.Constant>
       <Model.ModelElement.name>ConstrainedElementsDep</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constant.value>
        <XMI.any xmi.type="string" 
xmi.name="Model.ModelElement.DependencyKind">constrained elements</XMI.any>
       </Model.Constant.value>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a116’/> <!-- ModelElement.DependencyKind -->
       </Model.TypedElement.type>
      </Model.Constant>
      <Model.Constant>
       <Model.ModelElement.name>SpecializationDep</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constant.value>
A-8 OMG-MOF, v1.3.1                                November 2001



A

        <XMI.any xmi.type="string" 
xmi.name="Model.ModelElement.DependencyKind">specialization</XMI.any>
       </Model.Constant.value>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a116’/> <!-- ModelElement.DependencyKind -->
       </Model.TypedElement.type>
      </Model.Constant>
      <Model.Constant>
       <Model.ModelElement.name>ImportDep</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constant.value>
        <XMI.any xmi.type="string" 
xmi.name="Model.ModelElement.DependencyKind">import</XMI.any>
       </Model.Constant.value>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a116’/> <!-- ModelElement.DependencyKind -->
       </Model.TypedElement.type>
      </Model.Constant>
      <Model.Constant>
       <Model.ModelElement.name>TypeDefinitionDep</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constant.value>
        <XMI.any xmi.type="string" xmi.name="Model.ModelElement.DependencyKind">type 
definition</XMI.any>
       </Model.Constant.value>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a116’/> <!-- ModelElement.DependencyKind -->
       </Model.TypedElement.type>
      </Model.Constant>
      <Model.Constant>
       <Model.ModelElement.name>ReferencedEndsDep</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constant.value>
        <XMI.any xmi.type="string" 
xmi.name="Model.ModelElement.DependencyKind">referenced ends</XMI.any>
       </Model.Constant.value>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a116’/> <!-- ModelElement.DependencyKind -->
       </Model.TypedElement.type>
      </Model.Constant>
      <Model.Constant>
       <Model.ModelElement.name>TaggedElementsDep</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constant.value>
        <XMI.any xmi.type="string" 
xmi.name="Model.ModelElement.DependencyKind">tagged elements</XMI.any>
       </Model.Constant.value>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a116’/> <!-- ModelElement.DependencyKind -->
       </Model.TypedElement.type>
      </Model.Constant>
OMG-MOF, v1.3.1                                November 2001 A-9



A

      <Model.Constant>
       <Model.ModelElement.name>IndirectDep</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constant.value>
        <XMI.any xmi.type="string" 
xmi.name="Model.ModelElement.DependencyKind">indirect</XMI.any>
       </Model.Constant.value>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a116’/> <!-- ModelElement.DependencyKind -->
       </Model.TypedElement.type>
      </Model.Constant>
      <Model.Constant>
       <Model.ModelElement.name>AllDep</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constant.value>
        <XMI.any xmi.type="string" 
xmi.name="Model.ModelElement.DependencyKind">all</XMI.any>
       </Model.Constant.value>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a116’/> <!-- ModelElement.DependencyKind -->
       </Model.TypedElement.type>
      </Model.Constant>
      <Model.Operation>
       <Model.ModelElement.name>findRequiredElements</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’ />
       <Model.Operation.isQuery xmi.value=’true’/>
       <Model.Namespace.contents>
        <Model.Parameter>
         <Model.ModelElement.name>*return</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’return_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>0</XMI.field>
          <XMI.field>-1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>true</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
         </Model.TypedElement.type>
        </Model.Parameter>
        <Model.Parameter>
         <Model.ModelElement.name>kinds</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’in_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>-1</XMI.field>
          <XMI.field>false</XMI.field>
A-10 OMG-MOF, v1.3.1                                November 2001



A

          <XMI.field>true</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a116’/> <!-- ModelElement.DependencyKind -->
         </Model.TypedElement.type>
        </Model.Parameter>
        <Model.Parameter>
         <Model.ModelElement.name>recursive</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’in_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a98’/> <!-- Model.boolean -->
         </Model.TypedElement.type>
        </Model.Parameter>
       </Model.Namespace.contents>
      </Model.Operation>
      <Model.Operation>
       <Model.ModelElement.name>isRequiredBecause</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.Operation.isQuery xmi.value=’true’/>
       <Model.Namespace.contents>
        <Model.Parameter>
         <Model.ModelElement.name>*return</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’return_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a98’/> <!-- Model.boolean -->
         </Model.TypedElement.type>
        </Model.Parameter>
        <Model.Parameter>
         <Model.ModelElement.name>otherElement</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’in_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
OMG-MOF, v1.3.1                                November 2001 A-11



A

          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
         </Model.TypedElement.type>
        </Model.Parameter>
        <Model.Parameter>
         <Model.ModelElement.name>reason</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’out_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a116’/> <!-- ModelElement.DependencyKind -->
         </Model.TypedElement.type>
        </Model.Parameter>
       </Model.Namespace.contents>
      </Model.Operation>
      <Model.Reference>
       <Model.ModelElement.name>container</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>0</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a6’/> <!-- Model.Namespace -->
       </Model.TypedElement.type>
       <Model.Reference.referencedEnd>
        <Model.AssociationEnd xmi.idref=’a120’/> <!-- Model.Contains.container -->
       </Model.Reference.referencedEnd>
      </Model.Reference>
      <Model.Reference>
       <Model.ModelElement.name>constraints</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>0</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>true</XMI.field>
A-12 OMG-MOF, v1.3.1                                November 2001



A

       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a58’/> <!-- Model.Constraint -->
       </Model.TypedElement.type>
       <Model.Reference.referencedEnd>
        <Model.AssociationEnd xmi.idref=’a126’/> <!-- Model.Constrains.constraint --
>
       </Model.Reference.referencedEnd>
      </Model.Reference>

      <!-- _______________________________________________________________ -->
      <!--                                                                 -->
      <!-- Contents of DataType: VerifyResultKind                          -->
      <!--                                                                 -->
      <!-- _______________________________________________________________ -->

      <Model.DataType xmi.id=’a117’>
       <Model.ModelElement.name>VerifyResultKind</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
       <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
       <Model.GeneralizableElement.isRoot xmi.value=’false’/>
       <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
       <Model.DataType.typeCode>
        <XMI.CorbaTypeCode>
         <XMI.CorbaTcEnum xmi.tcName=’VerifyResultKind’
           xmi.tcId=’IDL:org.omg.mof/Model/ModelElementClass/VerifyResultKind:1.0’>
          <XMI.CorbaTcEnumLabel xmi.tcName=’valid’/>
          <XMI.CorbaTcEnumLabel xmi.tcName=’invalid’/>
          <XMI.CorbaTcEnumLabel xmi.tcName=’published’/>
         </XMI.CorbaTcEnum>
        </XMI.CorbaTypeCode>
       </Model.DataType.typeCode>
      </Model.DataType>

      <!-- _______________________________________________________________ -->
      <!--                                                                 -->
      <!-- Contents of DataType: DepthKind                                 -->
      <!--                                                                 -->
      <!-- _______________________________________________________________ -->

      <Model.DataType xmi.id=’a111’>
       <Model.ModelElement.name>DepthKind</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
       <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
       <Model.GeneralizableElement.isRoot xmi.value=’false’/>
       <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
       <Model.DataType.typeCode>
        <XMI.CorbaTypeCode>
OMG-MOF, v1.3.1                                November 2001 A-13



A

         <XMI.CorbaTcEnum xmi.tcName=’DepthKind’
             xmi.tcId=’IDL:org.omg.mof/Model/ModelElementClass/DepthKind:1.0’>
          <XMI.CorbaTcEnumLabel xmi.tcName=’shallow’/>
          <XMI.CorbaTcEnumLabel xmi.tcName=’deep’/>
         </XMI.CorbaTcEnum>
        </XMI.CorbaTypeCode>
       </Model.DataType.typeCode>
      </Model.DataType>
    
      <!-- _______________________________________________________________ -->
      <!--                                                                 -->
      <!-- Contents of DataType: ViolationType                             -->
      <!--                                                                 -->
      <!-- _______________________________________________________________ -->

      <Model.DataType xmi.id=’a103’>
       <Model.ModelElement.name>ViolationType</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
       <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
       <Model.GeneralizableElement.isRoot xmi.value=’false’/>
       <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
       <Model.DataType.typeCode>
        <XMI.CorbaTypeCode>
         <XMI.CorbaTcStruct xmi.tcName=’ViolationType’
           xmi.tcId=’IDL:org.omg.mof/Model/ModelElementClass/ViolationType:1.0’>
          <XMI.CorbaTcField xmi.tcName=’error_kind’>
           <XMI.CorbaTypeCode>
            <XMI.CorbaTcString xmi.tcLength=’0’/>
           </XMI.CorbaTypeCode>
          </XMI.CorbaTcField>
          <XMI.CorbaTcField xmi.tcName=’element_in_error’>
           <XMI.CorbaTypeCode>
            <XMI.CorbaTcObjRef xmi.tcName=’’ 
xmi.tcId=’IDL:org.omg.mof/Reflective/RefObject:1.0’/>
           </XMI.CorbaTypeCode>
          </XMI.CorbaTcField>
          <XMI.CorbaTcField xmi.tcName=’values_in_error’>
           <XMI.CorbaTypeCode>
            <XMI.CorbaTcObjRef xmi.tcName=’’ 
xmi.tcId=’IDL:org.omg.mof/Reflective/NamedObjectList:1.0’/>
           </XMI.CorbaTypeCode>
          </XMI.CorbaTcField>
          <XMI.CorbaTcField xmi.tcName=’error_description’>
           <XMI.CorbaTypeCode>
            <XMI.CorbaTcString xmi.tcLength=’0’/>
           </XMI.CorbaTypeCode>
          </XMI.CorbaTcField>
         </XMI.CorbaTcStruct>
        </XMI.CorbaTypeCode>
       </Model.DataType.typeCode>
A-14 OMG-MOF, v1.3.1                                November 2001



A

      </Model.DataType>
      <Model.Operation>
       <Model.ModelElement.name>verify</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.Operation.isQuery xmi.value=’true’/>
       <Model.Namespace.contents>
        <Model.Parameter>
         <Model.ModelElement.name>*return</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’return_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a117’/> <!-- ModelElement.VerifyResultKind -->
         </Model.TypedElement.type>
        </Model.Parameter>
        <Model.Parameter>
         <Model.ModelElement.name>depth</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’in_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a111’/> <!-- ModelElement.DepthKind -->
         </Model.TypedElement.type>
        </Model.Parameter>
        <Model.Parameter>
         <Model.ModelElement.name>violations</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’out_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>0</XMI.field>
          <XMI.field>-1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>true</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a103’/><!-- ModelElement.ViolationType -->
         </Model.TypedElement.type>
        </Model.Parameter>
       </Model.Namespace.contents>
OMG-MOF, v1.3.1                                November 2001 A-15



A

      </Model.Operation>
      <Model.Operation>
       <Model.ModelElement.name>isFrozen</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.Operation.isQuery xmi.value=’true’/>
       <Model.Namespace.contents>
        <Model.Parameter>
         <Model.ModelElement.name>*return</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’return_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a98’/> <!-- Model.boolean -->
         </Model.TypedElement.type>
        </Model.Parameter>
       </Model.Namespace.contents>
      </Model.Operation>
      <Model.Operation>
       <Model.ModelElement.name>isVisible</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.Operation.isQuery xmi.value=’true’/>
       <Model.Namespace.contents>
        <Model.Parameter>
         <Model.ModelElement.name>*return</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’return_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a98’/> <!-- Model.boolean -->
         </Model.TypedElement.type>
        </Model.Parameter>
        <Model.Parameter>
         <Model.ModelElement.name>otherElement</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’in_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
A-16 OMG-MOF, v1.3.1                                November 2001



A

          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
         </Model.TypedElement.type>
        </Model.Parameter>
       </Model.Namespace.contents>
      </Model.Operation>
     </Model.Namespace.contents>
    </Model.Class>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of DataType: VisibilityKind                            -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.DataType xmi.id=’a110’>
     <Model.ModelElement.name>VisibilityKind</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.DataType.typeCode>
      <XMI.CorbaTypeCode>
       <XMI.CorbaTcEnum xmi.tcName=’VisibilityKind’
           xmi.tcId=’IDL:org.omg.mof/Model/VisibilityKind:1.0’>
        <XMI.CorbaTcEnumLabel xmi.tcName=’public_vis’/>
        <XMI.CorbaTcEnumLabel xmi.tcName=’protected_vis’/>
        <XMI.CorbaTcEnumLabel xmi.tcName=’private_vis’/>
       </XMI.CorbaTcEnum>
      </XMI.CorbaTypeCode>
     </Model.DataType.typeCode>
    </Model.DataType>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Class: Namespace                                    -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a6’>
     <Model.ModelElement.name>Namespace</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’true’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
OMG-MOF, v1.3.1                                November 2001 A-17



A

     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.ModelElement.constraints>
      <Model.Constraint xmi.idref=’c5’/>
     </Model.ModelElement.constraints>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
     </Model.GeneralizableElement.supertypes>
     <Model.Namespace.contents>
      <Model.Constraint xmi.id=’c5’>
       <Model.ModelElement.name>ContentNamesMustNotCollide</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.contents.forAll(
         e1, e2 | e1.name = e2.name implies r1 = r2)
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a6’/> <!-- Model.Namespace -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Exception xmi.id=’NameNotFound’>
       <Model.ModelElement.name>NameNotFound</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’ />
       <Model.Namespace.contents>
        <Model.Parameter>
         <Model.ModelElement.name>name</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’out_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a97’/> <!-- Model.NameType -->
         </Model.TypedElement.type>
        </Model.Parameter>
       </Model.Namespace.contents>
      </Model.Exception>
      <Model.Exception xmi.id=’NameNotResolved’>
       <Model.ModelElement.name>NameNotResolved</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’ />
       <Model.Namespace.contents>
A-18 OMG-MOF, v1.3.1                                November 2001



A

        <Model.Parameter>
         <Model.ModelElement.name>explanation</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’out_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a100’/> <!-- Model.string -->
         </Model.TypedElement.type>
        </Model.Parameter>
        <Model.Parameter>
         <Model.ModelElement.name>restOfName</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’out_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>0</XMI.field>
          <XMI.field>-1</XMI.field>
          <XMI.field>true</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a97’/> <!-- Model.NameType -->
         </Model.TypedElement.type>
        </Model.Parameter>
       </Model.Namespace.contents>
      </Model.Exception>
      <Model.Reference>
       <Model.ModelElement.name>contents</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>0</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>true</XMI.field>
        <XMI.field>true</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
       </Model.TypedElement.type>
       <Model.Reference.referencedEnd>
        <Model.AssociationEnd xmi.idref=’a121’/> <!-- 
Model.Contains.containedElement -->
       </Model.Reference.referencedEnd>
      </Model.Reference>
      <Model.Operation>
OMG-MOF, v1.3.1                                November 2001 A-19



A

       <Model.ModelElement.name>lookupElement</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’ />
       <Model.Operation.isQuery xmi.value=’true’/>
       <Model.Operation.exceptions>
        <Model.Exception xmi.idref=’NameNotFound’/>
       </Model.Operation.exceptions>
       <Model.Namespace.contents>
        <Model.Parameter>
         <Model.ModelElement.name>*return</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’return_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>0</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
         </Model.TypedElement.type>
        </Model.Parameter>
        <Model.Parameter>
         <Model.ModelElement.name>name</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’in_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a97’/> <!-- Model.NameType -->
         </Model.TypedElement.type>
        </Model.Parameter>
       </Model.Namespace.contents>
      </Model.Operation>
      <Model.Operation>
       <Model.ModelElement.name>resolveQualifiedName</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’ />
       <Model.Operation.isQuery xmi.value=’true’/>
       <Model.Operation.exceptions>
        <Model.Exception xmi.idref=’NameNotResolved’/>
       </Model.Operation.exceptions>
       <Model.Namespace.contents>
        <Model.Parameter>
         <Model.ModelElement.name>*return</Model.ModelElement.name>
A-20 OMG-MOF, v1.3.1                                November 2001



A

         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’return_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
         </Model.TypedElement.type>
        </Model.Parameter>
        <Model.Parameter>
         <Model.ModelElement.name>qualifiedName</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’in_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>-1</XMI.field>
          <XMI.field>true</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a97’/> <!-- Model.NameType -->
         </Model.TypedElement.type>
        </Model.Parameter>
       </Model.Namespace.contents>
      </Model.Operation>
      <Model.Operation>
       <Model.ModelElement.name>findElementsByType</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’ />
       <Model.Operation.isQuery xmi.value=’true’/>
       <Model.Namespace.contents>
        <Model.Parameter>
         <Model.ModelElement.name>*return</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’return_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>0</XMI.field>
          <XMI.field>-1</XMI.field>
          <XMI.field>true</XMI.field>
          <XMI.field>true</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
         </Model.TypedElement.type>
        </Model.Parameter>
        <Model.Parameter>
         <Model.ModelElement.name>ofType</Model.ModelElement.name>
OMG-MOF, v1.3.1                                November 2001 A-21



A

         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’in_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.Class xmi.idref=’a27’/> <!-- Model.Class -->
         </Model.TypedElement.type>
        </Model.Parameter>
        <Model.Parameter>
         <Model.ModelElement.name>includeSubtypes</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’in_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a98’/> <!-- Model.boolean -->
         </Model.TypedElement.type>
        </Model.Parameter>
       </Model.Namespace.contents>
      </Model.Operation>
      <Model.Operation>
       <Model.ModelElement.name>nameIsValid</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’ />
       <Model.Operation.isQuery xmi.value=’true’/>
       <Model.Namespace.contents>
        <Model.Parameter>
         <Model.ModelElement.name>*return</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’return_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a98’/> <!-- Model.boolean -->
         </Model.TypedElement.type>
        </Model.Parameter>
        <Model.Parameter>
         <Model.ModelElement.name>proposedName</Model.ModelElement.name>
A-22 OMG-MOF, v1.3.1                                November 2001



A

         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’in_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a97’/> <!-- Model.NameType -->
         </Model.TypedElement.type>
        </Model.Parameter>
       </Model.Namespace.contents>
      </Model.Operation>
     </Model.Namespace.contents>
    </Model.Class>
    
    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Class: GeneralizableElement                         -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a71’>
     <Model.ModelElement.name>GeneralizableElement</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’true’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.ModelElement.constraints>
      <Model.Constraint xmi.idref=’c6’/>
      <Model.Constraint xmi.idref=’c7’/>
      <Model.Constraint xmi.idref=’c8’/>
      <Model.Constraint xmi.idref=’c9’/>
      <Model.Constraint xmi.idref=’c10’/>
      <Model.Constraint xmi.idref=’c11’/>
      <Model.Constraint xmi.idref=’c12’/>
     </Model.ModelElement.constraints>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a6’/> <!-- Model.Namespace -->
     </Model.GeneralizableElement.supertypes>
     <Model.Namespace.contents>
      <Model.Constraint xmi.id=’c6’>
       <Model.ModelElement.name>SupertypeMustNotBeSelf</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.allSupertypes() -&gt; forAll(s | s &lt;&gt; self)
        </XMI.any>
OMG-MOF, v1.3.1                                November 2001 A-23



A

       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a71’/> <!-- Model.GeneralizableElement -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c7’>
       <Model.ModelElement.name>SupertypeKindMustBeSame</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.supertypes -&gt; forAll(s | s.oclType() = self.oclType())
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a71’/> <!-- Model.GeneralizableElement -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c8’>
       
<Model.ModelElement.name>ContentsMustNotCollideWithSupertypes</Model.ModelElement.na
me>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         let superContents = self.allSupertypes() -&gt;
         collect(s | s.contents) in
         self.contents -&gt;
         forAll(m1 |
         superContents -&gt;
         forAll(m2 |
         m1.name = m2.name implies m1 = m2))
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a71’/> <!-- Model.GeneralizableElement -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c9’>
       <Model.ModelElement.name>DiamondRuleMustBeObeyed</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         let superNamespaces =
A-24 OMG-MOF, v1.3.1                                November 2001



A

         self.supertypes -&gt; collect(s | s.extendedNamespace) in
         superNamespaces -&gt; asSet -&gt; isUnique(s | s.name)
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a71’/> <!-- Model.GeneralizableElement -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c10’>
       <Model.ModelElement.name>NoSupertypesAllowedForRoot</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.isRoot implies self.supertypes -&gt; isEmpty
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a71’/> <!-- Model.GeneralizableElement -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c11’>
       <Model.ModelElement.name>SupertypesMustBeVisible</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.supertypes -&gt; forAll(s | self.isVisible(s))
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’deferred’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a71’/> <!-- Model.GeneralizableElement -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c12’>
       <Model.ModelElement.name>NoSubtypesAllowedForLeaf</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.supertypes -&gt; forAll(s | not s.isLeaf)
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a71’/> <!-- Model.GeneralizableElement -->
       </Model.Constraint.constrainedElements>
OMG-MOF, v1.3.1                                November 2001 A-25



A

      </Model.Constraint>
      <Model.Attribute>
       <Model.ModelElement.name>isRoot</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a98’/> <!-- Model.boolean -->
       </Model.TypedElement.type>
      </Model.Attribute>
      <Model.Attribute>
       <Model.ModelElement.name>isLeaf</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a98’/> <!-- Model.boolean -->
       </Model.TypedElement.type>
      </Model.Attribute>
      <Model.Attribute>
       <Model.ModelElement.name>isAbstract</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a98’/> <!-- Model.boolean -->
       </Model.TypedElement.type>
A-26 OMG-MOF, v1.3.1                                November 2001



A

      </Model.Attribute>
      <Model.Attribute>
       <Model.ModelElement.name>visibility</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a110’/> <!-- Model.VisibilityKind -->
       </Model.TypedElement.type>
      </Model.Attribute>
      <Model.Reference xmi.id=’a140’>
       <Model.ModelElement.name>supertypes</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>0</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>true</XMI.field>
        <XMI.field>true</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a71’/> <!-- Model.GeneralizableElement -->
       </Model.TypedElement.type>
       <Model.Reference.referencedEnd>
        <Model.AssociationEnd xmi.idref=’a138’/> <!-- Model.Generalizes.supertype --
>
       </Model.Reference.referencedEnd>
      </Model.Reference>
      <Model.Operation>
       <Model.ModelElement.name>allSupertypes</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’ />
       <Model.Operation.isQuery xmi.value=’true’/>
       <Model.Namespace.contents>
        <Model.Parameter>
         <Model.ModelElement.name>*return</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’return_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>0</XMI.field>
OMG-MOF, v1.3.1                                November 2001 A-27



A

          <XMI.field>-1</XMI.field>
          <XMI.field>true</XMI.field>
          <XMI.field>true</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.Class xmi.idref=’a71’/> <!-- Model.GeneralizableElement -->
         </Model.TypedElement.type>
        </Model.Parameter>
       </Model.Namespace.contents>
      </Model.Operation>
      <Model.Operation>
       <Model.ModelElement.name>lookupElementExtended</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’ />
       <Model.Operation.isQuery xmi.value=’true’/>
       <Model.Operation.exceptions>
        <Model.Exception xmi.idref=’NameNotFound’/>
       </Model.Operation.exceptions>
       <Model.Namespace.contents>
        <Model.Parameter>
         <Model.ModelElement.name>*return</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’return_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
         </Model.TypedElement.type>
        </Model.Parameter>
        <Model.Parameter>
         <Model.ModelElement.name>name</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’in_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a97’/> <!-- Model.NameType -->
         </Model.TypedElement.type>
        </Model.Parameter>
       </Model.Namespace.contents>
      </Model.Operation>
      <Model.Operation>
A-28 OMG-MOF, v1.3.1                                November 2001



A

       <Model.ModelElement.name>findElementsByTypeExtended</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’ />
       <Model.Operation.isQuery xmi.value=’true’/>
       <Model.Namespace.contents>
        <Model.Parameter>
         <Model.ModelElement.name>*return</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’return_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>0</XMI.field>
          <XMI.field>-1</XMI.field>
          <XMI.field>true</XMI.field>
          <XMI.field>true</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
         </Model.TypedElement.type>
        </Model.Parameter>
        <Model.Parameter>
         <Model.ModelElement.name>ofType</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’in_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.Class xmi.idref=’a27’/> <!-- Model.Class -->
         </Model.TypedElement.type>
        </Model.Parameter>
        <Model.Parameter>
         <Model.ModelElement.name>includeSubtypes</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’in_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a98’/> <!-- Model.boolean -->
         </Model.TypedElement.type>
        </Model.Parameter>
       </Model.Namespace.contents>
      </Model.Operation>
     </Model.Namespace.contents>
OMG-MOF, v1.3.1                                November 2001 A-29



A

    </Model.Class>
    
    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Class: TypedElement                                 -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a96’>
     <Model.ModelElement.name>TypedElement</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’true’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.ModelElement.constraints>
      <Model.Constraint xmi.idref=’c13’/>
      <Model.Constraint xmi.idref=’c14’/>
     </Model.ModelElement.constraints>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
     </Model.GeneralizableElement.supertypes>
     <Model.Namespace.contents>
      <Model.Constraint xmi.id=’c13’>
       <Model.ModelElement.name>AssociationsCannotBeTypes</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: not self.type.oclIsKindOf(Association)
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a96’/> <!-- Model.TypedElement -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c14’>
       <Model.ModelElement.name>TypeMustBeVisible</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.isVisible(self.type)
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’deferred’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a96’/> <!-- Model.TypedElement -->
       </Model.Constraint.constrainedElements>
A-30 OMG-MOF, v1.3.1                                November 2001



A

      </Model.Constraint>
      <Model.Reference>
       <Model.ModelElement.name>type</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a5’/> <!-- Model.Classifier -->
       </Model.TypedElement.type>
       <Model.Reference.referencedEnd>
        <Model.AssociationEnd xmi.idref=’a155’/> <!-- Model.IsOfType.type -->
       </Model.Reference.referencedEnd>
      </Model.Reference>
     </Model.Namespace.contents>
    </Model.Class>
    
    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Class: Classifier                                   -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a5’>
     <Model.ModelElement.name>Classifier</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’true’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a71’/> <!-- Model.GeneralizableElement -->
     </Model.GeneralizableElement.supertypes>
    </Model.Class>
    
    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Class: Class                                        -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a27’>
     <Model.ModelElement.name>Class</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
OMG-MOF, v1.3.1                                November 2001 A-31



A

     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.ModelElement.constraints>
      <Model.Constraint xmi.idref=’c15’/>
      <Model.Constraint xmi.idref=’c16’/>
     </Model.ModelElement.constraints>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a5’/> <!-- Model.Classifier -->
     </Model.GeneralizableElement.supertypes>
     <Model.Namespace.contents>
      <Model.Constraint xmi.id=’c15’>
       <Model.ModelElement.name>ClassContainmentRules</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         Set{Class, DataType, Attribute, Reference, Operation,
         Exception, Constraint, Tag} -&gt;
         includesAll(self.contentTypes())
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a27’/> <!-- Model.Class -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c16’>
       
<Model.ModelElement.name>AbstractClassesCannotBeSingleton</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.isAbstract implies not self.isSingleton
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’deferred’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a27’/> <!-- Model.Class -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Attribute>
       <Model.ModelElement.name>isSingleton</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
A-32 OMG-MOF, v1.3.1                                November 2001



A

        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a98’/> <!-- Model.boolean -->
       </Model.TypedElement.type>
      </Model.Attribute>
     </Model.Namespace.contents>
    </Model.Class>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of DataType: TypeDescriptor                            -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.DataType xmi.id=’a102’>
     <Model.ModelElement.name>TypeDescriptor</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.DataType.typeCode>
      <XMI.CorbaTypeCode>
       <XMI.CorbaTcAlias xmi.tcName=’TypeDescriptor’
           xmi.tcId=’IDL:org.omg.mof/Model/TypeDescriptor:1.0’>
        <XMI.CorbaTypeCode>
         <XMI.CorbaTcTypeCode/>
        </XMI.CorbaTypeCode>
       </XMI.CorbaTcAlias>
      </XMI.CorbaTypeCode>
     </Model.DataType.typeCode>
    </Model.DataType>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Class: DataType                                     -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a88’>
     <Model.ModelElement.name>DataType</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
OMG-MOF, v1.3.1                                November 2001 A-33



A

     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.ModelElement.constraints>
      <Model.Constraint xmi.idref=’c17’/>
      <Model.Constraint xmi.idref=’c18’/>
      <Model.Constraint xmi.idref=’c19’/>
      <Model.Constraint xmi.idref=’c20’/>
     </Model.ModelElement.constraints>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a5’/> <!-- Model.Classifier -->
     </Model.GeneralizableElement.supertypes>
     <Model.Namespace.contents>
      <Model.Constraint xmi.id=’c17’>
       <Model.ModelElement.name>DataTypeContainmentRules</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         Set{TypeAlias, Constraint, Tag} -&gt;
         includesAll(self.contentTypes())
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a27’/> <!-- Model.Class -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c18’>
       <Model.ModelElement.name>ThisTypecodeNotSupported</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         self.typeCode.allTypeKinds() -&gt;
         excludes(Set{#tk_void, #tk_Principal, #tk_null, #tk_except,
         #tk_value, #tk_value_box, #tk_native,
         #tk_abstract_interface})
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’deferred’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a88’/> <!-- Model.DataType -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c19’>
       <Model.ModelElement.name>DataTypesHaveNoSupertypes</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
A-34 OMG-MOF, v1.3.1                                November 2001



A

         inv: self.supertypes -&gt; isEmpty
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a88’/> <!-- Model.DataType -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c20’>
       <Model.ModelElement.name>DataTypesCannotBeAbstract</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: not self.isAbstract
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a88’/> <!-- Model.DataType -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Attribute>
       <Model.ModelElement.name>typeCode</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a102’/> <!-- Model.TypeDescriptor -->
       </Model.TypedElement.type>
      </Model.Attribute>
     </Model.Namespace.contents>
    </Model.Class>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Class: TypeAlias                                    -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a104’>
     <Model.ModelElement.name>TypeAlias</Model.ModelElement.name>
OMG-MOF, v1.3.1                                November 2001 A-35



A

     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a96’/> <!-- Model.TypedElement -->
     </Model.GeneralizableElement.supertypes>
    </Model.Class>
    
    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of DataType: ScopeKind                                 -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.DataType xmi.id=’a113’>
     <Model.ModelElement.name>ScopeKind</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.DataType.typeCode>
      <XMI.CorbaTypeCode>
       <XMI.CorbaTcEnum xmi.tcName=’ScopeKind’
           xmi.tcId=’IDL:org.omg.Mof/Model/ScopeKind:1.0’>
        <XMI.CorbaTcEnumLabel xmi.tcName=’instance_level’/>
        <XMI.CorbaTcEnumLabel xmi.tcName=’classifier_level’/>
       </XMI.CorbaTcEnum>
      </XMI.CorbaTypeCode>
     </Model.DataType.typeCode>
    </Model.DataType>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Class: Feature                                      -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a2’>
     <Model.ModelElement.name>Feature</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’true’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
A-36 OMG-MOF, v1.3.1                                November 2001



A

     </Model.GeneralizableElement.supertypes>
     <Model.Namespace.contents>
      <Model.Attribute>
       <Model.ModelElement.name>scope</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a113’/> <!-- Model.ScopeKind -->
       </Model.TypedElement.type>
      </Model.Attribute>
      <Model.Attribute>
       <Model.ModelElement.name>visibility</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a110’/> <!-- Model.VisibilityKind -->
       </Model.TypedElement.type>
      </Model.Attribute>
     </Model.Namespace.contents>
    </Model.Class>
    
    <Model.Constant>
     <Model.ModelElement.name>Unbounded</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.Constant.value>
      <XMI.any xmi.type="uLong" xmi.name="">-1</XMI.any>
     </Model.Constant.value>
     <Model.TypedElement.type>
      <Model.Class xmi.idref=’uLong’/> <!-- unsigned long -->
     </Model.TypedElement.type>
    </Model.Constant>

    <!-- _______________________________________________________________ -->
OMG-MOF, v1.3.1                                November 2001 A-37



A

    <!--                                                                 -->
    <!-- Contents of DataType: MultiplicityType                          -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.DataType xmi.id=’a99’>
     <Model.ModelElement.name>MultiplicityType</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.DataType.typeCode>
      <XMI.CorbaTypeCode>
       <XMI.CorbaTcStruct xmi.tcName=’MultiplicityType’
           xmi.tcId=’IDL:org.omg.mof/Model/MultiplicityType:1.0’>
        <XMI.CorbaTcField xmi.tcName=’lower’>
         <XMI.CorbaTypeCode>
          <XMI.CorbaTcLong/>
         </XMI.CorbaTypeCode>
        </XMI.CorbaTcField>
        <XMI.CorbaTcField xmi.tcName=’upper’>
         <XMI.CorbaTypeCode>
          <XMI.CorbaTcLong/>
         </XMI.CorbaTypeCode>
        </XMI.CorbaTcField>
        <XMI.CorbaTcField xmi.tcName=’is_ordered’>
         <XMI.CorbaTypeCode>
          <XMI.CorbaTcBoolean/>
         </XMI.CorbaTypeCode>
        </XMI.CorbaTcField>
        <XMI.CorbaTcField xmi.tcName=’is_unique’>
         <XMI.CorbaTypeCode>
          <XMI.CorbaTcBoolean/>
         </XMI.CorbaTypeCode>
        </XMI.CorbaTcField>
       </XMI.CorbaTcStruct>
      </XMI.CorbaTypeCode>
     </Model.DataType.typeCode>
     <Model.ModelElement.constraints>
      <Model.Constraint xmi.idref=’c55’/>
      <Model.Constraint xmi.idref=’c56’/>
      <Model.Constraint xmi.idref=’c57’/>
      <Model.Constraint xmi.idref=’c58’/>
     </Model.ModelElement.constraints>
     <Model.Namespace.contents>
      <Model.Constraint xmi.id=’c55’>
       
<Model.ModelElement.name>LowerCannotBeNegativeOrUnbounded</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
A-38 OMG-MOF, v1.3.1                                November 2001



A

        <XMI.any xmi.type="string" xmi.name="">
         inv: self.lower &gt;= 0 and self.lower &lt;&gt; Unbounded
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a99’/> <!-- Model.MultiplicityType -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c56’>
       <Model.ModelElement.name>LowerCannotExceedUpper</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.lower &lt;= self.upper or self.upper = Unbounded
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a99’/> <!-- Model.MultiplicityType -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c57’>
       <Model.ModelElement.name>UpperMustBePositive</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.upper &gt;= 1 or self.upper = Unbounded
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a99’/> <!-- Model.MultiplicityType -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c58’>
       <Model.ModelElement.name>MustBeUnorderedNonunique</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         self.upper = 1 implies
         (not self.isOrdered and not self.isUnique)
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
OMG-MOF, v1.3.1                                November 2001 A-39



A

        <Model.Class xmi.idref=’a99’/> <!-- Model.MultiplicityType -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
     </Model.Namespace.contents>
    </Model.DataType>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Class: StructuralFeature                            -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a20’>
     <Model.ModelElement.name>StructuralFeature</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’true’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a2’/> <!-- Model.Feature -->
      <Model.Class xmi.idref=’a96’/> <!-- Model.TypedElement -->
     </Model.GeneralizableElement.supertypes>
     <Model.Namespace.contents>
      <Model.Attribute>
       <Model.ModelElement.name>multiplicity</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a99’/> <!-- Model.MultiplicityType -->
       </Model.TypedElement.type>
      </Model.Attribute>
      <Model.Attribute>
       <Model.ModelElement.name>isChangeable</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
A-40 OMG-MOF, v1.3.1                                November 2001



A

        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a98’/> <!-- Model.boolean -->
       </Model.TypedElement.type>
      </Model.Attribute>
     </Model.Namespace.contents>
    </Model.Class>
    
    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Class: Attribute                                    -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a23’>
     <Model.ModelElement.name>Attribute</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a20’/> <!-- Model.StructuralFeature -->
     </Model.GeneralizableElement.supertypes>
     <Model.Namespace.contents>
      <Model.Attribute>
       <Model.ModelElement.name>isDerived</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a98’/> <!-- Model.boolean -->
       </Model.TypedElement.type>
      </Model.Attribute>
     </Model.Namespace.contents>
    </Model.Class>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
OMG-MOF, v1.3.1                                November 2001 A-41



A

    <!-- Contents of Class: Reference                                    -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a86’>
     <Model.ModelElement.name>Reference</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.ModelElement.constraints>
      <Model.Constraint xmi.idref=’c21’/>
      <Model.Constraint xmi.idref=’c22’/>
      <Model.Constraint xmi.idref=’c23’/>
      <Model.Constraint xmi.idref=’c24’/>
      <Model.Constraint xmi.idref=’c25’/>
      <Model.Constraint xmi.idref=’c26’/>
      <Model.Constraint xmi.idref=’c27’/>
     </Model.ModelElement.constraints>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a20’/> <!-- Model.StructuralFeature -->
     </Model.GeneralizableElement.supertypes>
     <Model.Namespace.contents>
      <Model.Constraint xmi.id=’c21’>
       
<Model.ModelElement.name>ReferenceMultiplicityMustMatchEnd</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.multiplicity = self.referencedEnd.multiplicity
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’deferred’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a86’/> <!-- Model.Reference -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c22’>
       
<Model.ModelElement.name>ReferenceMustBeInstanceScoped</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.scope = #instance_level
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
A-42 OMG-MOF, v1.3.1                                November 2001



A

       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a86’/> <!-- Model.Reference -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c23’>
       
<Model.ModelElement.name>ChangeableReferenceMustHaveChangeableEnd</Model.ModelElemen
t.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.isChangeable = self.referencedEnd.isChangeable
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’deferred’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a86’/> <!-- Model.Reference -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c24’>
       
<Model.ModelElement.name>ReferenceTypeMustMatchEndType</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.type = self.referencedEnd.type
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’deferred’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a86’/> <!-- Model.Reference -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c25’>
       
<Model.ModelElement.name>ReferencedEndMustBeNavigable</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.referencedEnd.isNavigable
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’deferred’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a86’/> <!-- Model.Reference -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c26’>
OMG-MOF, v1.3.1                                November 2001 A-43



A

       
<Model.ModelElement.name>ContainerMustMatchExposedType</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         self.container.allSupertypes() -&gt; including(self) -&gt;
         includes(self.referencedEnd.otherEnd.type)
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’deferred’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a86’/> <!-- Model.Reference -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c27’>
       <Model.ModelElement.name>ReferencedEndMustBeVisible</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.isVisible(self.referencedEnd)
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’deferred’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a86’/> <!-- Model.Reference -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Reference>
       <Model.ModelElement.name>exposedEnd</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a90’/> <!-- Model.AssociationEnd -->
       </Model.TypedElement.type>
       <Model.Reference.referencedEnd>
        <Model.AssociationEnd xmi.idref=’a150’/> <!-- Model.Exposes.exposedEnd -->
       </Model.Reference.referencedEnd>
      </Model.Reference>
      <Model.Reference>
       <Model.ModelElement.name>referencedEnd</Model.ModelElement.name>
A-44 OMG-MOF, v1.3.1                                November 2001



A

       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a90’/> <!-- Model.AssociationEnd -->
       </Model.TypedElement.type>
       <Model.Reference.referencedEnd>
        <Model.AssociationEnd xmi.idref=’a146’/> <!-- Model.RefersTo.referencedEnd -
->
       </Model.Reference.referencedEnd>
      </Model.Reference>
     </Model.Namespace.contents>
    </Model.Class>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Class: BehavioralFeature                            -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a67’>
     <Model.ModelElement.name>BehavioralFeature</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’true’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a2’/> <!-- Model.Feature -->
      <Model.Class xmi.idref=’a6’/> <!-- Model.Namespace -->
     </Model.GeneralizableElement.supertypes>
    </Model.Class>
    
    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Class: Operation                                    -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a25’>
     <Model.ModelElement.name>Operation</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
OMG-MOF, v1.3.1                                November 2001 A-45



A

     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.ModelElement.constraints>
      <Model.Constraint xmi.idref=’c28’/>
      <Model.Constraint xmi.idref=’c29’/>
      <Model.Constraint xmi.idref=’c30’/>
     </Model.ModelElement.constraints>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a67’/> <!-- Model.BehavioralFeature -->
     </Model.GeneralizableElement.supertypes>
     <Model.Namespace.contents>
      <Model.Constraint xmi.id=’c28’>
       <Model.ModelElement.name>OperationContainmentRules</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         Set{Parameter, Constraint, Tag} -&gt;
         includesAll(self.contentTypes())
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a25’/> <!-- Model.Operation -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c29’>
       
<Model.ModelElement.name>OperationsHaveAtMostOneReturn</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         self.contents -&gt;
         select(c | c.oclIsTypeOf(Parameter)) -&gt;
         select(p : Parameter | p.direction = #return_dir) -&gt;
         size &lt; 2
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a25’/> <!-- Model.Operation -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c30’>
       
<Model.ModelElement.name>OperationExceptionsMustBeVisible</Model.ModelElement.name>
A-46 OMG-MOF, v1.3.1                                November 2001



A

       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.exceptions -&gt; forAll(e | self.isVisible(e))
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’deferred’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a25’/> <!-- Model.Operation -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Attribute>
       <Model.ModelElement.name>isQuery</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a98’/> <!-- Model.boolean -->
       </Model.TypedElement.type>
      </Model.Attribute>
      <Model.Reference xmi.id=’a136’>
       <Model.ModelElement.name>exceptions</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>0</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>true</XMI.field>
        <XMI.field>true</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a87’/> <!-- Model.Exception -->
       </Model.TypedElement.type>
       <Model.Reference.referencedEnd>
        <Model.AssociationEnd xmi.idref=’a134’/> <!-- Model.CanRaise.except -->
       </Model.Reference.referencedEnd>
      </Model.Reference>
     </Model.Namespace.contents>
    </Model.Class>
OMG-MOF, v1.3.1                                November 2001 A-47



A

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Class: Exception                                    -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a87’>
     <Model.ModelElement.name>Exception</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.ModelElement.constraints>
      <Model.Constraint xmi.idref=’c31’/>
      <Model.Constraint xmi.idref=’c32’/>
     </Model.ModelElement.constraints>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a67’/> <!-- Model.BehavioralFeature -->
     </Model.GeneralizableElement.supertypes>
     <Model.Namespace.contents>
      <Model.Constraint xmi.id=’c31’>
       <Model.ModelElement.name>ExceptionContainmentRules</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: Set{Parameter, Tag}) -&gt; includesAll(self.contentTypes())
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a87’/> <!-- Model.Exception -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c32’>
       
<Model.ModelElement.name>ExceptionsHaveOnlyOutParameters</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         self.contents -&gt;
         select(c | c.oclIsTypeOf(Parameter)) -&gt;
         forAll(p : Parameter | p.direction = #out_dir)
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
A-48 OMG-MOF, v1.3.1                                November 2001



A

        <Model.Class xmi.idref=’a87’/> <!-- Model.Exception -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
     </Model.Namespace.contents>
    </Model.Class>
    
    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Class: Association                                  -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a62’>
     <Model.ModelElement.name>Association</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.ModelElement.constraints>
      <Model.Constraint xmi.idref=’c33’/>
      <Model.Constraint xmi.idref=’c34’/>
      <Model.Constraint xmi.idref=’c36’/>
      <Model.Constraint xmi.idref=’c37’/>
      <Model.Constraint xmi.idref=’c38’/>
      <Model.Constraint xmi.idref=’c39’/>
     </Model.ModelElement.constraints>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a5’/> <!-- Model.Classifier -->
     </Model.GeneralizableElement.supertypes>
     <Model.Namespace.contents>
      <Model.Constraint xmi.id=’c33’>
       
<Model.ModelElement.name>AssociationContainmentRules</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         Set{AssociationEnd, Constraint, Tag} -&gt;
         includesAll(self.contentTypes())
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a62’/> <!-- Model.Association -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c34’>
OMG-MOF, v1.3.1                                November 2001 A-49



A

       
<Model.ModelElement.name>AssociationsHaveNoSupertypes</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.supertypes -&gt; isEmpty
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a62’/> <!-- Model.Association -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c36’>
       
<Model.ModelElement.name>AssociationMustBeRootAndLeaf</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.isRoot and self.isLeaf
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a62’/> <!-- Model.Association -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c37’>
       
<Model.ModelElement.name>AssociationsCannotBeAbstract</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: not self.isAbstract
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a62’/> <!-- Model.Association -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c38’>
       <Model.ModelElement.name>AssociationsMustBePublic</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.visibility = #public_vis
        </XMI.any>
A-50 OMG-MOF, v1.3.1                                November 2001



A

       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a62’/> <!-- Model.Association -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c39’>
       <Model.ModelElement.name>AssociationsMustBeBinary</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.contents -&gt;
         select(c | c.oclIsTypeOf(AssociationEnd)) -&gt; size = 2
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a62’/> <!-- Model.Association -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Attribute>
       <Model.ModelElement.name>isDerived</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a98’/> <!-- Model.boolean -->
       </Model.TypedElement.type>
      </Model.Attribute>
     </Model.Namespace.contents>
    </Model.Class>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of DataType: AggregationKind                           -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.DataType xmi.id=’a114’>
     <Model.ModelElement.name>AggregationKind</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
OMG-MOF, v1.3.1                                November 2001 A-51



A

     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.DataType.typeCode>
      <XMI.CorbaTypeCode>
       <XMI.CorbaTcEnum xmi.tcName=’AggregationKind’
           xmi.tcId=’IDL:org.omg.mof/Model/AggregationKind:1.0’>
        <XMI.CorbaTcEnumLabel xmi.tcName=’none’/>
        <XMI.CorbaTcEnumLabel xmi.tcName=’shared’/>
        <XMI.CorbaTcEnumLabel xmi.tcName=’composite’/>
       </XMI.CorbaTcEnum>
      </XMI.CorbaTypeCode>
     </Model.DataType.typeCode>
    </Model.DataType>
    
    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Class: AssociationEnd                               -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a90’>
     <Model.ModelElement.name>AssociationEnd</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.ModelElement.constraints>
      <Model.Constraint xmi.idref=’c40’/>
      <Model.Constraint xmi.idref=’c41’/>
      <Model.Constraint xmi.idref=’c42’/>
      <Model.Constraint xmi.idref=’c43’/>
     </Model.ModelElement.constraints>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a96’/> <!-- Model.TypedElement -->
     </Model.GeneralizableElement.supertypes>
     <Model.Namespace.contents>
      <Model.Constraint xmi.id=’c40’>
       <Model.ModelElement.name>EndTypeMustBeClass</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.type.oclIsTypeOf(Class)
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
A-52 OMG-MOF, v1.3.1                                November 2001



A

        <Model.Class xmi.idref=’a90’/> <!-- Model.AssociationEnd -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c41’>
       <Model.ModelElement.name>EndsMustBeUnique</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         (self.multiplicity.upper &gt; 1 or
         self.multiplicity.upper = UNBOUNDED) implies
         self.multiplicity.isUnique
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a90’/> <!-- Model.AssociationEnd -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c42’>
       <Model.ModelElement.name>CannotHaveTwoOrderedEnds</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         self.multiplicity.isOrdered implies
         not self.otherEnd.multiplicity.isOrdered
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’deferred’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a90’/> <!-- Model.AssociationEnd -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c43’>
       <Model.ModelElement.name>CannotHaveTwoAggregateEnds</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         self.aggregation &lt;&gt; #none implies self.otherEnd = #none
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’deferred’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a90’/> <!-- Model.AssociationEnd -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
OMG-MOF, v1.3.1                                November 2001 A-53



A

      <Model.Attribute>
       <Model.ModelElement.name>isNavigable</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a98’/> <!-- Model.boolean -->
       </Model.TypedElement.type>
      </Model.Attribute>
      <Model.Attribute>
       <Model.ModelElement.name>aggregation</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a114’/> <!-- Model.AggregationKind -->
       </Model.TypedElement.type>
      </Model.Attribute>
      <Model.Attribute>
       <Model.ModelElement.name>multiplicity</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a99’/> <!-- Model.MultiplicityType -->
       </Model.TypedElement.type>
      </Model.Attribute>
A-54 OMG-MOF, v1.3.1                                November 2001



A

      <Model.Attribute>
       <Model.ModelElement.name>isChangeable</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a98’/> <!-- Model.boolean -->
       </Model.TypedElement.type>
      </Model.Attribute>
      <Model.Operation>
       <Model.ModelElement.name>otherEnd</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’ />
       <Model.Operation.isQuery xmi.value=’true’/>
       <Model.Namespace.contents>
        <Model.Parameter>
         <Model.ModelElement.name>*return</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’return_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.Class xmi.idref=’a90’/> <!-- Model.AssociationEnd -->
         </Model.TypedElement.type>
        </Model.Parameter>
       </Model.Namespace.contents>
      </Model.Operation>
     </Model.Namespace.contents>
    </Model.Class>
    
    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Class: Package                                      -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a50’>
     <Model.ModelElement.name>Package</Model.ModelElement.name>
OMG-MOF, v1.3.1                                November 2001 A-55



A

     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.ModelElement.constraints>
      <Model.Constraint xmi.idref=’c44’/>
      <Model.Constraint xmi.idref=’c45’/>
     </Model.ModelElement.constraints>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a71’/> <!-- Model.GeneralizableElement -->
     </Model.GeneralizableElement.supertypes>
     <Model.Namespace.contents>
      <Model.Constraint xmi.id=’c44’>
       <Model.ModelElement.name>PackageContainmentRules</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         Set{Package, Class, DataType, Association, Exception,
         Constraint, Import, Tag}) -&gt; includesAll(self.contentTypes)
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a50’/> <!-- Model.Package -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c45’>
       <Model.ModelElement.name>PackagesCannotBeAbstract</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: not self.isAbstract
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a50’/> <!-- Model.Package -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>

      <!-- _______________________________________________________________ -->
      <!--                                                                 -->
      <!-- Contents of DataType: FormatType                                -->
      <!--                                                                 -->
      <!-- _______________________________________________________________ -->
A-56 OMG-MOF, v1.3.1                                November 2001



A

      <Model.DataType xmi.id=’t2’>
       <Model.ModelElement.name>FormatType</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
       <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
       <Model.GeneralizableElement.isRoot xmi.value=’false’/>
       <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
       <Model.DataType.typeCode>
        <XMI.CorbaTypeCode>
         <XMI.CorbaTcAlias xmi.tcName=’FormatType’
           xmi.tcId=’IDL:org.omg.mof/Model/PackageClass/FormatType:1.0’>
          <XMI.CorbaTypeCode>
           <XMI.CorbaTcString xmi.tcLength=’0’/>
          </XMI.CorbaTypeCode>
         </XMI.CorbaTcAlias>
        </XMI.CorbaTypeCode>
       </Model.DataType.typeCode>
      </Model.DataType>
      <Model.Exception xmi.id=’FormatNotSupported’>
       <Model.ModelElement.name>FormatNotSupported</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’ />
      </Model.Exception>
      <Model.Exception xmi.id=’ObjectNotExternalizable’>
       <Model.ModelElement.name>ObjectNotExternalizable</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’ />
       <Model.Namespace.contents>
        <Model.Parameter>
         <Model.ModelElement.name>explanation</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’out_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a100’/> <!-- Model.string -->
         </Model.TypedElement.type>
        </Model.Parameter>
       </Model.Namespace.contents>
      </Model.Exception>
      <Model.Exception xmi.id=’IllformedExternalizedObject’>
       
<Model.ModelElement.name>IllformedExternalizedObject</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
OMG-MOF, v1.3.1                                November 2001 A-57



A

       <Model.Feature.scope xmi.value=’instance_level’ />
       <Model.Namespace.contents>
        <Model.Parameter>
         <Model.ModelElement.name>explanation</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’out_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a100’/> <!-- Model.string -->
         </Model.TypedElement.type>
        </Model.Parameter>
       </Model.Namespace.contents>
      </Model.Exception>
      <Model.Operation>
       <Model.ModelElement.name>externalize</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’ />
       <Model.Operation.isQuery xmi.value=’true’/>
       <Model.Operation.exceptions>
        <Model.Exception xmi.idref=’ObjectNotExternalizable’/>
        <Model.Exception xmi.idref=’FormatNotSupported’/>
       </Model.Operation.exceptions>
       <Model.Namespace.contents>
        <Model.Parameter>
         <Model.ModelElement.name>*return</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’return_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a101’/> <!-- Model.any -->
         </Model.TypedElement.type>
        </Model.Parameter>
        <Model.Parameter>
         <Model.ModelElement.name>format</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’in_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
A-58 OMG-MOF, v1.3.1                                November 2001



A

          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’t2’/> <!-- Package.FormatType -->
         </Model.TypedElement.type>
        </Model.Parameter>
       </Model.Namespace.contents>
      </Model.Operation>
      <Model.Operation>
       <Model.ModelElement.name>internalize</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’classifier_level’ />
       <Model.Operation.isQuery xmi.value=’false’/>
       <Model.Operation.exceptions>
        <Model.Exception xmi.idref=’FormatNotSupported’/>
        <Model.Exception xmi.idref=’IllformedExternalizedObject’/>
       </Model.Operation.exceptions>
       <Model.Namespace.contents>
        <Model.Parameter>
         <Model.ModelElement.name>*return</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’return_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.Class xmi.idref=’a50’/> <!-- Model.Package -->
         </Model.TypedElement.type>
        </Model.Parameter>
        <Model.Parameter>
         <Model.ModelElement.name>format</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’in_dir’/>
         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’t2’/> <!-- Package.FormatType -->
         </Model.TypedElement.type>
        </Model.Parameter>
        <Model.Parameter>
         <Model.ModelElement.name>stream</Model.ModelElement.name>
         <Model.ModelElement.annotation></Model.ModelElement.annotation>
         <Model.Parameter.direction xmi.value=’in_dir’/>
OMG-MOF, v1.3.1                                November 2001 A-59



A

         <Model.Parameter.multiplicity>
          <XMI.field>1</XMI.field>
          <XMI.field>1</XMI.field>
          <XMI.field>false</XMI.field>
          <XMI.field>false</XMI.field>
         </Model.Parameter.multiplicity>
         <Model.TypedElement.type>
          <Model.DataType xmi.idref=’a101’/> <!-- Model.any -->
         </Model.TypedElement.type>
        </Model.Parameter>
        </Model.Namespace.contents>
      </Model.Operation>
     </Model.Namespace.contents>
    </Model.Class>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Class: Import                                       -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a68’>
     <Model.ModelElement.name>Import</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.ModelElement.constraints>
      <Model.Constraint xmi.idref=’c46’/>
      <Model.Constraint xmi.idref=’c47’/>
      <Model.Constraint xmi.idref=’c48’/>
      <Model.Constraint xmi.idref=’c49’/>
      <Model.Constraint xmi.idref=’c50’/>
     </Model.ModelElement.constraints>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
     </Model.GeneralizableElement.supertypes>
     <Model.Namespace.contents>
      <Model.Constraint xmi.id=’c46’>
       
<Model.ModelElement.name>ImportedNamespaceMustBeVisible</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.container.isVisible(self.importedNamespace)
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’deferred’/>
A-60 OMG-MOF, v1.3.1                                November 2001



A

       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a68’/> <!-- Model.Import -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c47’>
       
<Model.ModelElement.name>CanOnlyImportPackagesAndClasses</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         self.imported.oclIsTypeOf(Class) or
         self.imported.oclIsTypeOf(Package)
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a68’/> <!-- Model.Import -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c48’>
       <Model.ModelElement.name>CannotImportSelf</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.container &lt;&gt; self.imported
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’deferred’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a68’/> <!-- Model.Import -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c49’>
       
<Model.ModelElement.name>CannotImportNestedComponents</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: not self.container.allContents() -&gt; includes(self.imported)
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’deferred’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a68’/> <!-- Model.Import -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c50’>
OMG-MOF, v1.3.1                                November 2001 A-61



A

       <Model.ModelElement.name>NestedPackagesCannotImport</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         self.container -&gt; notEmpty implies
         self.container -&gt; asSequence -&gt; first -&gt; container -&gt; isEmpty
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’deferred’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a68’/> <!-- Model.Import -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Attribute>
       <Model.ModelElement.name>visibility</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a110’/> <!-- Model.VisibilityKind -->
       </Model.TypedElement.type>
      </Model.Attribute>
      <Model.Attribute>
       <Model.ModelElement.name>isClustered</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a98’/> <!-- Model.boolean -->
       </Model.TypedElement.type>
      </Model.Attribute>
      <Model.Reference>
       <Model.ModelElement.name>importedNamespace</Model.ModelElement.name>
A-62 OMG-MOF, v1.3.1                                November 2001



A

       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a6’/> <!-- Model.Namespace -->
       </Model.TypedElement.type>
       <Model.Reference.referencedEnd>
        <Model.AssociationEnd xmi.idref=’a142’/> <!-- Model.Aliases.imported -->
       </Model.Reference.referencedEnd>
      </Model.Reference>
     </Model.Namespace.contents>
    </Model.Class>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of DataType: DirectionKind                             -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.DataType xmi.id=’a112’>
     <Model.ModelElement.name>DirectionKind</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.DataType.typeCode>
      <XMI.CorbaTypeCode>
       <XMI.CorbaTcEnum xmi.tcName=’DirectionKind’
           xmi.tcId=’IDL:org.omg.mof/Model/DirectionKind:1.0’>
        <XMI.CorbaTcEnumLabel xmi.tcName=’in_dir’/>
        <XMI.CorbaTcEnumLabel xmi.tcName=’out_dir’/>
        <XMI.CorbaTcEnumLabel xmi.tcName=’inout_dir’/>
        <XMI.CorbaTcEnumLabel xmi.tcName=’return_dir’/>
       </XMI.CorbaTcEnum>
      </XMI.CorbaTypeCode>
     </Model.DataType.typeCode>
    </Model.DataType>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Class: Parameter                                    -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->
OMG-MOF, v1.3.1                                November 2001 A-63



A

    <Model.Class xmi.id=’a64’>
     <Model.ModelElement.name>Parameter</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a96’/> <!-- Model.TypedElement -->
     </Model.GeneralizableElement.supertypes>
     <Model.Namespace.contents>
      <Model.Attribute>
       <Model.ModelElement.name>direction</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a112’/> <!-- Model.DirectionKind -->
       </Model.TypedElement.type>
      </Model.Attribute>
      <Model.Attribute>
       <Model.ModelElement.name>multiplicity</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a99’/> <!-- Model.MultiplicityType -->
       </Model.TypedElement.type>
      </Model.Attribute>
     </Model.Namespace.contents>
    </Model.Class>
    
    <!-- _______________________________________________________________ -->
A-64 OMG-MOF, v1.3.1                                November 2001



A

    <!--                                                                 -->
    <!-- Contents of Class: Constraint                                   -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a58’>
     <Model.ModelElement.name>Constraint</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.ModelElement.constraints>
      <Model.Constraint xmi.idref=’c51’/>
      <Model.Constraint xmi.idref=’c52’/>
     </Model.ModelElement.constraints>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
     </Model.GeneralizableElement.supertypes>
     <Model.Namespace.contents>
      <Model.Constraint xmi.id=’c51’>
       <Model.ModelElement.name>CannotConstrainThisElement</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         self.constrainedElements -&gt;
         forAll(c |
         not Set{Constraint, Tag, Imports,
         TypeAlias, Constant} -&gt;
         includes(c.oclType())
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a58’/> <!-- Model.Constraint -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c52’>
       
<Model.ModelElement.name>ConstraintsLimitedToContainer</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         self.constrainedElements -&gt;
         forAll(c | self.container.extendedNamespace() -&gt;
         includes(c))
        </XMI.any>
OMG-MOF, v1.3.1                                November 2001 A-65



A

       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’deferred’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a58’/> <!-- Model.Constraint -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Attribute>
       <Model.ModelElement.name>expression</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a101’/> <!-- Model.any -->
       </Model.TypedElement.type>
      </Model.Attribute>
      <Model.Attribute>
       <Model.ModelElement.name>language</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a100’/> <!-- Model.string -->
       </Model.TypedElement.type>
      </Model.Attribute>

      <!-- _______________________________________________________________ -->
      <!--                                                                 -->
      <!-- Contents of DataType: EvaluationKind                            -->
      <!--                                                                 -->
      <!-- _______________________________________________________________ -->

      <Model.DataType xmi.id=’a115’>
       <Model.ModelElement.name>EvaluationKind</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
A-66 OMG-MOF, v1.3.1                                November 2001



A

       <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
       <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
       <Model.GeneralizableElement.isRoot xmi.value=’false’/>
       <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
       <Model.DataType.typeCode>
        <XMI.CorbaTypeCode>
         <XMI.CorbaTcEnum xmi.tcName=’EvaluationKind’
           xmi.tcId=’IDL:org.omg.mof/Model/NamespaceClass/EvaluationKind:1.0’>
          <XMI.CorbaTcEnumLabel xmi.tcName=’immediate’/>
          <XMI.CorbaTcEnumLabel xmi.tcName=’deferred’/>
         </XMI.CorbaTcEnum>
        </XMI.CorbaTypeCode>
       </Model.DataType.typeCode>
      </Model.DataType>
      <Model.Attribute>
       <Model.ModelElement.name>evaluationPolicy</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a115’/> <!-- Constraint.EvaluationKind -->
       </Model.TypedElement.type>
      </Model.Attribute>
      <Model.Reference>
       <Model.ModelElement.name>constrainedElements</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>true</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
       </Model.TypedElement.type>
       <Model.Reference.referencedEnd>
        <Model.AssociationEnd xmi.idref=’a125’/> <!-- 
Model.Constrains.constrainedElement -->
       </Model.Reference.referencedEnd>
      </Model.Reference>
OMG-MOF, v1.3.1                                November 2001 A-67



A

     </Model.Namespace.contents>
    </Model.Class>
    
    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of DataType: LiteralType                               -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.DataType xmi.id=’t1’>
     <Model.ModelElement.name>LiteralType</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.DataType.typeCode>
      <XMI.CorbaTypeCode>
       <XMI.CorbaTcAlias xmi.tcName=’LiteralType’
           xmi.tcId=’IDL:org.omg.mof/Model/LiteralType:1.0’>
        <XMI.CorbaTypeCode>
         <XMI.CorbaTcAny/>
        </XMI.CorbaTypeCode>
       </XMI.CorbaTcAlias>
      </XMI.CorbaTypeCode>
     </Model.DataType.typeCode>
    </Model.DataType>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Class: Constant                                     -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a84’>
     <Model.ModelElement.name>Constant</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.ModelElement.constraints>
      <Model.Constraint xmi.idref=’c53’/>
      <Model.Constraint xmi.idref=’c54’/>
     </Model.ModelElement.constraints>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a96’/> <!-- Model.TypedElement -->
     </Model.GeneralizableElement.supertypes>
     <Model.Namespace.contents>
      <Model.Constraint xmi.id=’c53’>
A-68 OMG-MOF, v1.3.1                                November 2001



A

       
<Model.ModelElement.name>ConstantsValueMustMatchType</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv: self.value.type -&gt; equals(self.type -&gt; mapToTypecode())
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’deferred’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a84’/> <!-- Model.Constant -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Constraint xmi.id=’c54’>
       
<Model.ModelElement.name>ConstantsTypeMustBeSimpleDataType</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Constraint.expression>
        <XMI.any xmi.type="string" xmi.name="">
         inv:
         self.type.oclIsKindOf(DataType) and
         Set{#tk_short, #tk_ushort, #tk_long, #tk_ulong, #tk_char,
         #tk_octet, #tk_float, #tk_double, #tk_boolean, #tk_string,
         #tk_wchar, #tk_wstring, #tk_longlong, #tk_ulonglong,
         #tk_longdouble, #tk_fixed} -&gt;
         includes(self.type.asType(DataType).typecode.
         unwindAliases().kind)
        </XMI.any>
       </Model.Constraint.expression>
       <Model.Constraint.language>OCL</Model.Constraint.language>
       <Model.Constraint.evaluationPolicy xmi.value=’immediate’/>
       <Model.Constraint.constrainedElements>
        <Model.Class xmi.idref=’a84’/> <!-- Model.Constant -->
       </Model.Constraint.constrainedElements>
      </Model.Constraint>
      <Model.Attribute>
       <Model.ModelElement.name>value</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’t1’/> <!-- Model.LiteralType -->
OMG-MOF, v1.3.1                                November 2001 A-69



A

       </Model.TypedElement.type>
      </Model.Attribute>
     </Model.Namespace.contents>
    </Model.Class>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Class: Tag                                          -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Class xmi.id=’a105’>
     <Model.ModelElement.name>Tag</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.Class.isSingleton xmi.value=’false’/>
     <Model.GeneralizableElement.supertypes>
      <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
     </Model.GeneralizableElement.supertypes>
     <Model.Namespace.contents>
      <Model.Attribute>
       <Model.ModelElement.name>tagId</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a100’/> <!-- Model.string -->
       </Model.TypedElement.type>
      </Model.Attribute>
      <Model.Attribute>
       <Model.ModelElement.name>values</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>0</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.StructuralFeature.multiplicity>
A-70 OMG-MOF, v1.3.1                                November 2001



A

       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.Attribute.isDerived xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.DataType xmi.idref=’a101’/> <!-- Model.any -->
       </Model.TypedElement.type>
      </Model.Attribute>
      <Model.Reference>
       <Model.ModelElement.name>elements</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.Feature.visibility xmi.value=’public_vis’/>
       <Model.Feature.scope xmi.value=’instance_level’/>
       <Model.StructuralFeature.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>true</XMI.field>
       </Model.StructuralFeature.multiplicity>
       <Model.StructuralFeature.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
       </Model.TypedElement.type>
       <Model.Reference.referencedEnd>
        <Model.AssociationEnd xmi.idref=’a159’/> <!-- Model.AttachesTo.modelElement 
-->
       </Model.Reference.referencedEnd>
      </Model.Reference>
     </Model.Namespace.contents>
    </Model.Class>
    

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Association: AttachesTo                             -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Association xmi.id=’a157’>
     <Model.ModelElement.name>AttachesTo</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’true’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’true’/>
     <Model.Association.isDerived xmi.value=’false’/>
     <Model.Namespace.contents>
      <Model.AssociationEnd xmi.id=’a159’>
       <Model.ModelElement.name>modelElement</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.AssociationEnd.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>-1</XMI.field>
OMG-MOF, v1.3.1                                November 2001 A-71



A

        <XMI.field>false</XMI.field>
        <XMI.field>true</XMI.field>
       </Model.AssociationEnd.multiplicity>
       <Model.AssociationEnd.aggregation xmi.value=’none’/>
       <Model.AssociationEnd.isNavigable xmi.value=’true’/>
       <Model.AssociationEnd.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
       </Model.TypedElement.type>
      </Model.AssociationEnd>
      <Model.AssociationEnd xmi.id=’a158’>
       <Model.ModelElement.name>tag</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.AssociationEnd.multiplicity>
        <XMI.field>0</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>true</XMI.field>
        <XMI.field>true</XMI.field>
       </Model.AssociationEnd.multiplicity>
       <Model.AssociationEnd.aggregation xmi.value=’none’/>
       <Model.AssociationEnd.isNavigable xmi.value=’true’/>
       <Model.AssociationEnd.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a105’/> <!-- Model.Tag -->
       </Model.TypedElement.type>
      </Model.AssociationEnd>
     </Model.Namespace.contents>
    </Model.Association>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Association: DependsOn                             -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Association xmi.id=’a129’>
     <Model.ModelElement.name>DependsOn</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’true’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’true’/>
     <Model.Association.isDerived xmi.value=’true’/>
     <Model.Namespace.contents>
      <Model.AssociationEnd xmi.id=’a130’>
       <Model.ModelElement.name>dependent</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.AssociationEnd.multiplicity>
        <XMI.field>0</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>false</XMI.field>
A-72 OMG-MOF, v1.3.1                                November 2001



A

        <XMI.field>true</XMI.field>
       </Model.AssociationEnd.multiplicity>
       <Model.AssociationEnd.aggregation xmi.value=’none’/>
       <Model.AssociationEnd.isNavigable xmi.value=’true’/>
       <Model.AssociationEnd.isChangeable xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
       </Model.TypedElement.type>
      </Model.AssociationEnd>
      <Model.AssociationEnd xmi.id=’a131’>
       <Model.ModelElement.name>provider</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.AssociationEnd.multiplicity>
        <XMI.field>0</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>true</XMI.field>
       </Model.AssociationEnd.multiplicity>
       <Model.AssociationEnd.aggregation xmi.value=’none’/>
       <Model.AssociationEnd.isNavigable xmi.value=’true’/>
       <Model.AssociationEnd.isChangeable xmi.value=’false’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
       </Model.TypedElement.type>
      </Model.AssociationEnd>
     </Model.Namespace.contents>
    </Model.Association>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Association: Contains                               -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Association xmi.id=’a119’>
     <Model.ModelElement.name>Contains</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’true’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’true’/>
     <Model.Association.isDerived xmi.value=’false’/>
     <Model.Namespace.contents>
      <Model.AssociationEnd xmi.id=’a120’>
       <Model.ModelElement.name>container</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.AssociationEnd.multiplicity>
        <XMI.field>0</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
OMG-MOF, v1.3.1                                November 2001 A-73



A

       </Model.AssociationEnd.multiplicity>
       <Model.AssociationEnd.aggregation xmi.value=’composite’/>
       <Model.AssociationEnd.isNavigable xmi.value=’true’/>
       <Model.AssociationEnd.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a6’/> <!-- Model.Namespace -->
       </Model.TypedElement.type>
      </Model.AssociationEnd>
      <Model.AssociationEnd xmi.id=’a121’>
       <Model.ModelElement.name>containedElement</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.AssociationEnd.multiplicity>
        <XMI.field>0</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>true</XMI.field>
        <XMI.field>true</XMI.field>
       </Model.AssociationEnd.multiplicity>
       <Model.AssociationEnd.aggregation xmi.value=’none’/>
       <Model.AssociationEnd.isNavigable xmi.value=’true’/>
       <Model.AssociationEnd.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
       </Model.TypedElement.type>
      </Model.AssociationEnd>
     </Model.Namespace.contents>
    </Model.Association>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Association: Generalizes                            -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Association xmi.id=’a137’>
     <Model.ModelElement.name>Generalizes</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’true’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’true’/>
     <Model.Association.isDerived xmi.value=’false’/>
     <Model.Namespace.contents>
      <Model.AssociationEnd xmi.id=’a138’>
       <Model.ModelElement.name>supertype</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.AssociationEnd.multiplicity>
        <XMI.field>0</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>true</XMI.field>
        <XMI.field>true</XMI.field>
       </Model.AssociationEnd.multiplicity>
A-74 OMG-MOF, v1.3.1                                November 2001



A

       <Model.AssociationEnd.aggregation xmi.value=’none’/>
       <Model.AssociationEnd.isNavigable xmi.value=’true’/>
       <Model.AssociationEnd.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a71’/> <!-- Model.GeneralizableElement -->
       </Model.TypedElement.type>
      </Model.AssociationEnd>
      <Model.AssociationEnd xmi.id=’a139’>
       <Model.ModelElement.name>subtype</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.AssociationEnd.multiplicity>
        <XMI.field>0</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>true</XMI.field>
       </Model.AssociationEnd.multiplicity>
       <Model.AssociationEnd.aggregation xmi.value=’none’/>
       <Model.AssociationEnd.isNavigable xmi.value=’true’/>
       <Model.AssociationEnd.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a71’/> <!-- Model.GeneralizableElement -->
       </Model.TypedElement.type>
      </Model.AssociationEnd>
     </Model.Namespace.contents>
    </Model.Association>
    
    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Association: Aliases                                -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Association xmi.id=’a141’>
     <Model.ModelElement.name>Aliases</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’true’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’true’/>
     <Model.Association.isDerived xmi.value=’false’/>
     <Model.Namespace.contents>
      <Model.AssociationEnd xmi.id=’a143’>
       <Model.ModelElement.name>importer</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.AssociationEnd.multiplicity>
        <XMI.field>0</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>true</XMI.field>
       </Model.AssociationEnd.multiplicity>
       <Model.AssociationEnd.aggregation xmi.value=’none’/>
OMG-MOF, v1.3.1                                November 2001 A-75



A

       <Model.AssociationEnd.isNavigable xmi.value=’true’/>
       <Model.AssociationEnd.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a68’/> <!-- Model.Import -->
       </Model.TypedElement.type>
      </Model.AssociationEnd>
      <Model.AssociationEnd xmi.id=’a142’>
       <Model.ModelElement.name>imported</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.AssociationEnd.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.AssociationEnd.multiplicity>
       <Model.AssociationEnd.aggregation xmi.value=’none’/>
       <Model.AssociationEnd.isNavigable xmi.value=’true’/>
       <Model.AssociationEnd.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a6’/> <!-- Model.Namespace -->
       </Model.TypedElement.type>
      </Model.AssociationEnd>
     </Model.Namespace.contents>
    </Model.Association>
    
    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Association: Constrains                             -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Association xmi.id=’a124’>
     <Model.ModelElement.name>Constrains</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’true’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’true’/>
     <Model.Association.isDerived xmi.value=’false’/>
     <Model.Namespace.contents>
      <Model.AssociationEnd xmi.id=’a126’>
       <Model.ModelElement.name>constraint</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.AssociationEnd.multiplicity>
        <XMI.field>0</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>true</XMI.field>
       </Model.AssociationEnd.multiplicity>
       <Model.AssociationEnd.aggregation xmi.value=’none’/>
       <Model.AssociationEnd.isNavigable xmi.value=’true’/>
A-76 OMG-MOF, v1.3.1                                November 2001



A

       <Model.AssociationEnd.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a58’/> <!-- Model.Constraint -->
       </Model.TypedElement.type>
      </Model.AssociationEnd>
      <Model.AssociationEnd xmi.id=’a125’>
       <Model.ModelElement.name>constrainedElement</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.AssociationEnd.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>true</XMI.field>
       </Model.AssociationEnd.multiplicity>
       <Model.AssociationEnd.aggregation xmi.value=’none’/>
       <Model.AssociationEnd.isNavigable xmi.value=’true’/>
       <Model.AssociationEnd.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a29’/> <!-- Model.ModelElement -->
       </Model.TypedElement.type>
      </Model.AssociationEnd>
     </Model.Namespace.contents>
    </Model.Association>
    
    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Association: CanRaise                               -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Association xmi.id=’a133’>
     <Model.ModelElement.name>CanRaise</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’true’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’true’/>
     <Model.Association.isDerived xmi.value=’false’/>
     <Model.Namespace.contents>
      <Model.AssociationEnd xmi.id=’a135’>
       <Model.ModelElement.name>operation</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.AssociationEnd.multiplicity>
        <XMI.field>0</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>true</XMI.field>
       </Model.AssociationEnd.multiplicity>
       <Model.AssociationEnd.aggregation xmi.value=’none’/>
       <Model.AssociationEnd.isNavigable xmi.value=’true’/>
       <Model.AssociationEnd.isChangeable xmi.value=’true’/>
OMG-MOF, v1.3.1                                November 2001 A-77



A

       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a25’/> <!-- Model.Operation -->
       </Model.TypedElement.type>
      </Model.AssociationEnd>
      <Model.AssociationEnd xmi.id=’a134’>
       <Model.ModelElement.name>except</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.AssociationEnd.multiplicity>
        <XMI.field>0</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>true</XMI.field>
        <XMI.field>true</XMI.field>
       </Model.AssociationEnd.multiplicity>
       <Model.AssociationEnd.aggregation xmi.value=’none’/>
       <Model.AssociationEnd.isNavigable xmi.value=’true’/>
       <Model.AssociationEnd.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a87’/> <!-- Model.Exception -->
       </Model.TypedElement.type>
      </Model.AssociationEnd>
     </Model.Namespace.contents>
    </Model.Association>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Association: Exposes                                -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Association xmi.id=’a149’>
     <Model.ModelElement.name>Exposes</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’true’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’true’/>
     <Model.Association.isDerived xmi.value=’true’/>
     <Model.Namespace.contents>
      <Model.AssociationEnd xmi.id=’a151’>
       <Model.ModelElement.name>referrer</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.AssociationEnd.multiplicity>
        <XMI.field>0</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>true</XMI.field>
       </Model.AssociationEnd.multiplicity>
       <Model.AssociationEnd.aggregation xmi.value=’none’/>
       <Model.AssociationEnd.isNavigable xmi.value=’true’/>
       <Model.AssociationEnd.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
A-78 OMG-MOF, v1.3.1                                November 2001



A

        <Model.Class xmi.idref=’a86’/> <!-- Model.Reference -->
       </Model.TypedElement.type>
      </Model.AssociationEnd>
      <Model.AssociationEnd xmi.id=’a150’>
       <Model.ModelElement.name>exposedEnd</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.AssociationEnd.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.AssociationEnd.multiplicity>
       <Model.AssociationEnd.aggregation xmi.value=’none’/>
       <Model.AssociationEnd.isNavigable xmi.value=’true’/>
       <Model.AssociationEnd.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a90’/> <!-- Model.AssociationEnd -->
       </Model.TypedElement.type>
      </Model.AssociationEnd>
     </Model.Namespace.contents>
    </Model.Association>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Association: RefersTo                               -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Association xmi.id=’a145’>
     <Model.ModelElement.name>RefersTo</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’true’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’true’/>
     <Model.Association.isDerived xmi.value=’false’/>
     <Model.Namespace.contents>
      <Model.AssociationEnd xmi.id=’a147’>
       <Model.ModelElement.name>referent</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.AssociationEnd.multiplicity>
        <XMI.field>0</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>true</XMI.field>
       </Model.AssociationEnd.multiplicity>
       <Model.AssociationEnd.aggregation xmi.value=’none’/>
       <Model.AssociationEnd.isNavigable xmi.value=’true’/>
       <Model.AssociationEnd.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a86’/> <!-- Model.Reference -->
OMG-MOF, v1.3.1                                November 2001 A-79



A

       </Model.TypedElement.type>
      </Model.AssociationEnd>
      <Model.AssociationEnd xmi.id=’a146’>
       <Model.ModelElement.name>referencedEnd</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.AssociationEnd.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.AssociationEnd.multiplicity>
       <Model.AssociationEnd.aggregation xmi.value=’none’/>
       <Model.AssociationEnd.isNavigable xmi.value=’true’/>
       <Model.AssociationEnd.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a90’/> <!-- Model.AssociationEnd -->
       </Model.TypedElement.type>
      </Model.AssociationEnd>
     </Model.Namespace.contents>
    </Model.Association>
    

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of Association: IsOfType                               -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Association xmi.id=’a153’>
     <Model.ModelElement.name>IsOfType</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’true’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’true’/>
     <Model.Association.isDerived xmi.value=’false’/>
     <Model.Namespace.contents>
      <Model.AssociationEnd xmi.id=’a155’>
       <Model.ModelElement.name>type</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.AssociationEnd.multiplicity>
        <XMI.field>1</XMI.field>
        <XMI.field>1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>false</XMI.field>
       </Model.AssociationEnd.multiplicity>
       <Model.AssociationEnd.aggregation xmi.value=’none’/>
       <Model.AssociationEnd.isNavigable xmi.value=’true’/>
       <Model.AssociationEnd.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a5’/> <!-- Model.Classifier -->
A-80 OMG-MOF, v1.3.1                                November 2001



A

       </Model.TypedElement.type>
      </Model.AssociationEnd>
      <Model.AssociationEnd xmi.id=’a154’>
       <Model.ModelElement.name>typedElements</Model.ModelElement.name>
       <Model.ModelElement.annotation></Model.ModelElement.annotation>
       <Model.AssociationEnd.multiplicity>
        <XMI.field>0</XMI.field>
        <XMI.field>-1</XMI.field>
        <XMI.field>false</XMI.field>
        <XMI.field>true</XMI.field>
       </Model.AssociationEnd.multiplicity>
       <Model.AssociationEnd.aggregation xmi.value=’none’/>
       <Model.AssociationEnd.isNavigable xmi.value=’true’/>
       <Model.AssociationEnd.isChangeable xmi.value=’true’/>
       <Model.TypedElement.type>
        <Model.Class xmi.idref=’a96’/> <!-- Model.TypedElement -->
       </Model.TypedElement.type>
      </Model.AssociationEnd>
     </Model.Namespace.contents>
    </Model.Association>

    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of DataType: any                                       -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.DataType xmi.id=’a101’>
     <Model.ModelElement.name>any</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.DataType.typeCode>
      <XMI.CorbaTypeCode>
       <XMI.CorbaTcAny/>
      </XMI.CorbaTypeCode>
     </Model.DataType.typeCode>
    </Model.DataType>
    
    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of DataType: boolean                                   -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.DataType xmi.id=’a98’>
     <Model.ModelElement.name>boolean</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
OMG-MOF, v1.3.1                                November 2001 A-81



A

     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.DataType.typeCode>
      <XMI.CorbaTypeCode>
       <XMI.CorbaTcBoolean/>
      </XMI.CorbaTypeCode>
     </Model.DataType.typeCode>
    </Model.DataType>
    
    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of DataType: string                                    -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.DataType xmi.id=’a100’>
     <Model.ModelElement.name>string</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.DataType.typeCode>
      <XMI.CorbaTypeCode>
       <XMI.CorbaTcString xmi.tcLength=’0’/>
      </XMI.CorbaTypeCode>
     </Model.DataType.typeCode>
    </Model.DataType>
    
    <!-- _______________________________________________________________ -->
    <!--                                                                 -->
    <!-- Contents of DataType: unsigned long                             -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.DataType xmi.id=’uLong’>
     <Model.ModelElement.name>unsigned long</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.GeneralizableElement.visibility xmi.value=’public_vis’/>
     <Model.GeneralizableElement.isAbstract xmi.value=’false’/>
     <Model.GeneralizableElement.isRoot xmi.value=’false’/>
     <Model.GeneralizableElement.isLeaf xmi.value=’false’/>
     <Model.DataType.typeCode>
      <XMI.CorbaTypeCode>
       <XMI.CorbaTcUlong/>
      </XMI.CorbaTypeCode>
     </Model.DataType.typeCode>
    </Model.DataType>
    
    <!-- _______________________________________________________________ -->
A-82 OMG-MOF, v1.3.1                                November 2001



A

    <!--                                                                 -->
    <!-- IDL Tags                                                        -->
    <!--                                                                 -->
    <!-- _______________________________________________________________ -->

    <Model.Tag>
     <Model.ModelElement.name>IDL Prefix</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.Tag.tagId>org.omg.mof.idl_prefix</Model.Tag.tagId>
     <Model.Tag.values>
      <XMI.any xmi.type="string" xmi.name="">org.omg.mof</XMI.any>
     </Model.Tag.values>
     <Model.Tag.elements>
      <Model.Package xmi.idref=’a1’/> <!-- Model -->
     </Model.Tag.elements>
    </Model.Tag>
    <Model.Tag>
     <Model.ModelElement.name>IDL Name for Attribute</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.Tag.tagId>org.omg.mof.idl_substitute_name</Model.Tag.tagId>
     <Model.Tag.values>
      <XMI.any xmi.type="string" xmi.name="">MofAttribute</XMI.any>
     </Model.Tag.values>
     <Model.Tag.elements>
      <Model.Class xmi.idref=’a23’/> <!-- Model.Attribute -->
     </Model.Tag.elements>
    </Model.Tag>
    <Model.Tag>
     <Model.ModelElement.name>IDL Name for Exception</Model.ModelElement.name>
     <Model.ModelElement.annotation></Model.ModelElement.annotation>
     <Model.Tag.tagId>org.omg.mof.idl_substitute_name</Model.Tag.tagId>
     <Model.Tag.values>
      <XMI.any xmi.type="string" xmi.name="">MofException</XMI.any>
     </Model.Tag.values>
     <Model.Tag.elements>
      <Model.Class xmi.idref=’a87’/> <!-- Model.Exception -->
     </Model.Tag.elements>
    </Model.Tag>

   </Model.Namespace.contents>
  </Model.Package>
 </XMI.content>
</XMI>
 A.2 The XMI DTD for MOF meta-models

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI is the top-level XML element for XMI transfer text          -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI (XMI.header, XMI.content?, XMI.difference*,
OMG-MOF, v1.3.1                                November 2001 A-83



A

               XMI.extensions*) >
<!ATTLIST XMI
            xmi.version CDATA #FIXED "1.0"
            timestamp CDATA #IMPLIED
            verified (true | false) #IMPLIED >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.header contains documentation and identifies the model,     -->
<!-- metamodel, and metametamodel                                    -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.header (XMI.documentation?, XMI.model*, XMI.metamodel*,
                      XMI.metametamodel*) >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- documentation for transfer data                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.documentation (#PCDATA | XMI.owner | XMI.contact |
                             XMI.longDescription | XMI.shortDescription |
                             XMI.exporter | XMI.exporterVersion |
                             XMI.notice)* >
<!ELEMENT XMI.owner ANY >
<!ELEMENT XMI.contact ANY >
<!ELEMENT XMI.longDescription ANY >
<!ELEMENT XMI.shortDescription ANY >
<!ELEMENT XMI.exporter ANY >
<!ELEMENT XMI.exporterVersion ANY >
<!ELEMENT XMI.exporterID ANY >
<!ELEMENT XMI.notice ANY >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.element.att defines the attributes that each XML element    -->
<!-- that corresponds to a metamodel class must have to conform to   -->
<!-- the XMI specification.                                          -->
<!-- _______________________________________________________________ -->

<!ENTITY % XMI.element.att
               ’xmi.id ID #IMPLIED xmi.label CDATA #IMPLIED xmi.uuid
                CDATA #IMPLIED ’ >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.link.att defines the attributes that each XML element that  -->
<!-- corresponds to a metamodel class must have to enable it to      -->
<!-- function as a simple XLink as well as refer to model            -->
<!-- constructs within the same XMI file.                            -->
<!-- _______________________________________________________________ -->
A-84 OMG-MOF, v1.3.1                                November 2001



A

<!ENTITY % XMI.link.att
               ’xml:link CDATA #IMPLIED inline (true | false) #IMPLIED
                actuate (show | user) #IMPLIED href CDATA #IMPLIED role
                CDATA #IMPLIED title CDATA #IMPLIED show (embed | replace
                | new) #IMPLIED behavior CDATA #IMPLIED xmi.idref IDREF
                #IMPLIED xmi.uuidref CDATA #IMPLIED’ >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.model identifies the model(s) being transferred             -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.model ANY >
<!ATTLIST XMI.model
            %XMI.link.att;
            xmi.name     CDATA #REQUIRED
            xmi.version  CDATA #IMPLIED >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.metamodel identifies the metamodel(s) for the transferred   -->
<!-- data                                                            -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.metamodel ANY >
<!ATTLIST XMI.metamodel
            %XMI.link.att;
            xmi.name     CDATA #REQUIRED
            xmi.version  CDATA #IMPLIED >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.metametamodel identifies the metametamodel(s) for the       -->
<!-- transferred data                                                -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.metametamodel ANY >
<!ATTLIST XMI.metametamodel
            %XMI.link.att;
            xmi.name     CDATA #REQUIRED
            xmi.version  CDATA #IMPLIED >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.content is the actual data being transferred                -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.content ANY >

<!-- _______________________________________________________________ -->
OMG-MOF, v1.3.1                                November 2001 A-85



A

<!--                                                                 -->
<!-- XMI.extensions contains data to transfer that does not conform  -->
<!-- to the metamodel(s) in the header                               -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.extensions ANY >
<!ATTLIST XMI.extensions
            xmi.extender CDATA #REQUIRED >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- extension contains information related to a specific model      -->
<!-- construct that is not defined in the metamodel(s) in the header -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.extension ANY >
<!ATTLIST XMI.extension
            %XMI.element.att;
            %XMI.link.att;
            xmi.extender   CDATA #REQUIRED
            xmi.extenderID CDATA #REQUIRED >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.difference holds XML elements representing differences to a -->
<!-- base model                                                      -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.difference (XMI.difference | XMI.delete | XMI.add |
                          XMI.replace)* >
<!ATTLIST XMI.difference
            %XMI.element.att;
            %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.delete represents a deletion from a base model              -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.delete EMPTY >
<!ATTLIST XMI.delete
            %XMI.element.att;
            %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.add represents an addition to a base model                  -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.add ANY >
<!ATTLIST XMI.add
A-86 OMG-MOF, v1.3.1                                November 2001



A

            %XMI.element.att;
            %XMI.link.att;
            xmi.position CDATA "-1" >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.replace represents the replacement of a model construct     -->
<!-- with another model construct in a base model                    -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.replace ANY >
<!ATTLIST XMI.replace
            %XMI.element.att;
            %XMI.link.att;
            xmi.position CDATA "-1" >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- XMI.reference may be used to refer to data types not defined in -->
<!-- the metamodel                                                   -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.reference ANY >
<!ATTLIST XMI.reference
            %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- This section contains the declaration of XML elements           -->
<!-- representing data types                                         -->
<!-- _______________________________________________________________ -->

<!ELEMENT XMI.TypeDefinitions ANY >
<!ELEMENT XMI.field ANY >
<!ELEMENT XMI.seqItem ANY >
<!ELEMENT XMI.octetStream (#PCDATA) >
<!ELEMENT XMI.unionDiscrim ANY >

<!ELEMENT XMI.enum EMPTY >
<!ATTLIST XMI.enum xmi.value CDATA #REQUIRED >

<!ELEMENT XMI.any ANY >
<!ATTLIST XMI.any
            %XMI.link.att;
            xmi.type CDATA #IMPLIED
            xmi.name CDATA #IMPLIED >

<!ELEMENT XMI.CorbaTypeCode (XMI.CorbaTcAlias | XMI.CorbaTcStruct |
                             XMI.CorbaTcSequence | XMI.CorbaTcArray |
                             XMI.CorbaTcEnum | XMI.CorbaTcUnion |
                             XMI.CorbaTcExcept | XMI.CorbaTcString |
OMG-MOF, v1.3.1                                November 2001 A-87



A

                             XMI.CorbaTcWstring | XMI.CorbaTcShort |
                             XMI.CorbaTcLong | XMI.CorbaTcUshort |
                             XMI.CorbaTcUlong | XMI.CorbaTcFloat |
                             XMI.CorbaTcDouble | XMI.CorbaTcBoolean |
                             XMI.CorbaTcChar | XMI.CorbaTcWchar |
                             XMI.CorbaTcOctet | XMI.CorbaTcAny |
                             XMI.CorbaTcTypeCode | XMI.CorbaTcPrincipal |
                             XMI.CorbaTcNull | XMI.CorbaTcVoid |
                             XMI.CorbaTcLongLong | XMI.CorbaTcObjRef |
                             XMI.CorbaTcLongDouble) >
<!ATTLIST XMI.CorbaTypeCode
            %XMI.element.att; >

<!ELEMENT XMI.CorbaTcAlias (XMI.CorbaTypeCode) >
<!ATTLIST XMI.CorbaTcAlias
            xmi.tcName CDATA #REQUIRED
            xmi.tcId   CDATA #IMPLIED >

<!ELEMENT XMI.CorbaTcStruct (XMI.CorbaTcField)* >
<!ATTLIST XMI.CorbaTcStruct
            xmi.tcName CDATA #REQUIRED
            xmi.tcId   CDATA #IMPLIED >

<!ELEMENT XMI.CorbaTcField (XMI.CorbaTypeCode) >
<!ATTLIST XMI.CorbaTcField
            xmi.tcName CDATA #REQUIRED >

<!ELEMENT XMI.CorbaTcSequence (XMI.CorbaTypeCode |
                               XMI.CorbaRecursiveType) >
<!ATTLIST XMI.CorbaTcSequence
            xmi.tcLength CDATA #REQUIRED >

<!ELEMENT XMI.CorbaRecursiveType EMPTY >
<!ATTLIST XMI.CorbaRecursiveType
            xmi.offset CDATA #REQUIRED >

<!ELEMENT XMI.CorbaTcArray (XMI.CorbaTypeCode) >
<!ATTLIST XMI.CorbaTcArray
            xmi.tcLength CDATA #REQUIRED >

<!ELEMENT XMI.CorbaTcObjRef EMPTY >
<!ATTLIST XMI.CorbaTcObjRef
            xmi.tcName CDATA #REQUIRED
            xmi.tcId   CDATA #IMPLIED >

<!ELEMENT XMI.CorbaTcEnum (XMI.CorbaTcEnumLabel)* >
<!ATTLIST XMI.CorbaTcEnum
            xmi.tcName CDATA #REQUIRED
            xmi.tcId   CDATA #IMPLIED >

<!ELEMENT XMI.CorbaTcEnumLabel EMPTY >
A-88 OMG-MOF, v1.3.1                                November 2001



A

<!ATTLIST XMI.CorbaTcEnumLabel
            xmi.tcName CDATA #REQUIRED >

<!ELEMENT XMI.CorbaTcUnionMbr (XMI.CorbaTypeCode, XMI.any) >
<!ATTLIST XMI.CorbaTcUnionMbr
            xmi.tcName CDATA #REQUIRED >

<!ELEMENT XMI.CorbaTcUnion (XMI.CorbaTypeCode, XMI.CorbaTcUnionMbr*) >
<!ATTLIST XMI.CorbaTcUnion
            xmi.tcName CDATA #REQUIRED
            xmi.tcId   CDATA #IMPLIED >

<!ELEMENT XMI.CorbaTcExcept (XMI.CorbaTcField)* >
<!ATTLIST XMI.CorbaTcExcept
            xmi.tcName CDATA #REQUIRED
            xmi.tcId   CDATA #IMPLIED >

<!ELEMENT XMI.CorbaTcString EMPTY >
<!ATTLIST XMI.CorbaTcString
            xmi.tcLength CDATA #REQUIRED >

<!ELEMENT XMI.CorbaTcWstring EMPTY >
<!ATTLIST XMI.CorbaTcWstring
            xmi.tcLength CDATA #REQUIRED >

<!ELEMENT XMI.CorbaTcFixed EMPTY >
<!ATTLIST XMI.CorbaTcFixed
            xmi.tcDigits CDATA #REQUIRED
            xmi.tcScale  CDATA #REQUIRED >

<!ELEMENT XMI.CorbaTcShort EMPTY >
<!ELEMENT XMI.CorbaTcLong EMPTY >
<!ELEMENT XMI.CorbaTcUshort EMPTY >
<!ELEMENT XMI.CorbaTcUlong EMPTY >
<!ELEMENT XMI.CorbaTcFloat EMPTY >
<!ELEMENT XMI.CorbaTcDouble EMPTY >
<!ELEMENT XMI.CorbaTcBoolean EMPTY >
<!ELEMENT XMI.CorbaTcChar EMPTY >
<!ELEMENT XMI.CorbaTcWchar EMPTY >
<!ELEMENT XMI.CorbaTcOctet EMPTY >
<!ELEMENT XMI.CorbaTcAny EMPTY >
<!ELEMENT XMI.CorbaTcTypeCode EMPTY >
<!ELEMENT XMI.CorbaTcPrincipal EMPTY >
<!ELEMENT XMI.CorbaTcNull EMPTY >
<!ELEMENT XMI.CorbaTcVoid EMPTY >
<!ELEMENT XMI.CorbaTcLongLong EMPTY >
<!ELEMENT XMI.CorbaTcLongDouble EMPTY >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL PACKAGE: Model                                        -->
OMG-MOF, v1.3.1                                November 2001 A-89



A

<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % Model.VisibilityKind
           ’ xmi.value (  public_vis| protected_vis| private_vis ) #REQUIRED’>

<!ENTITY % Model.DirectionKind
           ’ xmi.value (  in_dir| out_dir| inout_dir| return_dir ) #REQUIRED’>

<!ENTITY % Model.ScopeKind
           ’ xmi.value (  instance_level| classifier_level ) #REQUIRED’>

<!ENTITY % Model.AggregationKind
           ’ xmi.value (  none| shared| composite ) #REQUIRED’>

<!ELEMENT Model.Namespace.contents ( Model.Feature
  |Model.Classifier
  |Model.Namespace
  |Model.StructuralFeature
  |Model.Attribute
  |Model.Operation
  |Model.Class
  |Model.ModelElement
  |Model.Package
  |Model.Constraint
  |Model.Association
  |Model.Parameter
  |Model.BehavioralFeature
  |Model.Import
  |Model.GeneralizableElement
  |Model.Constant
  |Model.Reference
  |Model.Exception
  |Model.DataType
  |Model.AssociationEnd
  |Model.TypedElement
  |Model.TypeAlias
  |Model.Tag)* >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.ModelElement                             -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % Model.ModelElement.DepthKind
           ’ xmi.value (  shallow| deep ) #REQUIRED’>

<!ENTITY % Model.ModelElement.VerifyResultKind
           ’ xmi.value (  valid| invalid| published ) #REQUIRED’>
A-90 OMG-MOF, v1.3.1                                November 2001



A

<!ELEMENT Model.ModelElement.name (#PCDATA|XMI.reference)*>

<!ELEMENT Model.ModelElement.annotation (#PCDATA|XMI.reference)*>

<!ELEMENT Model.ModelElement.container (Model.Classifier
  |Model.Namespace
  |Model.Operation
  |Model.Class
  |Model.Package
  |Model.Association
  |Model.BehavioralFeature
  |Model.GeneralizableElement
  |Model.Exception
  |Model.DataType)?>

<!ELEMENT Model.ModelElement.constraints (Model.Constraint)*>

<!ENTITY % Model.ModelElementProperties ’((Model.ModelElement.name)?
   ,(Model.ModelElement.annotation)?)’ > 

<!ENTITY % Model.ModelElementAssociations ’(Model.ModelElement.container?
   ,Model.ModelElement.constraints*)’ > 

<!ELEMENT Model.ModelElement ( %Model.ModelElementProperties;
       ,(XMI.extension* ,   %Model.ModelElementAssociations; ) )?>

<!ATTLIST Model.ModelElement %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.Feature                                  -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Model.Feature.visibility EMPTY>
<!ATTLIST Model.Feature.visibility %Model.VisibilityKind;>

<!ELEMENT Model.Feature.scope EMPTY>
<!ATTLIST Model.Feature.scope %Model.ScopeKind;>

<!ENTITY % Model.FeatureProperties ’(%Model.ModelElementProperties;
   ,(Model.Feature.visibility)?
   ,(Model.Feature.scope)?)’ > 

<!ENTITY % Model.FeatureAssociations ’(%Model.ModelElementAssociations;)’ > 

<!ELEMENT Model.Feature ( %Model.FeatureProperties;
       ,(XMI.extension* ,   %Model.FeatureAssociations; ) )?>
OMG-MOF, v1.3.1                                November 2001 A-91



A

<!ATTLIST Model.Feature %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.Namespace                                -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % Model.NamespaceProperties ’(%Model.ModelElementProperties;)’ > 

<!ENTITY % Model.NamespaceAssociations ’(%Model.ModelElementAssociations;)’ > 

<!ENTITY % Model.NamespaceCompositions ’(Model.Namespace.contents*)’ > 

<!ELEMENT Model.Namespace ( %Model.NamespaceProperties;
       ,(XMI.extension* ,   %Model.NamespaceAssociations; )
       ,  %Model.NamespaceCompositions; )?>

<!ATTLIST Model.Namespace %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.GeneralizableElement                     -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Model.GeneralizableElement.visibility EMPTY>
<!ATTLIST Model.GeneralizableElement.visibility %Model.VisibilityKind;>

<!ELEMENT Model.GeneralizableElement.isAbstract EMPTY>
<!ATTLIST Model.GeneralizableElement.isAbstract
        xmi.value ( true | false ) #REQUIRED>

<!ELEMENT Model.GeneralizableElement.isRoot EMPTY>
<!ATTLIST Model.GeneralizableElement.isRoot
        xmi.value ( true | false ) #REQUIRED>

<!ELEMENT Model.GeneralizableElement.isLeaf EMPTY>
<!ATTLIST Model.GeneralizableElement.isLeaf
        xmi.value ( true | false ) #REQUIRED>

<!ELEMENT Model.GeneralizableElement.supertypes (Model.Classifier
  |Model.Class
  |Model.Package
  |Model.Association
  |Model.GeneralizableElement
  |Model.DataType)*>

<!ENTITY % Model.GeneralizableElementProperties ’(%Model.NamespaceProperties;
A-92 OMG-MOF, v1.3.1                                November 2001



A

   ,(Model.GeneralizableElement.visibility)?
   ,(Model.GeneralizableElement.isAbstract)?
   ,(Model.GeneralizableElement.isRoot)?
   ,(Model.GeneralizableElement.isLeaf)?)’ > 

<!ENTITY % Model.GeneralizableElementAssociations ’(%Model.NamespaceAssociations;
   ,Model.GeneralizableElement.supertypes*)’ > 

<!ENTITY % Model.GeneralizableElementCompositions ’(%Model.NamespaceCompositions;)’ 
> 

<!ELEMENT Model.GeneralizableElement ( %Model.GeneralizableElementProperties;
       ,(XMI.extension* ,   %Model.GeneralizableElementAssociations; )
       ,  %Model.GeneralizableElementCompositions; )?>

<!ATTLIST Model.GeneralizableElement %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.Classifier                               -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % Model.ClassifierProperties ’(%Model.GeneralizableElementProperties;)’ > 

<!ENTITY % Model.ClassifierAssociations ’(%Model.GeneralizableElementAssociations;)’ 
> 

<!ENTITY % Model.ClassifierCompositions ’(%Model.GeneralizableElementCompositions;)’ 
> 

<!ELEMENT Model.Classifier ( %Model.ClassifierProperties;
       ,(XMI.extension* ,   %Model.ClassifierAssociations; )
       ,  %Model.ClassifierCompositions; )?>

<!ATTLIST Model.Classifier %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.TypedElement                             -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Model.TypedElement.type (Model.Classifier
  |Model.Class
  |Model.Association
  |Model.DataType)?>

<!ENTITY % Model.TypedElementProperties ’(%Model.ModelElementProperties;)’ > 
OMG-MOF, v1.3.1                                November 2001 A-93



A

<!ENTITY % Model.TypedElementAssociations ’(%Model.ModelElementAssociations;
   ,Model.TypedElement.type?)’ > 

<!ELEMENT Model.TypedElement ( %Model.TypedElementProperties;
       ,(XMI.extension* ,   %Model.TypedElementAssociations; ) )?>

<!ATTLIST Model.TypedElement %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.StructuralFeature                        -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Model.StructuralFeature.multiplicity (XMI.field|XMI.reference)*>

<!ELEMENT Model.StructuralFeature.isChangeable EMPTY>
<!ATTLIST Model.StructuralFeature.isChangeable
        xmi.value ( true | false ) #REQUIRED>

<!ENTITY % Model.StructuralFeatureProperties ’(%Model.FeatureProperties;
   ,(Model.StructuralFeature.multiplicity)?
   ,(Model.StructuralFeature.isChangeable)?)’ > 

<!ENTITY % Model.StructuralFeatureAssociations ’(%Model.FeatureAssociations;
   ,Model.TypedElement.type?)’ > 

<!ELEMENT Model.StructuralFeature ( %Model.StructuralFeatureProperties;
       ,(XMI.extension* ,   %Model.StructuralFeatureAssociations; ) )?>

<!ATTLIST Model.StructuralFeature %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.Attribute                                -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Model.Attribute.isDerived EMPTY>
<!ATTLIST Model.Attribute.isDerived
        xmi.value ( true | false ) #REQUIRED>

<!ENTITY % Model.AttributeProperties ’(%Model.StructuralFeatureProperties;
   ,(Model.Attribute.isDerived)?)’ > 

<!ENTITY % Model.AttributeAssociations ’(%Model.StructuralFeatureAssociations;)’ > 

<!ELEMENT Model.Attribute ( %Model.AttributeProperties;
A-94 OMG-MOF, v1.3.1                                November 2001



A

       ,(XMI.extension* ,   %Model.AttributeAssociations; ) )?>

<!ATTLIST Model.Attribute %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.BehavioralFeature                        -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % Model.BehavioralFeatureProperties ’(%Model.FeatureProperties;)’ > 

<!ENTITY % Model.BehavioralFeatureAssociations ’(%Model.FeatureAssociations;)’ > 

<!ENTITY % Model.BehavioralFeatureCompositions ’(Model.Namespace.contents*)’ > 

<!ELEMENT Model.BehavioralFeature ( %Model.BehavioralFeatureProperties;
       ,(XMI.extension* ,   %Model.BehavioralFeatureAssociations; )
       ,  %Model.BehavioralFeatureCompositions; )?>

<!ATTLIST Model.BehavioralFeature %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.Operation                                -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Model.Operation.isQuery EMPTY>
<!ATTLIST Model.Operation.isQuery
        xmi.value ( true | false ) #REQUIRED>

<!ELEMENT Model.Operation.exceptions (Model.Exception)*>

<!ENTITY % Model.OperationProperties ’(%Model.BehavioralFeatureProperties;
   ,(Model.Operation.isQuery)?)’ > 

<!ENTITY % Model.OperationAssociations ’(%Model.BehavioralFeatureAssociations;
   ,Model.Operation.exceptions*)’ > 

<!ENTITY % Model.OperationCompositions ’(%Model.BehavioralFeatureCompositions;)’ > 

<!ELEMENT Model.Operation ( %Model.OperationProperties;
       ,(XMI.extension* ,   %Model.OperationAssociations; )
       ,  %Model.OperationCompositions; )?>

<!ATTLIST Model.Operation %XMI.element.att; %XMI.link.att; >
OMG-MOF, v1.3.1                                November 2001 A-95



A

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.Class                                    -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Model.Class.isSingleton EMPTY>
<!ATTLIST Model.Class.isSingleton
        xmi.value ( true | false ) #REQUIRED>

<!ENTITY % Model.ClassProperties ’(%Model.ClassifierProperties;
   ,(Model.Class.isSingleton)?)’ > 

<!ENTITY % Model.ClassAssociations ’(%Model.ClassifierAssociations;)’ > 

<!ENTITY % Model.ClassCompositions ’(%Model.ClassifierCompositions;)’ > 

<!ELEMENT Model.Class ( %Model.ClassProperties;
       ,(XMI.extension* ,   %Model.ClassAssociations; )
       ,  %Model.ClassCompositions; )?>

<!ATTLIST Model.Class %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.Package                                  -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % Model.PackageProperties ’(%Model.GeneralizableElementProperties;)’ > 

<!ENTITY % Model.PackageAssociations ’(%Model.GeneralizableElementAssociations;)’ > 

<!ENTITY % Model.PackageCompositions ’(%Model.GeneralizableElementCompositions;)’ > 

<!ELEMENT Model.Package ( %Model.PackageProperties;
       ,(XMI.extension* ,   %Model.PackageAssociations; )
       ,  %Model.PackageCompositions; )?>

<!ATTLIST Model.Package %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.Constraint                               -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % Model.Constraint.EvaluationKind
           ’ xmi.value (  immediate| deferred ) #REQUIRED’>
A-96 OMG-MOF, v1.3.1                                November 2001



A

<!ELEMENT Model.Constraint.expression (XMI.any)>

<!ELEMENT Model.Constraint.language (#PCDATA|XMI.reference)*>

<!ELEMENT Model.Constraint.evaluationPolicy EMPTY>
<!ATTLIST Model.Constraint.evaluationPolicy %Model.Constraint.EvaluationKind;>

<!ELEMENT Model.Constraint.constrainedElements (Model.Feature
  |Model.Classifier
  |Model.Namespace
  |Model.StructuralFeature
  |Model.Attribute
  |Model.Operation
  |Model.Class
  |Model.ModelElement
  |Model.Package
  |Model.Constraint
  |Model.Association
  |Model.Parameter
  |Model.BehavioralFeature
  |Model.Import
  |Model.GeneralizableElement
  |Model.Constant
  |Model.Reference
  |Model.Exception
  |Model.DataType
  |Model.AssociationEnd
  |Model.TypedElement
  |Model.TypeAlias
  |Model.Tag)*>

<!ENTITY % Model.ConstraintProperties ’(%Model.ModelElementProperties;
   ,(Model.Constraint.expression)?
   ,(Model.Constraint.language)?
   ,(Model.Constraint.evaluationPolicy)?)’ > 

<!ENTITY % Model.ConstraintAssociations ’(%Model.ModelElementAssociations;
   ,Model.Constraint.constrainedElements*)’ > 

<!ELEMENT Model.Constraint ( %Model.ConstraintProperties;
       ,(XMI.extension* ,   %Model.ConstraintAssociations; ) )?>

<!ATTLIST Model.Constraint %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.Association                              -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->
OMG-MOF, v1.3.1                                November 2001 A-97



A

<!ELEMENT Model.Association.isDerived EMPTY>
<!ATTLIST Model.Association.isDerived
        xmi.value ( true | false ) #REQUIRED>

<!ENTITY % Model.AssociationProperties ’(%Model.ClassifierProperties;
   ,(Model.Association.isDerived)?)’ > 

<!ENTITY % Model.AssociationAssociations ’(%Model.ClassifierAssociations;)’ > 

<!ENTITY % Model.AssociationCompositions ’(%Model.ClassifierCompositions;)’ > 

<!ELEMENT Model.Association ( %Model.AssociationProperties;
       ,(XMI.extension* ,   %Model.AssociationAssociations; )
       ,  %Model.AssociationCompositions; )?>

<!ATTLIST Model.Association %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.Parameter                                -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Model.Parameter.direction EMPTY>
<!ATTLIST Model.Parameter.direction %Model.DirectionKind;>

<!ELEMENT Model.Parameter.multiplicity (XMI.field|XMI.reference)*>

<!ENTITY % Model.ParameterProperties ’(%Model.TypedElementProperties;
   ,(Model.Parameter.direction)?
   ,(Model.Parameter.multiplicity)?)’ > 

<!ENTITY % Model.ParameterAssociations ’(%Model.TypedElementAssociations;)’ > 

<!ELEMENT Model.Parameter ( %Model.ParameterProperties;
       ,(XMI.extension* ,   %Model.ParameterAssociations; ) )?>

<!ATTLIST Model.Parameter %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.Import                                   -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Model.Import.visibility EMPTY>
<!ATTLIST Model.Import.visibility %Model.VisibilityKind;>
A-98 OMG-MOF, v1.3.1                                November 2001



A

<!ELEMENT Model.Import.isClustered EMPTY>
<!ATTLIST Model.Import.isClustered
        xmi.value ( true | false ) #REQUIRED>

<!ELEMENT Model.Import.importedNamespace (Model.Classifier
  |Model.Namespace
  |Model.Operation
  |Model.Class
  |Model.Package
  |Model.Association
  |Model.BehavioralFeature
  |Model.GeneralizableElement
  |Model.Exception
  |Model.DataType)?>

<!ENTITY % Model.ImportProperties ’(%Model.ModelElementProperties;
   ,(Model.Import.visibility)?
   ,(Model.Import.isClustered)?)’ > 

<!ENTITY % Model.ImportAssociations ’(%Model.ModelElementAssociations;
   ,Model.Import.importedNamespace?)’ > 

<!ELEMENT Model.Import ( %Model.ImportProperties;
       ,(XMI.extension* ,   %Model.ImportAssociations; ) )?>

<!ATTLIST Model.Import %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.Constant                                 -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Model.Constant.value (XMI.any)>

<!ENTITY % Model.ConstantProperties ’(%Model.TypedElementProperties;
   ,(Model.Constant.value)?)’ > 

<!ENTITY % Model.ConstantAssociations ’(%Model.TypedElementAssociations;)’ > 

<!ELEMENT Model.Constant ( %Model.ConstantProperties;
       ,(XMI.extension* ,   %Model.ConstantAssociations; ) )?>

<!ATTLIST Model.Constant %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.Reference                                -->
<!--                                                                 -->
OMG-MOF, v1.3.1                                November 2001 A-99



A

<!-- _______________________________________________________________ -->

<!ELEMENT Model.Reference.referencedEnd (Model.AssociationEnd)?>

<!ENTITY % Model.ReferenceProperties ’(%Model.StructuralFeatureProperties;)’ > 

<!ENTITY % Model.ReferenceAssociations ’(%Model.StructuralFeatureAssociations;
   ,Model.Reference.referencedEnd?)’ > 

<!ELEMENT Model.Reference ( %Model.ReferenceProperties;
       ,(XMI.extension* ,   %Model.ReferenceAssociations; ) )?>

<!ATTLIST Model.Reference %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.Exception                                -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % Model.ExceptionProperties ’(%Model.BehavioralFeatureProperties;)’ > 

<!ENTITY % Model.ExceptionAssociations ’(%Model.BehavioralFeatureAssociations;)’ > 

<!ENTITY % Model.ExceptionCompositions ’(%Model.BehavioralFeatureCompositions;)’ > 

<!ELEMENT Model.Exception ( %Model.ExceptionProperties;
       ,(XMI.extension* ,   %Model.ExceptionAssociations; )
       ,  %Model.ExceptionCompositions; )?>

<!ATTLIST Model.Exception %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.DataType                                 -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Model.DataType.typeCode (XMI.CorbaTypeCode)>

<!ENTITY % Model.DataTypeProperties ’(%Model.ClassifierProperties;
   ,(Model.DataType.typeCode)?)’ > 

<!ENTITY % Model.DataTypeAssociations ’(%Model.ClassifierAssociations;)’ > 

<!ENTITY % Model.DataTypeCompositions ’(%Model.ClassifierCompositions;)’ > 

<!ELEMENT Model.DataType ( %Model.DataTypeProperties;
       ,(XMI.extension* ,   %Model.DataTypeAssociations; )
A-100 OMG-MOF, v1.3.1                                November 2001



A

       ,  %Model.DataTypeCompositions; )?>

<!ATTLIST Model.DataType %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.AssociationEnd                           -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Model.AssociationEnd.multiplicity (XMI.field|XMI.reference)*>

<!ELEMENT Model.AssociationEnd.aggregation EMPTY>
<!ATTLIST Model.AssociationEnd.aggregation %Model.AggregationKind;>

<!ELEMENT Model.AssociationEnd.isNavigable EMPTY>
<!ATTLIST Model.AssociationEnd.isNavigable
        xmi.value ( true | false ) #REQUIRED>

<!ELEMENT Model.AssociationEnd.isChangeable EMPTY>
<!ATTLIST Model.AssociationEnd.isChangeable
        xmi.value ( true | false ) #REQUIRED>

<!ENTITY % Model.AssociationEndProperties ’(%Model.TypedElementProperties;
   ,(Model.AssociationEnd.multiplicity)?
   ,(Model.AssociationEnd.aggregation)?
   ,(Model.AssociationEnd.isNavigable)?
   ,(Model.AssociationEnd.isChangeable)?)’ > 

<!ENTITY % Model.AssociationEndAssociations ’(%Model.TypedElementAssociations;)’ > 

<!ELEMENT Model.AssociationEnd ( %Model.AssociationEndProperties;
       ,(XMI.extension* ,   %Model.AssociationEndAssociations; ) )?>

<!ATTLIST Model.AssociationEnd %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.TypeAlias                                -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ENTITY % Model.TypeAliasProperties ’(%Model.TypedElementProperties;)’ > 

<!ENTITY % Model.TypeAliasAssociations ’(%Model.TypedElementAssociations;)’ > 

<!ELEMENT Model.TypeAlias ( %Model.TypeAliasProperties;
       ,(XMI.extension* ,   %Model.TypeAliasAssociations; ) )?>
OMG-MOF, v1.3.1                                November 2001 A-101



A

<!ATTLIST Model.TypeAlias %XMI.element.att; %XMI.link.att; >

<!-- _______________________________________________________________ -->
<!--                                                                 -->
<!-- METAMODEL CLASS: Model.Tag                                      -->
<!--                                                                 -->
<!-- _______________________________________________________________ -->

<!ELEMENT Model.Tag.tagId (#PCDATA|XMI.reference)*>

<!ELEMENT Model.Tag.values (XMI.any)>

<!ELEMENT Model.Tag.elements (Model.Feature
  |Model.Classifier
  |Model.Namespace
  |Model.StructuralFeature
  |Model.Attribute
  |Model.Operation
  |Model.Class
  |Model.ModelElement
  |Model.Package
  |Model.Constraint
  |Model.Association
  |Model.Parameter
  |Model.BehavioralFeature
  |Model.Import
  |Model.GeneralizableElement
  |Model.Constant
  |Model.Reference
  |Model.Exception
  |Model.DataType
  |Model.AssociationEnd
  |Model.TypedElement
  |Model.TypeAlias
  |Model.Tag)*>

<!ENTITY % Model.TagProperties ’(%Model.ModelElementProperties;
   ,(Model.Tag.tagId)?
   ,(Model.Tag.values)*)’ > 

<!ENTITY % Model.TagAssociations ’(%Model.ModelElementAssociations;
   ,Model.Tag.elements*)’ > 

<!ELEMENT Model.Tag ( %Model.TagProperties;
       ,(XMI.extension* ,   %Model.TagAssociations; ) )?>

<!ATTLIST Model.Tag %XMI.element.att; %XMI.link.att; >

<!ELEMENT Model ((Model.Feature
  |Model.Classifier
A-102 OMG-MOF, v1.3.1                                November 2001



A

  |Model.Namespace
  |Model.StructuralFeature
  |Model.Attribute
  |Model.Operation
  |Model.Class
  |Model.ModelElement
  |Model.Package
  |Model.Constraint
  |Model.Association
  |Model.Parameter
  |Model.BehavioralFeature
  |Model.Import
  |Model.GeneralizableElement
  |Model.Constant
  |Model.Reference
  |Model.Exception
  |Model.DataType
  |Model.AssociationEnd
  |Model.TypedElement
  |Model.TypeAlias
  |Model.Tag)*)>
<!ATTLIST Model %XMI.element.att; %XMI.link.att;>
OMG-MOF, v1.3.1                                November 2001 A-103



A

A-104 OMG-MOF, v1.3.1                                November 2001



MOF IDL Summary B
Note – The copyright information was added as comments to the IDL file. 

This appendix summarizes the CORBA IDL for the Meta Object Facility so that it can 
be easily processed by IDL compilers. The IDL for the Mode l and Reflective packages 
has been included so that the appropriate sections can be compiled separately as 
needed.

B.1 MOF Model IDL
//Meta Object Facility (MOF) Specification
//Version 1.3.1 
//November 2001
//Object Management Group, Inc. 
//Appendix B: MOF IDL Summary

//Copyright 1997-1999, DSTC (Cooperative Research Centre for 
// Enterprise Distributed Systems Technology) 
//Copyright 1997-1999, Electronic Data Systems 
//Copyright 1997-1999, IBM Corporation 
//Copyright 1997-1999, International Computers Limited
//Copyright 1997-1999, Objectivity Inc. 
//Copyright 2000, Object Management Group
//Copyright 1997-1999, Oracle Corporation 
//Copyright 1997-1999, Platinum Technology Inc. 
//Copyright 1997-1999, Rational Software Corporation 
//Copyright 1997-1999, System Software Associates
//Copyright 1997-1999, Unisys Corporation 

//The companies listed above have granted to the Object 
//Management Group, Inc. (OMG) a nonexclusive, royalty-free, 
//paid up, worldwide license to copy and distribute this 
//document and to modify this document and distribute copies 
//of the modified version. Each of the copyright holders 
   OMG-MOF, v1.3.1                              November 2001 B-1



B

//listed above has agreed that no person shall be deemed to 
//have infringed the copyright in the included material of 
//any such copyright holder by reason of having used the 
//specification set forth herein or having conformed any 
//computer software to the specification. 

#pragma prefix "org.omg.mof"
module Model {

typedef sequence < any > AnyBag;
interface ModelPackage;
interface ModelElementClass;
interface ModelElement;
typedef sequence <::Model::ModelElement> ModelElementSet;
typedef sequence <::Model::ModelElement> ModelElementUList;
interface NamespaceClass;
interface Namespace;
typedef sequence <::Model::Namespace> NamespaceUList;
interface GeneralizableElementClass;
interface GeneralizableElement;
typedef sequence <::Model::GeneralizableElement> GeneralizableElementSet;
typedef sequence <::Model::GeneralizableElement> GeneralizableElementUList;
interface TypedElementClass;
interface TypedElement;
typedef sequence <::Model::TypedElement> TypedElementSet;
typedef sequence <::Model::TypedElement> TypedElementUList;
interface ClassifierClass;
interface Classifier;
typedef sequence <::Model::Classifier> ClassifierUList;
interface ClassClass;
interface Class;
typedef sequence <::Model::Class> ClassUList;
interface DataTypeClass;
interface DataType;
typedef sequence <::Model::DataType> DataTypeUList;
interface TypeAliasClass;
interface TypeAlias;
typedef sequence <::Model::TypeAlias> TypeAliasUList;
interface FeatureClass;
interface Feature;
typedef sequence <::Model::Feature> FeatureUList;
interface StructuralFeatureClass;
interface StructuralFeature;
typedef sequence <::Model::StructuralFeature> StructuralFeatureUList;
interface MofAttributeClass;
interface MofAttribute;
typedef sequence <::Model::MofAttribute> MofAttributeUList;
interface ReferenceClass;
interface Reference;
typedef sequence <::Model::Reference> ReferenceSet;
typedef sequence <::Model::Reference> ReferenceUList;
interface BehavioralFeatureClass;
interface BehavioralFeature;
typedef sequence <::Model::BehavioralFeature> BehavioralFeatureUList;
interface OperationClass;
interface Operation;
B-2    OMG-MOF, v1.3.1                              November 2001  



B

typedef sequence <::Model::Operation> OperationSet;
typedef sequence <::Model::Operation> OperationUList;
interface MofExceptionClass;
interface MofException;
typedef sequence <::Model::MofException> MofExceptionUList;
interface AssociationClass;
interface Association;
typedef sequence <::Model::Association> AssociationUList;
interface AssociationEndClass;
interface AssociationEnd;
typedef sequence <::Model::AssociationEnd> AssociationEndUList;
interface PackageClass;
interface Package;
typedef sequence <::Model::Package> PackageUList;
interface ImportClass;
interface Import;
typedef sequence <::Model::Import> ImportSet;
typedef sequence <::Model::Import> ImportUList;
interface ParameterClass;
interface Parameter;
typedef sequence <::Model::Parameter> ParameterUList;
interface ConstraintClass;
interface Constraint;
typedef sequence <::Model::Constraint> ConstraintSet;
typedef sequence <::Model::Constraint> ConstraintUList;
interface ConstantClass;
interface Constant;
typedef sequence <::Model::Constant> ConstantUList;
interface TagClass;
interface Tag;
typedef sequence <::Model::Tag> TagUList;
typedef string NameType;
typedef sequence <::Model::NameType> NameTypeList;
typedef string AnnotationType;
interface ModelElementClass : Reflective::RefObject {

readonly attribute ModelElementUList all_of_type_model_element;
const string MUST_BE_CONTAINED_UNLESS_PACKAGE =

"org.omg.mof:constraint.model.model_element.must_be_contained_unless_package";
const string FROZEN_ATTRIBUTES_CANNOT_BE_CHANGED =

"org.omg.mof:constraint.model.model_element.frozen_attributes_cannot_be_changed";
const string FROZEN_ELEMENTS_CANNOT_BE_DELETED =

"org.omg.mof:constraint.model.model_element.frozen_elements_cannot_be_deleted";
const string FROZEN_DEPENDENCIES_CANNOT_BE_CHANGED =

"org.omg.mof:constraint.model.model_element.frozen_dependencies_cannot_be_changed";
typedef string DependencyKind;
typedef sequence <::Model::ModelElementClass::DependencyKind> DependencyKindSet;
const DependencyKind CONTAINER_DEP = "container";
const DependencyKind CONTENTS_DEP = "contents";
const DependencyKind SIGNATURE_DEP = "signature";
const DependencyKind CONSTRAINT_DEP = "constraint";
const DependencyKind CONSTRAINED_ELEMENTS_DEP = "constrained elements";
const DependencyKind SPECIALIZATION_DEP = "specialization";
const DependencyKind IMPORT_DEP = "import";
const DependencyKind TYPE_DEFINITION_DEP = "type definition";
const DependencyKind REFERENCED_ENDS_DEP = "referenced ends";
OMG-MOF, v1.3.1                 November 2001 B-3



B

const DependencyKind TAGGED_ELEMENTS_DEP = "tagged elements";
const DependencyKind INDIRECT_DEP = "indirect";
const DependencyKind ALL_DEP = "all";

enum VerifyResultKind { valid, published, invalid };
enum DepthKind { shallow, deep };
struct ViolationType {

string error_kind;
Reflective::RefObject element_in_error;
Reflective::NamedValueList values_in_error;
string error_description;

};
typedef sequence <::Model::ModelElementClass::ViolationType> ViolationTypeSet;

}; // end of interface ModelElementClass

interface ModelElement : ModelElementClass {
NameType name ()

raises (Reflective::MofError);
void set_name (in NameType new_value)

raises (Reflective::MofError);
NameTypeList qualified_name ()

raises (Reflective::MofError);
AnnotationType annotation ()

raises (Reflective::MofError);
void set_annotation (in AnnotationType new_value)

raises (Reflective::MofError);
ModelElementSet required_elements ()

raises (Reflective::MofError);
ModelElementSet find_required_elements (

in ModelElementClass::DependencyKindSet kinds,
in boolean recursive)

raises (Reflective::MofError);
boolean is_required_because (in ModelElement other_element,

out ModelElementClass::DependencyKind reason)
raises (Reflective::MofError);

Namespace container ()
raises (Reflective::NotSet, Reflective::MofError);

void set_container (in Namespace new_value)
raises (Reflective::MofError);

void unset_container ()
raises (Reflective::MofError);

ConstraintSet constraints ()
raises (Reflective::MofError);

void set_constraints (in ConstraintSet new_value)
raises (Reflective::MofError);

void add_constraints (in Constraint new_element)
raises (Reflective::MofError);

void modify_constraints (in Constraint old_element, in Constraint new_element)
raises (Reflective::NotFound, Reflective::MofError);

void remove_constraints (in Constraint old_element)
raises (Reflective::NotFound, Reflective::MofError);

ModelElementClass::VerifyResultKind verify (
in ModelElementClass::DepthKind depth,
out ModelElementClass::ViolationTypeSet problems)

raises (Reflective::MofError);
B-4    OMG-MOF, v1.3.1                              November 2001  



B

boolean is_frozen ()
raises (Reflective::MofError);

boolean is_visible (in ModelElement other_element)
raises (Reflective::MofError);

}; // end of interface ModelElement

enum VisibilityKind { public_vis, protected_vis, private_vis };

interface NamespaceClass : ModelElementClass {
readonly attribute NamespaceUList all_of_type_namespace;
const string CONTENT_NAMES_MUST_NOT_COLLIDE =

"org.omg.mof:constraint.model.namespace.content_names_must_not_collide";
exception NameNotFound { NameType name; };
exception NameNotResolved {

string explanation;
NameTypeList rest_of_name; };

}; // end of interface NamespaceClass

interface Namespace : NamespaceClass, ModelElement {
ModelElementUList contents ()

raises (Reflective::MofError);
void set_contents (in ModelElementUList new_value)

raises (Reflective::MofError);
void add_contents (in ModelElement new_element)

raises (Reflective::MofError);
void add_contents_before (in ModelElement new_element, in ModelElement before_element)

raises (Reflective::NotFound, Reflective::MofError);
void modify_contents (in ModelElement old_element, in ModelElement new_element)

raises (Reflective::NotFound, Reflective::MofError);
void remove_contents (in ModelElement old_element)

raises (Reflective::NotFound, Reflective::MofError);
ModelElement lookup_element (in NameType name)

raises (NamespaceClass::NameNotFound, Reflective::MofError);
ModelElement resolve_qualified_name (in NameTypeList qualified_name)

raises (NamespaceClass::NameNotResolved, Reflective::MofError);
ModelElementUList find_elements_by_type (in Class of_type, in boolean include_subtypes)

raises (Reflective::MofError);
boolean name_is_valid (in NameType proposed_name)

raises (Reflective::MofError);
}; // end of interface Namespace

interface GeneralizableElementClass : NamespaceClass {
readonly attribute GeneralizableElementUList
all_of_type_generalizable_element;

const string SUPERTYPE_MUST_NOT_BE_SELF =
"org.omg.mof:constraint.model.generalizable_element.supertype_must_not_be_self";

const string SUPERTYPE_KIND_MUST_BE_SAME =
"org.omg.mof:constraint.model.generalizable_element.supertype_kind_must_be_same";

const string CONTENTS_MUST_NOT_COLLIDE_WITH_SUPERTYPES = 
"org.omg.mof:constraint.model.generalizable_element"
".contents_must_not_collide_with_supertypes";

const string DIAMOND_RULE_MUST_BE_OBEYED =
"org.omg.mof:constraint.model.generalizable_element.diamond_rule_must_be_obeyed";

const string NO_SUPERTYPES_ALLOWED_FOR_ROOT =
"org.omg.mof:constraint.model.generalizable_element.no_supertypes_allowed_for_root";
OMG-MOF, v1.3.1                 November 2001 B-5



B

const string SUPERTYPES_MUST_BE_VISIBLE =
"org.omg.mof:constraint.model.generalizable_element.supertypes_must_be_visible";

const string NO_SUBTYPES_ALLOWED_FOR_LEAF =
"org.omg.mof:constraint.model.generalizable_element.no_subtypes_allowed_for_leaf";

}; // end of interface GeneralizableElementClass

interface GeneralizableElement : GeneralizableElementClass, Namespace {
boolean is_root ()

raises (Reflective::MofError);
void set_is_root (in boolean new_value)

raises (Reflective::MofError);
boolean is_leaf ()

raises (Reflective::MofError);
void set_is_leaf (in boolean new_value)

raises (Reflective::MofError);
boolean is_abstract ()

raises (Reflective::MofError);
void set_is_abstract (in boolean new_value)

raises (Reflective::MofError);
VisibilityKind visibility ()

raises (Reflective::MofError);
void set_visibility (in VisibilityKind new_value)

raises (Reflective::MofError);
GeneralizableElementUList supertypes ()

raises (Reflective::MofError);
void set_supertypes (in GeneralizableElementUList new_value)

raises (Reflective::MofError);
void add_supertypes (in GeneralizableElement new_element)

raises (Reflective::MofError);
void add_supertypes_before (in GeneralizableElement new_element,

in GeneralizableElement before_element)
raises (Reflective::NotFound, Reflective::MofError);

void modify_supertypes (in GeneralizableElement old_element,
in GeneralizableElement new_element)

raises (Reflective::NotFound, Reflective::MofError);
void remove_supertypes (in GeneralizableElement old_element)

raises (Reflective::NotFound, Reflective::MofError);
GeneralizableElementSet all_supertypes ()

raises (Reflective::MofError);
ModelElement lookup_element_extended (in NameType name)

raises (Reflective::MofError);
ModelElementUList find_elements_by_type_extended (

in Class of_type,
in boolean include_subtypes)

raises (Reflective::MofError);
}; // end of interface GeneralizableElement

interface TypedElementClass : ModelElementClass {
// get all typed_element including subtypes of typed_element

readonly attribute TypedElementUList all_of_type_typed_element;
const string ASSOCIATIONS_CANNOT_BE_TYPES =

"org.omg.mof:constraint.model.typed_element.associations_cannot_be_types";
const string TYPE_MUST_BE_VISIBLE =

"org.omg.mof:constraint.model.typed_element.type_must_be_visible";
}; // end of interface TypedElementClass
B-6    OMG-MOF, v1.3.1                              November 2001  



B

interface TypedElement : TypedElementClass, ModelElement {
Classifier type ()

raises (Reflective::MofError);
void set_type (in Classifier new_value)

raises (Reflective::MofError);
}; // end of interface TypedElement

interface ClassifierClass : GeneralizableElementClass {
      readonly attribute ClassifierUList all_of_type_classifier;

}; // end of interface ClassifierClass

interface Classifier : ClassifierClass, GeneralizableElement { };
   

interface ClassClass : ClassifierClass {
readonly attribute ClassUList all_of_type_class;
readonly attribute ClassUList all_of_class_class;

const string CLASS_CONTAINMENT_RULES =
"org.omg.mof:constraint.model.class.class_containment_rules";

const string ABSTRACT_CLASSES_CANNOT_BE_SINGLETON =
"org.omg.mof:constraint.model.class.abstract_classes_cannot_be_singleton";

Class create_class (
/* from ModelElement */ in ::Model::NameType name,
/* from ModelElement */ in ::Model::AnnotationType annotation,
/* from GeneralizableElement */in boolean is_root,
/* from GeneralizableElement */in boolean is_leaf,
/* from GeneralizableElement */in boolean is_abstract,
/* from GeneralizableElement */in ::Model::VisibilityKind visibility,
/* from Class */ in boolean is_singleton)

raises (Reflective::MofError);
}; // end of interface ClassClass

interface Class : ClassClass, Classifier {
boolean is_singleton ()

raises (Reflective::MofError);
void set_is_singleton (in boolean new_value)

raises (Reflective::MofError);
}; // end of interface Class

typedef ::CORBA::TypeCode TypeDescriptor;

interface DataTypeClass : ClassifierClass {
readonly attribute DataTypeUList all_of_type_data_type;
readonly attribute DataTypeUList all_of_class_data_type;
const string DATA_TYPE_CONTAINMENT_RULES =

"org.omg.mof:constraint.model.data_type.data_type_containment_rules";
const string THIS_TYPECODE_NOT_SUPPORTED =

"org.omg.mof:constraint.model.data_type.this_typecode_not_supported";
const string DATA_TYPES_HAVE_NO_SUPERTYPES =

"org.omg.mof:constraint.model.data_type.data_types_have_no_supertypes";
const string DATA_TYPES_CANNOT_BE_ABSTRACT =

"org.omg.mof:constraint.model.data_type.data_types_cannot_be_abstract";

DataType create_data_type (
OMG-MOF, v1.3.1                 November 2001 B-7



B

/* from ModelElement */ in ::Model::NameType name,
/* from ModelElement */ in ::Model::AnnotationType annotation,
/* from GeneralizableElement */in boolean is_root,
/* from GeneralizableElement */in boolean is_leaf,
/* from GeneralizableElement */in boolean is_abstract,
/* from GeneralizableElement */in ::Model::VisibilityKind visibility,
/* from DataType */ in TypeDescriptor type_code)

raises (Reflective::MofError);
}; // end of interface DataTypeClass

interface DataType : DataTypeClass, Classifier {
TypeDescriptor type_code ()

raises (Reflective::MofError);
void set_type_code (in TypeDescriptor new_value)

raises (Reflective::MofError);
}; // end of interface DataType

interface TypeAliasClass : TypedElementClass {
readonly attribute TypeAliasUList all_of_type_type_alias;
readonly attribute TypeAliasUList all_of_class_type_alias;
TypeAlias create_type_alias (

/* from ModelElement */ in ::Model::NameType name,
/* from ModelElement */ in ::Model::AnnotationType annotation)

raises (Reflective::MofError);
}; // end of interface TypeAliasClass

interface TypeAlias : TypeAliasClass, TypedElement {
}; // end of interface TypeAlias

enum ScopeKind { instance_level, classifier_level };

interface FeatureClass : ModelElementClass {
readonly attribute FeatureUList all_of_type_feature;

}; // end of interface FeatureClass

interface Feature : FeatureClass, ModelElement {
ScopeKind scope ()

raises (Reflective::MofError);
void set_scope (in ScopeKind new_value)

raises (Reflective::MofError);
VisibilityKind visibility ()

raises (Reflective::MofError);
void set_visibility (in VisibilityKind new_value)

raises (Reflective::MofError);
}; // end of interface Feature

const long UNBOUNDED = -1;
struct MultiplicityType {

long lower; 
long upper; 
boolean is_ordered; 
boolean is_unique; };

const string LOWER_CANNOT_BE_NEGATIVE_OR_UNBOUNDED =
"org.omg.mof:con-

straint.model.multiplicity_type.lower_cannot_be_negative_or_unbounded";
B-8    OMG-MOF, v1.3.1                              November 2001  



B

const string LOWER_CANNOT_EXCEED_UPPER =
"org.omg.mof:constraint.model.multiplicity_type.lower_cannot_exceed_upper";

const string UPPER_MUST_BE_POSITIVE =
"org.omg.mof:constraint.model.multiplicity_type.upper_must_be_positive";

const string MUST_BE_UNORDERED_NONUNIQUE =
"org.omg.mof:constraint.model.multiplicity_type.must_be_unordered_nonunique";

interface StructuralFeatureClass : FeatureClass, TypedElementClass {
readonly attribute StructuralFeatureUList all_of_type_structural_feature;

}; // end of interface StructuralFeatureClass

interface StructuralFeature : StructuralFeatureClass, Feature, TypedElement {
MultiplicityType multiplicity ()

raises (Reflective::MofError);
void set_multiplicity (in MultiplicityType new_value)

raises (Reflective::MofError);
boolean is_changeable ()

raises (Reflective::MofError);
void set_is_changeable (in boolean new_value)

raises (Reflective::MofError);
}; // end of interface StructuralFeature

interface MofAttributeClass : StructuralFeatureClass {
readonly attribute MofAttributeUList all_of_type_mof_attribute;
readonly attribute MofAttributeUList all_of_class_mof_attribute;

MofAttribute create_mof_attribute (
/* from ModelElement */ in ::Model::NameType name,
/* from ModelElement */ in ::Model::AnnotationType annotation,
/* from Feature */ in ::Model::ScopeKind scope,
/* from Feature */ in ::Model::VisibilityKind visibility,
/* from StructuralFeature */in ::Model::MultiplicityType multiplicity,
/* from StructuralFeature */in boolean is_changeable,
/* from MofAttribute */ in boolean is_derived)

raises (Reflective::MofError);
}; // end of interface MofAttributeClass

interface MofAttribute : MofAttributeClass, StructuralFeature {
boolean is_derived ()

raises (Reflective::MofError);
void set_is_derived (in boolean new_value)

raises (Reflective::MofError);
}; // end of interface MofAttribute

interface ReferenceClass : StructuralFeatureClass {
readonly attribute ReferenceUList all_of_type_reference;
readonly attribute ReferenceUList all_of_class_reference;
const string REFERENCE_MULTIPLICITY_MUST_MATCH_END =

"org.omg.mof:constraint.model.reference.reference_multiplicity_must_match_end";
const string REFERENCE_MUST_BE_INSTANCE_SCOPED =

"org.omg.mof:constraint.model.reference.reference_must_be_instance_scoped";
const string CHANGEABLE_REFERENCE_MUST_HAVE_CHANGEABLE_END =

"org.omg.mof:constraint.model.refer-
ence.changeable_reference_must_have_changeable_end";

const string REFERENCE_TYPE_MUST_MATCH_END_TYPE =
OMG-MOF, v1.3.1                 November 2001 B-9



B

"org.omg.mof:constraint.model.reference.reference_type_must_match_end_type";
const string REFERENCED_END_MUST_BE_NAVIGABLE =

"org.omg.mof:constraint.model.reference.referenced_end_must_be_navigable";
const string CONTAINER_MUST_MATCH_EXPOSED_TYPE =

"org.omg.mof:constraint.model.reference.container_must_match_exposed_type";
const string REFERENCED_END_MUST_BE_VISIBLE =

"org.omg.mof:constraint.model.reference.referenced_end_must_be_visible";

Reference create_reference (
/* from ModelElement */ in ::Model::NameType name,
/* from ModelElement */ in ::Model::AnnotationType annotation,
/* from Feature */ in ::Model::ScopeKind scope,
/* from Feature */ in ::Model::VisibilityKind visibility,
/* from StructuralFeature */in ::Model::MultiplicityType multiplicity,
/* from StructuralFeature */in boolean is_changeable)

raises (Reflective::MofError);
}; // end of interface ReferenceClass

interface Reference : ReferenceClass, StructuralFeature {
AssociationEnd exposed_end ()

raises (Reflective::MofError);
void set_exposed_end (in AssociationEnd new_value)

raises (Reflective::MofError);
AssociationEnd referenced_end ()

raises (Reflective::MofError);
void set_referenced_end (in AssociationEnd new_value)

raises (Reflective::MofError);
}; // end of interface Reference

interface BehavioralFeatureClass : FeatureClass, NamespaceClass {
readonly attribute BehavioralFeatureUList all_of_type_behavioral_feature;

}; // end of interface BehavioralFeatureClass

interface BehavioralFeature :
BehavioralFeatureClass, Feature , Namespace {};

interface OperationClass : BehavioralFeatureClass {
readonly attribute OperationUList all_of_type_operation;
readonly attribute OperationUList all_of_class_operation;

const string OPERATION_CONTAINMENT_RULES =
"org.omg.mof:constraint.model.operation.operation_containment_rules";

const string OPERATIONS_HAVE_AT_MOST_ONE_RETURN =
"org.omg.mof:constraint.model.operation.operations_have_at_most_one_return";

const string OPERATION_EXCEPTIONS_MUST_BE_VISIBLE =
"org.omg.mof:constraint.model.operation.operation_exceptions_must_be_visible";

Operation create_operation (
/* from ModelElement */ in ::Model::NameType name,
/* from ModelElement */ in ::Model::AnnotationType annotation,
/* from Feature */ in ::Model::ScopeKind scope,
/* from Feature */ in ::Model::VisibilityKind visibility,
/* from Operation */ in boolean is_query)

raises (Reflective::MofError);
}; // end of interface OperationClass
B-10    OMG-MOF, v1.3.1                              November 2001  



B

interface Operation : OperationClass, BehavioralFeature {
boolean is_query ()

raises (Reflective::MofError);
void set_is_query (in boolean new_value)

raises (Reflective::MofError);
MofExceptionUList exceptions ()

raises (Reflective::MofError);
void set_exceptions (in MofExceptionUList new_value)

raises (Reflective::MofError);
void add_exceptions (in MofException new_element)

raises (Reflective::MofError);
void add_exceptions_before (in MofException new_element,

in MofException before_element)
raises (Reflective::NotFound, Reflective::MofError);

void modify_exceptions (in MofException old_element,
in MofException new_element)

raises (Reflective::NotFound, Reflective::MofError);
void remove_exceptions (in MofException old_element)

raises (Reflective::NotFound, Reflective::MofError);
}; // end of interface Operation

interface MofExceptionClass : BehavioralFeatureClass {
readonly attribute MofExceptionUList all_of_type_mof_exception;
readonly attribute MofExceptionUList all_of_class_mof_exception;
const string EXCEPTION_CONTAINMENT_RULES =

"org.omg.mof:constraint.model.mof_exception.exception_containment_rules";
const string EXCEPTIONS_HAVE_ONLY_OUT_PARAMETERS =

"org.omg.mof:constraint.model.mof_exception.exceptions_have_only_out_parameters";

MofException create_mof_exception (
/* from ModelElement */ in ::Model::NameType name,
/* from ModelElement */ in ::Model::AnnotationType annotation,
/* from Feature */ in ::Model::ScopeKind scope,
/* from Feature */ in ::Model::VisibilityKind visibility)

raises (Reflective::MofError);
}; // end of interface MofExceptionClass

interface MofException : MofExceptionClass , BehavioralFeature { };

interface AssociationClass : ClassifierClass {
readonly attribute AssociationUList all_of_type_association;
readonly attribute AssociationUList all_of_class_association;
const string ASSOCIATIONS_CONTAINMENT_RULES =

"org.omg.mof:constraint.model.association.associations_containment_rules";
const string ASSOCIATIONS_HAVE_NO_SUPERTYPES =

"org.omg.mof:constraint.model.association.associations_have_no_supertypes";
const string ASSOCIATIONS_MUST_BE_ROOT_AND_LEAF =

"org.omg.mof:constraint.model.association.associations_must_be_root_and_leaf";
const string ASSOCIATIONS_CANNOT_BE_ABSTRACT =

"org.omg.mof:constraint.model.association.associations_cannot_be_abstract";
const string ASSOCIATIONS_MUST_BE_PUBLIC =

"org.omg.mof:constraint.model.association.associations_must_be_public";
const string ASSOCIATIONS_MUST_BE_BINARY =

"org.omg.mof:constraint.model.association.associations_must_be_binary";
OMG-MOF, v1.3.1                 November 2001 B-11



B

Association create_association (
/* from ModelElement */ in ::Model::NameType name,
/* from ModelElement */ in ::Model::AnnotationType annotation,
/* from GeneralizableElement */in boolean is_root,
/* from GeneralizableElement */in boolean is_leaf,
/* from GeneralizableElement */in boolean is_abstract,
/* from GeneralizableElement */in ::Model::VisibilityKind visibility,
/* from Association */ in boolean is_derived)

raises (Reflective::MofError);
}; // end of interface AssociationClass

interface Association : AssociationClass, Classifier {

boolean is_derived ()
raises (Reflective::MofError);

void set_is_derived (in boolean new_value)
raises (Reflective::MofError);

}; // end of interface Association

enum AggregationKind { none, shared, composite };

interface AssociationEndClass : TypedElementClass {
readonly attribute AssociationEndUList all_of_type_association_end;
readonly attribute AssociationEndUList all_of_class_association_end;
const string END_TYPE_MUST_BE_CLASS =

"org.omg.mof:constraint.model.association_end.end_type_must_be_class";
const string ENDS_MUST_BE_UNIQUE =

"org.omg.mof:constraint.model.association_end.ends_must_be_unique";
const string CANNOT_HAVE_TWO_ORDERED_ENDS =

"org.omg.mof:constraint.model.association_end.cannot_have_two_ordered_ends";
const string CANNOT_HAVE_TWO_AGGREGATE_ENDS =

"org.omg.mof:constraint.model.association_end.cannot_have_two_aggregate_ends";

      AssociationEnd create_association_end (
/* from ModelElement */ in ::Model::NameType name,
/* from ModelElement */ in ::Model::AnnotationType annotation,
/* from AssociationEnd */ in boolean is_navigable,
/* from AssociationEnd */ in ::Model::AggregationKind aggregation,
/* from AssociationEnd */ in ::Model::MultiplicityType multiplicity,
/* from AssociationEnd */ in boolean is_changeable)

raises (Reflective::MofError);
}; // end of interface AssociationEndClass

interface AssociationEnd : AssociationEndClass, TypedElement {
boolean is_navigable ()

raises (Reflective::MofError);
void set_is_navigable (in boolean new_value)

raises (Reflective::MofError);
AggregationKind aggregation ()

raises (Reflective::MofError);
void set_aggregation (in AggregationKind new_value)

raises (Reflective::MofError);
MultiplicityType multiplicity ()

raises (Reflective::MofError);
B-12    OMG-MOF, v1.3.1                              November 2001  



B

void set_multiplicity (in MultiplicityType new_value)
raises (Reflective::MofError);

AssociationEnd other_end ()
raises (Reflective::MofError);

boolean is_changeable ()
raises (Reflective::MofError);

void set_is_changeable (in boolean new_value);
}; // end of interface AssociationEnd

interface PackageClass : GeneralizableElementClass {
readonly attribute PackageUList all_of_type_package;
readonly attribute PackageUList all_of_class_package;
const string PACKAGE_CONTAINMENT_RULES =

"org.omg.mof:constraint.model.package.package_containment_rules";
const string PACKAGES_CANNOT_BE_ABSTRACT =

"org.omg.mof:constraint.model.package.packages_cannot_be_abstract";

typedef string FormatType;

exception FormatNotSupported {};
exception ObjectNotExternalizable { string explanation; };
exception IllformedExternalizedObject { string explanation; };

      GeneralizableElement internalize (in PackageClass::FormatType format,
 in any stream)

raises (PackageClass::FormatNotSupported,
 PackageClass::IllformedExternalizedObject,
 Reflective::MofError);

Package create_package (
/* from ModelElement */ in ::Model::NameType name,
/* from ModelElement */ in ::Model::AnnotationType annotation,
/* from GeneralizableElement */ in boolean is_root,
/* from GeneralizableElement */ in boolean is_leaf,
/* from GeneralizableElement */ in boolean is_abstract,
/* from GeneralizableElement */ in ::Model::VisibilityKind visibility)

raises (Reflective::MofError);
}; // end of interface PackageClass

interface Package : PackageClass, GeneralizableElement {

any externalize (in PackageClass::FormatType format)
raises (PackageClass::ObjectNotExternalizable,

 PackageClass::FormatNotSupported,
 Reflective::MofError);

}; // end of interface Package

interface ImportClass : ModelElementClass {
readonly attribute ImportUList all_of_type_import;
readonly attribute ImportUList all_of_class_import;
const string IMPORTED_NAMESPACE_MUST_BE_VISIBLE =

"org.omg.mof:constraint.model.import.imported_namespace_must_be_visible";
const string CAN_ONLY_IMPORT_PACKAGES_AND_CLASSES =

"org.omg.mof:constraint.model.import.can_only_import_packages_and_classes";
const string CANNOT_IMPORT_SELF =
OMG-MOF, v1.3.1                 November 2001 B-13



B

"org.omg.mof:constraint.model.import.cannot_import_self";

const string CANNOT_IMPORT_NESTED_COMPONENTS =
"org.omg.mof:constraint.model.import.cannot_import_nested_components";

const string NESTED_PACKAGES_CANNOT_IMPORT =
"org.omg.mof:constraint.model.import.nested_packages_cannot_import";

Import create_import (
/* from ModelElement */ in ::Model::NameType name,
/* from ModelElement */ in ::Model::AnnotationType annotation,
/* from Import */      in ::Model::VisibilityKind visibility,
/* from Import */       in boolean is_clustered)

raises (Reflective::MofError);
}; // end of interface ImportClass

interface Import : ImportClass, ModelElement {
VisibilityKind visibility ()

raises (Reflective::MofError);
void set_visibility (in VisibilityKind new_value)

raises (Reflective::MofError);
boolean is_clustered ()

raises (Reflective::MofError);
void set_is_clustered (in boolean new_value)

raises (Reflective::MofError);
Namespace imported_namespace ()

raises (Reflective::MofError);
void set_imported_namespace (in Namespace new_value)

raises (Reflective::MofError);
}; // end of interface Import

enum DirectionKind { in_dir, out_dir, inout_dir, return_dir };
interface ParameterClass : TypedElementClass {

readonly attribute ParameterUList all_of_type_parameter;
readonly attribute ParameterUList all_of_class_parameter;
Parameter create_parameter (

/* from ModelElement */  in ::Model::NameType name,
/* from ModelElement */ in ::Model::AnnotationType annotation,
/* from Parameter */ in ::Model::DirectionKind direction,
/* from Parameter */ in ::Model::MultiplicityType multiplicity)

raises (Reflective::MofError);
}; // end of interface ParameterClass

interface Parameter : ParameterClass, TypedElement {
DirectionKind direction ()

raises (Reflective::MofError);
void set_direction (in DirectionKind new_value)

raises (Reflective::MofError);
MultiplicityType multiplicity ()

raises (Reflective::MofError);
void set_multiplicity (in MultiplicityType new_value)

raises (Reflective::MofError);
}; // end of interface Parameter

interface ConstraintClass : ModelElementClass {
readonly attribute ConstraintUList all_of_type_constraint;
readonly attribute ConstraintUList all_of_class_constraint;
B-14    OMG-MOF, v1.3.1                              November 2001  



B

const string CANNOT_CONSTRAIN_THIS_ELEMENT =
"org.omg.mof:constraint.model.constraint.cannot_constrain_this_element";

const string CONSTRAINTS_LIMITED_TO_CONTAINER =
"org.omg.mof:constraint.model.constraint.constraints_limited_to_container";

enum EvaluationKind { immediate, deferred };

Constraint create_constraint (
/* from ModelElement */ in ::Model::NameType name,
/* from ModelElement */ in ::Model::AnnotationType annotation,
/* from Constraint */ in any expression,
/* from Constraint */ in string language,
/* from Constraint */

in ::Model::ConstraintClass::EvaluationKind evaluation_policy)
raises (Reflective::MofError);

}; // end of interface ConstraintClass

interface Constraint : ConstraintClass, ModelElement {
any expression ()

raises (Reflective::MofError);
void set_expression (in any new_value)

raises (Reflective::MofError);
string language ()

raises (Reflective::MofError);
void set_language (in string new_value)

raises (Reflective::MofError);
ConstraintClass::EvaluationKind evaluation_policy ()

raises (Reflective::MofError);
void set_evaluation_policy (in ConstraintClass::EvaluationKind new_value)

raises (Reflective::MofError);
ModelElementSet constrained_elements ()

raises (Reflective::MofError);
void set_constrained_elements (in ModelElementSet new_value)

raises (Reflective::MofError);
void add_constrained_elements (in ModelElement new_element)

raises (Reflective::MofError);
void modify_constrained_elements (in ModelElement old_element,

 in ModelElement new_element)
raises (Reflective::MofError);

void remove_constrained_elements (in ModelElement old_element)
raises (Reflective::NotFound, Reflective::MofError);

}; // end of interface Constraint

typedef any LiteralType;

interface ConstantClass : TypedElementClass {
readonly attribute ConstantUList all_of_type_constant;
readonly attribute ConstantUList all_of_class_constant;
const string CONSTANTS_VALUE_MUST_MATCH_TYPE =

"org.omg.mof:constraint.model.constant.constants_value_must_match_type";
const string CONSTANTS_TYPE_MUST_BE_SIMPLE_DATA_TYPE =

"org.omg.mof:constraint.model.constant.constants_type_must_be_simple_data_type";

Constant create_constant (
/* from ModelElement */ in ::Model::NameType name,
OMG-MOF, v1.3.1                 November 2001 B-15



B

/* from ModelElement */ in ::Model::AnnotationType annotation,
/* from Constant */ in ::Model::LiteralType const_value)

raises (Reflective::MofError);
}; // end of interface ConstantClass

interface Constant : ConstantClass, TypedElement {
LiteralType value ()

raises (Reflective::MofError);
void set_value (in LiteralType new_value)

raises (Reflective::MofError);
}; // end of interface Constant

interface TagClass : ModelElementClass {
readonly attribute TagUList all_of_type_tag;
readonly attribute TagUList all_of_class_tag;

Tag create_tag (
/* from ModelElement */ in ::Model::NameType name,
/* from ModelElement */ in ::Model::AnnotationType annotation,
/* from Tag */ in string tag_id,
/* from Tag */ in AnyBag values)

raises (Reflective::MofError);
}; // end of interface TagClass

interface Tag : TagClass, ModelElement {
string tag_id ()

raises (Reflective::MofError);
void set_tag_id (in string new_value)

raises (Reflective::MofError);
AnyBag values ()

raises (Reflective::MofError);
void set_values (in AnyBag new_value)

raises (Reflective::MofError);
void add_values (in any new_element)

raises (Reflective::MofError);
void modify_values (in any old_element, in any new_element)

raises (Reflective::NotFound, Reflective::MofError);
void remove_values (in any old_element)

raises (Reflective::NotFound, Reflective::MofError);
ModelElementSet elements ()

raises (Reflective::MofError);
void set_elements (in ModelElementSet new_value)

raises (Reflective::MofError);
void add_elements (in ModelElement new_element)

raises (Reflective::MofError);
void add_elements_before (in ModelElement new_element,

in ModelElement before_element)
raises (Reflective::NotFound, Reflective::MofError);

void modify_elements (in ModelElement old_element,
 in ModelElement new_element)

raises (Reflective::NotFound, Reflective::MofError);
void remove_elements (in ModelElement old_element)

raises (Reflective::NotFound, Reflective::MofError);
}; // end of interface Tag
B-16    OMG-MOF, v1.3.1                              November 2001  



B

struct AttachesToLink {
ModelElement model_element;
::Model::Tag tag;

};
typedef sequence <AttachesToLink> AttachesToLinkSet;

interface AttachesTo : Reflective::RefAssociation {
AttachesToLinkSet all_attaches_to_links ();
boolean exists (in ModelElement model_element, in ::Model::Tag tag)

raises (Reflective::MofError);
ModelElementSet model_element (in ::Model::Tag tag)

raises (Reflective::MofError);
TagUList tag (in ModelElement model_element)

raises (Reflective::MofError);
void add (in ModelElement model_element, in ::Model::Tag tag)

raises (Reflective::MofError);
void add_before_tag (in ModelElement model_element,

 in ::Model::Tag tag,
 in ::Model::Tag before)

raises (Reflective::NotFound, Reflective::MofError);
void modify_model_element (in ModelElement model_element,

 in ::Model::Tag tag,
 in ModelElement new_model_element)

raises (Reflective::NotFound, Reflective::MofError);
void modify_tag (in ModelElement model_element,

 in ::Model::Tag tag,
 in ::Model::Tag new_tag)

raises (Reflective::NotFound, Reflective::MofError);
void remove (in ModelElement model_element, in ::Model::Tag tag)

raises (Reflective::NotFound, Reflective::MofError);
};
struct DependsOnLink {

ModelElement dependent;
ModelElement provider;

};
typedef sequence <DependsOnLink> DependsOnLinkSet;

interface DependsOn : Reflective::RefAssociation {
DependsOnLinkSet all_depends_on_links ();
boolean exists (in ModelElement dependent, in ModelElement provider)

raises (Reflective::MofError);
ModelElementSet dependent (in ModelElement provider)

raises (Reflective::MofError);
ModelElementSet provider (in ModelElement dependent)

raises (Reflective::MofError);
};

struct ContainsLink {
Namespace container;
ModelElement contained_element;

};
typedef sequence <ContainsLink> ContainsLinkSet;

interface Contains : Reflective::RefAssociation {
ContainsLinkSet all_contains_links ();
OMG-MOF, v1.3.1                 November 2001 B-17



B

boolean exists (in Namespace container, in ModelElement contained_element)
raises (Reflective::MofError);

Namespace container (in ModelElement contained_element)
raises (Reflective::MofError);

ModelElementUList contained_element (in Namespace container)
raises (Reflective::MofError);

void add (in Namespace container, in ModelElement contained_element)
raises (Reflective::MofError);

void add_before_contained_element (in Namespace container,
 in ModelElement contained_element,
 in ModelElement before)

raises (Reflective::NotFound, Reflective::MofError);
void modify_container (in Namespace container,

in ModelElement contained_element,
in Namespace new_container)

raises (Reflective::NotFound, Reflective::MofError);
void modify_contained_element (in Namespace container,

in ModelElement contained_element,
in ModelElement new_contained_element)

raises (Reflective::NotFound, Reflective::MofError);
void remove (in Namespace container, in ModelElement contained_element)

raises (Reflective::NotFound, Reflective::MofError);
};

struct GeneralizesLink {
GeneralizableElement supertype;
GeneralizableElement subtype;

};
typedef sequence <GeneralizesLink> GeneralizesLinkSet;

interface Generalizes : Reflective::RefAssociation {
GeneralizesLinkSet all_generalizes_links ();
boolean exists (in GeneralizableElement supertype,

in GeneralizableElement subtype)
raises (Reflective::MofError);

GeneralizableElementUList supertype (in GeneralizableElement subtype)
         raises (Reflective::MofError);

GeneralizableElementSet subtype (in GeneralizableElement supertype)
         raises (Reflective::MofError);

void add (in GeneralizableElement supertype,
 in GeneralizableElement subtype)

raises (Reflective::MofError);
void add_before_supertype (in GeneralizableElement supertype,

in GeneralizableElement subtype,
in GeneralizableElement before)

raises (Reflective::NotFound, Reflective::MofError);
void modify_supertype (in GeneralizableElement supertype,

in GeneralizableElement subtype,
in GeneralizableElement new_supertype)

raises (Reflective::NotFound, Reflective::MofError);
void modify_subtype (in GeneralizableElement supertype,

 in GeneralizableElement subtype,
 in GeneralizableElement new_subtype)

raises (Reflective::NotFound, Reflective::MofError);
void remove (in GeneralizableElement supertype,
B-18    OMG-MOF, v1.3.1                              November 2001  



B

 in GeneralizableElement subtype)
raises (Reflective::NotFound, Reflective::MofError);

};

struct AliasesLink {
Import importer;
Namespace imported;

};
typedef sequence <AliasesLink> AliasesLinkSet;

interface Aliases : Reflective::RefAssociation {
AliasesLinkSet all_aliases_links ();
boolean exists (in Import importer, in Namespace imported)

raises (Reflective::MofError);
ImportSet importer (in Namespace imported)

raises (Reflective::MofError);
Namespace imported (in Import importer)

raises (Reflective::MofError);
void add (in Import importer, in Namespace imported)

raises (Reflective::MofError);
void modify_importer (in Import importer,

in Namespace imported,
in Import new_importer)

raises (Reflective::NotFound, Reflective::MofError);
void modify_imported (in Import importer,

in Namespace imported,
in Namespace new_imported)

raises (Reflective::NotFound, Reflective::MofError);
void remove (in Import importer, in Namespace imported)

raises (Reflective::NotFound, Reflective::MofError);
};

struct ConstrainsLink {
::Model::Constraint constraint;
ModelElement constrained_element;

};
typedef sequence <ConstrainsLink> ConstrainsLinkSet;

interface Constrains : Reflective::RefAssociation {
ConstrainsLinkSet all_constrains_links ();
boolean exists (in ::Model::Constraint constraint,

in ModelElement constrained_element)
raises (Reflective::MofError);

ConstraintSet constraint (in ModelElement constrained_element)
raises (Reflective::MofError);

ModelElementSet constrained_element (in ::Model::Constraint constraint)
raises (Reflective::MofError);

void add (in ::Model::Constraint constraint,
 in ModelElement constrained_element)

raises (Reflective::MofError);
void modify_constraint (in ::Model::Constraint constraint,

in ModelElement constrained_element,
in ::Model::Constraint new_constraint)

raises (Reflective::NotFound, Reflective::MofError);
void modify_constrained_element (in ::Model::Constraint constraint,
OMG-MOF, v1.3.1                 November 2001 B-19



B

in ModelElement constrained_element,
in ModelElement new_constrained_element)

raises (Reflective::NotFound, Reflective::MofError);
void remove (in ::Model::Constraint constraint,

 in ModelElement constrained_element)
raises (Reflective::NotFound, Reflective::MofError);

};

struct CanRaiseLink {
::Model::Operation operation;
MofException except;

};
typedef sequence <CanRaiseLink> CanRaiseLinkSet;

interface CanRaise : Reflective::RefAssociation {
CanRaiseLinkSet all_can_raise_links ();
boolean exists (in ::Model::Operation operation, in MofException except)

raises (Reflective::MofError);
OperationSet operation (in MofException except)

raises (Reflective::MofError);
MofExceptionUList except (in ::Model::Operation operation)

raises (Reflective::MofError);
void add (in ::Model::Operation operation, in MofException except)

raises (Reflective::MofError);
void add_before_except (in ::Model::Operation operation,

 in MofException except,
 in MofException before)

raises (Reflective::NotFound, Reflective::MofError);
void modify_operation (in ::Model::Operation operation,

in MofException except,
in ::Model::Operation new_operation)

raises (Reflective::NotFound, Reflective::MofError);
void modify_except (in ::Model::Operation operation,

in MofException except,
in MofException new_except)

raises (Reflective::NotFound, Reflective::MofError);
void remove (in ::Model::Operation operation, in MofException except)

raises (Reflective::NotFound, Reflective::MofError);
};

struct ExposesLink {
Reference referrer;
AssociationEnd exposed_end;

};
typedef sequence <ExposesLink> ExposesLinkSet;

interface Exposes : Reflective::RefAssociation {
ExposesLinkSet all_exposes_links ();
boolean exists (in Reference referrer, in AssociationEnd exposed_end)

raises (Reflective::MofError);
ReferenceSet referrer (in AssociationEnd exposed_end)

raises (Reflective::MofError);
AssociationEnd exposed_end (in Reference referrer)

raises (Reflective::MofError);
void add (in Reference referrer, in AssociationEnd exposed_end)
B-20    OMG-MOF, v1.3.1                              November 2001  



B

raises (Reflective::MofError);
void modify_referrer (in Reference referrer,

 in AssociationEnd exposed_end,
 in Reference new_referrer)

raises (Reflective::NotFound, Reflective::MofError);
void modify_exposed_end (in Reference referrer,

in AssociationEnd exposed_end,
in AssociationEnd new_exposed_end)

raises (Reflective::NotFound, Reflective::MofError);
void remove (in Reference referrer, in AssociationEnd exposed_end)

raises (Reflective::NotFound, Reflective::MofError);
};

struct RefersToLink {
Reference referent;
AssociationEnd referenced_end;

};
typedef sequence <RefersToLink> RefersToLinkSet;

interface RefersTo : Reflective::RefAssociation {
RefersToLinkSet all_refers_to_links ();
boolean exists (in Reference referent, in AssociationEnd referenced_end)

raises (Reflective::MofError);
ReferenceSet referent (in AssociationEnd referenced_end)

raises (Reflective::MofError);
AssociationEnd referenced_end (in Reference referent)

raises (Reflective::MofError);
void add (in Reference referent, in AssociationEnd referenced_end)

raises (Reflective::MofError);
void modify_referent (in Reference referent,

  in AssociationEnd referenced_end,
 in Reference new_referent)

raises (Reflective::NotFound, Reflective::MofError);
void modify_referenced_end (in Reference referent,

 in AssociationEnd referenced_end,
 in AssociationEnd new_referenced_end)

raises (Reflective::NotFound, Reflective::MofError);
void remove (in Reference referent, in AssociationEnd referenced_end)

raises (Reflective::NotFound, Reflective::MofError);
};

struct IsOfTypeLink {
Classifier type;
TypedElement typed_elements;

};
typedef sequence <IsOfTypeLink> IsOfTypeLinkSet;

interface IsOfType : Reflective::RefAssociation {
IsOfTypeLinkSet all_is_of_type_links ();
boolean exists (in Classifier type, in TypedElement typed_elements)

raises (Reflective::MofError);
Classifier type (in TypedElement typed_elements)

raises (Reflective::MofError);
TypedElementSet typed_elements (in Classifier type)
OMG-MOF, v1.3.1                 November 2001 B-21



B

raises (Reflective::MofError);
void add (in Classifier type, in TypedElement typed_elements)

raises (Reflective::MofError);
void modify_type (in Classifier type,

in TypedElement typed_elements,
in Classifier new_type)

raises (Reflective::NotFound, Reflective::MofError);
void modify_typed_elements (in Classifier type,

 in TypedElement typed_elements,
 in TypedElement new_typed_elements)

raises (Reflective::NotFound, Reflective::MofError);
void remove (in Classifier type, in TypedElement typed_elements)

raises (Reflective::NotFound, Reflective::MofError);
};

interface ModelPackageFactory {
ModelPackage create_model_package ()

raises (Reflective::MofError);
};

interface ModelPackage : Reflective::RefPackage {
readonly attribute ModelElementClass model_element_ref;
readonly attribute NamespaceClass namespace_ref;
readonly attribute GeneralizableElementClass

generalizable_element_ref;
readonly attribute TypedElementClass typed_element_ref;
readonly attribute ClassifierClass classifier_ref;
readonly attribute ClassClass class_ref;
readonly attribute DataTypeClass data_type_ref;
readonly attribute TypeAliasClass type_alias_ref;
readonly attribute FeatureClass feature_ref;
readonly attribute StructuralFeatureClass structural_feature_ref;
readonly attribute MofAttributeClass mof_attribute_ref;
readonly attribute ReferenceClass reference_ref;
readonly attribute BehavioralFeatureClass Behavior_feature_ref;
readonly attribute OperationClass operation_ref;
readonly attribute MofExceptionClass mof_exception_ref;
readonly attribute AssociationClass association_ref;
readonly attribute AssociationEndClass association_end_ref;
readonly attribute PackageClass package_ref;
readonly attribute ImportClass import_ref;
readonly attribute ParameterClass parameter_ref;
readonly attribute ConstraintClass constraint_ref;
readonly attribute ConstantClass constant_ref;
readonly attribute TagClass tag_ref;
readonly attribute AttachesTo attaches_to_ref;
readonly attribute DependsOn depends_on_ref;
readonly attribute Contains contains_ref;
readonly attribute Generalizes generalizes_ref;
readonly attribute Aliases aliases_ref;
readonly attribute Constrains constrains_ref;
readonly attribute CanRaise can_raise_ref;
readonly attribute Exposes exposes_ref;
readonly attribute RefersTo refers_to_ref;
readonly attribute IsOfType is_of_type_ref;
B-22    OMG-MOF, v1.3.1                              November 2001  



B

};
}; // end of module Model

// end of IDL generation

B.2 Reflective IDL

#pragma prefix "org.omg.mof"
module Reflective {

interface RefBaseObject;   
interface RefObject;  
typedef sequence < RefObject > RefObjectUList;   
typedef sequence < RefObject > RefObjectSet;   
interface RefAssociation;    
interface RefPackage;  
typedef RefObject DesignatorType;
typedef any ValueType;
typedef sequence < ValueType > ValueTypeList;
typedef sequence < RefObject, 2 > Link;
typedef sequence <Link> LinkSet;
const string UNDERFLOW_VIOLATION = "org.omg.mof:structural.underflow";
const string OVERFLOW_VIOLATION = "org.omg.mof:structural.overflow";
const string DUPLICATE_VIOLATION = "org.omg.mof:structural.duplicate";
const string REFERENCE_CLOSURE_VIOLATION = "org.omg.mof:structural.reference_closure";
const string SUPERTYPE_CLOSURE_VIOLATION = "org.omg.mof:structural.supertype_closure";
const string COMPOSITION_CYCLE_VIOLATION = "org.omg.mof:structural.composition_cycle";
const string COMPOSITION_CLOSURE_VIOLATION = "org.omg.mof:structural.composition_closure";
const string INVALID_OBJECT_VIOLATION = "org.omg.mof:structural.invalid_object";
const string NIL_OBJECT_VIOLATION = "org.omg.mof:structural.nil_object";
const string INACCESSIBLE_OBJECT_VIOLATION = "org.omg.mof:structural.inaccessible_object";
const string ALREADY_EXISTS_VIOLATION = "org.omg.mof:structural.already_exists";
const string INVALID_DESIGNATOR_VIOLATION = "org.omg.mof:reflective.invalid_designator";
const string WRONG_DESIGNATOR_DESIGNATOR_VIOLATION =

"org.omg.mof:reflective.wrong_designator_kind";
const string UNKNOWN_DESIGNATOR_VIOLATION = "org.omg.mof:reflective.unknown_designator";
const string ABSTRACT_CLASS_VIOLATION = "org.omg.mof:reflective.abstract_class";
const string NOT_CHANGEABLE_VIOLATION = "org.omg.mof:reflective.not_changeable";
const string NOT_PUBLIC_VIOLATION = "org.omg.mof:reflective.not_public";
const string WRONG_SCOPE_VIOLATION = "org.omg.mof:reflective.wrong_scope";
const string WRONG_MULTIPLICITY_VIOLATION = "org.omg.mof:reflective.wrong_multiplicity";
const string WRONG_TYPE_VIOLATION = "org.omg.mof:reflective.wrong_type";
const string WRONG_NUMBER_PARAMETERS_VIOLATION = 

"org.omg.mof:reflective.wrong_number_parameters";
const string INVALID_DELETION_VIOLATION = “org.omg.mof:reflective.invalid_deletion”;

struct NamedValueType {
string name;
ValueType value;

};
typedef sequence < NamedValueType > NamedValueList;
exception MofError {

string error_kind;
RefObject element_in_error;
NamedValueList extra_info;
string error_description;
OMG-MOF, v1.3.1                 November 2001 B-23



B

};
exception NotFound {};
exception NotSet {};
exception BadPosition {

unsigned long current_size;
};
exception OtherException {

DesignatorType exception_designator;
ValueTypeList exception_values;

};

interface RefBaseObject {
string ref_mof_id ();
DesignatorType ref_meta_object ();
boolean ref_itself (in RefBaseObject other_object);
RefPackage ref_immediate_package ();
RefPackage ref_outermost_package ();
void ref_delete ()

raises (MofError);
};  // end of RefBaseObject interface

interface RefObject : RefBaseObject {
boolean ref_is_instance_of (in DesignatorType some_class,

in boolean consider_subtypes);
RefObject ref_create_instance (in ValueTypeList args)

raises (MofError);
RefObjectSet ref_all_objects (in boolean include_subtypes);
void ref_set_value (in DesignatorType feature,

in ValueType new_value)
raises (MofError);

ValueType ref_value (in DesignatorType feature)
raises (NotSet, MofError);

void ref_unset_value ()
raises (MofError);

void ref_add_value (in DesignatorType feature,
in ValueType new_element)

raises (MofError);
void ref_add_value_before (in DesignatorType feature,

in ValueType new_element,
in ValueType before_element)

raises (NotFound, MofError);
void ref_add_value_at (in DesignatorType feature,

in ValueType new_element,
in unsigned long position)

raises (BadPosition, MofError);
void ref_modify_value (in DesignatorType feature,

in ValueType old_element,
in ValueType new_element)

raises (NotFound, MofError);
void ref_modify_value_at (in DesignatorType feature,

in ValueType new_element,
in unsigned long position)

raises (BadPosition, MofError);
void ref_remove_value (in DesignatorType feature,

in ValueType existing_element)
B-24    OMG-MOF, v1.3.1                              November 2001  



B

raises (NotFound, MofError);
void ref_remove_value_at (in DesignatorType feature,

in unsigned long position)
raises (BadPosition, MofError);

RefObject ref_immediate_composite ();
RefObject ref_outermost_composite ();
ValueType ref_invoke_operation (in DesignatorType requested_operation,

 inout ValueTypeList args)
raises (OtherException, MofError);

}; // end of RefObject interface

interface RefAssociation : RefBaseObject {
LinkSet ref_all_links ();
boolean ref_link_exists (in Link some_link)      

raises (MofError);
RefObjectUList ref_query (in DesignatorType query_end,

 in RefObject query_object)      
raises (MofError);

void ref_add_link (in Link new_link)
raises (MofError);

void ref_add_link_before (in Link new_link,
 in DesignatorType position_end,
 in RefObject before)

raises (NotFound, MofError);
void ref_modify_link (in Link old_link,

 in DesignatorType position_end,
 in RefObject new_object)

raises (NotFound, MofError);
void ref_remove_link (in Link old_link)

raises (NotFound, MofError);
}; // end of RefAssociation interface

interface RefPackage : RefBaseObject {
RefObject ref_class_ref (in DesignatorType class)

raises (MofError);
RefAssociation ref_association_ref (in DesignatorType association)

raises (MofError);
RefPackage ref_package_ref (in DesignatorType package)

raises (MofError);
}; // end of RefPackage interface

}; // end of Reflective module
OMG-MOF, v1.3.1                 November 2001 B-25



B

B-26    OMG-MOF, v1.3.1                              November 2001  



MODL Description of the MOF C
Note – The copyright information was added as comments to the MODL file. 

The CORBA IDL for the Model module listed in Appendix B was automatically 
produced using a prototype MOF and associated tools developed by DSTC. This 
appendix gives the input files used to drive the IDL generation process. These are 
expressed in an interim version of the DSTC's Meta Object Definition language 
abbreviated as MODL.

MODL provides users with a compilable textual language to express models using the 
concepts of the MOF Model. It has a syntax based loosely on CORBA IDL, that has a 
direct correspondence with MOF Model concepts. For historical reasons, some of the 
MODL constructs use different names. In particular, References are called "knowns."

A rough specification of the interim MODL language is available on the OMG FTP 
server and DSTC's Meta Object Facility web page at:

http://www.dstc.edu.au/Meta-Object-Facility/Review/

C.1 MOF Model
//Meta Object Facility (MOF) Specification
//Version 1.3.1 
//November 2001
//Object Management Group, Inc. 
//Appendix C: MODL Description of the MOF 

//Copyright 1997-1999, DSTC (Cooperative Research Centre for 
// Enterprise Distributed Systems Technology) 
//Copyright 1997-1999, Electronic Data Systems 
//Copyright 1997-1999, IBM Corporation 
//Copyright 1997-1999, International Computers Limited
//Copyright 1997-1999, Objectivity Inc. 
//Copyright 2000, Object Management Group
   OMG-MOF, v1.3.1                              November 2001 C-1



C

//Copyright 1997-1999, Oracle Corporation 
//Copyright 1997-1999, Platinum Technology Inc. 
//Copyright 1997-1999, Rational Software Corporation 
//Copyright 1997-1999, System Software Associates
//Copyright 1997-1999, Unisys Corporation 

//The companies listed above have granted to the Object 
//Management Group, Inc. (OMG) a nonexclusive, royalty-free, 
//paid up, worldwide license to copy and distribute this 
//document and to modify this document and distribute copies 
//of the modified version. Each of the copyright holders 
//listed above has agreed that no person shall be deemed to 
//have infringed the copyright in the included material of 
//any such copyright holder by reason of having used the 
//specification set forth herein or having conformed any 
//computer software to the specification. 

//

// MOF model expressed in MODL-2

//

#pragma idl_prefix "org.omg.mof"

package Model {

// This artifact type represents an element name.  It should

  // conform to the CORBA identifier syntax rules, or start with

  // the character "*".  The latter case should only be used for

  // anonymous data types (e.g. 'unsigned long') and for an

  // operation's return parameter.

  typedef string NameType;

  

  // This artifact type represents annotations that are used

  // to document the nodes of a meta-model.

  typedef string AnnotationType;

  // All elements of the core MOF meta-meta-model are derived 

  // from ModelElement.  It provides all elements with a name 

  // and an annotation, along with "containedness", "constraints"

  // and derived "dependency.

  abstract class ModelElement {

    constraint MustBeContainedUnlessPackage : "[C-1]";

    constraint FrozenAttributesCannotBeChanged : "[C-2]";

    constraint FrozenElementsCannotBeDeleted : "[C-3]";

    constraint FrozenDependenciesCannotBeChanged : "[C-4]";

    // **** MODEL ELEMENT NAMES ****

    // The model element's simple name
C-2    OMG-MOF, v1.3.1                              November 2001  



C

    attribute NameType name;

// The model element's fully qualified name

    readonly derived attribute list [1..*] of Name Type qualified_name ;

// **** ANNOTATIONS ****

    // The model element's annotation is a multi-line string

    attribute AnnotationType annotation;

    // **** DEPENDENCIES ****

    // Each model element is aware of what it depends on.

    known required_elements projects dependent of DependsOn;

    // This artifact type describes the kinds of dependency.

    typedef string DependencyKind;

     const DependencyKind ContainerDep = "container";

 const DependencyKind ContentsDep = "contents";

     const DependencyKind SignatureDep = "signature";

     const DependencyKind ConstraintDep = "constraint";

    const DependencyKind ConstrainedElementsDep = "constrained elements";

    const DependencyKind SpecializationDep = "specialization";

    const DependencyKind ImportDep = "import";

    const DependencyKind TypeDefinitionDep = "type definition";

    const DependencyKind ReferencedEndsDep = "referenced ends";

    const DependencyKind TaggedElementsDep = "tagged elements";

    const DependencyKind IndirectDep = "indirect";

    const DependencyKind AllDep = "all";

// Return this ME's set of dependents of the requested kind.

    set [0..*] of ModelElement 

      find_required_elements(

     // list of dependency kinds of interest

     in set [1..*] of DependencyKind kinds,

     // If true, return the closure of the dependency

     in boolean recursive);

    // This operation categorizes the dependency of this ME on another.

    // The result is false (and kind is "") if there is no dependency.

    boolean is_required_because(
OMG-MOF, v1.3.1                 November 2001 C-3



C

// the model element (supposedly) depended on

in ModelElement other_element,

// the kind of dependency

out DependencyKind reason);

// **** CONTAINMENT ****

    // Each model element is aware of its container

    known container projects contained_element of Contains;

    // **** CONSTRAINTS, VERIFICATION and FREEZING ****

    known constraints projects constrained_element of Constrains;

    // A VerifyResult says whether or not a model element is valid, and

    // if valid whether the caller can rely on this continuing to be the 

    // case.

    enum VerifyResultKind { 

      valid, published, invalid

    };

    // The Depth argument selects shallow or deep verification.

    enum DepthKind {

      shallow, deep

    };

    // The ViolationType struct is used to return information about

    // a constraint violation detected during the verify operation.

    // The contents of this struct are (deliberately) identical to the contents of

    // the Reflective::MofError exception.

    struct ViolationType {

        string error_kind;

        Reflective::RefObject element_in_error;

        Reflective::NamedValueList values_in_error;

        string error_description;

    };

// This operation verifies the model-element and its contents

    // in context.  The result will be true if everything is 

    // semantically consistent.  Otherwise, error reports will

    // be returned via "problems".

    VerifyResultKind verify(

      // verify just this object or the closure

      // of the objects it depends on
C-4    OMG-MOF, v1.3.1                              November 2001  



C

      in DepthKind depth,

      // any errors found are returned via this param

      out set [0..*] of ViolationType problems);

// Returns true iff this model-element has been frozen

    boolean is_frozen();

    // **** VISIBILITY ****

    // This operation checks whether the supplied ModelElement is visible

    // to this one according to the visibility rules.

    boolean is_visible(in Model Element other_element);

  };

  // This artifact type represents the visibility of a component

  // or feature beyond its defining context (i.e. its enclosing

  // containers).  Private means there is no visibility, protected

  // means that there is visibility via generalization, and public

  // means that there is visibility via importing as well.

  enum VisibilityKind {public_vis, protected_vis, private_vis};

  //

  // Forward declaration of classes used in Namespace.

  //

  abstract class Namespace : ModelElement;

  abstract class GeneralizableElement : Namespace;

  abstract class Classifier : GeneralizableElement;

  class quote "Class" : Classifier;

  

  // Namespace represents any meta-meta-model element that

  // acts as a container for other elements; e.g. has components 

  // or features.  It has an associated derived namespace for 

  // the contained elements.

  //

  // An Namespace can also be imported into another Package, though the

  // semantics are unclear, and the mapping to CORBA IDL is problematic.

  abstract class Namespace : ModelElement {

    constraint ContentNamesMustNotCollide : "[C-5]";

    

    exception NameNotFound {
OMG-MOF, v1.3.1                 November 2001 C-5



C

      NameType name;

    };

    exception NameNotResolved {

      string explanation;

      list [0..*] of NameType restOfName;

    };

known contents projects container of Contains;

    // This op looks for an entry called 'name' in 'contents'

    ModelElement lookup_element(in NameType name) 

      raises (NameNotFound);

    // This op does a name resolution of 'compound' in 'contents'

    ModelElement 

      resolve_qualified_name(in list [1..*] of NameType qualified_name) 

      raises (NameNotResolved);

// This op returns the Model Elements in the Namespace's direct

    // contents that match "of_type".  If "include_subtypes" is true, the

    // result includes ME's that are instances of subtypes of "of_type"

    ordered set [0..*] of ModelElement 

      find_elements_by_type(in Class of_type,

    in boolean include_subtypes);

    // This op determines whether the supplied name would be valid

    // name for a new ModelElement in the NameSpace.

    boolean name_is_valid(in NameType proposed_name);

  };

// GeneralizableElement represents a meta-meta-model element

  // that can inherit from another one of the same kind, via the

  // Generalizes association.  

  abstract class GeneralizableElement : Namespace {

    constraint SupertypeMustNotBeSelf : "[C-6]";

    constraint SupertypeKindMustBeSame : "[C-7]";

    constraint ContentsMustNotCollideWithSupertypes : "[C-8]";

    constraint DiamondRuleMustBeObeyed : "[C-9]";

    constraint NoSupertypesAllowedForRoot : "[C-10]";

    constraint SupertypesMustBeVisible : "[C-11]";

    constraint NoSubtypesAllowedForLeaf : "[C-12]";
C-6    OMG-MOF, v1.3.1                              November 2001  



C

    // If true, this GE cannot have supertypes

    attribute boolean is_root;

    

    // If true, this GE cannot have subtypes

    attribute boolean is_leaf;

// If true, this GE is abstract.  This means that there will

    // be no factory operation for the object.

    attribute boolean is_abstract;

    // This controls what can see the GE's in a namespace

    attribute VisibilityKind visibility;

    // A GE knows about its supertypes (but not its subtypes)

    known supertypes projects subtype of Generalizes;

    // This operation provides all of the GE's supertypes, not

    // just the immediate ones.

    ordered set [0..*] of Generalizable Element all_supertypes ();

    // Analogue to Namespace.lookup_element that includes the

    // contents of the GE's direct and indirect supertypes.

    ModelElement lookup_element_extended(in NameType name)

      raises (NameNotFound);

    // Analogue to Namespace.find_elements_by_type that includes

    // the contents of the GE's direct and indirect supertypes.

    ordered set [0..*] of ModelElement 

      find_elements_by_type_extended(in Class of_type,

                                     in boolean include_subtypes);

  };

  

  // TypedElement is an abstract subtype for those ModelElements

  // that require a type as part of their definition.

  abstract class TypedElement : ModelElement {

    constraint AssociationsCannotBeTypes : "[C-13]";

    constraint TypeMustBeVisible : "[C-14]";

    known type projects typed_elements of IsOfType;

  };

  
OMG-MOF, v1.3.1                 November 2001 C-7



C

  // Classifier is the abstract superclass for things that can be

  // the type of something else.  

  abstract class Classifier : GeneralizableElement {  

  };

  

  

  // A Class represents the type of an object; i.e. a value with 

  // object identity.  The class's interface is expressed using Operation,

  // Attribute and AssociationEnd features.

  class quote "Class" : Classifier { 

    constraint ClassContainmentRules : "[C-15]";

    constraint AbstractClassesCannotBeSingleton : "[C-16]";

    // If the "is_singleton" attribute is true, the generated interfaces 

    // will only allow a single instance of the class to exist.

    attribute boolean is_singleton;

  };

  

    typedef TypeCode TypeDescriptor;

  // A DataType represents the type of a value that does not have

  // object identity.  It is used for expressing "artifact types"

  // in the model level.

  //

  // DataTypes do not have any features, they may not generalize

  // or be generalised, and they cannot be abstract.

  Class DataType : Classifier {

    constraint DataTypeContainmentRules : "[C-17]";

    constraint ThisTypecodeNotSupported : "[C-18]";

    constraint DataTypesHaveNoSupertypes : "[C-19]";

    constraint DataTypesCannotBeAbstract : "[C-20]";

    // The described type can be any CORBA type and is expressed as 

    // a CORBA typecode value.  

    attribute TypeDescriptor type_code;

  };

 

  // A TypeAlias is a component of a DataType that is used to associate

  // an embedded typecode within the DataType's typecode with another

  // Classifier object.

  class TypeAlias : TypedElement {

  };
C-8    OMG-MOF, v1.3.1                              November 2001  



C

enum ScopeKind { instance_level, classifier_level };

  

  // Feature is an abstract supertype for a number of kinds

  // of "features" of classes and associations.

  abstract class Feature : ModelElement {

    // Features may be "instance" or "class" level.  Note however

    // that "class" level features are only allowed for features

    // of a Class.

    attribute ScopeKind scope;

    // A Feature may be "public", "private" or "protected".  Note

    // that "private" and "protected" features are ignored for

    // IDL generation purposes.

    attribute VisibilityKind visibility;

 };

 const long Unbounded = -1;

  

  // This artifact type is used to describe the number of values 

  // allowed / stored in a given context, and how they are related.

  // The precise interpretation of this info depends on the context.

  struct MultiplicityType {

    long lower;

    long upper;

    boolean is_ordered;

    boolean is_unique;

  };

  constraint LowerCannotBeNegativeOrUnbounded 

    on MultiplicityType in MultiplicityType: "[C-54]";

  constraint LowerCannotExceedUpper 

    on MultiplicityType in MultiplicityType: "[C-55]";

  constraint UpperMustBePositive 

    on MultiplicityType in MultiplicityType: "[C-56]";

  constraint MustBeUnorderedNonunique 

    on MultiplicityType in MultiplicityType: "[C-57]";

  // StructuralFeature is an abstract super class for those

  // features that are part of the "structure" of a Class; i.e.

  // Attributes and References.

  abstract class StructuralFeature : Feature, TypedElement {

    attribute MultiplicityType multiplicity;
OMG-MOF, v1.3.1                 November 2001 C-9



C

// If is_changeable is true, the generated IDL will allow

    // client updates of / through the attribute or association ref.

    attribute boolean is_changeable;

  };

  

  

  // An Attribute is a feature of a Class 

#pragma idl_substititute_name "MofAttribute"

  class QUOTE "Attribute" : StructuralFeature {

attribute boolean is_derived;

  };

  // A Reference is a feature of a Class that allows the client to

  // treat a projection of some "known" Association involving this

  // object as a navigable link.  The Reference is linked to roles

  // of an Association via the Exposes and Refers To associations.

  class Reference : StructuralFeature {

    constraint ReferenceMultiplicityMustMatchEnd : "[C-21]";

    constraint ReferenceMustBeInstanceScoped : "[C-22]";

    constraint ChangeableReferenceMustHaveChangeableEnd : "[C-23]";

    constraint ReferenceTypeMustMatchEndType : "[C-24]";

    constraint ReferencedEndMustBeNavigable : "[C-25]";

    constraint ContainerMustMatchExposedType : "[C-26]";

    constraint ReferencedEndMustBeVisible : "[C-27]";

    

    known exposed_end projects referrer of Exposes;

    known referenced_end projects referent of Refers To;

  };

  

  

  // This class is the superclass of Operation and Exception

  abstract class BehavioralFeature : Feature, Namespace {

  };

  

  

  // An Operation has Parameters as features, and is associated

  // with the Exceptions that it raises. 

  class Operation : BehavioralFeature {

    constraint OperationContainmentRules : "[C-28]";

    constraint OperationsHaveAtMostOneReturn : "[C-29]";

    constraint OperationExceptionsMustBeVisible : "[C-30]";
C-10    OMG-MOF, v1.3.1                              November 2001  



C

    // If is_query is true, the operation should not alter the state of the

    // object to which the operation applies.

    attribute boolean is_query;

    // An operation knows about its exceptions

    known exceptions projects operation of Can Raise;

  };  

  

  // An Exception has Parameters.  

#pragma idl_substitute_name "MofException"

  class QUOTE "Exception" : BehavioralFeature {

constraint ExceptionContainmentRules : "[C-31]";

    constraint ExceptionsHaveOnlyOutParameters : "[C-32]";

  };

  

  

  // An Association represents an relation between Classes

  // The roles of the Association are described by Association End features.

  // The MOF specification will say that only binary Associations need

  // to be supported.  Association attributes and operations are not

  // supported in the core.

  class QUOTE "Association" : Classifier {

    constraint AssociationContainmentRules : "[C-33]";

    constraint AssociationsHaveNoSupertypes : "[C-34]";

    constraint AssociationMustBeRootAndLeaf : "[C-35]";

    constraint AssociationsCannotBeAbstract : "[C-36]";

    constraint AssociationsMustBePublic : "[C-37]";

    constraint AssociationsMustBeBinary : "[C-38]";

    // This attribute says that the association information is

    // derived from other information.

    attribute boolean is_derived;

  };

  enum AggregationKind { none, QUOTE "shared", QUOTE "composite" };

  // AssociationEnd is a feature of an Association that

  // describes one of its roles; i.e. a column of the association

  // table.

  class AssociationEnd : TypedElement {
OMG-MOF, v1.3.1                 November 2001 C-11



C

    constraint EndTypeMustBeClass : "[C-39]";

    constraint EndsMustBeUnique : "[C-40]";

    constraint EndsMustBeUnique : "[C-41]";

    constraint CannotHaveTwoAggregateEnds : "[C-42]";

    // Iff is_navigable is true, a Reference may Expose this role

    attribute boolean is_navigable;

    // The aggregation specifies the containment / sharing semantics of

    // the Role.  (Does this belong on the Role or the Association?)

    attribute AggregationKind aggregation;

    // The multiplicity on a Role is a constraint on the number and

    // kind of values that fill the role when the association is 

    // "projected" over a single value in the other role.  [It is

    // not clear whether this is a meaningful definition given that

    // we may be allowing duplicate "rows" in the association "table".

    // Furthermore, it is not clear that either of is_ordered or

    // is_unique are well-defined under this definition.]

    attribute MultiplicityType multiplicity;

 // If is_changeable is true, the generated IDL will allow

    // client updates 

    attribute boolean is_changeable;

    // The "other end" of this Association

    AssociationEnd other_end();

  };

  // A Package is a concrete model element that collects a number

  // of related classes, associations, data types and constants.

  // Packages may be nested, and may import objects from other 

  // Packages.

  //

  // There are a number of unresolved issues relating to the

  // mapping of Package generalization and importing onto CORBA IDL.

  class QUOTE "Package" : GeneralizableElement {

    constraint PackageContainmentRules : "[C-43]";

    constraint PackagesCannotBeAbstract : "[C-44]";

    // **** EXTERNALIZE / INTERNALIZE ****

    // A FormatType string denotes an externalization format
C-12    OMG-MOF, v1.3.1                              November 2001  



C

    typedef string FormatType;

    // This is raised if the caller requests an externalization

    // format that is not supported (or not known!) by this MOF

    // meta-meta-object implementation.

    exception FormatNotSupported {};

    // This is raised if the GE or its contents is in a state

    // that makes them unexternalizable; e.g. some externalization

    // formats may require that the GE is consistent.

    exception ObjectNotExternalizable {

      string explanation;

    };

    // This is raised if the externalized GE is ill-formed, or

    // of the wrong format.

    exception IllformedExternalizedObject {

      string explanation;

    };

    // The Externalize op converts the GE and its contents into

    // a "flat" form that can be passed by value.  The 'format'

    // argument allows the client to select the externalization

    // format.

    any externalize(in Format Type format)

      raises (ObjectNotExternalizable, FormatNotSupported);

    // The Internalize op creates a new GE from a "flat" form.

    class Package internalize(in FormatType format, in any stream)

      raises (FormatNotSupported, IllformedExternalizedObject);

};

  // A Import is a "feature" of a Package that refers 

  // to (imports) a component of another Package.

 class QUOTE "Import" : ModelElement {

    constraint ImportedNamespaceMustBeVisible : "[C-45]";

    constraint CanOnlyImportPackagesAndClasses : "[C-46]";

    constraint CannotImportSelf : "[C-47]";

    constraint CannotImportNestedComponents : "[C-48]";

    constraint NestedPackagesCannotImport : "[C-49]";

    attribute VisibilityKind visibility;
OMG-MOF, v1.3.1                 November 2001 C-13



C

    attribute boolean is_clustered;

known imported_namespace projects importer of Aliases;

};

  

  enum DirectionKind { in_dir, out_dir, inout_dir, return_dir };

  

  // A Parameter is a component of an Operation or an Exception

  // description.

  class Parameter : TypedElement {

    // The parameters of an Operation may have direction "in",

    // "out" or "inout".  The result of an Operation is expressed

    // as a Parameter with direction "return"

    // There can be at most one result Parameter per Operation.

    // The parameters of an Exception must all have the direction "out".

    attribute DirectionKind direction;

    // A parameter may have multiple values ...

    attribute MultiplicityType multiplicity;

  };

  // A Constraint model element is used to express semantic

  // constraints on constrained elements

  class QUOTE "Constraint" : ModelElement {

    constraint CannotConstrainThisElement : "[C-50]";

    constraint ConstraintsLimitedToContainer : "[C-51]";

    attribute any expression;

    attribute string language;

    enum EvaluationKind {immediate, deferred};

    attribute EvaluationKind evaluation_policy;

    known constrained_elements projects QUOTE "constraint" of Constrains;

};

  // A LiteralType is expressed using the same conventions
C-14    OMG-MOF, v1.3.1                              November 2001  



C

  // as the CORBA IR uses; e.g. strings are used for enumeration

  // values.

  typedef any LiteralType;

  

  

  // A Constant model element describes a binding between a

  // a name and a typed value.  

  class Constant : TypedElement {

    constraint ConstantsValueMustMatchType : "[C-52]";

    constraint ConstantsTypeMustBeSimpleDataType : "[C-53]";

    // The value of a constant value

    attribute LiteralType value;

  };

  

  // A Tag is the basis a general mechanism for attaching name/value pairs

  // to a model element.  Within a model it can be used to attach "pragmas"

  // etc that modify the meaning of the model.

  class Tag : ModelElement {

    attribute string tag_id;

    attribute bag [0..*] of any values;

    known elements projects tag of AttachesTo;

};    

  association AttachesTo {

    role set [1..*] of ModelElement model_element;

    role ordered set [0..*] of Tag tag;

  };

 

  // DependsOn is derived from other associations in the model.

  // The intended semantic is that ME-1 depends on ME-2 if ME-2 is 

  // a part of the definition of ME-1.  For example, an ME depends 

  // on its Constraints, a Namespace depends on it contents, and 

  // Attribute depends on the 'attr_type' Classifier that gives 

  // its type.

  derived association DependsOn {

    readonly role set [0..*] of ModelElement dependent;

    readonly role set [0..*] of ModelElement provider;

  };

  

  

  // Containment is constrained by the "feature matrix".  In the case
OMG-MOF, v1.3.1                 November 2001 C-15



C

  // of Association <-- Contains --> AssociationEnd, the cardinality is

  // constrained as well.

  association Contains {

    composite role set [0..1] of Namespace container;

    role ordered set [0..*] of ModelElement contained_element;

  };

  // Generalizes expressed supertype / subtype relationships between

  // Classes and Packages.

  //

  // We say that the supertype generalizes the subtype.

  association Generalizes { 

    role ordered set [0..*] of GeneralizableElement supertype;

    role set [0..*] of GeneralizableElement subtype;

  };

  // This association represents importing of external objects

  // into a namespace.

  association Aliases {

    role set [0..*] of QUOTE "Import" importer;

    role single Namespace imported;

  };

  

  // This association attaches a constraint to a model element.

  // The constraint and model element should belong to the same package.

  association Constrains  {

    role set [0..*] of QUOTE "Constraint" QUOTE "constraint";

    role set [1..*] of ModelElement constrained_element;

};

 

  // This association lists the exceptions that an operation may raise

  association CanRaise {

    role set [0..*] of Operation operation;

    role ordered set [0..*] of QUOTE "Exception" except;

};

  // The following two associations relate References to the Ends of 

  // an Association.  The End exposed by a Reference is the one that 

  // the Reference's container Class fills.

  derived association Exposes {
C-16    OMG-MOF, v1.3.1                              November 2001  



C

    role set [0..*] of Reference referrer;

    role single AssociationEnd exposed_end;

  };

// The role ref'd by an Reference is the one that the Reference 

  // allows a client to navigate to.  

  association RefersTo {

    role set [0..*] of Reference referent;

    role single AssociationEnd referenced_end;

  };

association IsOfType {

    role single Classifier type;

    role set [0..*] of TypedElement typed_elements;

  };

};
OMG-MOF, v1.3.1                 November 2001 C-17



C

C-18    OMG-MOF, v1.3.1                              November 2001  



MOF Implementation Requirements D
D.1 Introduction

This specification seeks to avoid any undue implementation requirements, relying on 
the experience and ingenuity of vendors to exceed any proscribed design. However, to 
support interoperability of implementations, there are a few places where specific 
approaches are required. The MOF specification expects interoperability among 
facilities developed and provided from different vendors. This interoperability 
includes:

• Model interoperability. The ability to transfer a model developed in one facility to 
another facility, with no loss or corruption of information.

• Repository interoperability. The ability of a model under development in one 
facility to import and use Packages and elements of Packages owned by another 
facility.

• Client interoperability. The ability of tools or other software developed to use one 
vendor's MOF to make use of another vendor's MOF without change.

D.2 Vendor Boundaries

The implementation requirements are needed to ensure that different vendors take a 
compatible approach to implementing certain features, when incompatible approaches 
risk the loss of interoperability. This required compatibility almost always involves 
object interactions. Yet, it is recognized that the great majority of these object 
interactions will remain within one vendor's boundary - the interacting objects will all 
have implementations from the same vendor. Rather than saddle vendors with these 
implementation requirements unilaterally, they are only required across vendor 
boundaries. This relaxation of requirements is born from the recognition that these 
implementation requirements will likely not end up being the optimal implementations.
  OMG-MOF V1.3                              March 2000 D-1



D

Determining vendor boundaries will be left to implementations. However, at a 
minimum, a MofRepository defines the vendor boundary. If an implementation can 
safely identify a more inclusive boundary, they are welcome to do so. Within an 
individual MofRepository; however, the implementation is insured to be provided from 
a single vendor.

D.3 Requirements to Support Associations Across Vendor Boundaries

Due to the nature of composition, it is not possible for a model to contain elements 
from other Repositories. A Package cannot contain a Package or a Type found in some 
Repository outside its own. However, through the Import mechanism, a model can 
make use of most model elements in other Repositories.

Although there are multiple ways in which Associations, References, and Links can be 
implemented, it is necessary to define a consistent implementation to the object level to 
ensure interoperability. Because at least one participant in an Association crossing 
repository boundaries will not have a Reference defined for the Association, the 
responsibility for maintaining Links falls to the Association. 

For any Association which crosses Repository boundaries to another Repository 
implementation, any invocation of a Reference of that Association will result in a 
corresponding invocation to the Association itself. For Association X of Type A and 
Type B, with corresponding AssociationEnds ae and be, and a reference in Type A of 
bref, use of:

a.addBref(b)

results in:

X.add(a, b).

A call of:

a.removeBref(b) 

results in:

X.remove(a, b).

Calling:

a.addBrefBefore(b, b1)

results in:

X.add_before_be(a, b, b1)

The operation:

a.bref()

must provide the same results as:

X.with_ae(a)
D-2   OMG-MOF V1.3                              March 2000  



Future Directions for the MOF E
E.1 Introduction

This appendix summarizes potential areas of future work related to the MOF based on 
feedback of MOF submitters and reviewers.  Note that as with most OMG technologies 
that are being standardized an abundance of ideas are proposed.  Some simple 
extensions such as the support of higher order associations to more complex ones such 
as MOF model versioning have been proposed.

Additional work is anticipated in extending the proposed MOF standard to address the 
related standards such as EIA CDIF and RM-ODP.

E.2 Extending the MOF to Support Ternary and Higher 
Order Associations

The decision to support only binary associations was based on patterns of association 
use in industry modeling, the additional encumbrances placed on interfaces when 
ternary and higher-order associations are introduced, and the additional requirements 
for completely specifying cardinality constraints (multiplicity). In the tradeoff between 
simplicity and expressive power, the submitters chose simplicity.  The submitters 
believe that the MOF can be extended in the future to support N-ary associations with 
minimal impact to current MOF applications.

E.3 Support of Stream based Interchange Format 

A stream based interchange mechanism as has been defined by CDIF is a useful 
mechanism to exchange MOF and UML compliant models - especially for legacy tools 
which have traditionally not supported programmatic interfaces for exchanging models 
and model fragments. The MOF designers have anticipated the need for such a 
mechanism and expect to accommodate this requirement in an upwardly compatible 
manner. The Package class in the MOF includes internalize and externalize operations 
to support this capability.
  OMG-MOF V1.3                              March 2000 E-1



E

The MOF and OA&DF submitters recommend that a stream based interchange 
mechanism be the subject of a future OMG RFP. 

E.4 Support for MOF Evolution and Versioning

The MOF and MOF Compliant metamodels will evolve over time.  The issue of meta 
model and instance evolution can be solved using a variety of techniques including the 
use of versioning. This (and related issues like Interface Versioning) are critical issues 
that needs to be addressed in enterprise development and runtime environments.  The 
MOF submitters recommend that this topic be a subject of a future RFP.

E.5 Support for Mapping between Models

Transformation between metamodels and models is of interest to the tool vendor and 
end user community to provide interoperability between multiple type systems.  The 
MOF specification defines mappings between MOF and CORBA IDL.  A desirable 
direction for the MOF is to provide a more general purpose framework and a set of 
interfaces for transformation between meta models.  A related topic suggested during 
the MOF evaluation period is that of generating IDL for "extensions" to the MOF 
model.

E.6 Interoperability with Microsoft Repository

Microsoft has efforts underway to create a series of COM based repository and 
information model (metamodel) interfaces in a number of application development 
technology domains such as object modeling(UML), database management, component 
management etc. Similar efforts are already underway at the OMG based on the 
OA&DF, MOF, BOF and the CORBA Component model efforts creating a critical 
mass of component software enabling standards.

While the OA&DF (UML meta model) specification has 'universal' support (in terms of 
endorsements from the OMG community and Microsoft), such support does not extend 
to the corresponding CORBA interfaces.  It is also possible that these models may 
diverge in the future leading to interoperability problems for users of UML and the 
MOF.  A similar problem with COM/CORBA and more recently DCOM/CORBA 
interoperability has resulted in related OMG RFPs to address the problem.

Future OMG RFPs to address repository and meta model interoperability between 
CORBA and DCOM environments is crucial for customers and vendors who have 
invested in both the technologies.  Of course if Microsoft technologies supported 
CORBA based information models as well (as is partially the case with UML), such an 
RFP would be unnecessary and the user community would have consistent information 
models, components, and compatible tools.
E-2   OMG-MOF V1.3                              March 2000  



Index
A
addLink 6-25
addLinkBefore 6-25
addValue 6-13
addValueAt 6-15
addValueBefore 6-14
aggregation 3-50
AggregationType 3-80
all_links 6-23
allObjects 5-58, 5-62, 5-70, 5-72, 6-11
allSupertypes 3-26
annotation 3-15
Annotation Template 5-92
AnnotationType 3-77
Architecture, four layer metamodel 2-2
Association 3-47
Association Template 5-59
Associations 3-8
Attribute Template 5-68
Attributes 3-4

B
BehavioralFeature 3-43

C
Class 3-31
Collection Kinds 5-42
Common Exceptions 5-24
Complex bindings1-5
Constant Template 5-89
constrainedElement 3-73
constrainedElements 3-60
Constraint 3-59
constraint 3-73
Constraint Template 5-91
Constraint-Constrains-ModelElement 3-73
Constraints 3-16
Contained Elements 3-4
containedElement 3-66
container 3-16, 3-65
contents 3-22
CORBA

documentation set i
CORBA Basic Types 3-77
CORBA IDL for the Meta Object Facility B-1
CORBA IDL for the Reflective Interfaces 6-30
createInstance 6-10

D
Data Type Template 5-90
Data Types 6-30
Data viewpoint 1-1
Data warehouse management scenarios 1-6
delete 6-8
DependencyKind 3-81
dependent 3-74
DepthType 3-79
direction 3-58
DirectionType 3-80

E
elements 3-64

Ends 3-8, 3-65
evaluationPolicy 3-60
EvaluationType 3-80
exception 3-71
Exception Template 5-89
exceptions 3-45
exposedEnd 3-42, 3-69
expression 3-59
Extending the MOF to Support Ternary and Higher Order 

Associations E-1
externalize 3-54

F
Feature 3-36
findElementsByType 3-23
findElementsByTypeExtended 3-27
findRequiredElement 3-18
Format 1 5-41
Format 2 5-41
FormatNotSupported 3-84
Future Directions for the MOF E-1

G
GeneralizableElement type 3-24
GeneralizableElement-Generalizes-GeneralizableElement 3-66
Generation Rules for Collection Kinds 5-42
getAssociation 6-29
getClassRef 6-28
getNestedPackage 6-29

I
Identifier Format 1 5-41
Identifier Format 2 5-41
Identifier Name Scoping 5-44
Identifier Naming 5-39
IDL for the Reflective Interfaces 6-30
IDL mapping 5-1
immediate_containing_package 6-7
Import 3-55
Import-Aliases-Namespace 3-72
imported 3-72
importedNamespace 3-56
importer 3-72
Information management scenarios 1-6
Interface Repository (IR) 1-4
internalize 3-54
Interoperability with Microsoft Repository E-2
interpreting IDL templates 5-46
invokeOperation 6-20
isAbstract 3-25
isChangeable 3-39, 3-51
isDerived 3-40, 3-48
isFrozen 3-17
isInstanceOf 6-10
isLeaf 3-26, 3-78, 3-82, 3-83
isNavigable 3-50
isQuery 3-44
isRequiredBecause 3-19
isRoot 3-25
isSingleton 3-32
isVisible 3-18
OMG-MOF V1.3            March 2000 Index-3



Index
L
language 3-60
link_exists 6-24
Literal String Values 5-42
lookupElement 3-22
lookupElementExtended 3-27

M
mapping 5-1
Mapping Rules 5-45
Metamodel architecture 2-2
metaObject 6-7
ModelElement 3-15
modelElement 3-76
ModelElement Containment Rules 3-12
ModelElement-DependsOn-ModelElement 3-74
Modeling viewpoin t1-1
modifyLink 6-26
modifyValue 6-15, 6-16
modifyValueAt 6-16, 6-17
MODL Description of the MO FC-1
MOF Implementation Requirements D-1
MOF Model C-1
MOF Model Associations 3-65
MOF Model Data Types 3-77
MOF Model Exceptions 3-83
MOF Model IDL A-1, B-1
MOF model types 3-3, 3-15
MOF to IDL Mapping 4-1, 5-1
MofAttribute 3-40
MofException 3-46
multiplicity 3-39, 3-50, 3-58, 5-52, 5-53, 5-56
MultiplicityType 3-78, 3-82

N
name 3-15
nameisValid 3-23
NameNotResolved 3-83
Namespace type 3-21
Namespace-Contains-ModelElement 3-65
NameType 3-77
Notation 5-46

O
Object Management Group i

address of ii
ObjectNotExternalizable 3-84
OCL Representation of the MOF Model Constraint s3-86
OMG Architecture and the Repository Common Facilityix
operation 3-71
Operation Template 5-86
Operation-CanRaise-MofException 3-71
Operations 3-7
otherEnd 3-51
outermost_container 6-20
outermost_containing_package 6-8

P
Package 3-53
Package Create Template 5-49
Package Template mapping rules 5-46
Preconditions for Successful IDL mapping 5-33

provider 3-75

Q
qualified Name 3-15
query 6-24

R
Reference 3-41
referencedEnd 3-41
referenceEnd 3-68
Reference-Exposes-AssociationEnd derived 3-69
Reference-RefersTo-AssociationEnd 3-68
References 3-5
referent 3-68
referrer 3-69
refItself 6-7
Reflection IDL B-22
Reflective

RefAssociation 6-22
RefBaseObject 6-5
RefPackage 6-28

Reflective Exceptions 5-31
Reflective Module 6-3
removeLink 6-27
removeValue 6-17, 6-18
removeValueAt 6-18
Repository Common Facility ix
repository service 1-3
requiredElements 3-16
Requirements to Support Associations Across Vendor 

Boundaries D-2
resolveQualifiedName 3-22
Rules 5-45
Rules for Splitting MOF Model Names into "Words" 5-40
Rules of ModelElement Containment 3-12

S
scope 3-38
ScopeType 3-80
Service interface bridges 1-5
setValue 6-12, 6-13
Software development scenarios 1-2
Stereotypes iii, C-1, D-1, E-1
StructuralFeature 3-38
subtype 3-67
Successful IDL mapping 5-33
supertype 3-67
Supertypes 3-4
supertypes 3-26
Support for Mapping between Model sE-2
Support for MOF Evolution and Versioning E-2
Support of Stream based Interchange Format E-1

T
Tag 3-63
tag 3-76
Tag-AttachesTo-ModelElement 3-76
tagId 3-64
type 3-29, 3-70
Type Create Template 5-57
Type Forward Declaration Template 5-51
Index-4 OMG-MOF V1.3             March 2000



Index
Type management scenarios 1-4
Type Template 5-54
TypeAlias 3-35
typeCode 3-34
TypedElement type 3-29
TypedElement-IsOfType-Classifier 3-70
typedElements 3-70
TypeDescriptor 3-77
Types 3-3

U
UDL development system 1-4

usage scenario for repository servic e1-3

V
value 3-62, 6-11
values 3-64
Vendor Boundaries D-1
VerificationResultKind 3-81, 3-82
verify 3-17
visibility 3-25, 3-37, 3-55
VisibilityType 3-79
OMG-MOF V1.3            March 2000 Index-5



Index
Index-6 OMG-MOF V1.3             March 2000


	Preface
	1.  MOF Overview
	1.1 Overview
	1.2 Software Development Scenarios
	1.3 Type Management Scenarios
	1.4 Information Management Scenarios
	1.5 Data Warehouse Management Scenarios

	2.  MOF Conceptual Overview
	2.1 Overview
	2.2 Meta-data Architectures
	2.2.1 Four Layer Meta-data Architectures
	2.2.2 The MOF Meta-data Architecture
	2.2.3 MOF Meta-modeling Terminology

	2.3 The MOF Model - Meta-modeling Constructs
	2.3.1 Classes
	2.3.2 Associations
	2.3.3 Aggregation
	2.3.4 References
	2.3.5 DataTypes
	2.3.6 Packages
	2.3.7 Constraints and Consistency
	2.3.8 Miscellaneous Meta-modeling Constructs

	2.4 Meta-models and Mappings
	2.4.1 Abstract and Concrete Mappings
	2.4.2 CORBA Meta-data Services - The MOF IDL Mapping
	2.4.3 Meta-data Interchange - The MOF XML Mapping
	2.4.4 Mappings of the MOF Model


	3.  MOF Model and Interfaces
	3.1 Overview
	3.2 How the MOF Model is Described
	3.2.1 Classes
	3.2.2 Associations
	3.2.3 DataTypes
	3.2.4 Exceptions
	3.2.5 Constants
	3.2.6 Constraints
	3.2.7 UML Diagrams

	3.3 The Structure of the MOF Model
	3.3.1 The MOF Model Package
	3.3.2 The MOF Model Service IDL
	3.3.3 The MOF Model Structure
	3.3.4 The MOF Model Containment Hierarchy

	3.4 MOF Model Classes
	3.4.6 Class
	3.4.7 DataType
	3.4.8 TypeAlias
	3.4.12 Reference
	3.4.14 Operation
	3.4.16 Association
	3.4.17 AssociationEnd
	3.4.18 Package
	3.4.19 Import
	3.4.20 Parameter
	3.4.21 Constraint
	3.4.22 Constant Class
	3.4.23 Tag

	3.5 MOF Model Associations
	3.5.1 Contains
	3.5.2 Generalizes
	3.5.3 RefersTo
	3.5.5 IsOfType
	3.5.6 CanRaise
	3.5.7 Aliases
	3.5.8 Constrains
	3.5.10 AttachesTo

	3.6 MOF Model Data Types
	3.6.1 CORBA Basic Types
	3.6.2 NameType
	3.6.3 AnnotationType
	3.6.4 TypeDescriptor
	3.6.5 MultiplicityType
	3.6.6 VisibilityKind
	3.6.7 DepthKind
	3.6.8 DirectionKind
	3.6.9 ScopeKind
	3.6.10 AggregationKind
	3.6.11 EvaluationKind
	3.6.12 DependencyKind
	3.6.13 FormatType
	3.6.14 LiteralType
	3.6.15 VerifyResultKind
	3.6.16 ViolationType

	3.7 MOF Model Exceptions
	3.7.1 NameNotFound
	3.7.2 NameNotResolved
	3.7.3 ObjectNotExternalizable
	3.7.4 FormatNotSupported
	3.7.5 IllformedExternalizedObject

	3.8 MOF Model Constants
	3.8.1 Unbounded
	3.8.2 The Standard DependencyKinds

	3.9 MOF Model Constraints
	3.9.1 MOF Model Constraints and other M2 Level Semantics
	3.9.2 Notational Conventions
	3.9.3 OCL Usage in the MOF Model specification
	3.9.4 The MOF Model Constraints
	3.9.5 Semantic specifications for some Operations, derived Attributes and Derived Associations
	3.9.6 OCL Helper functions


	4.  The MOF Abstract Mapping
	4.1 Overview
	4.2 MOF Values
	4.2.1 Semantics of Equality for MOF Values

	4.3 Semantics of Class Instances
	4.4 Semantics of Attributes
	4.4.1 Attribute name and type
	4.4.2 Multiplicity
	4.4.3 Scope
	4.4.4 Is_derived
	4.4.5 Aggregation
	4.4.6 Visibility and is_changeable

	4.5 Package Composition
	4.5.1 Package Nesting
	4.5.2 Package Generalization
	4.5.3 Package Importation
	4.5.4 Package Clustering

	4.6 Extents
	4.6.1 The Purpose of Extents
	4.6.2 Class Extents
	4.6.3 Association Extents
	4.6.4 Package Extents

	4.7 Semantics of Associations
	4.7.1 MOF Associations in UML notation
	4.7.2 Core Association Semantics
	4.7.3 AssociationEnd Changeability
	4.7.4 AssociationEnd Navigability
	4.7.5 Association Aggregation
	4.7.6 Derived Associations

	4.8 Aggregation Semantics
	4.8.1 Aggregation “none”
	4.8.2 Aggregation “composite”
	4.8.3 Aggregation “shared”

	4.9 Closure Rules
	4.9.1 The Reference Closure Rule
	4.9.2 The Composition Closure Rule

	4.10 Recommended Copy Semantics
	4.11 Computational Semantics
	4.11.1 A Style Guide for Metadata Computational Semantics
	4.11.2 Access operations should not change metadata
	4.11.3 Update operations should only change the nominated metadata
	4.11.4 Derived Elements should behave like non-derived Elements
	4.11.5 Constraint evaluation should not have side-effects
	4.11.6 Access operations should avoid raising Constraint exceptions


	5.  MOF to IDL Mapping
	5.1 Overview
	5.2 Meta Objects and Interfaces
	5.2.1 Meta Object Type Overview
	5.2.2 The Meta Object Interface Hierarchy

	5.3 Computational Semantics for the IDL Mapping
	5.3.1 Value Types and Equality in the IDL Mapping
	5.3.2 Lifecycle Semantics for the IDL Mapping
	5.3.3 Association Access and Update Semantics for the IDL Mapping
	5.3.4 Attribute Access and Update Semantics for the IDL Mapping
	5.3.5 Reference Semantics for the IDL Mapping
	5.3.6 Cluster Semantics for the IDL Mapping
	5.3.7 Atomicity Semantics for the IDL Mapping
	5.3.8 The Supertype Closure Rule
	5.3.9 Copy Semantics for the IDL Mapping

	5.4 Exception Framework
	5.4.1 Error_kind string values
	5.4.2 Structural Errors
	5.4.3 Constraint Errors
	5.4.4 Semantic Errors
	5.4.5 Usage Errors
	5.4.6 Reflective Errors

	5.5 Preconditions for IDL Generation
	5.6 Standard Tags for the IDL Mapping
	5.6.1 Tags for Specifying IDL #pragma prefix
	5.6.2 Tags for Providing Substitute Identifiers
	5.6.3 Tags for Specifying IDL Inheritance

	5.7 Generated IDL Issues
	5.7.1 Generated IDL Identifiers
	5.7.2 Generation Rules for Collection Types
	5.7.3 IDL Identifier Qualification
	5.7.4 File Organization and #include statements

	5.8 IDL Mapping Templates
	5.8.1 Template Notation
	5.8.2 Package Module Template
	5.8.3 Package Factory Template
	5.8.4 Package Template
	5.8.5 Class Forward Declaration Template
	5.8.6 Class Template
	5.8.7 Class Proxy Template
	5.8.8 Instance Template
	5.8.9 Class Create Template
	5.8.10 Association Template
	5.8.11 Attribute Template
	5.8.12 Reference Template
	5.8.13 Operation Template
	5.8.14 Exception Template
	5.8.15 Constant Template
	5.8.16 DataType Template
	5.8.17 Constraint Template
	5.8.18 Annotation Template


	6.  The Reflective Module
	6.1 Introduction
	6.2 The Reflective Interfaces
	6.2.1 Reflective Argument Encoding Patterns.

	6.3 The CORBA IDL for the Reflective Interfaces
	6.3.1 Introduction
	6.3.2 Data Types


	Glossary
	Appendix A - XMI for the MOF
	Appendix B - MOF IDL Summary
	Appendix C - MODL Description of the MOF
	Appendix D - MOF Implementation Requirements
	Appendix E - Future Directions for the MOF
	Index

