

SSSCCCAAA SSSeeerrrvvviiiccceee CCCooommmpppooonnneeennnttt AAArrrccchhhiiittteeeccctttuuurrreee

Assembly Model Specification

Extensions for Event Processing and Pub/Sub

SCA Version 1.0 April 15 2009

Technical Contacts: Michael Beisiegel IBM Corporation

 Vladislav Bezrukhov SAP AG

 Dave Booz IBM Corporation

 Martin Chapman Oracle

 Mike Edwards IBM Corporation.

 Anish Karmarkar Oracle

 Ashok Malhotra Oracle

 Peter Niblett IBM Corporation

 Sanjay Patil SAP AG

 Scott Vorthmann TIBCO

SCA Service Component Architecture

SCA Event Processing Extension V1.00 April 2009 ii

Copyright Notice
© Copyright Cape Clear Software, International Business Machines Corp, Interface21, IONA Technologies, Oracle,
Primeton Technologies, Red Hat, SAP AG., Siemens AG., Software AG., Sun Microsystems, Inc., Sybase Inc., TIBCO
Software Inc., 2005, 2009. All rights reserved.

License

The SCA – Assembly Model Specification Extensions for Event Processing and Pub/Sub V1.0
Specification (the “Specification”) is being provided by the copyright holders under the following
license. By using and/or copying this work, you agree that you have read, understood and will
comply with the following terms and conditions:

Permission to copy, display and distribute the Specification and/or portions thereof, without
modification, in any medium without fee or royalty is hereby granted, provided that you include the
following on ALL copies of the Specification, or portions thereof, that you make:

1. A link or URL to the Specification at this location:

• http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

2. The full text of the copyright notice as shown in the Specification.

Cape Clear Software, International Business Machines Corp., Interface21, IONA Technologies,
Oracle, Primeton Technologies, Red Hat, SAP AG, Siemens AG, Software AG., Sun Microsystems
Inc., Sybase Inc., TIBCO Software Inc. (collectively, the “Authors”) agree to grant you a royalty-free
license, under reasonable, non-discriminatory terms and conditions to patents that they deem
necessary to implement the Specification.

THE Specification IS PROVIDED "AS IS," AND THE AUTHORS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS SPECIFICATION AND THE IMPLEMENTATION
OF ITS CONTENTS, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT OR TITLE.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THE
Specification.

The name and trademarks of the Authors may NOT be used in any manner, including advertising or
publicity pertaining to the Specification or its contents without specific, written prior permission. Title
to copyright in the Specification will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

SCA Service Component Architecture

SCA Event Processing Extension V1.00 April 2009 iii

Status of this Document
This specification is considered Final by the OSOA community. Feedback is no longer being solicited,
but may be considered. If this specification has been provided to a standards organization for
additional development or stewardship, you are encouraged to submit any comments and
suggestions per that group’s feedback process.

IBM is a registered trademark of International Business Machines Corporation in the United States,
other countries, or both.

Cape Clear is a registered trademark of Cape Clear Software

IONA and IONA Technologies are registered trademarks of IONA Technologies plc.

Oracle is a registered trademark of Oracle USA, Inc.

Primeton is a registered trademark of Primeton Technologies, Ltd.

Red Hat is a registered trademark of Red Hat Inc.

SAP is a registered trademark of SAP AG.

SIEMENS is a registered trademark of SIEMENS AG

Software AG is a registered trademark of Software AG

Sun and Sun Microsystems are registered trademarks of Sun Microsystems, Inc.

Sybase is a registered trademark of Sybase, Inc.

TIBCO is a registered trademark of TIBCO Software Inc.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

SCA Service Component Architecture

SCA Event Processing Extension V1.00 April 2009 iv

Table of Contents
SCA Service Component Architecture... i

Copyright Notice ... ii
License.. ii
Status of this Document...iii

1 Assembly Model – Event Processing and Pub/Sub Extensions... 1
1.1 Introduction.. 1

1.1.1 Terminology .. 1
1.1.2 Event Processing Overview .. 1

1.2 Overview.. 3
1.2.1 Diagrams used to represent SCA Artifacts.. 3
1.2.2 Connections from Producers to Consumers... 5

1.2.2.1 Linking Producers to Consumers ... 5
1.2.2.2 Producers, Consumers and Composites .. 6

1.2.3 Event Processing Examples.. 6
1.2.3.1 Multiple Producers linked to multiple Consumers via a Channel - within a Composite .. 6
1.2.3.2 Producers linked to Consumers via Domain Channels ... 8
1.2.3.3 Composite with Promotion of Producers and Consumers ... 9

1.3 Component... 12
1.3.1 Example Component... 14
1.3.2 Declaration of Event Types on Producers and Consumers ... 15

1.4 Implementation... 16
1.4.1 Component Type.. 17

1.4.1.1 Example ComponentType... 19
1.4.1.2 Example Implementation ... 19

1.5 Interface .. 19
1.6 Composite .. 19

1.6.1 Property – Definition and Configuration ... 21
1.6.2 References .. 21
1.6.3 Service ... 21
1.6.4 Wire... 21
1.6.5 Using Composites as Component Implementations.. 21
1.6.6 Using Composites through Inclusion.. 21
1.6.7 Composites which Include Component Implementations of Multiple Types 21
1.6.8 ConstrainingType ... 21
1.6.9 Producer ... 21

SCA Service Component Architecture

SCA Event Processing Extension V1.00 April 2009 v

1.6.10 Consumer ... 23
1.7 Binding .. 24
1.8 SCA Definitions ... 24
1.9 Extension Model .. 24
1.10 Packaging and Deployment ... 24
1.11 Channels .. 24

1.11.1 Scopes of Channels... 25
1.11.2 The Default Domain Channel .. 26
1.11.3 The URI of a Channel .. 26

1.12 Representation of Events and Event Types in SCA... 26
1.12.1 Event Type and Associated Metadata... 26
1.12.2 Format of Event Type Definitions .. 27
1.12.3 Events with No Event Type .. 27

1.13 Filters: Selecting Subsets of Events .. 28
1.13.1 Form of Explicit Filter Elements .. 28
1.13.2 Event Type Filters... 29

1.13.2.1 Event Type Filter Examples... 30
1.13.3 Business Data Filters... 30

1.13.3.1 XPATH 1.0 Dialect ... 30
1.13.4 Event Metadata Filters... 31

2 Appendix 1... 32
2.1 XML Schemas.. 32

2.1.1 sca.xsd... 32
2.1.2 sca-core.xsd.. 32
2.1.3 sca-binding-sca.xsd.. 39
2.1.4 sca-interface-java.xsd... 40
2.1.5 sca-interface-wsdl.xsd .. 40
2.1.6 sca-implementation-java.xsd ... 40
2.1.7 sca-implementation-composite.xsd ... 40
2.1.8 sca-definitions.xsd ... 40
2.1.9 sca-binding-webservice.xsd ... 40
2.1.10 sca-binding-jms.xsd.. 40
2.1.11 sca-policy.xsd .. 40
2.1.12 sca-eventDefinition.xsd ... 40

2.2 SCA Concepts ... 42
3 Java Implementation Type ... 43

3.1 Event Consumer methods ... 43

SCA Service Component Architecture

SCA Event Processing Extension V1.00 April 2009 vi

3.2 Event Producers .. 44
3.3 Event Types.. 45

4 References ... 46

SCA Service Component Architecture

SCA Event Processing Extension V1.00 April 2009 1

1 Assembly Model – Event Processing and Pub/Sub 1

Extensions 2

3

5
6

8
9

10
11

12
13
14
15
16

17

18
19
20
21
22

23

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

42
43
44
45

46
47

1.1 Introduction 4

This document describes the Event Processing and Pub/Sub Extensions for the SCA
Assembly Model, which deals with

• Event Processing, which is computing that performs operations on events, including 7
creating, reading, transforming, and deleting events or event objects/representations. Event
Processing components interact by creating event messages which are then distributed to
other Event Processing components. An Event Processing component can, in addition, interact
with other SCA components using SCA’s regular service invocation mechanisms.

• Publication and Subscription (often shortened to Pub/Sub), which is a particular style of
organizing the components which produce and consume events in which the producing
components are decoupled from the consuming components. Components that are interested
in consuming events specify their interest through a subscription rather than an interface.
The same event may be received by multiple subscribers.

The document starts with a description of the Event Processing and Pub/Sub extensions and then
goes on to show the changes to the relevant parts of the SCA Assembly specification that are
required by these extensions. This document is based on the OSOA SCA Assembly Specification
V1.00 [1]. It does not incorporate any changes or additions made in the preparation of the
OASIS version of the SCA Assembly specification [2].

1.1.1 Terminology 24

• event – a message sent to zero or more parties that contains information about a situation
that has occurred

• producer - entity that creates events
• consumer - entity that receives events
• subscription - records a consumer’s interest in receiving specific kinds of events from some

location
• source – the place from which a consumer receives events
• target – the place to which a producer sends events
• publication – the sending of an event from a producer to some targets
• event type – every event instance can have an associated event type. Each event type is

identified by a unique QName and has an associated shape and optionally constraints on the
event instance

• channel –a mechanism to connect a set of producers with a set of consumers
• filter - a mechanism for refining the set of events received by a consumer. A filter may

operate on business data within the event itself, or on metadata about the event.

1.1.2 Event Processing Overview 41

SCA defines service invocation as one mechanism through which two components
communicate. With service invocation, one component, the client, invokes an operation on a
service reference, which causes that operation to be invoked on a second component, the service
provider. The significant charateristics of service invocation are that:

• Each invocation by the client on a reference operation causes one invocation of the operation
on one service provider

SCA Service Component Architecture

48
49
50

51
52
53
54
55

56
57
58
59

60
61
62

63
64
65

66
67
68
69

70
71

72
73
74
75
76
77
78
79

80
81
82

83
84
85
86
87
88
89

90
91
92
93

94
95
96

• The operation itself typically has some implied semantics – the client is expecting some
specific task to be performed by the service provider, possibly involving specific data being
returned by the provider

• A particular operation is typically grouped with a set of other related operations, as defined
by an interface, which as a whole make up the service offered by the provider. The need to
implement the interface as a whole is a requirement for the code implementing the
components. There is also a requirement that the complete set of operations declared on a
reference is supplied by the service provider.

• The provider may respond to the operation invocation with zero or more response messages.
These messages may be returned synchronously or asynchronously, but they are returned to
the client component that made the original invocation. That they are returned is part of the
service contract between the client and the provider

In contrast, in event processing applications one component, the producer, creates a message
called an event, which is sent out and can be received by any number of other components,
called consumers. The significant characteristics of this mechanism are that:

• Each event created by a producer may be received by zero, one or many consumer
components. The producer is unaware of the specific consumers or the number of consumers
that receive any event.

• The consumer cannot respond to an event received – there is in principle no knowledge of the
producer component and no route provided by which a response message could be sent to it.
The component receiving an event can in turn send out events, but there is no implication
that the original producer component will receive any of those events.

• What is done when a consumer receives an event has no implied semantics – the consumer
can do what it likes with the event and there are no semantics agreed with the producer

• There is no requirement that a consumer consumes all of the event types that can be
produced by a given producer. Neither is there a requirement that a producer produces all of
the event types that can be consumed by a consumer. Unlike services, there is no matching
of an interface on the producer to an interface on the consumer.

There is also no direct relationship between event types and the implementation operations
or methods used to produce or consume them - eg a single operation can handle one event
type or many event types, as desired by the writer of the implementation code.

• A consumer can filter which events it is prepared to accept – there is no guarantee that it
actually does anything with a given event. The filtering may be on the event type or on the
business data within the event or on other metadata associated with the event.

Service operations which are one-way are close in nature to the sending and receiving of
events, but it is notable that for one-way service operations the client component must be aware
of the number of target services (multiplicity 0..n or 1..n specified) and the client has to call the
operation once for each target. For an event, the producer component simply sends a single
event once through its producer – the event is sent to all the consumer components that have
expressed interest in that event and are connected (including none), without the producer
component being aware of the number or of the recipients.

Event processing involves more loosely-coupled method of combining components into an
application than using service interfaces. Events place fewer requirements on the components at
each end of the communication. Effectively, in event processing it is only the event types that
are shared between the producers and the consumers.

Loose coupling is futher emphasized through the use of Pub/Sub. With Pub/Sub, producers are
not connected directly to any consumers – instead, a group of zero or more producers is
connected with a group of zero or more consumers through a logical intermediary, called a

SCA Event Processing Extension V1.00 April 2009 2

SCA Service Component Architecture

97
98
99

100
101
102
103

104

106
107

108

109
110
111

112

Channel. The producers publish events to the channel and the consumers receive events from
the channel. The actual origin of an event received by a consumer can be any of the producers –
without the consumer being directly connected to any of the producers.

In SCA event processing, component implementations may have zero or more producers and
zero or more consumers. The producers and consumers can indicate which event type(s) they
deal with. SCA components configure implementations to express where producer events are
published to and where consumer events are subscribed from.

1.2 Overview 105

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

1.2.1 Diagrams used to represent SCA Artifacts
This document introduces diagrams to represent the various SCA artifacts, as a way of
visualizing the relationships between the artifacts in a particular assembly. These diagrams are
used in this document to accompany and illuminate the examples of SCA artifacts.

The following picture illustrates some of the features of an SCA component:

Component

services

producer

properties

Implementation
- Java
- BPEL
- Composite
…

references

consumer

 113

114

115
116

117

Figure 1 SCA Component Diagram

The following picture illustrates some of the features of a composite assembled using a set of
components:

SCA Event Processing Extension V1.00 April 2009 3

SCA Service Component Architecture

Composite A

Component
AService

Binding
Web Service
SCA
JCA
JMS
SLSB
…

Web Service
SCA
JCA
JMS
SLSB
…

Binding

Component
B

Service Reference

Wire
PromotePromote

- Java interface
- WSDL PortType

- Java interface
- WSDL PortType

Properties

Property
setting

Reference

118

119

120

121
122

Figure 2: SCA Composite Diagram

The following picture illustrates an SCA Domain assembled from a series of high-level
composites, some of which are in turn implemented by lower-level composites:

Composite Y

Component
B

Component
A

Composite A
Composite B

Service

Composite X Composite Z

implementation
implementation

PromoteWirePromote

SCA Domain

Reference

Composite Y

Component
B

Component
A

Composite A
Composite B

Service

Composite X Composite Z

implementation
implementation

PromoteWirePromote

SCA Domain

Reference

 123

124

125

Figure 3 SCA Domain Diagram

SCA Event Processing Extension V1.00 April 2009 4

SCA Service Component Architecture

126
127

128

The following diagram shows an SCA composite involving components that communicate using
event processing:

Composite X

Component
4

Channel
A

Component
2

Component
3

Component
1

Composite
Consumer

Composite
Producer 129

130

131

132

133

134
135
136
137
138

139

141
142
143

Figure 14: SCA Composite Diagram with Event Processing

1.2.2 Connections from Producers to Consumers

In SCA, events flow from producers to consumers along routes that are defined by the
configuration of composites and the components and channels they contain. In particular,
components configure producers by declaring targets for the events created by the producer.
Components configure consumers by specifying sources for the events received by the consumer
and specifying the kind of events that are of interest.

1.2.2.1 Linking Producers to Consumers 140

Event producers can be linked to event consumers via a third party called a channel, where
producers are configured with the channel as a target and consumers are configured with the
channel as a source. Using this mechanism, producers and consumers are not directly
connected. It is also possible for the producer(s) to connect to a Domain channel (See the 144
section on Scopes of Channels) at a different time than when the consumer(s) connect to the
same channel.

145
146

147
148

149
150

151

152

153
154

A producer declares where the messages it produces are sent through a list of one or more
target URIs in its @target attribute. The form of the target URIs include:

• The URI of a channel in the same composite as the producer, in the form
channelName

• The URI of of a channel at the Domain level in the form //channelName

A consumer declares the sources for the messages it receives through a list of one or more
source URIs in its @source attribute. The form of the source URIs include:

SCA Event Processing Extension V1.00 April 2009 5

SCA Service Component Architecture

155

156

157

159

160
161
162

163
164
165
166

167
168
169

• The URI of a channel in the same composite in the form channelName

• The URI of a channel at the Domain level in the form //channelName

1.2.2.2 Producers, Consumers and Composites 158

When an assembler creates a composite that is intended for use as an implementation, the
assembler can decide whether consumers and producers within the composite are visible outside
the scope of the composite or not.

The assembler can also decide on what level of control is given to the higher level component
that is using the composite as its implementation – i.e., the assembler can decide what appears
in the component type of the composite, which can then be configured by the higher level
component.

One technique which enables component producers to send events outside the composite and for
component consumers to receive events from outside the composite is to configure producers
and/or consumers of components inside the composite to use domain channels – that is,
channels at the Domain level. See the section on Scopes of Channels for more details on domain
channels. This approach "hard wires" the producers and consumers within the composite - the
higher level component cannot reconfigure the sources and targets.

170
171
172

173
174
175
176
177
178
179
180

181
182
183

184
185
186

187

188

189

191

192

193
194
195

An alternative technique for configuring a component producer element is to declare a
composite producer element which promotes the component producer. Similarly a
component consumer can be configured by declaring a composite consumer element which
promotes the component consumer. When producers and consumers are promoted in this way,
and the composite is used as the implementation of some higher level component, the assembler
of the higher level composite can control where the events flow to and from, through
configuration of the higher level component. This technique promotes reuse of the lower level
composite in different contexts.

Each producer and consumer can be connected to zero or more channels. If a producer is not
connected then any events it produces are discarded and are not received by any consumer. If a
consumer is not connected, then it never receives any events.

A Composite can contain one or more Channels. Events can be sent to a channel by producers
within the composite and events may be received from a channel by consumers within the
composite.

1.2.3 Event Processing Examples

1.2.3.1 Multiple Producers linked to multiple Consumers via a Channel - within a 190
Composite

This example is of multiple component producers, which send events to multiple component
consumers via a Channel, which decouples the producers from the consumers. The assembly is
represented by the following diagram:

SCA Event Processing Extension V1.00 April 2009 6

SCA Service Component Architecture

Composite X

Component
4

Channel
A

Component
2

Component
3

Component
1

 196

197

198

Figure 15: Producers linked to Consumers via a local Channel

The corresponding XML for this example follows:

<?xml version="1.0" encoding="UTF-8"?> 199
<composite name="CompositeX" 200
 xmlns="http://www.osoa.org/xmlns/sca/1.0" 201
 targetNamespace="http://example.org/example1"> 202
 203
 <component name="Component1"> 204
 <implementation.java class="org.example.Component1Impl"/> 205
 <producer name="Foo_Events" target="ChannelA"/> 206
 </component> 207
 208
 <component name="Component2"> 209
 <implementation.java class="org.example.Component2Impl"/> 210
 <producer name="Foo_Events" target="ChannelA"/> 211
 </component> 212
 213
 <component name="Component3"> 214
 <implementation.java class="org.example.Component3Impl"/> 215
 <consumer name="Foo_Handling" source="ChannelA"/> 216
 </component> 217
 218
 <component name="Component4"> 219
 <implementation.java class="org.example.Component4Impl"/> 220
 <consumer name="Foo_Handling" source="ChannelA"/> 221
 </component> 222
 223
 <channel name="ChannelA"/> 224
 225
</composite> 226

227

228
229
230

231

In this example, the @target attribute of the producers links them to ChannelA and the @source
attribute of the consumers links them to ChannelA. All events from Component1 and
Component2 are routed through the ChannelA and are sent to Component3 and Component4.

SCA Event Processing Extension V1.00 April 2009 7

SCA Service Component Architecture

233

234
235
236

237

1.2.3.2 Producers linked to Consumers via Domain Channels 232

In this example, component producers of components nested within a domain component
transmit events via Domain Channels to component consumers which are also nested below the
domain level within a second domain component. This is represented in the following diagram:

Component D2
Component D1

Composite Y
Composite X

Component
4

Channel
A

Component
2

Component
3

Component
1

Channel
B

SCA Domain

 238

239

240

241

Figure 16: Producers linked to Consumers via Domain Channels

The corresponding XML for this example follows:

For CompositeX:

<composite name="CompositeX" 242
 xmlns="http://www.osoa.org/xmlns/sca/1.0" 243
 targetNamespace="http://example.org/example1"> 244
 245
 <component name="Component1"> 246
 <implementation.java class="org.example.Component1Impl"/> 247
 <producer name="Foo_Events" target="//ChannelA"/> 248
 </component> 249
 250
 <component name="Component2"> 251
 <implementation.java class="org.example.Component2Impl"/> 252
 <producer name="Foo_Events" target="//ChannelB"/> 253
 </component> 254
 255
</composite> 256

257 For CompositeY:

<composite name="CompositeY" 258
 xmlns="http://www.osoa.org/xmlns/sca/1.0" 259
 targetNamespace="http://example.org/example1"> 260
 261
 <component name="Component3"> 262
 <implementation.java class="org.example.Component3Impl"/> 263
 <consumer name="Foo_Handling" source="//ChannelA"/> 264
 </component> 265
 266

SCA Event Processing Extension V1.00 April 2009 8

SCA Service Component Architecture

 <component name="Component4"> 267
 <implementation.java class="org.example.Component4Impl"/> 268
 <consumer name="Foo_Handling" source="//ChannelB"/> 269
 </component> 270
 271
</composite> 272

273

274
275

276

Note the @target and @source attributes of the producers and consumers use the "//" notation
to indicate the connection to a channel at the domain level.

The following is an example of one way in which the Channels could be deployed to the Domain:

<composite name="ChannelContribution" 277
 xmlns="http://www.osoa.org/xmlns/sca/1.0" 278
 targetNamespace="http://example.org/example1"> 279
 280
 <channel name="ChannelA"/> 281
 282
 <channel name="ChannelB"/> 283
 284
</composite> 285

286

287
288

The following is an example of two deployment composites that could be used to deploy the two
domain-level components (ComponentD1 and ComponentD2):

<composite name="ComponentD1Contribution" 289
 xmlns="http://www.osoa.org/xmlns/sca/1.0" 290
 targetNamespace="http://example.org/example1" 291
 xmlns:xmp="http://example.org/example1"> 292
 293
 <component name="ComponentD1"> 294
 <implementation.composite name="xmp:CompositeX"/> 295
 </component> 296
</composite> 297
 298
<composite name="ComponentD2Contribution" 299
 xmlns="http://www.osoa.org/xmlns/sca/1.0" 300
 targetNamespace="http://example.org/example1" 301
 xmlns:xmp="http://example.org/example1"> 302
 303
 <component name="ComponentD2"> 304
 <implementation.composite name="xmp:CompositeY"/> 305
 </component> 306
 307
</composite> 308

309

310
311
312

313

315

316
317
318

Note that the domain level components ComponentD1 and ComponentD2 are unable to configure
the channels that are used as sources and targets by the components in the lower level
composites.

1.2.3.3 Composite with Promotion of Producers and Consumers 314

This example shows how a composite can be constructed so that the composite promotes some
component cosumers and promotes some component producers. This is represented in the
following diagram:

SCA Event Processing Extension V1.00 April 2009 9

SCA Service Component Architecture

319

Composite X

Component
2

Component
3

Component
1

Channel
A

 320

321

322

Figure 17: Promotion of Consumers and Producers by a Composite

The corresponding XML for this example follows:

<?xml version="1.0" encoding="UTF-8"?> 323
<composite name="CompositeX" 324
 xmlns="http://www.osoa.org/xmlns/sca/1.0" 325
 targetNamespace="http://example.org/example1"> 326
 327
 <consumer name="Bar_Handling" 328
 promotes="Component1/BarHandling Component2/Bar_Handling"/> 329
 330
 <component name="Component1"> 331
 <implementation.java class="org.example.Component1Impl"/> 332
 <consumer name="Bar_Handling"/> 333
 <producer name="Foo_Events" target="ChannelA"/> 334
 </component> 335
 336
 <component name="Component2"> 337
 <implementation.java class="org.example.Component2Impl"/> 338
 <consumer name="Bar_Handling"/> 339
 <producer name="Foo_Events" target="ChannelA"/> 340
 </component> 341
 342
 <channel name="ChannelA"/> 343
 344
 <component name="Component3"> 345
 <implementation.java class="org.example.Component3Impl"/> 346
 <consumer name="Foo_Handling" source="ChannelA"/> 347
 <producer name="Special_Events"/> 348
 </component> 349
 350
 <producer name="Special_Events" promotes="Component3/Special_Events"/> 351
 352
</composite> 353

354

355
356

Here, CompositeX has a consumer element named Bar_Handling and producer element named
Special_Events. The Bar_Handling consumer promotes the consumers of Component1 and

SCA Event Processing Extension V1.00 April 2009 10

SCA Service Component Architecture

357
358

359
360
361
362
363

Component2. The Special_Events producer promotes the producer of Component3.

When CompositeX is used as an implementation by a higher-level component, the consumer and
producer elements of the composite permit the assembler of the higher level component to
control where the events relating to this composite are sent to and received from, through
configuration of the higher level component. The Component Type of CompositeX above is as
follows:

<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0" 364
 365
 <consumer name="Bar_Handling" /> 366
 367
 <producer name="Special_Events /> 368
 369
</componentType> 370

SCA Event Processing Extension V1.00 April 2009 11

SCA Service Component Architecture

372

373
374

375
376
377

378
379
380
381
382
383
384

385

1.3 Component 371

Components are the basic elements of business function in an SCA assembly, which are
combined into complete business solutions by SCA composites.

Components are configured instances of implementations. Components provide and
consume services. More than one component can use and configure the same implementation,
where each component configures the implementation differently.

Components are declared as subelements of a composite in an xxx.composite file. A component
is represented by a component element which is a child of the composite element. There can
be zero or more component elements within a composite. The following snippet shows the
composite schema with the schema for the component child element. Note that this snippet, and
the explanation that follows, focuses only on the additions made by this specification to the
OSOA SCA Assembly Specification V1.00 [1] component schema. All existing elements/attributes
in V1.00 are unaffected.

<?xml version="1.0" encoding="UTF-8"?> 386
<!-- Component schema snippet --> 387
<composite … > 388
 389
 ... 390
 391
 <component … >* 392
 <implementation/> 393
 <service … />* 394
 <reference … />* 395
 <property … />* 396
 <consumer name="xs:NCName" source="list of xs:anyURI"? 397
 requires="list of xs:QName"? 398
 policySets="list of xs:QName"?>* 399
 <filters/>? 400
 <binding/>* 401
 </consumer> 402
 <producer name="xs:NCName" target="list of xs:anyURI"? 403
 typeNames="list of xs:QName"? 404
 typeNamespaces="list of xs:anyURI"? 405
 requires="list of xs:QName"? 406
 policySets="list of xs:QName"?>* 407
 <binding/>* 408
 </producer> 409
 </component> 410
 411
 ... 412
 413
</composite> 414

415
416

417
418
419

420

421

The component element can have zero or more consumer elements as children, which are
used to configure the consumers of the component. The consumers that can be configured are
defined by the implementation.

The consumer element has the following attributes:

SCA Event Processing Extension V1.00 April 2009 12

SCA Service Component Architecture

422
423
424

• name (1..1) – the name of the consumer. MUST be unique amongst the producer,
consumer, service and reference elements of the component. MUST match the name of a
consumer defined by the implementation.

• requires (0..1) – a list of policy intents. See the Policy Framework specification [10] for
a description of this attribute.

425
426

• policySets (0..1) – a list of policy sets. See the Policy Framework specification [10] for a
description of this attribute.

427
428

429 • source (0..1) – a list of one or more of event sources such as the URI of a channel. The
form of the URI for a channel is described in section The URI of a Channel. 430

431

432

433
434
435
436

437
438

The consumer element has the following child elements:

• binding (0..1) – zero or more binding elements, each of which defines a transport
binding which is used for the transmission of events to this consumer. If not specified, an
SCA default binding (binding.sca) is used.

• filters – (0..1) filter elements.

See the section Filters: Selecting Subsets of Events for a detailed description of Filters. 439

440
441
442

443
444
445

446
447

448
449
450

The consumer can receive events from all of the event sources identified in the @source
attribute. It is valid to specify no sources (ie the consumer is "unconnected"). If the consumer is
unconnected, no events are received.

The component element can have zero or more producer elements as children which are used
to configure the producers of the component. The producers that can be configured are defined
by the implementation.

The producer element has the following attributes:

• name (1..1) – the name of the producer. MUST be unique amongst the producer,
consumer, service and reference elements of the component. MUST match the name of a
producer defined by the implementation.

• requires (0..1) – a list of policy intents. See the Policy Framework specification [10] for
a description of this attribute.

451
452

• policySets (0..1) – a list of policy sets. See the Policy Framework specification [10] for a
description of this attribute.

453
454

455
456

• target (0..1) – a list of one or more of targets to which events are sent, such as the URI
of a channel. Where multiple targets are identified, all the messages emitted by the
producer are sent to each target. The form of the URI for a channel is described in section 457

458

459
460
461
462
463
464
465
466
467
468

The URI of a Channel.

• typeNames (0..1) – a list of one or more Event Type QNames which are sent by this
producer. Each QName in the list MUST be associated with a Namespace URI. This
association is performed using the namespace declarations that are in-scope where the
QName expression appears. Unprefixed QNames are permitted, provided there is a
default namespace declaration in-scope where the QName expression appears. QNames
that belong to no namespace are not allowed.
If the @typeNames attribute is omitted, the value defaults to the value of the
@typeNames attribute for the producer of the same name in the componentType of the
implementation used by the component. If the @typeNames attribute is omitted and if the
corresponding producer in the componentType of the implementation also does not have

SCA Event Processing Extension V1.00 April 2009 13

SCA Service Component Architecture

469
470
471
472

473
474

475
476
477
478
479
480
481
482

483

484
485
486
487

488

489

490
491
492

493
494
495

496

497

498

499
500

this attribute, then the producer is unconstrainted with respect to the Even Type QNames
for the events that are sent by the producer. If the componentType has a value for
@typeNames then the value of @typeNames for the component producer element MUST
match that in the componentType.

• typeNamespaces (0..1) – a list of one or more Event Type Namespace URI for events
sent by this producer.

If the @typeNamespaces attribute is omitted, the value defaults to the value of the
@typeNamespaces attribute for the producer of the same name in the componentType of
the implementation used by the component. If the @typeNamespaces attribute is
omitted, and if the corresponding producer in the componentType of the implementation
also does not have this attribute, then the producer is unconstrainted with respect to the
Even Type Namespace URI for the events that are sent by the producer. If the
componentType has a value for @typeNamespaces then the value of @typeNamespaces
for the component producer element MUST match that in the componentType.

Note that both attributes @typeNames and @typeNamespaces can be used together. If both
attributes are specified, then the producer declares that it might send events whose Event Type
is either listed in the @typeNames attribute or whose Event Type belongs to one of the
Namespaces listed in the @typeNamespaces attribute.

The producer element has the following child elements:

• binding – (0..1) zero or more binding elements, each of which defines a transport
binding which is used for the transmission of events from this producer. If not specified,
an SCA default binding (binding.sca) is used.

Events produced by the producer are sent to all the targets identified in the @target attribute. It
is valid to specify no targets (ie the producer is "unconnected") - in this case events produced
are discarded.

1.3.1 Example Component

The following figure shows the component symbol that is used to represent a component in an
assembly diagram.

SCA Event Processing Extension V1.00 April 2009 14

SCA Service Component Architecture

Component

services

producer

properties

Implementation
 - Java
 - BPEL
 - Composite
 …

references

consumer

501

502

503
504
505

506

507

508
509
510
511

512
513

514

515
516
517
518

519
520

Figure 4 Component Symbol

The rest of this section remains unchanged from the original OSOA SCA Assembly Specification
V1.00 [1].

1.3.2 Declaration of Event Types on Producers and Consumers

Producers can declare the set of event types that they produce through the attributes
producer/@typeNames and producer/@typeNamespaces. Consumers can declare the set of event
types that they handle by specifying a type filter. It is also possible to declare that a producer or
a consumer handles any event type.

The value of declaring the events that are produced and consumed by components and channels
is that:

• When the event types produced and consumed are explicitly declared, it may be possible
to avoid the need for runtime event filters on the consumers, providing an optimized path
for the handling of the events.

• Because the channel, producer and consumer declarations can include a list of event
types, it is possible to report an error when a producer or a consumer is connected to a

SCA Event Processing Extension V1.00 April 2009 15

SCA Service Component Architecture

521
522
523

524

525
526
527
528
529

531

532
533
534
535
536
537
538

539
540
541
542
543

544
545
546
547
548

549
550

551

552

553

554

555

556
557
558
559
560
561

562

563
564

565
566

channel, where there is no chance that the produced events will be accepted by the
channel or the consumer will ever get any event.

The following apply:

• A producer SHOULD only produce event types it has declared

• An SCA Runtime MAY reject events of a type from a producer which does not declare that
it produces events of that type

1.4 Implementation 530

Component implementations are concrete implementations of business function. An
implementation can provide services and it can make references to services provided
elsewhere. An implementation can have event producers and consumers. Each producer
sends events of one or more event types, while each consumer receives events of one or more
event types. Producers and consumers declare the set of event types that they handle through a
list of event types. It is also possible to declare that a producer or a consumer handles any
event type. In addition, an implementation may have some settable property values.

SCA allows you to choose from any one of a wide range of implementation types, such as
Java, BPEL or C++, where each type represents a specific implementation technology. The
technology may not simply define the implementation language, such as Java, but may also
define the use of a specific framework or runtime environment. Examples include Java
implementations done using the Spring framework or the Java EE EJB technology.

For example, within a component declaration in a composite file, the elements
implementation.java and implementation.bpel point to Java and BPEL implementation types
respectively. implementation.composite points to the use of an SCA composite as an
implementation. implementation.spring and implementation.ejb are used for Java
components written to the Spring framework and the Java EE EJB technology respectively.

The following snippets show implementation elements for the Java and BPEL implementation
types and for the use of a composite as an implementation:

<implementation.java class="services.myvalue.MyValueServiceImpl"/>

<implementation.bpel process="MoneyTransferProcess"/>

<implementation.composite name="MyValueComposite"/>

Services, references, consumers, producers and properties are the configurable aspects of
an implementation. SCA refers to them collectively as the component type. The characteristics
of services, references and properties are described in the Component section. Depending on the
implementation type, the implementation can declare the services, references, consumers,
producers and properties that it has and it also can set values for the characteristics of those
services, references, consumers, producers and properties.

So, for example:

• for a service, the implementation can define the interface, binding(s), a URI, intents, and
policy sets, including details of the bindings

• for a reference, the implementation can define the interface, binding(s), target URI(s),
intents, policy sets, including details of the bindings

SCA Event Processing Extension V1.00 April 2009 16

SCA Service Component Architecture

567

568

569

570
571
572
573

• for a consumer, the implementation can define event filters, intents, policy sets, bindings

• for a property the implementation can define its type and a default value

• the implementation itself can define intents and policy sets

Most of the characteristics of the services, references, consumers, producers and properties can
be overridden by a component that uses and configures the implementation, or the component
can decide not to override those characteristics. Some characteristics cannot be overridden,
such as intents. Other characteristics, such as interfaces, can only be overridden in particular
controlled ways (see the Component section for details). 574

575
576
577

578
579
580
581
582

583

The means by which an implementation declares its services, references, consumers, producers
and properties depend on the type of the implementation. For example, some languages, like
Java, provide annotations which can be used to declare this information inline in the code.

At runtime, an implementation instance is a specific runtime instantiation of the
implementation – its runtime form depends on the implementation technology used. The
implementation instance derives its business logic from the implementation on which it is based,
but the values for its properties and references are derived from the component which configures
the implementation.

Component Type

Component bComponent a

Implementation Instances

Implementation

Configure

 584

585

586

587

588
589
590
591
592

Figure 6 Relationship of Component and Implementation

1.4.1 Component Type

Component type represents the configurable aspects of an implementation. A component type
consists of services that are offered, references to other services that can be wired, consumers
to which events are delivered, producers that send out events and properties that can be set.
The settable properties, the settable references to services and the settable consumers and
prodcers are configured by a component which uses the implementation.

SCA Event Processing Extension V1.00 April 2009 17

SCA Service Component Architecture

593
594
595
596
597
598
599
600

601
602
603
604

605
606
607
608
609

610
611
612

613

614

The component type is calculated in two steps where the second step adds to the
information found in the first step. Step one is introspecting the implementation (if possible),
including the inspection of implementation annotations (if available). Step two covers the cases
where introspection of the implementation is not possible or where it does not provide complete
information and it involves looking for an SCA component type file. Component type
information found in the component type file must be compatible with the equivalent information
found from inspection of the implementation. The component type file can specify partial
information, with the remainder being derived from the implementation.

In the ideal case, the component type information is determined by inspecting the
implementation, for example as code annotations. The component type file provides a
mechanism for the provision of component type information for implementation types where the
information cannot be determined by inspecting the implementation.

A component type file has the same name as the implementation file but has the extension
“.componentType”. The component type is defined by a componentType element in the file.
The location of the component type file depends on the type of the component implementation:
it is described in the respective client and implementation model specification for the
implementation type.

The componentType element contains zero or more Service elements, zero or more Reference
elements, zero or more Consumer elements, zero or more Producer element and zero or more
Property elements.

The following snippet shows the componentType schema.

<?xml version="1.0" encoding="ASCII"?> 615
<!-- Component type schema snippet --> 616
<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0" 617
 constrainingType="QName"? > 618
 619
 <service .../>* 620
 <reference .../>* 621
 <property .../>* 622
 <consumer name="xs:NCName" 623
 requires="list of xs:QName"? 624
 policySets="list of xs:QName"?>* 625
 <filters/>? 626
 <binding uri="xs:anyURI"? requires="list of xs:QName"? 627
 policySets="list of xs:QName"?/>* 628
 </consumer> 629
 <producer name="xs:NCName" 630
 typeNames="list of xs:QName"? 631
 typeNamespaces="list of xs:anyURI"? 632
 requires="list of xs:QName"? 633
 policySets="list of xs:QName"?>* 634
 <binding/>* 635
 </producer> 636
 637
 <implementation .../>? 638
 639
</componentType> 640

641

642

643
644

The ComponentType element has a single attribute:

• constrainingType (optional) – the name of a constrainingType. When specified, the
set of services, references and properties of the implementation, plus related intents, is

SCA Event Processing Extension V1.00 April 2009 18

SCA Service Component Architecture

645
646

647

648

constrained to the set defined by the constrainingType. See the ConstrainingType Section
for more details.

The ComponentType element has the following child elements:

• Service (0..n) - represents an addressable service interface of the implementation. See
the Service section for details. 649

650 • Reference (0..n) - represents a requirement that the implementation has on a service
provided by another component. See the Reference section for details. 651

652 • Consumer (0..n) - represents a place where events can be delivered to the
implementation. See the Component section for details. 653

654 • Producer (0..n) - represents a place where the implementation produces events that
can be sent to other components. See the Component section for details. 655

656 • Properties (0..n) - allow for the configuration of an implementation with externally set
values. See the Property section for details. 657

658 • Implementation (0..1) - represents characteristics inherent to the implementation
itself, in particular intents and policies. See the Policy Framework specification [10] for a
description of intents and policies.

659
660

661

663
664
665

667
668
669

671

672
673

675

676
677
678
679

680
681
682
683

684
685

686

1.4.1.1 Example ComponentType 662

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

1.4.1.2 Example Implementation 666

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

1.5 Interface 670

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

1.6 Composite 674

In this section, the only change introduced is the addition of<consumer>, <producer>, and
<channel> elements to the schema for the composite element. Everything else in this section
remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

An SCA composite is used to assemble SCA elements in logical groupings. It is the basic unit of
composition within an SCA Domain. An SCA composite contains a set of components, channels,
consumers, producers, services, references and the wires that interconnect them, plus a set of
properties which can be used to configure components.

A composite is defined in an xxx.composite file. A composite is represented by a composite
element. The following snippet shows the schema for the composite element.

<?xml version="1.0" encoding="ASCII"?> 687
<!-- Composite schema snippet --> 688

SCA Event Processing Extension V1.00 April 2009 19

SCA Service Component Architecture

<composite ... > 689
 690
 <include ... />* 691
 <service ... />* 692
 <reference ... />* 693
 <property ... />* 694
 <component ... />* 695
 <wire ... />* 696
 <consumer ... />* 697
 <producer ... />* 698
 <channel ... />* 699
 700
</composite> 701

702
703
704
705

706
707
708

709
710

711
712
713
714
715

716
717

718
719
720
721
722
723
724

725
726

727
728
729
730
731

732
733
734

735
736
737
738

Composites contain zero or more properties, services, consumers, producers,
components, channels, references, wires and included composites. These artifacts are
described in detail in the following sections.

Components contain configured implementations which hold the business logic of the composite.
The components offer services and require references to other services and they send out events
via producers and receive events through consumers.

Channels within the composite represent intermediaries transmitting events from producers to
consumers entirely within the composite.

Composite services define the public services provided by the composite, which can be accessed
from outside the composite. Composite references represent dependencies which the composite
has on services provided elsewhere, outside the composite. Composite consumers define public
locations where events are received from outside the composite. Composite producers represent
places where the composite as a whole sends out events.

Wires describe the connections between component services and component references within
the composite. Included composites contribute the elements they contain to the using composite.

Composite services involve the promotion of one service of one of the components within the
composite, which means that the composite service is actually provided by one of the
components within the composite. Composite references involve the promotion of one or more
references of one or more components. Multiple component references can be promoted to the
same composite reference, as long as all the component references are compatible with one
another. Where multiple component references are promoted to the same composite reference,
then they all share the same configuration, including the same target service(s).

Composite consumers involve the promotion of one or more contained component consumers.
Composite producers involve the promotion of one or more contained component producers.

Composite services and composite references can use the configuration of their promoted
services and references respectively (such as Bindings and Policy Sets). Alternatively composite
services and composite references can override some or all of the configuration of the promoted
services and references, through the configuration of bindings and other aspects of the
composite service or reference.

Component services and component references can be promoted to composite services and
references and also be wired internally within the composite at the same time. For a reference,
this only makes sense if the reference supports a multiplicity greater than 1.

Component producers can be promoted to composite producers and can be configured to send
events to other targets at the same time. Similarly, component consumers can be promoted to
composite consumers and can be configured to receive events from other sources at the same
time.

SCA Event Processing Extension V1.00 April 2009 20

SCA Service Component Architecture

739

740

741

742
743

744

745

746
747

748

749

750
751

752

753

754
755

756

757

758
759

760

761

762
763

764

765

766
767

768

769

770
771

772

773

774
775
776
777
778

779

780

1.6.1 Property – Definition and Configuration

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

1.6.2 References

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

1.6.3 Service

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

1.6.4 Wire

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

1.6.5 Using Composites as Component Implementations

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

1.6.6 Using Composites through Inclusion

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

1.6.7 Composites which Include Component Implementations of Multiple Types

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

1.6.8 ConstrainingType

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

1.6.9 Producer

The producers of a composite are defined by promoting producers defined by components
contained in the composite. Producers are promoted by means of a composite producer
element, which is a child element of the composite element. Promotion of the component
producer allows the configuration of the composite producer set by a higher level component to
override the configuration of the lower component producer.

Every event sent by any of the promoted producers is sent out by the composite producer.

The following snippet shows the schema for a composite producer element:

SCA Event Processing Extension V1.00 April 2009 21

SCA Service Component Architecture

 781
 <producer name="xs:NCName" promotes="list of xs:anyURI" 782

 requires="list of xs:QName"? 783
 policySets="list of xs:QName"? 784

 typeNames="list of xs:QName"? 785
 typeNamespaces="list of xs:anyURI"?>* 786
 <binding uri="xs:anyURI"? requires="list of xs:QName"? 787
 policySets="list of xs:QName"?/>* 788
 </producer> 789

790

791

792
793
794

The producer element has the following attributes:

• name (required) – the name of the producer. MUST be unique amongst the producer
elements of the composite. The name MAY be different from the name of any of the
promoted producers.

• requires (optional) – a list of policy intents. See the Policy Framework specification [10]
for a description of this attribute.

795
796

• policySets (optional) – a list of policy sets. See the Policy Framework specification [10]
for a description of this attribute.

797
798

799
800
801

802
803
804
805
806
807

808
809
810

811
812
813

814
815

816
817
818

819
820
821
822

823

824
825
826
827

828

• promotes (required) – identifies the promoted producers. The value is a list containing
entries of the form componentName/producerName. The producer name is optional if
the component only has one producer.

• typeNames (0..1) – a list of one or more Event Type QNames which are sent by this
producer. Each QName in the list MUST be associated with a Namespace URI. This
association is performed using the namespace declarations that are in-scope where the
QName expression appears. Unprefixed QNames are permitted, provided there is a
default namespace declaration in-scope where the QName expression appears. QNames
that belong to no namespace are not allowed.

If the @typeNames attribute is omitted, the value defaults to the value of the
@typeNames attribute, if present, of the associated component producer or the
componentType of the component producer that is promoted.

If the associated component producer or the componentType producer has a value for
@typeNames then the value of @typeNames, if present, for the composite producer
element MUST match that in the component propducer or the componentType producer.

• typeNamespaces (0..1) – a list of one or more Event Type Namespace URI for events
sent by this producer.

If the @typeNamespaces attribute is omitted, the value defaults to the value of the
@typeNamespaces attribute, if present, of the associated component producer or the
componentType of the component producer that is promoted.

If the associated component producer or the componentType producer has a value for
@typeNamespaces then the value of @typeNamespaces, if present, for the composite
producer element MUST match that in the component producer or the componentType
producer.

Note that both attributes @typeNames and @typeNamespaces can be used together. If both
attributes are specified, then the producer declares that it might send events whose Event Type
is either listed in the @typeNames attribute or whose Event Type belongs to one of the
Namespaces listed in the @typeNamespaces attribute.

SCA Event Processing Extension V1.00 April 2009 22

SCA Service Component Architecture

829

830
831
832

833
834
835

The producer element has the following child element:

• binding (0..n) – zero or more binding elements. Each element defines a transport
binding which is used for the transmission of events from this producer. If not specified,
an SCA default binding (binding.sca) is used.

If bindings are specified they override the bindings defined for the promoted component
producers from the composite producer perspective. The bindings defined on the component
producers are still in effect for local transmission of messages within the composite. Details of
the binding element are described in the Bindings section. 836

837

838

839

840
841
842
843
844

845

846

1.6.10 Consumer

The consumers of a composite are defined by promoting consumers defined by components
contained in the composite. Consumers are promoted by means of a composite consumer
element, which is a child element of the composite element. Promotion of the component
consumer allows the configuration of the composite consumer set by a higher level component to
override the configuration of the lower component consumer.

Every event received by the composite producer is sent on to all of the promoted consumers.

The following snippet shows the schema for a composite consumer element:

 847
 <consumer name="xs:NCName" 848
 promotes="list of xs:anyURI" 849
 requires="list of xs:QName"? 850
 policySets="list of xs:QName"?>* 851
 <filters/>? 852
 <binding uri="xs:anyURI"? requires="list of xs:QName"? 853
 policySets="list of xs:QName"?/>* 854
 </consumer> 855
 856

857

858
859
860

The consumer element sas the following attributes:

• name (required) – the name of the consumer. MUST be unique amongst the consumer
elements of the composite. The name MAY be different from the name of any of the
promoted consumers.

• requires (optional) – a list of policy intents. See the Policy Framework specification [10]
for a description of this attribute.

861
862

• policySets (optional) – a list of policy sets. See the Policy Framework specification [10]
for a description of this attribute.

863
864

865
866
867

868

869

870
871
872
873

874

• promote (required) – identifies the promoted consumers. The value is a list containing
entries of the form componentName/consumerName. The consumer name is optional
if the component only has one consumer.

The consumer element has the following child elements:

• binding (0..n) – zero or more binding elements. Each element defines a transport
binding which is used for the transmission of events to this consumer. If not specified, an
SCA default binding (binding.sca) is used.

• filter (0..1) –filter elements
See the section Filters: Selecting Subsets of Events for a detailed description of Filters. 875

SCA Event Processing Extension V1.00 April 2009 23

SCA Service Component Architecture

876
877
878

If bindings are specified they override any bindings defined for the promoted consumers from
the composite producer perspective. The bindings defined on the component consumers are still
in effect for local transmission of messages within the composite. Details of the binding element
are described in the Bindings section. 879

880

882

883
884
885
886

887
888

889

891

892

894

895

897

898
899

901

902
903
904

905
906

907
908
909

910
911

912

913

914

1.7 Binding 881

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1]
except bindings are also used by producers, consumers and channels, in addition to services and
references. Producers, consumers and channels use bindings to describe the mechanism used to
send and receive events.

A binding is defined by a binding element which is a child element of a service, a reference, a
producer, a consumer in a composite or in a component, or a channel element in a composite.

1.8 SCA Definitions 890

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

1.9 Extension Model 893

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

1.10 Packaging and Deployment 896

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

1.11 Channels 900

A channel is an SCA artifact that is used to connect a set of event producers to a set of event
consumers. The channel can accept events sent by many producers and it can send all of these
events to each of the set of consumers, which are subscribed to the channel.

One role of the channel is to act as an intermediary between the set of producers and the set of
consumers. The channel exists separately from any individual producer or consumer.

A channel acts as if it has a single consumer element with the name "in", to which producers can
send events. A channel acts as if it has a single producer element with the name "out", from
which subscribers receive events.

A channel may be configured with filters, which defines the set of events that the channel
accepts. If an event does not match the filters defined, the event is discarded

The pseudo-schema for Channels is shown here:

 915
 <channel name="xs:NCName" 916
 requires="list of xs:QName"? 917

SCA Event Processing Extension V1.00 April 2009 24

SCA Service Component Architecture

 policySets="list of xs:QName"?>* 918
 <filters/>? 919
 <binding/>* 920
 </channel> 921
 922

923

924
925

926
927
928
929

The channel element has the following attributes:

• name (required) – a name for the channel element, which must be unique amongst the
channel and component elements of a given composite.

• requires – (optional) a list of one or more policy intents which apply to the handling of
messages by this channel. See the Policy Framework specification [10] for a description of
this attribute.

930
931
932
933 • policySets – (optional) a list of the names of one or more policy sets which apply to the

handling of messages by this channel. See the Policy Framework specification [10] for a
description of this attribute.

934
935
936

937

938

939
940
941

The channel element has the following child elements:

• filters – (0..n) zero or more filter elements, each of which defines a filter expression in a
particular dialect.

See the section Filters: Selecting Subsets of Events for a detailed description of Filters. 942

943
944
945
946
947

948

949

950
951

952
953
954
955
956
957

958
959
960
961
962

963
964
965
966

• binding (0..n) – zero or more binding elements. Each element defines a transport binding

which is used for the transmission of events to this channel. If not specified, an SCA default
binding (binding.sca) is used.

1.11.1 Scopes of Channels

Channels can exist either at the Domain level or they can exist within a composite used as an
implementation.

Channels at the Domain level (i.e., channels that are present in the domain-level composite) are
termed domain channels. They can be used as targets for producers at any level within the
composition hierarchy. They can be used as sources for consumers at any level within the
composition hierarchy. SCA runtimes MUST support the use of domain channels. To create a
Domain Channel, deploy a composite containing a channel directly to the SCA Domain (i.e., do
not use that composite as the implementation of some component in the Domain).

Channels within a composite used as an implementation are private to the components within
that composite. These private channels can only be the targets for producers existing within
the same composite as the channel. Private channels can only be sources for consumers existing
withing the same composite as the channel. SCA runtimes MAY support the use of private
channels - in other words, this capability is optional.

This division of Channels into global channels and private channels permits the assembler of an
application to control the set of components involved in event exchange, if required. Producers
and consumers of global channels are effectively uncontrolled – they exist at the Domain and
they can be added or removed at any time through deployment actions. Private channels have

SCA Event Processing Extension V1.00 April 2009 25

SCA Service Component Architecture

967
968

969

970

971

972

973
974

975
976

977

978

979

980
981

982

983

984

985

987

988
989

990
991

992
993
994
995

996
997
998

999

1000

1001

1002
1003

1004
1005
1006
1007
1008
1009

restricted sets of producers and consumers – these sets are decided by the assembler when the
composite containing them is created.

1.11.2 The Default Domain Channel

In SCA Event processing, there is a special default channel which is a domain channel.

The default channel always exists, even if it not declared explicitly in the configuration of the
Domain. The default channel has the URI "//".

Producers and consumers at any level in the Domain can communicate using the default channel
by using the URI "//" in their target or source attribute respectively.

1.11.3 The URI of a Channel

When used for the source of a consumer or for the target of a producer, a channel is referenced
by a URI. The URI of a channel is built from the name of the channel.

The URI of a private channel is the name of the channel.

The URI of a domain channel is "//" followed by the name of the channel.

The URI of the default domain channel is simply "//".

1.12 Representation of Events and Event Types in SCA 986

Events in SCA MAY have an event type associated with them. Each event type is identified by a
unique event type name.

An event can have no event type metadata associated with it - for example, this can be the case
for events which are created by pre-existing non-SCA event sources.

SCA has a canonical representation of event types in terms of XML and of event shapes in
terms of XML schema. SCA event shapes are describable using XML infoset, although they
don't have to be described using XML Schema – other type systems can be used. SCA events can
have a wire format that is not XML.

Events can also have programming language specific representations. The details of the
mapping between language specific formats and XML are defined by the SCA implementation
language specifications.

1.12.1 Event Type and Associated Metadata

In SCA, event types consist of the following:

1. a unique event type QName
2. a set of business data. This data is also called the shape of the event. It is possible that the

same shape is used by multiple event types.
3. optional additional metadata associated with events of this type, such as creation time, and is

separate from the event business data.

SCA Event Processing Extension V1.00 April 2009 26

SCA Service Component Architecture

1010
1011

1012
1013

1014

1015

1016

1017

1018

The shape of the event should be defined in terms of an existing type system. Examples include
XSD and Java.

For event shape defined using XSD, this is done in terms of an XML global element, which is in
turn of some XSD simple or complex type.

1.12.2 Format of Event Type Definitions

SCA event types are defined in event definitions files and take the following form:

<?xml version="1.0" encoding="ASCII"?> 1019
<eventDefinitions xmlns="http://www.osoa.org/xmlns/sca/1.0" 1020
 targetNamespace="xs:anyURI"> 1021
 1022
 <sca:eventType name="xs:NCName"? ... >* 1023
 ... 1024
 </sca:eventType> 1025

1026
</eventDefinitions> 1027

1028

1029

1030

and, in particular, for an eventType defined using XSD:

<sca:eventType.xsd name="xs:NCName"? element="xs:QName" ...> 1031
 1032
 ... 1033
<sca:eventType.xsd> 1034

1035

1036

1037
1038
1039
1040
1041

1042
1043

1044

1045

where attributes:

• name (0..1) - the event type name, which is qualified by the target namespace of the
definitions element. If absent, the event type name uses the name of the global element
referenced by the @element attribute (but not its namespace)

• element (1..1) - the global XSD element which defines the shape of the event

any (0..n) - extensibility elements allowing for additional metadata relating to the event type

an example of an event type definition follows:

<eventDefinitions xmlns="http://www.osoa.org/xmlns/sca/1.0" 1046
 xmlns:foo="http://foo.com" 1047
 targetNamespace="http://foo.com"> 1048
 <sca:eventType.xsd name="PrinterEvent" element="foo:PrinterEvent"/> 1049
</eventDefinitions> 1050
 1051

1052

1053

1054

1055
1056

1.12.3 Events with No Event Type

Events MAY have no event type metadata associated with them.

From an SCA perspective (and in particular, when dealing with events of this kind in Filter
statements), such events are given the special event type name of sca:NULL (a QName). This

SCA Event Processing Extension V1.00 April 2009 27

SCA Service Component Architecture

1057
1058
1059

1060

1061

1062

1063
1064
1065

1066

1067

1068

1069

1070
1071

1072
1073
1074
1075

1076
1077
1078
1079

1080
1081
1082
1083

1084
1085
1086
1087

1088

1089

1090
1091

1092

1093

1094

1095
1096

1097
1098
1099
1100
1101

special event type name MUST NOT be used in event instances for its type metadata. It is
reserved for use in composite files (such as in type filters on comsumer and type declarations on
producers) to identify event instances that do not have any type metadata.

1.13 Filters: Selecting Subsets of Events

Event filters are used to select subsets of events from an event source. Event filters can be
specified on consumers and on channels, and are then applied to the event instances that would
otherwise be received by those consumers or channels.

Filters can operate against various sorts of data relating to an event instance:

• Event types

• Event business data

• Other event metadata

The mechanism for expressing filters is extensible, so that in the future filters can be added that
operate against other data, such as Properties of the Event channel.

Filters can be expressed in a variety of dialects of filter language. It is possible to use different
filter language dialects for different types of data - eg Event Metadata vs Business Data. It is
possible to specify multiple filters (of the same type or different types) on a single consumer or
channel.

Each filter expression must resolve to a boolean where "false" means that the event instance is
discarded and "true" means that the event instance is passed by the filter. Where multiple filters
are present, they are logically "AND"ed together so that only messages that pass all of the filters
are passed by the collection of filters.

Filters can be specified on a Component consumer, Composite consumer, or a consumer in the
Component Type of an implementation. All filter expressions specified on a consumer, regardless
of where (Component Type, Component or Composite) they are specified are logically “AND”ed
together.

Filters have no side effects and filters have no state. They are evaluated against a particular
event instance and indicate whether the event passes the filter or not – there are no other
implications. This means that the order in which multiple filters are applied does not matter – the
same result occurs whatever the order.

1.13.1 Form of Explicit Filter Elements
Explicit filters can be attached to various elements in SCA, such as consumers and channels. The
syntax used to express the filters conveys three things:

1. The type of data that the filter operates against (the “subject”)

2. The language used to express the filter (the “dialect”)

3. The filter expression itself.

The choice of dialect might be constrained by the choice of subject; there are some
dialect/subject combinations that do not make sense.

The filters, if any, that are attached to a consumer of channel are all contained in a single
<sca:filters> element. The filters themselves MUST appear as child element of <sca:filters> and
any element that is included as a child element of <sca:filters> MUST be a filter. The QName of
the element indicates the subject of the filter and its dialect; SCA provides element declarations
for all the filter subjects that it defines.

SCA Event Processing Extension V1.00 April 2009 28

SCA Service Component Architecture

1102

1103
1104

1105

The element content is used to convey the expression, and is constrained by the dialect chosen.

The SCA specification defines a number of predefined filter subject/dialect elements. These are
described in the following sections, but are summarized in this pseudo-schema:

<filters> 1106

 <type qnames="list of xs:QName"? namespaces="list of xs:anyURI"? />* 1107

 <body.xpath1> xs:string </body.xpath1>* 1108

 1109

 <metadata.xpath1> xs:string </metadata.xpath1>* 1110

 1111

 <any/>* 1112
</filters> ? 1113

1114

1115
1116
1117
1118
1119
1120

1121

1122

1123

1124

Note that the event filters are extensible, allowing new filter types to be defined as an extension
and to be used at the place that the <any/> subelement is shown in the pseudo-schema. An SCA
runtime is not required to support filter types not defined by this specification - but if an
extended filter type is declared within a <filters/> element and the SCA runtime does not
support that extended filter type, then the SCA runtime MUST generate an error when it
encounters the declaration.

1.13.2 Event Type Filters
Event type filters filter events based on the Event Type metadata of the event.

Only one dialect is currently defined for event type with the element name <sca:type>

<filters> 1125
 <type qnames="list of xs:QName"? namespaces="list of xs:anyURI"? />* 1126

 ... 1127
</filters> 1128

1129
1130
1131
1132

1133
1134
1135
1136
1137

1138

1139
1140

1141
1142

1143
1144

1145
1146

In this dialect, a filter expression consists of either a list of one or more QNames specified as a
value of the attribute @qname or a list of one of more namespace URIs specified as a value of
the attribute @namespaces or both.

Each QName in the list MUST be associated with a Namespace URI. This association is performed
using the namespace declarations that are in-scope where the QName expression appears (e.g.
in the SCDL document containing sca:Filter element). Unprefixed QNames are permitted,
provided there is a default namespace declaration in-scope where the QName expression
appears. QNames that belong to no namespace are not allowed.

A filter expressed in this dialect returns true if and only if either of the following is true:

1. at least one of the QNames specified in the @qnames attribute matches the QName of the
event's Event Type. In order for a match to occur both these conditions must be true:

• The associated Namespace URI’s must contain an identical sequence of characters
when expressed as Unicode code points.

• The local parts of each QName must contain an identical sequence of characters
when expressed as Unicode code points.

2. at least one of the namespaces specified in the @namespace attribute matches the
namespace of the event’s Event Type.

SCA Event Processing Extension V1.00 April 2009 29

SCA Service Component Architecture

1147
1148

1149

1150

1151

1152

1153

1154

1155

1156
1157

1158

1159
1160

1161

1162
1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

• The Namespace URI’s must contain an identical sequence of characters when
expressed as Unicode code points.

1.13.2.1 Event Type Filter Examples

A filter that expresses interest in the events of types ns1:printer or ns2:printer:

<type qnames="ns1:printer ns2:printer" />

A filter that expresses interest in events that do not have a type metadata:

<type qnames="sca:NULL" />

A filter that expresses interest in events that either do not have type metadata or are of type
ns1:printer:

<type qnames="sca:NULL ns1:printer" />

A filter that expresses interest in events whose type belongs to one of the two namespaces
"http://example.org/ns1" or "http://example.org/ns2":

<type namespaces="http://example.org/ns1 http://example.org/ns2" />

A filter that expresses interest in events whose type belongs to the namespaces
http://example.org/ns2 or is of type ns1:printer or is untyped:

<type qnames="ns1:printer sca:NULL"

 namespaces="http://example.org/ns2" />

1.13.3 Business Data Filters

Business data filters filter events based on the business data contained within the event.

Element name: <sca:body.dialect>

The following dialects are defined - xpath1.

1.13.3.1 XPATH 1.0 Dialect

Filter element QName: <sca:body.xpath1> 1175

1176

1177
1178

1179

1180

1181

1182

1183
1184

1185

1186
1187

The Filter expression is an XPath 1.0 expression (not a predicate) whose context is:

• Context Node: the root element of the document being searched based upon the subject. In
this case (the Business Data Subject) it is the root element of the event business data.

• Context Position: 1

• Context Size: 1

• Variable Binding: None

• Function Libraries: Core function library

• Namespace Declarations: Any namespace declarations in-scope where the XPath expression
appears (e.g. in the SCDL document containing sca:Filter element)

This XPath expression can evaluate to one of four possible types: a node-set, a boolean, a
number or a string. These result types are converted to a boolean value as follows:

SCA Event Processing Extension V1.00 April 2009 30

SCA Service Component Architecture

1188

1189

1190

1191

1192

1193

1194

1195

1196
1197
1198

1199

1200
1201
1202

1203
1204

1205

• Node-set – false if no nodes, true otherwise

• boolean – no conversion

• string – false is empty string, true otherwise

• number – false if 0, true otherwise

1.13.4 Event Metadata Filters

Event metadata filters filter events based on the content of the event metadata.

Since specific event metadata is an optional feature of SCA Event Processing, it cannot be
guaranteed that an event metadata filter will find any metadata on which to operate. In this
case, at runtime the filter produces a "false" result and the event is rejected by the filter.

Element name: <sca:metadata.dialect>

Event metadata is modelled as an XML document in which each piece of metadata appears as an
immediate child element of the document root. This document is separate from the business data
portion of the event. The following dialects are defined:

• XPATH 1.0 This is the same as the XPATH 1.0 dialect used for Business data
except that the Context Node is the root of the event metadata

SCA Event Processing Extension V1.00 April 2009 31

SCA Service Component Architecture

2 Appendix 1 1206

1207

1208

1209

1210

1211

1212

1213
1214

1215

1216

2.1 XML Schemas

2.1.1 sca.xsd

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

2.1.2 sca-core.xsd

<?xml version="1.0" encoding="UTF-8"?> 1217
<!-- (c) Copyright SCA Collaboration 2006, 2007 --> 1218
<schema xmlns="http://www.w3.org/2001/XMLSchema" 1219

 targetNamespace="http://www.osoa.org/xmlns/sca/1.0" 1220
 xmlns:sca="http://www.osoa.org/xmlns/sca/1.0" 1221
 elementFormDefault="qualified"> 1222
 1223
 <element name="componentType" type="sca:ComponentType"/> 1224
 <complexType name="ComponentType"> 1225
 <sequence> 1226
 <element ref="sca:implementation" minOccurs="0" maxOccurs="1"/> 1227
 <choice minOccurs="0" maxOccurs="unbounded"> 1228
 <element name="service" type="sca:ComponentService" /> 1229
 <element name="reference" type="sca:ComponentReference"/> 1230
 <element name="property" type="sca:Property"/> 1231
 <element name="consumer" type="sca:ComponentConsumer"/> 1232
 <element name="producer" type="sca:ComponentProducer"/> 1233
 </choice> 1234
 <any namespace="##other" processContents="lax" minOccurs="0" 1235
 maxOccurs="unbounded"/> 1236
 </sequence> 1237
 <attribute name="constrainingType" type="QName" use="optional"/> 1238
 <anyAttribute namespace="##any" processContents="lax"/> 1239
 </complexType> 1240
 1241
 <element name="composite" type="sca:Composite"/> 1242
 <complexType name="Composite"> 1243
 <sequence> 1244
 <element name="include" type="anyURI" minOccurs="0" 1245
 maxOccurs="unbounded"/> 1246
 <choice minOccurs="0" maxOccurs="unbounded"> 1247
 <element name="service" type="sca:Service"/> 1248
 <element name="property" type="sca:Property"/> 1249
 <element name="component" type="sca:Component"/> 1250
 <element name="reference" type="sca:Reference"/> 1251
 <element name="wire" type="sca:Wire"/> 1252
 <element name="consumer" type="sca:Consumer"/> 1253
 <element name="producer" type="sca:Producer"/> 1254
 <element name="channel" type="sca:Channel"/> 1255
 </choice> 1256
 <any namespace="##other" processContents="lax" minOccurs="0" 1257

SCA Event Processing Extension V1.00 April 2009 32

SCA Service Component Architecture

 maxOccurs="unbounded"/> 1258
 </sequence> 1259
 <attribute name="name" type="NCName" use="required"/> 1260
 <attribute name="targetNamespace" type="anyURI" use="required"/> 1261
 <attribute name="local" type="boolean" use="optional" default="false"/> 1262
 <attribute name="autowire" type="boolean" use="optional" 1263

 default="false"/> 1264
 <attribute name="constrainingType" type="QName" use="optional"/> 1265
 <attribute name="requires" type="sca:listOfQNames" use="optional"/> 1266
 <attribute name="policySets" type="sca:listOfQNames" use="optional"/> 1267
 <anyAttribute namespace="##any" processContents="lax"/> 1268
 </complexType> 1269
 1270
 <complexType name="Service"> 1271
 <sequence> 1272
 <element ref="sca:interface" minOccurs="0" maxOccurs="1" /> 1273
 <element name="operation" type="sca:Operation" minOccurs="0" 1274
 maxOccurs="unbounded" /> 1275
 <choice minOccurs="0" maxOccurs="unbounded"> 1276
 <element ref="sca:binding" /> 1277
 <any namespace="##other" processContents="lax" 1278
 minOccurs="0" maxOccurs="unbounded" /> 1279
 </choice> 1280
 <element ref="sca:callback" minOccurs="0" maxOccurs="1" /> 1281
 <any namespace="##other" processContents="lax" minOccurs="0" 1282
 maxOccurs="unbounded" /> 1283
 </sequence> 1284
 <attribute name="name" type="NCName" use="required" /> 1285
 <attribute name="promote" type="anyURI" use="required" /> 1286
 <attribute name="requires" type="sca:listOfQNames" use="optional" /> 1287
 <attribute name="policySets" type="sca:listOfQNames" use="optional"/> 1288
 <anyAttribute namespace="##any" processContents="lax" /> 1289
 </complexType> 1290
 1291
 <element name="interface" type="sca:Interface" abstract="true" /> 1292
 <complexType name="Interface" abstract="true"/> 1293
 1294
 <complexType name="Reference"> 1295
 <sequence> 1296
 <element ref="sca:interface" minOccurs="0" maxOccurs="1" /> 1297
 <element name="operation" type="sca:Operation" minOccurs="0" 1298
 maxOccurs="unbounded" /> 1299
 <choice minOccurs="0" maxOccurs="unbounded"> 1300
 <element ref="sca:binding" /> 1301
 <any namespace="##other" processContents="lax" /> 1302
 </choice> 1303
 <element ref="sca:callback" minOccurs="0" maxOccurs="1" /> 1304
 <any namespace="##other" processContents="lax" minOccurs="0" 1305
 maxOccurs="unbounded" /> 1306
 </sequence> 1307
 <attribute name="name" type="NCName" use="required" /> 1308
 <attribute name="target" type="sca:listOfAnyURIs" use="optional"/> 1309
 <attribute name="wiredByImpl" type="boolean" use="optional" 1310

 default="false"/> 1311
 <attribute name="multiplicity" type="sca:Multiplicity" 1312
 use="optional" default="1..1" /> 1313
 <attribute name="promote" type="sca:listOfAnyURIs" use="required" /> 1314
 <attribute name="requires" type="sca:listOfQNames" use="optional" /> 1315
 <attribute name="policySets" type="sca:listOfQNames" use="optional"/> 1316

SCA Event Processing Extension V1.00 April 2009 33

SCA Service Component Architecture

 <anyAttribute namespace="##any" processContents="lax" /> 1317
 </complexType> 1318
 1319
 <complexType name="Consumer"> 1320
 <complexContent> 1321
 <extension base="sca:ComponentConsumer"> 1322
 <attribute name="promote" type="sca:listOfAnyURIs" 1323

 use="required" /> 1324
 </extension> 1325
 </complexContent> 1326
 </complexType> 1327
 1328
 <complexType name="Producer"> 1329
 <complexContent> 1330
 <extension base="sca:ComponentProducer"> 1331
 <attribute name="promote" type="sca:listOfAnyURIs" 1332

 use="required" /> 1333
 </extension> 1334
 </complexContent> 1335
 </complexType> 1336
 1337
 <complexType name="Channel"> 1338
 <sequence> 1339
 <element ref="sca:filters" minOccurs="0" maxOccurs="1" /> 1340
 <element ref="sca:binding" minOccurs="0" maxOccurs="unbounded"/> 1341
 <any namespace="##other" processContents="lax" minOccurs="0" 1342
 maxOccurs="unbounded" /> 1343
 </sequence> 1344
 <attribute name="name" type="NCName" use="required" /> 1345
 <attribute name="requires" type="sca:listOfQNames" use="optional" /> 1346
 <attribute name="policySets" type="sca:listOfQNames" use="optional"/> 1347
 <anyAttribute namespace="##any" processContents="lax" /> 1348
 </complexType> 1349
 1350
 <complexType name="SCAPropertyBase" mixed="true"> 1351
 <!-- mixed="true" to handle simple type --> 1352
 <sequence> 1353
 <any namespace="##any" processContents="lax" minOccurs="0" 1354
 maxOccurs="1" /> 1355
 <!-- NOT an extension point; This xsd:any exists to accept 1356
 the element-based or complex type property 1357
 i.e. no element-based extension point under "sca:property" 1358

--> 1359
 </sequence> 1360
 </complexType> 1361
 1362
 <!-- complex type for sca:property declaration --> 1363
 <complexType name="Property" mixed="true"> 1364
 <complexContent> 1365
 <extension base="sca:SCAPropertyBase"> 1366
 <!-- extension defines the place to hold default value --> 1367
 <attribute name="name" type="NCName" use="required"/> 1368
 <attribute name="type" type="QName" use="optional"/> 1369
 <attribute name="element" type="QName" use="optional"/> 1370
 <attribute name="many" type="boolean" default="false" 1371
 use="optional"/> 1372
 <attribute name="mustSupply" type="boolean" default="false" 1373
 use="optional"/> 1374
 <anyAttribute namespace="##any" processContents="lax"/> 1375

SCA Event Processing Extension V1.00 April 2009 34

SCA Service Component Architecture

 <!-- an extension point ; attribute-based only --> 1376
 </extension> 1377
 </complexContent> 1378
 </complexType> 1379
 1380
 <complexType name="PropertyValue" mixed="true"> 1381
 <complexContent> 1382
 <extension base="sca:SCAPropertyBase"> 1383
 <attribute name="name" type="NCName" use="required"/> 1384
 <attribute name="type" type="QName" use="optional"/> 1385
 <attribute name="element" type="QName" use="optional"/> 1386
 <attribute name="many" type="boolean" default="false" 1387
 use="optional"/> 1388
 <attribute name="source" type="string" use="optional"/> 1389
 <attribute name="file" type="anyURI" use="optional"/> 1390
 <anyAttribute namespace="##any" processContents="lax"/> 1391
 <!-- an extension point ; attribute-based only --> 1392
 </extension> 1393
 </complexContent> 1394
 </complexType> 1395
 1396
 <element name="binding" type="sca:Binding" abstract="true"/> 1397
 <complexType name="Binding" abstract="true"> 1398
 <sequence> 1399
 <element name="operation" type="sca:Operation" minOccurs="0" 1400
 maxOccurs="unbounded" /> 1401
 </sequence> 1402
 <attribute name="uri" type="anyURI" use="optional"/> 1403
 <attribute name="name" type="NCName" use="optional"/> 1404
 <attribute name="requires" type="sca:listOfQNames" use="optional"/> 1405
 <attribute name="policySets" type="sca:listOfQNames" use="optional"/> 1406
 </complexType> 1407
 1408
 <element name="bindingType" type="sca:BindingType"/> 1409
 <complexType name="BindingType"> 1410
 <sequence minOccurs="0" maxOccurs="unbounded"> 1411
 <any namespace="##other" processContents="lax" /> 1412
 </sequence> 1413
 <attribute name="type" type="QName" use="required"/> 1414
 <attribute name="alwaysProvides" type="sca:listOfQNames" use="optional"/> 1415
 <attribute name="mayProvide" type="sca:listOfQNames" use="optional"/> 1416
 <anyAttribute namespace="##any" processContents="lax"/> 1417
 </complexType> 1418
 1419
 <element name="callback" type="sca:Callback"/> 1420
 <complexType name="Callback"> 1421
 <choice minOccurs="0" maxOccurs="unbounded"> 1422
 <element ref="sca:binding"/> 1423
 <any namespace="##other" processContents="lax"/> 1424
 </choice> 1425
 <attribute name="requires" type="sca:listOfQNames" use="optional"/> 1426
 <attribute name="policySets" type="sca:listOfQNames" use="optional"/> 1427
 <anyAttribute namespace="##any" processContents="lax"/> 1428
 </complexType> 1429
 1430
 <complexType name="Component"> 1431
 <sequence> 1432
 <element ref="sca:implementation" minOccurs="0" maxOccurs="1"/> 1433
 <choice minOccurs="0" maxOccurs="unbounded"> 1434

SCA Event Processing Extension V1.00 April 2009 35

SCA Service Component Architecture

 <element name="service" type="sca:ComponentService"/> 1435
 <element name="reference" type="sca:ComponentReference"/> 1436
 <element name="property" type="sca:PropertyValue" /> 1437
 <element name="consumer" type="sca:ComponentConsumer" /> 1438
 <element name="producer" type="sca:ComponentProducer" /> 1439
 </choice> 1440
 <any namespace="##other" processContents="lax" minOccurs="0" 1441
 maxOccurs="unbounded"/> 1442
 </sequence> 1443
 <attribute name="name" type="NCName" use="required"/> 1444
 <attribute name="autowire" type="boolean" use="optional" 1445

 default="false"/> 1446
 <attribute name="constrainingType" type="QName" use="optional"/> 1447
 <attribute name="requires" type="sca:listOfQNames" use="optional"/> 1448
 <attribute name="policySets" type="sca:listOfQNames" use="optional"/> 1449
 <anyAttribute namespace="##any" processContents="lax"/> 1450
 </complexType> 1451
 1452
 <complexType name="ComponentService"> 1453
 <complexContent> 1454
 <restriction base="sca:Service"> 1455
 <sequence> 1456
 <element ref="sca:interface" minOccurs="0" 1457

 maxOccurs="1"/> 1458
 <element name="operation" type="sca:Operation" 1459

 minOccurs="0" maxOccurs="unbounded" /> 1460
 <choice minOccurs="0" maxOccurs="unbounded"> 1461
 <element ref="sca:binding"/> 1462
 <any namespace="##other" processContents="lax" 1463
 minOccurs="0" maxOccurs="unbounded"/> 1464
 </choice> 1465
 <element ref="sca:callback" minOccurs="0" 1466

 maxOccurs="1"/> 1467
 <any namespace="##other" processContents="lax" 1468

 minOccurs="0" maxOccurs="unbounded"/> 1469
 </sequence> 1470
 <attribute name="name" type="NCName" use="required"/> 1471
 <attribute name="requires" type="sca:listOfQNames" 1472
 use="optional"/> 1473
 <attribute name="policySets" type="sca:listOfQNames" 1474
 use="optional"/> 1475
 <anyAttribute namespace="##any" processContents="lax"/> 1476
 </restriction> 1477
 </complexContent> 1478
 </complexType> 1479
 1480
 <complexType name="ComponentReference"> 1481
 <complexContent> 1482
 <restriction base="sca:Reference"> 1483
 <sequence> 1484
 <element ref="sca:interface" minOccurs="0" maxOccurs="1" 1485

 /> 1486
 <element name="operation" type="sca:Operation" 1487

 minOccurs="0" maxOccurs="unbounded" /> 1488
 <choice minOccurs="0" maxOccurs="unbounded"> 1489
 <element ref="sca:binding" /> 1490
 <any namespace="##other" processContents="lax" /> 1491
 </choice> 1492
 <element ref="sca:callback" minOccurs="0" maxOccurs="1" 1493

SCA Event Processing Extension V1.00 April 2009 36

SCA Service Component Architecture

 /> 1494
 <any namespace="##other" processContents="lax" 1495

 minOccurs="0" maxOccurs="unbounded" /> 1496
 </sequence> 1497
 <attribute name="name" type="NCName" use="required" /> 1498
 <attribute name="autowire" type="boolean" use="optional" 1499
 default="false"/> 1500
 <attribute name="wiredByImpl" type="boolean" use="optional" 1501
 default="false"/> 1502
 <attribute name="target" type="sca:listOfAnyURIs" 1503

 use="optional"/> 1504
 <attribute name="multiplicity" type="sca:Multiplicity" 1505
 use="optional" default="1..1" /> 1506
 <attribute name="requires" type="sca:listOfQNames" 1507

 use="optional"/> 1508
 <attribute name="policySets" type="sca:listOfQNames" 1509
 use="optional"/> 1510
 <anyAttribute namespace="##any" processContents="lax" /> 1511
 </restriction> 1512
 </complexContent> 1513
 </complexType> 1514
 1515

<complexType name="ComponentConsumer"> 1516
 <sequence> 1517
 <element ref="sca:filters" minOccurs="0" maxOccurs="1" /> 1518
 <element ref="sca:binding" minOccurs="0" maxOccurs="unbounded”/> 1519
 <any namespace="##other" processContents="lax" minOccurs="0" 1520
 maxOccurs="unbounded" />< 1521
 </sequence> 1522
 <attribute name="name" type="NCName" use="required" /> 1523
 <attribute name="requires" type="sca:listOfQNames" use="optional" /> 1524
 <attribute name="policySets" type="sca:listOfQNames" use="optional"/> 1525
 <anyAttribute namespace="##any" processContents="lax" /> 1526
 </complexType> 1527
 1528
 <complexType name="ComponentProducer"> 1529
 <sequence> 1530
 <element ref="sca:binding" minOccurs="0" maxOccurs="unbounded”/> 1531
 <any namespace="##other" processContents="lax" minOccurs="0" 1532
 maxOccurs="unbounded" />< 1533
 </sequence> 1534
 <attribute name="name" type="NCName" use="required" /> 1535
 <attribute name="requires" type="sca:listOfQNames" use="optional" /> 1536
 <attribute name="policySets" type="sca:listOfQNames" use="optional"/> 1537
 <attribute name="typeNames" type="sca:listOfQNames" use="optional"/> 1538
 <attribute name="typeNamespaces" type="sca:listOfAnyURIs" use="optional"/> 1539
 <anyAttribute namespace="##any" processContents="lax" /> 1540
 </complexType> 1541
 1542
 <element name="implementation" type="sca:Implementation" 1543
 abstract="true" /> 1544
 <complexType name="Implementation" abstract="true"> 1545
 <attribute name="requires" type="sca:listOfQNames" use="optional"/> 1546
 <attribute name="policySets" type="sca:listOfQNames" use="optional"/> 1547
 </complexType> 1548
 1549
 <element name="implementationType" type="sca:ImplementationType"/> 1550
 <complexType name="ImplementationType"> 1551
 <sequence minOccurs="0" maxOccurs="unbounded"> 1552

SCA Event Processing Extension V1.00 April 2009 37

SCA Service Component Architecture

 <any namespace="##other" processContents="lax" /> 1553
 </sequence> 1554
 <attribute name="type" type="QName" use="required"/> 1555
 <attribute name="alwaysProvides" type="sca:listOfQNames" use="optional"/> 1556
 <attribute name="mayProvide" type="sca:listOfQNames" use="optional"/> 1557
 <anyAttribute namespace="##any" processContents="lax"/> 1558
 </complexType> 1559
 1560
 <complexType name="Wire"> 1561
 <sequence> 1562
 <any namespace="##other" processContents="lax" minOccurs="0" 1563
 maxOccurs="unbounded"/> 1564
 </sequence> 1565
 <attribute name="source" type="anyURI" use="required"/> 1566
 <attribute name="target" type="anyURI" use="required"/> 1567
 <anyAttribute namespace="##any" processContents="lax"/> 1568
 </complexType> 1569
 1570
 <element name="include" type="sca:Include"/> 1571
 <complexType name="Include"> 1572
 <attribute name="name" type="QName"/> 1573
 <anyAttribute namespace="##any" processContents="lax"/> 1574
 </complexType> 1575
 1576
 <complexType name="Operation"> 1577
 <attribute name="name" type="NCName" use="required"/> 1578
 <attribute name="requires" type="sca:listOfQNames" use="optional"/> 1579
 <attribute name="policySets" type="sca:listOfQNames" use="optional"/> 1580
 <anyAttribute namespace="##any" processContents="lax"/> 1581
 </complexType> 1582
 1583
 <element name="constrainingType" type="sca:ConstrainingType"/> 1584
 <complexType name="ConstrainingType"> 1585
 <sequence> 1586
 <choice minOccurs="0" maxOccurs="unbounded"> 1587
 <element name="service" type="sca:ComponentService"/> 1588
 <element name="reference" type="sca:ComponentReference"/> 1589
 <element name="property" type="sca:Property" /> 1590
 </choice> 1591
 <any namespace="##other" processContents="lax" minOccurs="0" 1592
 maxOccurs="unbounded"/> 1593
 </sequence> 1594
 <attribute name="name" type="NCName" use="required"/> 1595
 <attribute name="targetNamespace" type="anyURI"/> 1596
 <attribute name="requires" type="sca:listOfQNames" use="optional"/> 1597
 <anyAttribute namespace="##any" processContents="lax"/> 1598
 </complexType> 1599
 1600
 1601
 <simpleType name="Multiplicity"> 1602
 <restriction base="string"> 1603
 <enumeration value="0..1"/> 1604
 <enumeration value="1..1"/> 1605
 <enumeration value="0..n"/> 1606
 <enumeration value="1..n"/> 1607
 </restriction> 1608
 </simpleType> 1609
 1610
 <simpleType name="OverrideOptions"> 1611

SCA Event Processing Extension V1.00 April 2009 38

SCA Service Component Architecture

 <restriction base="string"> 1612
 <enumeration value="no"/> 1613
 <enumeration value="may"/> 1614
 <enumeration value="must"/> 1615
 </restriction> 1616
 </simpleType> 1617
 1618
 <!-- Global attribute definition for @requires to permit use of intents 1619
 within WSDL documents --> 1620
 <attribute name="requires" type="sca:listOfQNames"/> 1621
 1622
 <!-- Global attribute defintion for @endsConversation to mark operations 1623
 as ending a conversation --> 1624
 <attribute name="endsConversation" type="boolean" default="false"/> 1625
 1626
 <simpleType name="listOfQNames"> 1627
 <list itemType="QName"/> 1628
 </simpleType> 1629
 1630
 <simpleType name="listOfAnyURIs"> 1631
 <list itemType="anyURI"/> 1632
 </simpleType> 1633
 1634
 <element name="filters" type="sca:Filter"/> 1635
 <complexType name="Filter"> 1636
 <sequence> 1637
 <choice minOccurs="0" maxOccurs="unbounded"> 1638
 <element ref="sca:type" /> 1639
 <element ref="sca:body.xpath1" /> 1640
 <element ref="sca:metadata.xpath1" /> 1641
 </choice> 1642
 <any namespace="##other" processContents="lax" minOccurs="0" 1643
 maxOccurs="unbounded"/> 1644
 </sequence> 1645
 <anyAttribute namespace="##other" processContents="lax"/> 1646
 </complexType> 1647
 1648
 <element name="type" type="sca:Type"/> 1649
 <complexType name="Type"> 1650
 <sequence> 1651
 <any namespace="##other" processContents="lax" minOccurs="0" 1652
 maxOccurs="unbounded"/> 1653
 </sequence> 1654
 <attribute name="qnames" type="sca:listOfQNames" /> 1655
 <attribute name="namespaces" type="sca:listOfAnyURIs" /> 1656
 <anyAttribute namespace="##other" processContents="lax" /> 1657
 </complexType> 1658
 1659
 <element name="body.xpath1" type="string" /> 1660
 1661
 <element name="metadata.xpath1" type="string" /> 1662
 1663
</schema> 1664

1665

1666

1667

1668

2.1.3 sca-binding-sca.xsd

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

SCA Event Processing Extension V1.00 April 2009 39

SCA Service Component Architecture

1669

1670

1671

1672
1673

1674

1675

1676
1677

1678

1679

1680
1681

1682

1683

1684
1685

1686

1687

1688

1689

1690

1691

2.1.4 sca-interface-java.xsd

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

2.1.5 sca-interface-wsdl.xsd

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

2.1.6 sca-implementation-java.xsd

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

2.1.7 sca-implementation-composite.xsd

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

2.1.8 sca-definitions.xsd

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

2.1.9 sca-binding-webservice.xsd

1692

1693

1694

1695

Is described in the SCA Web Services Binding specification [9]

2.1.10 sca-binding-jms.xsd

1696

1697

1698

1699

Is described in the SCA JMS Binding specification [11]

2.1.11 sca-policy.xsd

1700

1701

1702

1703

Is described in the SCA Policy Framework specification [10]

2.1.12 sca-eventDefinition.xsd

<?xml version="1.0" encoding="UTF-8"?> 1704
<!-- (c) Copyright SCA Collaboration 2009 --> 1705
<schema xmlns="http://www.w3.org/2001/XMLSchema" 1706
 targetNamespace="http://www.osoa.org/xmlns/sca/1.0" 1707
 xmlns:sca="http://www.osoa.org/xmlns/sca/1.0" 1708
 elementFormDefault="qualified"> 1709
 1710

SCA Event Processing Extension V1.00 April 2009 40

SCA Service Component Architecture

 <element name="eventDefinitions" type="sca:EventDefinitions" /> 1711
 <complexType name="EventDefinitions" > 1712
 <sequence> 1713
 <element ref="sca:eventType" minOccurs="0" maxOccurs="unbounded" 1714

 /> 1715
 <any namespace="##other" processContents="lax" minOccurs="0" 1716
 maxOccurs="unbounded"/> 1717
 </sequence> 1718
 <attribute name="targetNamespace" type="anyURI" use="required" /> 1719
 <anyAttribute namespace="##other" processContents="lax" /> 1720
 </complexType> 1721
 1722
 <element name="eventType" type="sca:EventType" abstract="true" /> 1723
 <complexType name="EventType" abstract="true" > 1724
 <attribute name="name" type="NCName" /> 1725
 </complexType> 1726
 1727
 <element name="eventType.xsd" type="sca:XSDEventType" 1728
 substitutionGroup="sca:eventType" /> 1729
 <complexType name="XSDEventType" > 1730
 <complexContent> 1731
 <extension base="sca:EventType"> 1732
 <attribute name="element" type="QName" use="required"/> 1733
 <anyAttribute namespace="##other" processContents="lax"/> 1734
 </extension> 1735
 </complexContent> 1736
 </complexType> 1737
 1738
</schema> 1739

1740

SCA Event Processing Extension V1.00 April 2009 41

SCA Service Component Architecture

1741

1742

1743
1744

2.2 SCA Concepts

This section remains unchanged from the original OSOA SCA Assembly Specification V1.00 [1].

SCA Event Processing Extension V1.00 April 2009 42

SCA Service Component Architecture

3 Java Implementation Type 1745

1746

1747
1748
1749
1750
1751

1752
1753
1754

1755
1756
1757
1758
1759

1760

1761

1762

1763
1764

1765
1766
1767
1768
1769

1770
1771
1772

1773
1774
1775
1776
1777
1778
1779

1780
1781
1782

1783
1784
1785
1786

This appendix describes an outline of how SCA Event Processing capabilities are handled for
implementations that are written in the Java language. This section is not normative and is provided
for information only. Once the SCA Assembly extensions for Event Processing are accepted, it is
anticipated that the SCA Java Implementation specifications will be modified and extended to
describe these capabilities normatively.

The Java Implementation for Event Processing is an extension of the standard SCA Java
Implementation model. All the standard SCA Java implementation features continue to be available
to Java implementations. The following features are added:

• Ability to define one or more methods of the implementation class to be consumer
methods, consuming one or more event types

• Ability to define a field or setter method of the implementation class as an event producer,
with one or more business methods producing one or more event types

• Ability to define event types as Java POJO classes

3.1 Event Consumer methods

Where a Java implementation needs to receive events and process them, it declares one or more
methods of the implementation as event consumer methods.

Each method of the implementation that is a consumer for events is annotated with a
@Consumer annotation. Each method with a @Consumer annotation must have a void return
type and a single parameter that is either a specific event type or a superclass of one or more
event types, including java.lang.Object, which is treated as the supertype of all event types. The
@Consumer annotation has the consumer name as a required parameter.

Where a consumer method handles more than one event type, the set of event types accepted
by the method can optionally be declared using the @EventTypes annotation on the method.
The @EventTypes annotation contains a list of one or more event type names.

Multiple methods of the implementation can be annotated with the @Consumer annotation.
Where the @Consumer annotations have different consumer names, each method is treated as a
separate consumer, receiving different streams of events. Where two or more @Consumer
annotations have the same consumer name, all the methods with the same consumer name are
handled as part of a single consumer, sharing a single event stream. Where multiple methods
are declared to belong to the same consumer, each method MUST deal with a separate set of
event types - any event received by the implementation is only sent to one of the methods.

Each consumer forms part of the Java implementation's component type and is configured to
receive events from (zero or more) event producers by the component which uses the
implementation.

The following example is a Java class with a single method someBusinessMethod which is
annotated with @Consumer, with the consumer name set to ExampleConsumer. In this case
the event type accepted by the method is defined by the parameter of the method being a class
that is annotated with the @EventType annotation.

public class ConsumerExample { 1787

 1788

SCA Event Processing Extension V1.00 April 2009 43

SCA Service Component Architecture

 @Consumer(ExampleConsumer) 1789

 public void someBusinessMethod(ExampleEvent theEvent) { 1790

 String businessData = theEvent.eventData; 1791

 // do business processing... 1792

 } // end method someBusinessMethod 1793

 1794

} // end class 1795

 1796

1797

1798

1799
1800
1801

1802
1803
1804
1805

1806
1807
1808
1809

1810
1811
1812
1813
1814

1815
1816
1817
1818

1819

3.2 Event Producers

Where a Java implementation needs to produce and send events for others to consumer, it
declares an event producer, which is identified as a Field or a Setter method annotated with a
@Producer annotation.

It is required that the Field or Setter method annotated with @Producer is typed by a Java
interface. The Java interface must have one or more methods, each of which has a void return
type and a single parameter that is either a specific event type or a superclass of one or more
event types, including java.lang.Object, which is treated as the supertype of all event types.

Where a producer method handles more than one event type, the set of event types produced by
the method can be declared using the @EventTypes annotation on the method. The
@EventTypes annotation contains a list of one or more event type names. This is particularly
useful if the formal method parameter is some general type such as java.lang.Object.

The @Producer annotation has the producer name as a required parameter. Multiple fields
and/or setter methods can be annotated with the @Producer annotation, but each one MUST use
a unique producer name. Each distinct producer represents a different stream of events. Each
producer forms part of the component type of the Java implementation and is configured to send
events to (zero or more) event consumers by the component which uses the implementation.

The following example is a Java class with a setter method called setEventProducer which is
annotated with @Producer and which is given the producer name ExampleEvent. The event
type handled by this producer is declared as the parameter of the produceExampleEvent
method in the ExampleProducer interface.

@Remotable 1820
public interface ExampleProducer { 1821
 1822
 void produceExampleEvent(ExampleEvent theEvent); 1823
 1824
} // end interface ExampleProducer 1825
 1826
@EventType(ExampleEvent) 1827

1828

public class ExampleEvent { 1829
 1830
 public String eventData; 1831
 1832
} // end class ExampleEvent 1833

1834

public class ProducerExample { 1835

SCA Event Processing Extension V1.00 April 2009 44

SCA Service Component Architecture

 1836
 private ExampleProducer eventProducer; 1837
 1838
 @Producer(ExampleEvent) 1839
 public void setEventProducer(ExampleProducer theProducer) { 1840
 eventProducer = theProducer; 1841
 return; 1842
 } // end method setEventProducer 1843
 1844
 public void someBusinessMethod() { 1845
 theEvent = new ExampleEvent(); 1846
 theEvent.eventData = "Some Data"; 1847
 eventProducer.produceExampleEvent(theEvent); 1848
 } // end method someBusinessMethod 1849
 1850
} // end class 1851

1852

1853

1854

1855
1856
1857

3.3 Event Types

Event types are defined through Java classes which are annotated with a @EventType
annotation. The @EventType annotation has a single parameter which is the name of the event
type.

@EventType(ExampleEventType) 1858

public class ExampleEvent { 1859

 1860

 public String eventData; 1861

 1862

} // end class ExampleEvent 1863

1864

1865
1866
1867

1868
1869

1870
1871

1872
1873
1874
1875
1876

The name may be:

• unqualified, in which case the EventType name is qualified by the package name of the Java
class itself

• qualified, in which case the EventType name is used as it is declared

Note that the Event Type name maps to an XSD QName using the Java-to-WSDL mapping as
defined by JAX-WS.

The Event type(s) handled by a consumer method or a producer method is defined in one of two
ways:

1. The method has a parameter that is of a class annotated with the @EventType annotation (of
a single event type)

2. The method is itself annotated with the @EventTypes annotation for one or more event types
- where the method parameter is of some generic type such as java.lang.Object which does
not directly specify an EventType

SCA Event Processing Extension V1.00 April 2009 45

SCA Service Component Architecture

SCA Event Processing Extension V1.00 April 2009 46

4 References 1877

1878
1879

[1] SCA Assembly Model Specification
http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf 1880

1881
1882

[2] SCA Assembly Model Specification Version 1.1
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.pdf 1883

1884
1885

[3] SCA Example Code document
http://www.osoa.org/download/attachments/28/SCA_BuildingYourFirstApplication_V09.pdf 1886

1887
1888

[4] JAX-WS Specification
http://jcp.org/en/jsr/detail?id=101 1889

1890
1891

[5] WS-I Basic Profile
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile 1892

1893
1894

[6] WS-I Basic Security Profile
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicsecurity 1895

1896
1897

[7] Business Process Execution Language (BPEL)
http://www.oasis-open.org/committees/documents.php?wg_abbrev=wsbpel 1898

1899
1900

[8] WSDL Specification
WSDL 1.1: http://www.w3.org/TR/wsdl 1901
WSDL 2.0: http://www.w3.org/TR/wsdl20/ 1902

1903
1904

[9] SCA Web Services Binding Specification
http://www.osoa.org/download/attachments/35/SCA_WebServiceBindings_V100.pdf 1905

1906
1907

[10] SCA Policy Framework Specification
http://www.osoa.org/download/attachments/35/SCA_Policy_Framework_V100.pdf 1908

1909
1910

[11] SCA JMS Binding Specification
http://www.osoa.org/download/attachments/35/SCA_JMSBinding_V100.pdf 1911

1912
1913

[12] ZIP Format Definition
http://www.pkware.com/documents/casestudies/APPNOTE.TXT 1914

1915

http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf
http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-1.1-spec.pdf
http://www.osoa.org/download/attachments/28/SCA_BuildingYourFirstApplication_V09.pdf
http://jcp.org/en/jsr/detail?id=101
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicsecurity
http://www.oasis-open.org/committees/documents.php?wg_abbrev=wsbpel
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20/
http://www.osoa.org/download/attachments/35/SCA_WebServiceBindings_V100.pdf
http://www.osoa.org/download/attachments/35/SCA_Policy_Framework_V100.pdf
http://www.osoa.org/download/attachments/35/SCA_JMSBinding_V100.pdf
http://www.pkware.com/documents/casestudies/APPNOTE.TXT

	Copyright Notice
	License
	Status of this Document
	1 Assembly Model – Event Processing and Pub/Sub Extensions
	1.1 Introduction
	1.1.1 Terminology
	1.1.2 Event Processing Overview

	1.2 Overview
	1.2.1 Diagrams used to represent SCA Artifacts
	1.2.2 Connections from Producers to Consumers
	1.2.2.1 Linking Producers to Consumers
	1.2.2.2 Producers, Consumers and Composites

	1.2.3 Event Processing Examples
	1.2.3.1 Multiple Producers linked to multiple Consumers via a Channel - within a Composite
	1.2.3.2 Producers linked to Consumers via Domain Channels
	1.2.3.3 Composite with Promotion of Producers and Consumers

	1.3 Component
	1.3.1 Example Component
	1.3.2 Declaration of Event Types on Producers and Consumers

	1.4 Implementation
	1.4.1 Component Type
	1.4.1.1 Example ComponentType
	1.4.1.2 Example Implementation

	1.5 Interface
	1.6 Composite
	1.6.1 Property – Definition and Configuration
	1.6.2 References
	1.6.3 Service
	1.6.4 Wire
	1.6.5 Using Composites as Component Implementations
	1.6.6 Using Composites through Inclusion
	1.6.7 Composites which Include Component Implementations of Multiple Types
	1.6.8 ConstrainingType
	1.6.9 Producer
	1.6.10 Consumer

	1.7 Binding
	1.8 SCA Definitions
	1.9 Extension Model
	1.10 Packaging and Deployment
	1.11 Channels
	1.11.1 Scopes of Channels
	1.11.2 The Default Domain Channel
	1.11.3 The URI of a Channel

	1.12 Representation of Events and Event Types in SCA
	1.12.1 Event Type and Associated Metadata
	1.12.2 Format of Event Type Definitions
	1.12.3 Events with No Event Type

	1.13 Filters: Selecting Subsets of Events
	1.13.1 Form of Explicit Filter Elements
	1.13.2 Event Type Filters
	1.13.2.1 Event Type Filter Examples

	1.13.3 Business Data Filters
	1.13.3.1 XPATH 1.0 Dialect

	1.13.4 Event Metadata Filters

	2 Appendix 1
	2.1 XML Schemas
	2.1.1 sca.xsd
	2.1.2 sca-core.xsd
	2.1.3 sca-binding-sca.xsd
	2.1.4 sca-interface-java.xsd
	2.1.5 sca-interface-wsdl.xsd
	2.1.6 sca-implementation-java.xsd
	2.1.7 sca-implementation-composite.xsd
	2.1.8 sca-definitions.xsd
	2.1.9 sca-binding-webservice.xsd
	2.1.10 sca-binding-jms.xsd
	2.1.11 sca-policy.xsd
	2.1.12 sca-eventDefinition.xsd

	2.2 SCA Concepts

	3 Java Implementation Type
	3.1 Event Consumer methods
	3.2 Event Producers
	3.3 Event Types

	4 References

