
 i

SSSCCCAAA SSSeeerrrvvviiiccceee CCCooommmpppooonnneeennnttt AAArrrccchhhiiittteeeccctttuuurrreee

Client and Implementation Model Specification

for WS-BPEL

SCA Version 1.00, March 21 2007

Technical Contacts: Martin Chapman Oracle

Sabin Ielceanu TIBCO Software Inc.

Dieter Koenig IBM Corporation

Michael Rowley BEA Systems, Inc.

Ivana Trickovic SAP AG

Alex Yiu Oracle

SCA Service Component Architecture

WS-BPEL Client and Implementation Specification 1.00 March 2007 ii

Copyright Notice

© Copyright BEA Systems, Inc., Cape Clear Software, International Business Machines Corp, Interface21, IONA Technologies,
Oracle, Primeton Technologies, Progress Software, Red Hat, Rogue Wave Software, SAP AG., Siemens AG., Software AG., Sun
Microsystems, Inc., Sybase Inc., TIBCO Software Inc., 2005, 2007. All rights reserved.

License

The Service Component Architecture Specification is being provided by the copyright holders under the following
license. By using and/or copying this work, you agree that you have read, understood and will comply with the
following terms and conditions:

Permission to copy and display the Service Component Architecture Specification and/or portions thereof,
without modification, in any medium without fee or royalty is hereby granted, provided that you include the
following on ALL copies of the Service Component Architecture Specification, or portions thereof, that you
make:

1. A link or URL to the Service Component Architecture Specification at this location:

• http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

2. The full text of this copyright notice as shown in the Service Component Architecture Specification.

BEA, Cape Clear, IBM, Interface21, IONA, Oracle, Primeton, Progress Software, Red Hat, Rogue Wave, SAP,
Siemens AG.,Software AG., Sun, Sybase, TIBCO (collectively, the “Authors”) agree to grant you a royalty-free
license, under reasonable, non-discriminatory terms and conditions to patents that they deem necessary to
implement the Service Component Architecture Specification.

THE Service Component Architecture SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS SPECIFICATION AND THE
IMPLEMENTATION OF ITS CONTENTS, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT OR TITLE.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THE SERVICE COMPONENT
ARCHITECTURE SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including advertising or publicity
pertaining to the Service Component Architecture Specification or its contents without specific, written prior
permission. Title to copyright in the Service Component Architecture Specification will at all times remain with
the Authors.

No other rights are granted by implication, estoppel or otherwise.

http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

SCA Service Component Architecture

WS-BPEL Client and Implementation Specification 1.00 March 2007 iii

Status of this Document
This specification may change before final release and you are cautioned against relying on the content of this
specification. The authors are currently soliciting your contributions and suggestions. Licenses are available for
the purposes of feedback and (optionally) for implementation.

IBM is a registered trademark of International Business Machines Corporation in the United States, other
countries, or both.

BEA is a registered trademark of BEA Systems, Inc.

Cape Clear is a registered trademark of Cape Clear Software

IONA and IONA Technologies are registered trademarks of IONA Technologies plc.

Oracle is a registered trademark of Oracle USA, Inc.

Progress is a registered trademark of Progress Software Corporation

Primeton is a registered trademark of Primeton Technologies, Ltd.

Red Hat is a registered trademark of Red Hat Inc.

Rogue Wave is a registered trademark of Quovadx, Inc

SAP is a registered trademark of SAP AG.

SIEMENS is a registered trademark of SIEMENS AG

Software AG is a registered trademark of Software AG

Sun and Sun Microsystems are registered trademarks of Sun Microsystems, Inc.

Sybase is a registered trademark of Sybase, Inc.

TIBCO is a registered trademark of TIBCO Software Inc.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

SCA Service Component Architecture

WS-BPEL Client and Implementation Specification 1.00 March 2007 iv

Table of Contents

Copyright Notice .. ii
License ... ii
Status of this Document ... iii

1. WS-BPEL Client and Implementation Model ..1
1.1. Goals ..1
1.2. WS-BPEL Processes as Component Implementations ..1
1.3. Component Types defined by WS-BPEL Processes..2

1.3.1. Services and References...2
1.3.2. PartnerLinkTypes and SCA Interfaces ...3
1.3.3. Specifying an SCA interface with a partnerLinkType ...4
1.3.4. Handling of Local PartnerLinks ..5
1.3.5. Support for conversational interfaces ...5

1.4. SCA Extensions to WS-BPEL ...5
1.4.1. Properties ..6
1.4.2. Multi-Valued References ...6

1.5. Using BPEL4WS 1.1 with SCA ...8
2. Appendix...9

2.1. XML Schema ..9
2.2. References... 11

SCA Service Component Architecture

WS-BPEL Client and Implementation Specification 1.00 March 2007 1

1. WS-BPEL Client and Implementation Model 1

 2

1.1. Goals 3

 4

The SCA WS-BPEL Client and Implementation model specifies how WS-BPEL 2.0 can be used with SCA. The 5
goal of the specification is to address the following scenarios. 6

Start from WS-BPEL process. It should be possible to use any valid WS-BPEL process definition as the 7
implementation of a component within SCA. In particular, it should be possible to generate an SCA 8
Component Type from any WS-BPEL process definition and use that type within an SCA assembly. Most 9
BPEL4WS 1.1 process definitions may also be used with SCA by using the backward compatibility approach 10
described in section 1.5. 11

Start from SCA Component Type. It should be possible to use WS-BPEL to implement any SCA 12
Component Type that uses only WSDL interfaces to define services and references, possibly with some SCA 13
specific extensions used in process definition. 14

Start from WS-BPEL with SCA extensions. It should be possible to create a WS-BPEL process definition 15
that uses SCA extensions and generate an SCA Component Type and use that type within an SCA assembly. 16
Some SCA capabilities (such as properties and multi-party references) can only be used by WS-BPEL 17
process definitions that use SCA extensions. 18

 19

1.2. WS-BPEL Processes as Component Implementations 20

A WS-BPEL process definition may be used as the implementation of an SCA component. 21

WS-BPEL

Component

services

references

properties

Implementation

… …

WS-BPEL

Component

services

references

properties

Implementation

… …

 22

 23

Such a component definition has the following form: 24

 25

 <component name="xs:NCName">* 26
 <implementation.bpel process=”xs:QName”/> 27
 <property name="xs:NCName" source="xs:string"? file="xs:anyURI"?>* 28
 property-value? 29
 </property> 30
 <reference name="xs:NCName"/>* 31
 wire-target-URI 32
 </reference> 33
 </component> 34
 35

SCA Service Component Architecture

WS-BPEL Client and Implementation Specification 1.00 March 2007 2

The only aspect of this that is specific to WS-BPEL is the <implementation.bpel> element. The process 36
attribute of that element specifies the target QName of some executable WS-BPEL process. 37

 38

1.3. Component Types defined by WS-BPEL Processes 39

While a WS-BPEL process definition provides an implementation that can be used by a component, the 40
process definition also determines the ComponentType of any SCA component that uses that 41
implementation. The component type represents the aspects of the implementation that SCA needs to be 42
aware of in order to support assembly and deployment of components that use that implementation. The 43
generic form of a component type is defined in the SCA Assembly Specification [1] as follows: 44

 45

<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0" > 46
 47
 <service name="xs:NCName">* 48
 <interface/> 49
 </service> 50
 51
 <reference name="xs:NCName" override="sca:OverrideOptions"? 52
 multiplicity="0..1 or 1..1 or 0..n or 1..n"?>* 53
 <interface/> 54
 </reference> 55
 56
 <property name="xs:NCName" (type="xs:QName" | element="xs:QName") 57
 many="xs:boolean"? required="xs:boolean"?>* 58
 default-property-value? 59
 </property> 60
 61
</componentType> 62
 63

The component type MAY be generated from a WS-BPEL process definition by introspection. 64

 65

1.3.1. Services and References 66

In SCA, both services and references correspond to WS-BPEL’s concept of partner link. In SCA, the 67
difference between a service and a reference is determined by which party sends the first message in a 68
conversation. No matter of how many messages a bi-directional conversation involves or how long it takes, 69
there is always a first message. The sender of the first message is considered to be the client and the 70
receiver is the service provider. Messages that go from the service provider to the client are called callback 71
messages. 72

WS-BPEL’s partner links are not differentiated based on who sends the first message. So, in order to map a 73
WS-BPEL process to an SCA Component Type, it is necessary to determine which role sends the first 74
message. A simple static analysis of the control flow, which does not involve determining the values of any 75
expressions, will be used to determine which role can send the first message. 76

SCA Service Component Architecture

WS-BPEL Client and Implementation Specification 1.00 March 2007 3

WS-BPEL Process

flow

invoke

reply

partnerLink A partnerLink B

service
A

reference
B

receive
wire

wire

 77

 78

Services: If a static analysis of the process determines that it is possible that the first message for a 79
partner link will be received in a <receive> activity, the <onMessage> element of a <pick> activity or 80
the <onEvent> element of an event handler then the partner link has a corresponding SCA service in the 81
component type. If the partner link declaration has initializePartnerRole="yes", then the service 82
must be wired using a binding that knows the identity of the partner as soon as the partner link becomes 83
active (e.g. the binding cannot depend on using a “reply-to” field as the mechanism to initialize partner 84
role.). 85

References: If a static analysis of the process does not determine that the partner link should map to an 86
SCA service, then the partner link is mapped to an SCA reference in the component type. 87

The multiplicity of the reference is determined by the following algorithm: 88

1. Multi-Reference. If the partner link is declared with sca:multiRefFrom="aVariableName" 89
extension, the multiplicity of the SCA reference will be determined by the multiplicity attribute 90
of sca:multiReference extension used in the corresponding variable. The multiplicity 91
declaration of the variable which is either 0..n or 1..n. Details of these extensions are described in 92
section 1.4.2. 93

2. Required Reference. If not (1) and the partner link has initializePartnerRole="yes", then 94
the multiplicity is 1..1 (i.e. it’s a required reference). 95

3. Stub Reference. If not (1) or (2) and if the analysis of the process determines that the first use of 96
the partner link by any activity is in an assign activity that sets the partner role, then the 97
multiplicity is “0..1” and the attribute wiredByImpl is set to “true”. A reference with 98
wiredByImpl=”true” is referred to as a stub reference. Although the target can’t be set for such 99
a reference, SCA can still apply bindings and policies to it and may need to set the endpoint address 100
for callbacks, if the interface is bi-directional. 101

4. Optional Reference. If not (1) or (2) or (3) then the multiplicity=”0..1”. 102

 103

For both services and references, the name of the service or reference is the name partner link, when that 104
name is unique (see the “Handling Local Partner Links” section below, for how to handle ambiguous cases). 105

 106

1.3.2. PartnerLinkTypes and SCA Interfaces 107

When a partner link is determined to correspond to an SCA service, the type of the service is determined by 108
the partner link type of the partner link. The role that the partner link specified as myRole provides the 109
WSDL port type of the service. If the partner link type has two roles, then the partnerRole provides the 110
WSDL port type of the callback interface. 111

SCA Service Component Architecture

WS-BPEL Client and Implementation Specification 1.00 March 2007 4

Consider an example that uses one of the partner link types used as an example in the WS-BPEL 112
specification. The partner link type definition is: 113

<plnk:partnerLinkType name="invoicingLT"> 114
 <plnk:role name="invoiceService" 115
 portType="pos:computePricePT"/> 116
 <plnk:role name="invoiceRequester" 117
 portType="pos:invoiceCallbackPT"/> 118
</plnk:partnerLinkType> 119
 120

The “invoiceProcess”, which provides invoice services, would define a partner link that uses that type with a 121
declaration that would look like: 122

 <partnerLink name="invoicing" 123
 partnerLinkType="lns:invoicingLT" 124
 myRole="invoiceService" 125
 partnerRole="invoiceRequester"/> 126
 127

Somewhere in the process, a start activity would use that partner link, which might look like: 128

 <receive partnerLink="invoicing" 129
 portType="pos:computePricePT" 130
 operation="initiatePriceCalculation" 131
 variable="PO" 132
 createInstance="yes" /> 133

 134

Because the partner link is used in a start activity, SCA maps that partner link to a service for on the 135
component type. In this case, the service element of the component type would be: 136

 <service name="invoicing"> 137
 <interface.wsdl 138
 interface="http://manufacturing.org/wsdl/purchase# 139

 wsdl.interface(computePricePT)" 140
 callbackInterface="http://manufacturing.org/wsdl/purchase# 141

 wsdl.interface(invoiceCallbackPT)"/> 142
 </service> 143

Conversely, when a partner link is determined to correspond to an SCA reference, the role that the partner 144
link specified as partnerRole provides the WSDL port type of the reference. If the partner link type has two 145
roles, then the myRole provides the WSDL port type of the callback interface. 146

1.3.3. Specifying an SCA interface with a partnerLinkType 147

In the approach described above, the SCA definition of service and reference uses the <interface.wsdl> 148
which restates the association between the interface and the callback interface that is already present in the 149
WS-BPEL partnerLinkType. A partnerLinkType defines the relationship between two services by specifying 150
roles the services play in the conversation. A partnerLinkType specifies at least one role. 151

For users that prefer this WS-BPEL element, it is also possible to define interfaces with an alternative 152
partnerLinkType form of an interface type. This form does not provide any more information than is 153
present in the <interface.wsdl> element The example above would look like the following: 154

 <interface.partnerLinkType type="lns:invoicingLT" 155
 serviceRole="invoiceService"/> 156
 157

The generic form of this interface type definition is as follows: 158

<interface.partnerLinkType type="xs:QName" 159
 serviceRole="xs:NCName"?/> 160

 161

SCA Service Component Architecture

WS-BPEL Client and Implementation Specification 1.00 March 2007 5

The type attribute is mandatory and references a partner link type. In case the partner link type has two 162
roles, the optional attribute serviceRole MUST be used to specify which of the two roles is used as the 163
interface. The other role is used as the callback. If the partnerLinkType has only one role, it cannot be a 164
callback. Moreover, the serviceRole attribute MAY be omitted. 165

This form has a couple advantages over the interface.wsdl form. It is more concise. It also doesn’t restate 166
the link between the interface and the callbackInterface, so with this form, the partnerLinkType could 167
change the portType used to define one of the roles and all of the SCA componentTypes that use that 168
partnerLinkType would remain accurate without having to also change the interface definitions for those 169
componentTypes. This form also may be more familiar to some users. 170

 171

1.3.4. Handling of Local PartnerLinks 172

It is possible to declare partnerLinks local to a <scope> in WS-BPEL, besides declaring partnerLinks at the 173
<process> level. The names of partnerLink declared in different <scope> may potentially share the 174
identical name. In case of this name sharing situation, the following scheme is used to disambiguate 175
different occurrences of partnerLink declaration: 176

• Suppose "originalName" is the original NCName used in multiple partnerLink declarations 177

• When these partnerLinks are exposed to SCA assembly, these partnerLinks will given aliases from 178
"_orginalName_1" to "_orginalName_N" regardless of how partnerLink participate in SCA assembly 179
(i.e. services vs references) 180

• If any "_orginalName_i" (where 1 <= i <= N) is already taken by existing partnerLink declaration 181
in the process definition, additional underscore characters may be added at the beginning of the 182
aliases to avoid collision. 183

 184

1.3.5. Support for conversational interfaces 185

WS-BPEL can be used to implement an SCA Component with conversational services. See the SCA Assembly 186
Specification [1] for a description of conversational interfaces. When an interface that has been marked as 187
conversational is used for a role of a partner link, no other mechanism (such as the WS-BPEL correlation 188
mechanism) is needed to correlate messages on that partner link, although it is still allowed. This means 189
the SCA conversational interface is used as an implicit correlation mechanism to associate all messages 190
exchanged (in either direction) on that partner link to a single conversation. When the EPR of the 191
partnerRole is initialized a new conversation MUST be used for an operation of the conversational service. 192

Any process which, through static analysis, can be proved to use an operation on a conversational interface 193
after an endsConversation operation has completed SHOULD be rejected. In cases where the static analysis 194
cannot determine that such a situation could occur, then at runtime a sca:ConversationViolation fault would 195
be generated when using a conversational partner link after the conversation has ended. See the SCA 196
Assembly Specification [1], section 1.5.3 for a description of this fault. 197

It is important to point out that the WS-BPEL correlation mechanism is not restricted to a single partner 198
link. It can be used to associate messages exchanged on different partner links to a particular WS-BPEL 199
process instance. 200

 201

1.4. SCA Extensions to WS-BPEL 202

 203

It is possible to use WS-BPEL processes in conjunction with SCA, while the processes have no knowledge of 204
SCA. A few SCA concepts are only available to WS-BPEL processors that support SCA specific extensions. 205
The capabilities that require knowledge of SCA are provided by an SCA extension, which must be declared 206
in any process definition as follows: 207

<process ...> 208

 <extensions> 209

 <extension namespace="http://www.osoa.org/xmlns/sca/bpel/1.0" 210
 mustUnderstand="yes"/> 211

http://www.osoa.org/xmlns/sca/bpel/1.0

SCA Service Component Architecture

WS-BPEL Client and Implementation Specification 1.00 March 2007 6

 </extensions> 212

 213

1.4.1. Properties 214

 215

A WS-BPEL variable declaration may include an SCA extension that says that the variable represents an 216
SCA property for the component represented by the WS-BPEL process. 217

WS-BPEL Process

flow

property
currency

. . .

variable
currency

. . .

sca:property="yes"

 218

 219

The declaration looks like the following: 220

 <variable name="currency" type="xsd:string" sca:property="yes"/> 221
 222

When sca:property=”yes” is used on a variable declaration, the name of the variable is used as the 223
name of a property of the component type represented by the WS-BPEL process. The name of the variable 224
must be unique within the process. 225

At runtime, the variable will be initialized with the value provided by the component definition that uses the 226
WS-BPEL process. 227

 228

1.4.2. Multi-Valued References 229

Component types may declare references with a multiplicity that allows a single reference to be wired to 230
multiple targets. An example use of this capability is a purchasing component wired to a list of accepted 231
vendors. SCA assumes that each programming language binding will provide its own approach for making 232
the list of targets available within that programming language. 233

SCA Service Component Architecture

WS-BPEL Client and Implementation Specification 1.00 March 2007 7

WS-BPEL Process

scopescope
reference
vendors

variable
vendors

wires

…

sca:multiReference

scope

invoke

assign partnerLink
vendorLink

sca:multiRefFrom

forEach

 234

 235

In WS-BPEL, a variable may include an sca:multiReference extension element that declares that the 236
variable represents a multi-valued reference. The type of the variable must be an element of 237
sca:serviceRefList. However, since that type only specifies that the variable holds a list of endpoint 238
references, the sca:multiReference element also has attributes to specify the partner link type and 239
partner role of the target of the reference. An example of a variable that represents a list of references to 240
vendors would look like: 241

 <variable name="vendors" element="sca:serviceReferenceList"> 242
 <sca:multiReference partnerLinkType="pos:vendorPT" partnerRole="vendor"/> 243
 </variable> 244
 245

Syntax of this extension: 246

<sca:multiReference partnerLinkType="xs:QName" partnerRole="xs:NCName" 247
 multiplicity="0..n or 1..n"?/> 248
 249

The default value of multiplicity is "1..n". 250

The sca:serviceReferenceList element declaration is the following: 251

 <xsd:element name="serviceReferenceList"> 252
 <xsd:complexType> 253
 <xsd:sequence> 254
 <xsd:element ref="bpel:service-ref" minOccurs="0" maxOccurs="unbounded"/> 255
 </xsd:sequence> 256
 </xsd:complexType> 257
 </xsd:element> 258
 259

A typical use of a variable that holds a multi-valued reference would be to have a <forEach> activity with 260
an iteration for each element in the list. The body of the <forEach> activity would declare a local partner 261
link and assign one of the list elements to the local partner link. Such a local partner link is typically 262
categorized as the “References” case 1 listed in section 1.3.1. 263

To assist a more effective SCA modeling, another SCA extension is introduced to associate a multi-valued 264
reference, manifested as a "sca:serviceReferenceList" variable with a partner link. This extension is 265
in an attribute form attached to the partner link declaration. Syntax of this extension is: 266

sca:multiRefFrom="xs:NCName" 267
 268

The attribute value must refer to the name of a variable manifesting an SCA multi-valued reference. The 269
partnerLinkType and partnerRole attributes of the partner link and multi-valued reference variable 270

SCA Service Component Architecture

WS-BPEL Client and Implementation Specification 1.00 March 2007 8

must be matched. Also, there must be at least one code-path that values from the multi-valued reference 271
variable are copied to the partnerRole of the partner link. 272

If any above constraints are violated, it will be considered an error during static analysis. 273

When this sca:multiRefFrom extension is applied to pair up a multi-valued reference variable and a 274
partner link which is categorized as the “References” case 1 (as described in section 1.3.1), the partner link 275
and variable are manifested as a single multi-valued reference entity in SCA assembly model using the 276
name of the variable. If the interface involved is bi-directional, this implies the wiring of the bi-directional 277
interface as a single reference in SCA. 278

 279

For example: 280

 <variable name="vendors" element="sca:serviceReferenceList"> 281
 <sca:multiReference partnerLinkType="pos:vendorPT" partnerRole="vendor"/> 282
 </variable> 283
 ... 284
 <forEach counterName="idx" ...> 285
 <startCounterValue>1</startCounterValue> 286
 <finalCounterValue>count($vendors/bpel:service-ref)</finalCounterValue> 287
 ... 288
 <scope> 289
 ... 290
 <partnerLink name="vendorLink" 291
 partnerLinkType="pos:vendorPT" 292
 partnerRole="vendor" 293
 myRole="quoteRequester" 294
 sca:multiRefFrom="vendors" /> 295
 ... 296
 <assign> 297
 <copy> 298
 <from>$vendors/bpel:service-ref[$idx]</from> 299
 <to partnerLink="vendorLink" /> 300
 </copy> 301
 </assign> 302
 ... 303
 </scope> 304
 </forEach> 305
 306

A multi-valued reference named "vendors" is declared in the example above. The partner link named 307
"vendorLink", which is categorized as the “References” case 1, is not manifested directly into the SCA 308
Assembly Model. The extra sca:multiRefFrom="vendors" extension associates the "vendorLink" 309
partner link with multi-valued reference variable "vendors". Consequently, the partner link and variable 310
are manifested as a single multi-valued reference named "vendors" in SCA. This makes the SCA Assembly 311
modeling easier to follow. 312

 313

1.5. Using BPEL4WS 1.1 with SCA 314

A BPEL4WS 1.1 process definition may be used as the implementation of an SCA component. The syntax 315
introduced in section 1.2 is used to define a component having a BPEL4WS 1.1 process as the 316
implementation. In this case, the process attribute specifies the target QName of a BPEL4WS 1.1 317
executable process. 318

A BPEL4WS 1.1 process definition may be used to generate an SCA Component Type. 319

 320

SCA Service Component Architecture

WS-BPEL Client and Implementation Specification 1.00 March 2007 9

2. Appendix 321

 322

2.1. XML Schema 323

 324

XML Schema sca-implementation-bpel.xsd 325

<xsd:schema xmlns="http://www.osoa.org/xmlns/sca/1.0" 326
 targetNamespace="http://www.osoa.org/xmlns/sca/1.0" 327
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 328
 elementFormDefault="qualified"> 329
 330
 <xsd:include schemaLocation="sca-core.xsd"/> 331
 332
 <xsd:element name="implementation.bpel" 333
 type="BpelImplementation" 334
 substitutionGroup="implementation"/> 335
 <xsd:complexType name="BpelImplementation"> 336
 <xsd:complexContent> 337
 <xsd:extension base="Implementation"> 338
 <xsd:sequence> 339
 <xsd:any namespace="##other" processContents="lax" 340
 minOccurs="0" maxOccurs="unbounded"/> 341
 </xsd:sequence> 342
 <xsd:attribute name="process" type="xsd:QName" 343
 use="required"/> 344
 <xsd:anyAttribute namespace="##any" processContents="lax"/> 345
 </xsd:extension> 346
 </xsd:complexContent> 347
 </xsd:complexType> 348
 349
 <xsd:element name="interface.partnerLinkType" 350
 type="BpelPartnerLinkType" 351
 substitutionGroup="interface"/> 352
 <xsd:complexType name="BpelPartnerLinkType"> 353
 <xsd:complexContent> 354
 <xsd:extension base="Interface"> 355
 <xsd:sequence> 356
 <xsd:any namespace="##other" processContents="lax" 357
 minOccurs="0" maxOccurs="unbounded"/> 358
 </xsd:sequence> 359
 <xsd:attribute name="type" type="xsd:QName" 360
 use="required"/> 361
 <xsd:attribute name="serviceRole" type="xsd:NCName" 362
 use="optional"/> 363
 <xsd:anyAttribute namespace="##any" processContents="lax"/> 364
 </xsd:extension> 365
 </xsd:complexContent> 366
 </xsd:complexType> 367
</xsd:schema> 368
 369
 370

XML Schema sca-bpel.xsd 371

 372
<xsd:schema xmlns="http://www.osoa.org/xmlns/sca/bpel/1.0" 373

SCA Service Component Architecture

WS-BPEL Client and Implementation Specification 1.00 March 2007 10

 targetNamespace="http://www.osoa.org/xmlns/sca/bpel/1.0" 374
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 375
 xmlns:sref="http://docs.oasis-open.org/wsbpel/2.0/serviceref" 376
 elementFormDefault="qualified"> 377
 378
 <xsd:import namespace="http://docs.oasis-open.org/wsbpel/2.0/serviceref" 379
 schemaLocation="ws-bpel_serviceref.xsd" /> 380
 381
 <xsd:simpleType name="tMultiplicity"> 382
 <xsd:restriction base="xsd:string"> 383
 <xsd:enumeration value="0..n"/> 384
 <xsd:enumeration value="1..n"/> 385
 </xsd:restriction> 386
 </xsd:simpleType> 387
 388
 <xsd:simpleType name="tBoolean"> 389
 <xsd:restriction base="xsd:string"> 390
 <xsd:enumeration value="yes"/> 391
 <xsd:enumeration value="no"/> 392
 </xsd:restriction> 393
 </xsd:simpleType> 394
 395
 <xsd:attribute name="property" type="tBoolean"/> 396
 397
 <xsd:attribute name="multiRefFrom" type="xsd:NCName"/> 398
 399
 <xsd:element name="multiReference" type="tMultiReference"/> 400
 <xsd:complexType name="tMultiReference"> 401
 <xsd:attribute name="partnerLinkType" type="xsd:QName" 402
 use="required"/> 403
 <xsd:attribute name="partnerRole" type="xsd:NCName" 404
 use="required"/> 405
 <xsd:attribute name="multiplicity" type="tMultiplicity" 406
 use="optional" default="1..n"/> 407
 </xsd:complexType> 408
 409
 <xsd:element name="serviceReferenceList" 410
 type="tServiceReferenceList"/> 411
 <xsd:complexType name="tServiceReferenceList"> 412
 <xsd:sequence> 413
 <xsd:element ref="sref:service-ref" 414
 minOccurs="0" maxOccurs="unbounded"/> 415
 </xsd:sequence> 416
 </xsd:complexType> 417
</xsd:schema> 418

SCA Service Component Architecture

WS-BPEL Client and Implementation Specification 1.00 March 2007 11

 419

2.2. References 420

 421

[1] SCA Assembly Model Specification, Version 1.0, February 2007 422
 423
http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf 424
 425

[2] Web Services Business Process Execution Language Version 2.0, November 2006 426

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf 427

 428

[3] Business Process Execution Language for Web Services Version 1.1, May 2003 429

http://dev2dev.bea.com/technologies/webservices/BPEL4WS.jsp 430
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/ 431
http://msdn2.microsoft.com/en-us/library/aa479359.aspx 432
https://www.sdn.sap.com/irj/sdn/developerareas/esa/standards 433
http://www.siebel.com 434

 435

http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V096.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://dev2dev.bea.com/technologies/webservices/BPEL4WS.jsp
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://msdn2.microsoft.com/en-us/library/aa479359.aspx
https://www.sdn.sap.com/irj/sdn/developerareas/esa/standards
http://www.siebel.com/

	Goals
	WS-BPEL Processes as Component Implementations
	Component Types defined by WS-BPEL Processes
	Services and References
	PartnerLinkTypes and SCA Interfaces
	Specifying an SCA interface with a partnerLinkType
	Handling of Local PartnerLinks
	Support for conversational interfaces

	SCA Extensions to WS-BPEL
	Properties
	Multi-Valued References

	Using BPEL4WS 1.1 with SCA
	XML Schema
	References

