
 i

SSSCCCAAA SSSeeerrrvvviiiccceee CCCooommmpppooonnneeennnttt AAArrrccchhhiiittteeeccctttuuurrreee
Java Component Implementation Specification

SCA Version 1.00, 15 February 2007

Technical Contacts:

Ron Barack SAP AG

Michael Beisiegel IBM Corporation

Henning Blohm SAP AG

Dave Booz IBM Corporation

Jeremy Boynes Independent

Ching-Yun Chao IBM Corporation

Adrian Colyer Interface21

Mike Edwards IBM Corporation

Hal Hildebrand Oracle

Sabin Ielceanu TIBCO Software, Inc

Anish Karmarkar Oracle

Daniel Kulp IONA Technologies plc.

Ashok Malhotra Oracle

Jim Marino BEA Systems, Inc.

Michael Rowley BEA Systems, Inc.

Ken Tam BEA Systems, Inc

Scott Vorthmann TIBCO Software, Inc

Lance Waterman Sybase, Inc.

SCA Service Component Architecture

Java Component Implementation Specification 1.00 February 2007 ii

Copyright Notice
© Copyright BEA Systems, Inc., Cape Clear Software, International Business Machines Corp, Interface21, IONA Technologies,

Oracle, Primeton Technologies, Progress Software, Red Hat, Rogue Wave Software, SAP AG.,Siemens AG., Software AG., Sun

Microsystems, Inc., Sybase Inc., TIBCO Software Inc., 2005, 2006, 2007. All rights reserved.

License

The Service Component Architecture Specification is being provided by the copyright holders under the following

license. By using and/or copying this work, you agree that you have read, understood and will comply with the

following terms and conditions:

Permission to copy and display the Service Component Architecture Specification and/or portions thereof,

without modification, in any medium without fee or royalty is hereby granted, provided that you include the

following on ALL copies of the Service Component Architecture Specification, or portions thereof, that you

make:

1. A link or URL to the Service Component Architecture Specification at this location:

• http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf

2. The full text of this copyright notice as shown in the Service Component Architecture Specification.

BEA, Cape Clear, IBM, Interface21, IONA, Oracle, Primeton, Progress Software, Red Hat, Rogue Wave, SAP,

Siemens, Software AG., Sun Microsystems, Sybase, TIBCO (collectively, the “Authors”) agree to grant you a

royalty-free license, under reasonable, non-discriminatory terms and conditions to patents that they deem

necessary to implement the Service Component Architecture Specification.

THE Service Component Architecture SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS MAKE NO

REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS SPECIFICATION AND THE

IMPLEMENTATION OF ITS CONTENTS, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT OR TITLE.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL

DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THE Service Components

Architecture SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including advertising or publicity

pertaining to the Service Component Architecture Specification or its contents without specific, written prior

permission. Title to copyright in the Service Component Architecture Specification will at all times remain with

the Authors.

No other rights are granted by implication, estoppel or otherwise.

Status of this Document
This specification may change before final release and you are cautioned against relying on the content of this

specification. The authors are currently soliciting your contributions and suggestions. Licenses are available for

the purposes of feedback and (optionally) for implementation.

SCA Service Component Architecture

Java Component Implementation Specification 1.00 February 2007 iii

IBM is a registered trademark of International Business Machines Corporation in the United States, other

countries, or both.

BEA is a registered trademark of BEA Systems, Inc.

Cape Clear is a registered trademark of Cape Clear Software

IONA and IONA Technologies are registered trademarks of IONA Technologies plc.

Oracle is a registered trademark of Oracle USA, Inc.

Progress is a registered trademark of Progress Software Corporation

Red Hat is a registered trademark of Red Hat Inc.

Rogue Wave is a registered trademark of Quovadx, Inc

SAP is a registered trademark of SAP AG.

SIEMENS is a registered trademark of SIEMENS AG

Software AG is a registered trademark of Software AG

Sun and Sun Microsystems are registered trademarks of Sun Microsystems, Inc.

Sybase is a registered trademark of Sybase, Inc.

TIBCO is a registered trademark of TIBCO Software, Inc.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

SCA Service Component Architecture

Java Component Implementation Specification 1.00 February 2007 iv

Table of Contents

Copyright Notice... ii

License.. ii

Status of this Document .. ii

1. Java Implementation Type..1

1.1. Introduction ...1

1.2. Java Implementation Type ...1

1.2.1. Services ...1

1.2.2. References ...4

1.2.3. Dynamic Reference Access ...5

1.2.4. Properties...5

1.2.5. Implementation Instance Instantiation...5

1.2.6. Implementation Scopes and Lifecycle Callbacks...7

1.2.7. Specifying the Java Implementation Type in an Assembly...8

Specifying the Component Type ..9

2. Appendix ... 10

2.1. References... 10

SCA Service Component Architecture

Java Component Implementation Specification 1.00 February 2007 1

1. Java Implementation Type 1

 2

1.1. Introduction 3

 4

 5

This specification extends the SCA Assembly Model [1] by defining how a Java class provides an 6

implementation of an SCA component and how that class is used in SCA as a component implementation 7

type. 8

This specification requires all the annotations and APIs as defined by the SCA Java Common Annotations 9

and APIs specification [2]. All annotations and APIs referenced in this document are defined in the former 10

unless otherwise specified. Moreover, the semantics defined in the Common Annotations and APIs 11

specification are normative. 12

 13

1.2. Java Implementation Type 14

 15

This section specifies how a Java class provides an implementation of an SCA component, including its 16

various attributes such as services, references, and properties. In addition, it details the use of metadata 17

and the Java API defined in [2] in the context of a Java class used as a component implementation type, 18

 19

 20

1.2.1. Services 21

A component implementation based on a Java class may provide one or more services. 22

The services provided by a Java-based implementation may have an interface defined in one of the 23

following ways: 24

• A Java interface 25

• A Java class 26

• A Java interface generated from a Web Services Description Language [3] (WSDL) portType. 27

Java implementation classes must implement all the operations defined by the service interface. If the 28

service interface is defined by a Java interface, the Java-based component can either implement that Java 29

interface, or implement all the operations of the interface. 30

A service whose interface is defined by a Java class (as opposed to a Java interface) is not remotable. Java 31

interfaces generated from WSDL portTypes are remotable, see the WSDL 2 Java and Java 2 WSDL section 32

of the SCA Java Common Annotations and API Specification for details. 33

A Java implementation type may specify the services it provides explicitly through the use of @Service. In 34

certain cases as defined below, the use of @Service is not required and the services a Java implementation 35

type offers may be inferred from the implementation class itself. 36

 37

1.2.1.1. Use of @Service 38

Service interfaces may be specified as a Java interface. A Java class, which is a component implementation, 39

may offer a service by implementing a Java interface specifying the service contract. As a Java class may 40

implement multiple interfaces, some of which may not define SCA services, the @Service annotation can be 41

used to indicate the services provided by the implementation and their corresponding Java interface 42

definitions. 43

The following is an example of a Java service interface and a Java implementation, which provides a service 44

using that interface: 45

SCA Service Component Architecture

Java Component Implementation Specification 1.00 February 2007 2

Interface: 46

public interface HelloService { 47

 48

 String hello(String message); 49

} 50

 51

Implementation class: 52

@Service(HelloService.class) 53

public class HelloServiceImpl implements HelloService { 54

 55

 public String hello(String message) { 56

 ... 57

 } 58

} 59

 60

The XML representation of the component type for this implementation is shown below for illustrative 61

purposes. There is no need to author the component type as it can be reflected from the Java class. 62

 63

<?xml version="1.0" encoding="ASCII"?> 64

<componentType xmlns="http://www.osoa.org/xmlns/sca/0.9"> 65

 66

 <service name="HelloService"> 67

 <interface.java interface="services.hello.HelloService"/> 68

 </service> 69

 70
</componentType> 71

 72

The Java implementation class itself, as opposed to an interface, may also define a service offered by a 73

component. In this case, @Service may be used to explicitly declare the implementation class defines the 74

service offered by the implementation. In this case, a component will only offer services declared by 75

@Service. The following illustrates this: 76

 77

@Service(HelloServiceImpl.class) 78

public class HelloServiceImpl implements AnotherInterface { 79

 80

 public String hello(String message) { 81

 ... 82

 } 83

 … 84

} 85

 86
In the above example, HelloWorldServiceImpl offers one service as defined by the public methods on the implementation 87
class. The interface AnotherInterface in this case does not specify a service offered by the component. The following is 88

an XML representation of the introspected component type: 89

<?xml version="1.0" encoding="ASCII"?> 90

<componentType xmlns="http://www.osoa.org/xmlns/sca/0.9"> 91

 92

 <service name="HelloService"> 93

 <interface.java interface="services.hello.HelloServiceImpl"/> 94

 </service> 95

 96

</componentType> 97

 98

SCA Service Component Architecture

Java Component Implementation Specification 1.00 February 2007 3

@Service may be used to specify multiple services offered by an implementation as in: 99

 100

@Service(interfaces={HelloService.class, AnotherInterface.class}) 101

public class HelloServiceImpl implements HelloService, AnotherInterface { 102

 103

 public String hello(String message) { 104

 ... 105

 } 106

 … 107

} 108

 109

The following snippet shows the introspected component type for this implementation. 110

<?xml version="1.0" encoding="ASCII"?> 111

<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"> 112

 113

 <service name="HelloService"> 114

 <interface.java interface="services.hello.HelloService"/> 115

 </service> 116

 <service name="AnotherService"> 117

 <interface.java interface="services.hello.AnotherService"/> 118

 </service> 119

 120

</componentType> 121

1.2.1.2. Local and Remotable services 122

A Java service contract defined by an interface or implementation class may use @Remotable to declare 123

that the service follows the semantics of remotable services as defined by the SCA Assembly Specification. 124

The following example demonstrates the use of @Remotable: 125

package services.hello; 126

 127

@Remotable 128

public interface HelloService { 129

 130

 String hello(String message); 131

} 132

 133

Unless @Remotable is declared, a service defined by a Java interface or implementation class is inferred to 134

be a local service as defined by the SCA Assembly Model Specification. 135

 136

If an implementation class has implemented interfaces that are not decorated with an @Remotable 137

annotation, the class is considered to implement a single local service whose type is defined by the class 138

(note that local services may be typed using either Java interfaces or classes). 139

An implementation class may provide hints to the SCA runtime about whether it can achieve pass-by-value 140

semantics without making a copy by using the @AllowsPassByReference.. 141

 142

1.2.1.3. Introspecting services offered by a Java implementation 143

In the cases described below, the services offered by a Java implementation class may be determined 144

through introspection, eliding the need to specify them using @Service. The following algorithm is used to 145

determine how services are introspected from an implementation class: 146

If the interfaces of the SCA services are not specified with the @Service annotation on the implementation 147

class, it is assumed that all implemented interfaces that have been annotated as @Remotable are the 148

SCA Service Component Architecture

Java Component Implementation Specification 1.00 February 2007 4

service interfaces provided by the component. If none of the implemented interfaces is remotable, then by 149

default the implementation offers a single service whose type is the implementation class. 150

 151

1.2.1.4. Non-Blocking Service Operations 152

Service operations defined by a Java interface or implementation class may use @OneWay to declare that 153

the SCA runtime must honor non-blocking semantics as defined by the SCA Assembly Specification when a 154

client invokes the service operation. 155

1.2.1.5. Non-Conversational and Conversational Services 156

The Java implementation type supports all of the conversational service annotations as defined by the SCA 157

Java Common Annotations and API Specification: @Conversational, @EndsConversation, and 158

@ConversationAttributes. 159

The following semantics hold for service contracts defined by Java interface or implementation class. A service 160

contract defined by a Java interface or implementation class is inferred to be non-conversational as defined by 161

the SCA Assembly Specification unless it is decorated with @Conversational. In the latter case, @Conversational 162

is used to declare that a component implementation offering the service implements conversational semantics 163

as defined by the SCA Assembly Specification. 164

1.2.1.6. Callback Services 165

A callback interface is declared by using the @Callback annotation on the service interface implemented by 166

a Java class. 167

1.2.2. References 168

References may be obtained through injection or through the ComponentContext API as defined in the SCA 169

Java Common Annotations and API Specification. When possible, the preferred mechanism for accessing 170

references is through injection. 171

1.2.2.1. Reference Injection 172

 173

A Java implementation type may explicitly specify its references through the use of @Reference as in the 174

following example: 175

 176
 177

 public class ClientComponentImpl implements Client { 178

 private HelloService service; 179

 180

 @Reference 181

 public void setHelloService(HelloService service) { 182

 this.service = service; 183

} 184

} 185

 186

If @Reference marks a public or protected setter method, the SCA runtime is required to provide the 187

appropriate implementation of the service reference contract as specified by the parameter type of the 188

method. This must done by invoking the setter method an implementation instance. When injection occurs 189

is defined by the scope of the implementation. However, it will always occur before the first service method 190

is called. 191

If @Reference marks a public or protected field, the SCA runtime is required to provide the appropriate 192

implementation of the service reference contract as specified by the field type. This must done by setting 193

the field on an implementation instance. When injection occurs is defined by the scope of the 194

implementation. 195

If @Reference marks a parameter on a constructor, the SCA runtime is required to provide the appropriate 196

implementation of the service reference contract as specified by the constructor parameter during 197

instantiation of an implementation instance. 198

References may also be determined by introspecting the implementation class according to the rules 199

defined in Section Error! Reference source not found.. 200

SCA Service Component Architecture

Java Component Implementation Specification 1.00 February 2007 5

References may be declared optional as defined by the Java Common Annotations and API Specification. 201

1.2.2.2. Dynamic Reference Access 202

References may be accessed dynamically through ComponentContext.getService() and 203

ComponentContext.getServiceReference(..) methods as described in the Java Common Annotations and 204

API Specification. 205

1.2.3. Properties 206

1.2.3.1. Property Injection 207

 208

Properties may be obtained through injection or through the ComponentContext API as defined in the SCA 209

Java Common Annotations and API Specification. When possible, the preferred mechanism for accessing 210

propertoes is through injection. 211

A Java implementation type may explicitly specify its properties through the use of @Property as in the 212

following example: 213

 214

 215

 public class ClientComponentImpl implements Client { 216

 private int maxRetries; 217

 218

 @Property 219

 public void setRetries(int maxRetries) { 220

 this. maxRetries = maxRetries; 221

} 222

} 223

 224

If @Property marks a public or protected setter method, the SCA runtime is required to provide the 225

appropriate property value. This must done by invoking the setter method an implementation instance. 226

When injection occurs is defined by the scope of the implementation. 227

If @Property marks a public or protected field, the SCA runtime is required to provide the appropriate 228

property value. When injection occurs is defined by the scope of the implementation. 229

If @Property marks a parameter on a constructor, the SCA runtime is required to provide the appropriate 230

property value during instantiation of an implementation instance. 231

Properties may also be determined by introspecting the implementation class according to the rules defined 232

in Section Error! Reference source not found.. 233

Properties may be declared optional as defined by the Java Common Annotations and API Specification. 234

1.2.3.2. Dynamic Property Access 235

Properties may be accesses dynamically through ComponentContext. getProperty () method as described in 236

the Java Common Annotations and API Specification. 237

 238

 239

1.2.4. Implementation Instance Instantiation 240

A Java implementation class must provide a public or protected constructor that can be used by the SCA 241

runtime to instantiate implementation instances. The constructor may contain parameters; in the presence 242

of such parameters, the SCA container will pass the applicable property or reference values when invoking 243

the constructor. Any property or reference values not supplied in this manner will be set into the field or 244

passed to the setter method associated with the property or reference before any service method is 245

invoked. 246

The constructor to use is selected by the container as follows: 247

1. A declared constructor annotated with a @Constructor annotation. 248

2. A declared constructor that unambiguously identifies all property and reference values. 249

SCA Service Component Architecture

Java Component Implementation Specification 1.00 February 2007 6

3. A no-argument constructor. 250

The @Constructor annotation must only be specified on one constructor; the SCA container must report an 251

error if multiple constructors are annotated with @Constructor. 252

 253

The property or reference associated with each parameter of a constructor is identified: 254

• by name in the @Constructor annotation (if present) 255

• through the presence of a @Property or @Reference annotation on the parameter declaration 256

• by uniquely matching the parameter type to the type of a property or reference 257

 258

Cyclic references between components may be handled by the container in one of two ways: 259

 260

• If any reference in the cycle is optional, then the container may inject a null value during 261

construction, followed by injection of a reference to the target before invoking any service. 262

• The container may inject a proxy to the target service; invocation of methods on the proxy may 263

result in a ServiceUnavailableException 264

The following are examples of legal Java component constructor declarations: 265

 266

/** Simple class taking a single property value */ 267

public class Impl1 { 268

 String someProperty; 269

 public Impl1(String propval) {...} 270

} 271

 272

/** Simple class taking a property and reference in the constructor; 273

 * The values are not injected into the fields. 274

 *// 275

public class Impl2 { 276

 public String someProperty; 277

 public SomeService someReference; 278

 public Impl2(String a, SomeService b) {...} 279

} 280

 281

/** Class declaring a named property and reference through the constructor */ 282

public class Impl3 { 283

 @Constructor({"someProperty", "someReference"}) 284

 public Impl3(String a, SomeService b) {...} 285

} 286

 287

/** Class declaring a named property and reference through parameters */ 288

public class Impl3b { 289

SCA Service Component Architecture

Java Component Implementation Specification 1.00 February 2007 7

 public Impl3b(290

 @Property("someProperty") String a, 291

 @Reference("someReference) SomeService b 292

) {...} 293

} 294

 295

/** Additional property set through a method */ 296

public class Impl4 { 297

 public String someProperty; 298

 public SomeService someReference; 299

 public Impl2(String a, SomeService b) {...} 300

 @Property public void setAnotherProperty(int x) {...} 301

} 302

 303

1.2.5. Implementation Scopes and Lifecycle Callbacks 304

The Java implementation type supports all of the scopes defined in the Java Common 305

Annotations and API Specification: STATELESS, REQUEST, CONVERSATION, and COMPOSITE. 306

Implementations specify their scope through the use of the @Scope annotation as in: 307

 308

 @Scope(”COMPOSITE”) 309

 public class ClientComponentImpl implements Client { 310

 // … 311

} 312

When the @Scope annotation is not specified on an implementation class, its scope is defaulted 313

to STATELESS. 314

A Java component implementation specifies init and destroy callbacks by using @Init and 315

@Destroy respectively. For example: 316

 317

 public class ClientComponentImpl implements Client { 318

 319

@Init 320

public void init() { 321

 //… 322

 } 323

 324

 @Destroy 325

public void destroy() { 326

 //… 327

 } 328

} 329

 330

1.2.5.1. Java implementation classes that are CONVERSATION scoped may use @ConversationID to have 331

the current conversation ID injected on a public or protected field or setter method. Alternatively, 332

the Conversation API as defined in the Java Common Annotations and API Specification may be 333

used to obtain the current conversation ID.Conversational Implementation 334

For the provider of a conversational service, there is the need to maintain state data between successive 335

method invocations within a single conversation. For an Java implementation type, there are two possible 336

strategies which may be used to handle this state data: 337

SCA Service Component Architecture

Java Component Implementation Specification 1.00 February 2007 8

1. The implementation can be built as a stateless piece of code (essentially, the code expects a new 338

instance of the code to be used for each method invocation). The code must then be responsible 339

for accessing the conversationID of the conversation, which is maintained by the SCA runtime code. 340

The implementation is then responsible for persisting any necessary state data during the 341

processing of a method and for accessing the persisted state data when required, all using the 342

conversationID as a key. 343

2. The implementation can be built as a stateful piece of code, which means that it stores any state 344

data within the instance fields of the Java class. The implementation must then be declared as 345

being of conversation scope using the @Scope annotation. This indicates to the SCA runtime that 346

the implementation is stateful and that the runtime must perform correlation between client method 347

invocations and a particular instance of the service implementation and that the runtime is also 348

responsible for persisting and restoring the implementation instance if the runtime needs to clear 349

the instance out of memory for any reason. (Note that conversations are potentially very long lived 350

and that SCA runtimes may involve the use of clustered systems where a given instance object may 351

be moved between nodes in the cluster over time, for load balancing purposes) 352

 353

1.2.6. Accessing a Callback Service 354

Java implementation classes that require a callback service may use @Callback to have a 355

reference to the callback service associated with the current invocation injected on a public or 356

protected field or setter method. 357

1.2.7. Semantics of an Unannotated Implementation 358

The section defines the rules for determining properties and references for a Java component 359

implementation that does not explicitly declare them using @Reference or @Property. 360

In the absence of @Property and @Reference annotations, the properties and references of a class are 361

defined according to the following rules: 362

1. Public setter methods that are not included in any interface specified by an @Service annotation. 363

2. Protected setter methods 364

3. Public or protected fields unless there is a public or protected setter method for the same name 365

 366

The following rules are used to determine whether an unannotated field or setter method is a property or 367

reference: 368

1. If its type is simple, then it is a property. 369

2. If its type is complex, then if the type is an interface marked by @Remotable, then it is a reference; 370

otherwise, it is a property. 371

3. Otherwise, if the type associated with the member is an array or a java.util.Collection, the basetype is 372

the element type of the array or the parameterized type of the Collection; otherwise the basetype is the 373

member type. If the basetype is an interface with an @Remotable or @Service annotation then the 374

memberis defined as a reference. Otherwise, it is defined as a property. 375

The name of the reference or of the property is derived from the name found on the setter method or on 376

the field. 377

 378

1.2.8. Specifying the Java Implementation Type in an Assembly 379

The following defines the implementation element schema used for the Java implementation type:. 380

 381

<implementation.java class="NCName" /> 382

 383

The implementation.java element has the following attributes: 384

• class (required) – the fully qualified name of the Java class of the implementation 385

SCA Service Component Architecture

Java Component Implementation Specification 1.00 February 2007 9

 386

 387

1.2.9. Specifying the Component Type 388

For a Java implementation class, the component type is typically derived directly from introspection of the 389

Java class . 390

A component type can optionally be specified in a side file. The component type side file is found with the 391

same classloader that loaded the Java class. The side file must be located in a directory that corresponds to 392

the namespace of the implementation and have the same name as the Java class, but with a 393

.componentType extension instead of the .class extension. 394

The rules on how a component type side file adds to the component type information reflected from the 395

component implementation are described as part of the SCA assembly model specification [1]. If the 396

component type information is in conflict with the implementation, it is an error. 397

If the component type side file specifies a service interface using a WSDL interface, then the Java class 398

should implement the interface that would be generated by the JAX-WS mapping of the WSDL to a Java 399

interface. See the section 'WSDL 2 Java and Java 2 WSDL' in [2]. 400

 401

 402

 403

 404

 405

 406

 407

 408

 409

SCA Service Component Architecture

Java Component Implementation Specification 1.00 February 2007 10

2. Appendix 410

 411

2.1. References 412

 413

[1] SCA Assembly Specification 414

http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf 415

 416

[2] SCA Java Common Annotations and APIs 417

http://www.osoa.org/download/attachments/35/SCA_JavaCommonAnnotationsAndAPIs_V100.pdf 418

 419

