

SSSCCCAAA SSSeeerrrvvviiiccceee CCCooommmpppooonnneeennnttt AAArrrccchhhiiittteeeccctttuuurrreee

ACID Transaction Policy in SCA

SCA Draft Version 0.51, September 25 2007

Technical Contacts:

 Dave Booz IBM Corporation

 Mike Edwards IBM Corporation

 Mike Kanaley TIBCO Software, Inc

 Ashok Malhotra Oracle

 Eric Newcomer Iona Technologies plc.

 Sanjay Patil SAP AG

 Ian Robinson IBM Corporation (Editor)

 Michael Rowley BEA Systems Inc.

 Mark Little Red Hat Inc.

This document is a temporary repository for information pertaining to SCA transaction intents.
This information will ultimately be ”promoted” to go alongside SCA Security and Reliability Policy
in the SCA Policy Framework specification [2].

SCA Service Component Architecture

Transaction Policy Specification Draft V0.51 ii September 2007

Copyright Notice

© Copyright BEA Systems, Inc., Cape Clear Software, International Business Machines Corp, Interface21, IONA
Technologies, Oracle, Primeton Technologies, Progress Software, Red Hat, Rogue Wave Software, SAP AG., Siemens
AG., Software AG., Sun Microsystems, Inc., Sybase Inc., TIBCO Software Inc., 2005, 2007. All rights reserved.

License

The Service Component Architecture Specification is being provided by the copyright holders under
the following license. By using and/or copying this work, you agree that you have read, understood
and will comply with the following terms and conditions:

Permission to copy, display and distribute the Service Component Architecture Specification and/or
portions thereof, without modification, in any medium without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the Service Component Architecture
Specification, or portions thereof, that you make:

1. A link or URL to the Service Component Architecture Specification at this location:

• http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

2. The full text of the copyright notice as shown in the Service Component Architecture Specification.

BEA, Cape Clear, IBM, Interface21, IONA, Oracle, Primeton, Progress Software, Red Hat, Rogue
Wave, SAP, Siemens, Software AG., Sun, Sybase, TIBCO (collectively, the “Authors”) agree to grant
you a royalty-free license, under reasonable, non-discriminatory terms and conditions to patents
that they deem necessary to implement the Service Component Architecture Specification.

THE Service Component Architecture SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS
MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS
SPECIFICATION AND THE IMPLEMENTATION OF ITS CONTENTS, INCLUDING, BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT
OR TITLE.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THE
Service Components Architecture SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including advertising or
publicity pertaining to the Service Component Architecture Specification or its contents without
specific, written prior permission. Title to copyright in the Service Component Architecture
Specification will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

SCA Service Component Architecture

Transaction Policy Specification Draft V0.51 iii September 2007

Status of this Document
This specification may change before final release and you are cautioned against relying on the
content of this specification. The authors are currently soliciting your contributions and suggestions.
Licenses are available for the purposes of feedback and (optionally) for implementation.

IBM is a registered trademark of International Business Machines Corporation in the United States,
other countries, or both.

BEA is a registered trademark of BEA Systems, Inc.

Cape Clear is a registered trademark of Cape Clear Software

IONA and IONA Technologies are registered trademarks of IONA Technologies plc.

Oracle is a registered trademark of Oracle USA, Inc.

Progress is a registered trademark of Progress Software Corporation

Primeton is a registered trademark of Primeton Technologies, Ltd.

Red Hat is a registered trademark of Red Hat Inc.

Rogue Wave is a registered trademark of Quovadx, Inc

SAP is a registered trademark of SAP AG.

SIEMENS is a registered trademark of SIEMENS AG

Software AG is a registered trademark of Software AG

Sun and Sun Microsystems are registered trademarks of Sun Microsystems, Inc.

Sybase is a registered trademark of Sybase, Inc.

TIBCO is a registered trademark of TIBCO Software Inc.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

SCA Service Component Architecture

Transaction Policy Specification Draft V0.51 iv September 2007

Table of Contents

SCA Service Component Architecture... i
License.. ii
Status of this Document...iii
Table of Contents... iv

1 Overview .. 1
1.1 Common Transaction Patterns .. 1
1.2 Summary of SCA transaction policies ... 1
1.3 Global and local transactions .. 2

1.3.1 Global transactions .. 2
1.3.2 Local transactions.. 2

1.4 Transaction implementation policy... 3
1.4.1 Managed and non-managed transactions .. 3
1.4.2 OneWay Invocations .. 4

1.5 Transaction interaction policies ... 5
1.5.1 Handling Inbound Transaction Context ... 5
1.5.2 Handling Outbound Transaction Context ... 7

1.6 Example .. 9
2 Intent Definitions ... 10

2.1 Intent.xml snippet .. 10
3 Issues: ... 12
4 References .. 14

SCA Service Component Architecture

Transaction Policy Specification Draft V0.51 1 September 2007

1 Overview 1

2
3
4
5
6
7

8
9

10
11
12
13
14

15
16
17

18

19

20
21
22
23

24
25
26

27
28
29
30
31
32

33
34
35
36
37

38

39

40

41

42
43
44
45

SCA recognizes that the presence or absence of infrastructure for ACID transaction coordination
has a direct effect on how business logic is coded. In the absence of ACID transactions,
developers must provide logic that coordinates the outcome, compensates for failures, etc. In the
presence of ACID transactions, the underlying infrastructure is responsible for ensuring the ACID
nature of all interactions. SCA provides declarative mechanisms for describing the transactional
environment required by the business logic.

Components that use a synchronous interaction style can be part of a single, distributed ACID
transaction within which all transaction resources are coordinated to either atomically commit or
rollback. The transmission or receipt of oneway messages can, depending on the transport
binding, be coordinated as part of an ACID transaction as illustrated in the OneWay Invocations
section below. Well-known, higher-level patterns such as store-and-forward queuing can be
accomplished by composing transacted one-way messages with reliable-messaging qualities of
service.

This document describes the set of abstract policy intents – both implementation intents and
interaction intents – that can be used to describe the requirements on a concrete service
component and binding respectively.

1.1 Common Transaction Patterns
In the absence of any transaction policies there is no explicit transactional behavior defined for
the SCA service component or the interactions in which it is involved and the transactional
behavior is environment-specific. An SCA runtime provider may choose to define an out of band
default transactional behavior that applies in the absence of any transaction policies.

Environment-specific default transactional behavior may be overridden by specifying
transactional intents described in the document. The most common transaction patterns can be
summarized as follows:

Managed, shared global transaction pattern – the service always runs in a global transaction
context regardless of whether the requester runs under a global transaction. If the requester
does run under a transaction, the service runs under the same transaction. Any outbound,
synchronous request-response messages will – unless explicitly directed otherwise – propagate
the service’s transaction context. This pattern offers the highest degree of data integrity by
ensuring that any transactional updates are committed atomically

Managed, local transaction pattern – the service always runs in a managed local transaction
context regardless of whether the requester runs under a transaction. Any outbound messages
will not propagate any transaction context. This pattern is recommended for services that wish
the SCA runtime to demarcate any resource manager local transactions and do not require the
overhead of atomicity.

The use of transaction policies to specify these patterns is illustrated later in Table 2.

1.2 Summary of SCA transaction policies
This specification defines implementation and interaction policies that relate to transactional QoS
in components and their interactions. The SCA transaction policies are specified as intents which
represent the transaction quality of service behavior offered by specific component
implementations or bindings.

SCA Service Component Architecture

Transaction Policy Specification Draft V0.51 2 September 2007

46
47

SCA transaction policy can be specified either in the SCDL or annotatively in the implementation
code. Language-specific annotations are described in the respective language binding
specifications, for example the SCA Java Common Annotations and APIs specification [3]. 48

49

50

51
52
53
54

55

56
57
58
59

60

61

62

63
64
65
66
67

68

69
70
71
72
73
74
75

76

77
78
79
80
81
82
83
84
85
86
87

88
89

90
91
92
93

This specification defines the following implementation transaction policies:

• managedTransaction – Describes the service component’s transactional environment.

• transactedOneWay and immediateOneWay – two mutually exclusive intents that describe
whether the SCA runtime will process OneWay messages immediately or will enqueue
(from a client perspective) and dequeue (from a service perspective) a OneWay message
as part of a global transaction.

This specification also defines the following interaction transaction policies:

• propagatesTransaction and suspendsTransaction – two mutually exclusive intents that
describe whether the SCA runtime propagates any transaction context to a service or
reference on a synchronous invocation. Note that transaction context MUST NOT be
propagated on OneWay messages.

1.3 Global and local transactions
This specification describes “managed transactions” in terms of either “global” or “local”
transactions. The “managed” aspect of managed transactions refers to the transaction
environment provided by the SCA runtime for the business component. Business components
may interact with other business components and with resource managers. The managed
transaction environment defines the transactional context under which such interactions occur.

1.3.1 Global transactions
From an SCA perspective, a global transaction is a unit of work scope within which transactional
work is atomic. If multiple transactional resource managers are accessed under a global
transaction then the transactional work is coordinated to either atomically commit or rollback
regardless using a 2PC protocol. A global transaction can be propagated on synchronous
invocations between components – depending on the interaction intents described in this
specification - such that multiple, remote service providers can execute distributed requests
under the same global transaction.

1.3.2 Local transactions

From a resource manager perspective a resource manager local transaction (RMLT) is simply the
absence of a global transaction. But from an SCA persective iti is not enough to simply declare
that a piece of business logic runs without a global transaction context. Business logic may need
to access transactional resource managers without the presence of a global transaction. The
business logic developer still needs to know the expected semantic of making one or more calls
to one or more resource managers, and needs to know when and/or how the resource managers
local transactions will be committed.. The term local transaction containment (LTC) is used to
describe the SCA environment where there is no global transaction. The boundaries of an LTC are
scoped to a remotable service provider method and are not propagated on invocations between
components. Unlike the resources in a global transaction, RMLTs coordinated within a LTC may
fail independently.

The two most common patterns for components using resource managers outside a global
transaction are:

• The application desires each interaction with a resource manager to commit after every
interaction. This is the default behavior provided by the noManagedTransaction policy
(defined below in Transaction implementation policy) in the absence of explicit use of RMLT
verbs by the application.

SCA Service Component Architecture

Transaction Policy Specification Draft V0.51 3 September 2007

94
95
96

97
98
99

100
101
102
103
104

105

106

107

108

109
110
111
112
113
114

115
116

117
118
119

120
121
122
123
124

125
126
127
128
129
130
131
132
133
134

135
136
137
138
139
140
141

• The application desires each interaction with a resource manager to be part of an extended
local transaction that is committed at the end of the method. This behavior is specified by the
managedTransaction.local policy (defined below in Transaction implementation policy).

While an application may use interfaces provided by the resource adapter to explicitly demarcate
resource manager local transactions (RMLT), this is a generally undesirable burden on
applications which typically prefer all transaction considerations to be managed by the SCA
runtime. In addition, once an application codes to a resource manager local transaction interface,
it may never be redeployed with a different transaction environment since local transaction
interfaces may not be used in the presence of a global transaction. This specification defines
intents to support both these common patterns in order to provide portability for applications
regardless of whether they run under a global transaction or not.

1.4 Transaction implementation policy
1.4.1 Managed and non-managed transactions

The mutually exclusive managedTransaction and noManagedTransaction intents describe
the transactional environment required by a service component or composite.. SCA provides
transaction environments that are managed by the SCA runtime in order to remove the burden
of coding transaction APIs directly into the business logic. The managedTransaction and
noManagedTransaction intents can be attached to the sca:composite or sca:componentType
XML elements.

The mutually exclusive managedTransaction and noManagedTransaction intents are defined
as follows:

• managedTransaction – There must be a managed transaction environment in order to run
this component. The specific type of managedTransaction required is not constrained. The
valid qualifiers for this intent are mutually exclusive and are defined as:

• managedTransaction.global – There must be an atomic transaction in order to run this
component. The SCA runtime must ensure that a global transaction is present before
dispatching any method on the component. The SCA runtime uses any transaction
propagated from the client or else begins and completes a new transaction. See the
propagatesTransaction intent below for more details.

• managedTransaction.local – The component cannot tolerate running as part of a global
transaction, and will therefore run within a local transaction containment (LTC) that is started
and ended by the SCA runtime. Any global transaction context that is propagated to the
hosting SCA runtime must not be visible to the target component. Any interaction under this
policy with a resource manager is performed in an extended resource manager local
transaction (RMLT). Upon successful completion of the invoked service method, any RMLTs
are implicitly requested to commit by the SCA runtime. Note that, unlike the resources in a
global transaction, RMLTs so coordinated in a LTC may fail independently. If the invoked
service method completes with an exception then any RMLTs are implicitly rolled back by the
SCA runtime. Local transactions cannot be propagated outbound across remotable interfaces.

• noManagedTransaction – The component runs without a managed transaction, under
neither a global transaction nor an LTC. A transaction that is propagated to the hosting SCA
runtime MUST NOT be joined by the hosting runtime on behalf of this component. When
interacting with a resource manager under this policy, the application (and not the SCA
runtime) is responsible for controlling any resource manager local transaction boundaries,
using resource-provider specific interfaces (for example a Java implementation accessing a
JDBC provider must choose whether a Connection should be set to autoCommit(true) or else

SCA Service Component Architecture

Transaction Policy Specification Draft V0.51 4 September 2007

142
143

144
145
146

147

148

149

150
151
152
153
154
155
156
157
158
159
160
161
162

163
164
165
166
167
168
169
170
171
172
173

174
175
176
177
178
179

180
181
182
183
184

must call the Connection commit or rollback method). SCA defines no APIs for interacting
with resource managers.

• (absent) – The absence of an implementation intents leads to runtime-specific behavior. A
runtime that supports global transaction coordination may choose to provide a default
behavior that is the managed, shared global transaction pattern but is not required to do so.

1.4.2 OneWay Invocations

When a client uses a reference and sends a OneWay message then any client transaction context
is not propagated. However, the OneWay invocation on the reference may, itself, be transacted.
Similarly, from a service perspective, any received OneWay message cannot propagate a
transaction context but the delivery of the OneWay message may be transacted. A transacted
OneWay message is a one-way message that - because of the capability of the service or
reference binding - can be enqueued (from a client perspective) or dequeued (from a service
perspective) as part of a global transaction. SCA defines two mutually exclusive implementation
intents, transactedOneWay and immediateOneWay, that determine whether OneWay
messages must be transacted or delivered immediately. Either of these intents may be attached
to the sca:service or sca:reference elements but a deployment error will occur if both intents are
attached to the same element. Either of these intents may be attached to the sca:component
element, indicating that the intent applies to any service or reference element children. The
intents are defined as follows:

• transactedOneWay – When applied to a reference indicates that any OneWay invocation
messages MUST be transacted as part of a client global transaction. If the client is not
configured to run under a global transaction or if the binding does not support
transactional message sending, then a deployment error occurs. When applied to a
service indicates that any OneWay invocation message MUST be received from the
transport binding in a transacted fashion, under the target service’s global transaction.
The receipt of the message from the binding is not committed until the service transaction
commits; if the service transaction is rolled back the the message remains available for
receipt under a different service transaction. If the service is not configured to run under
a global transaction or if the binding does not support transactional message receipt, then
a deployment error occurs.

• immediateOneWay – When applied to a reference indicates that any OneWay invocation
messages is sent immediately regardless of any client transaction. When applied to a
service indicates that any OneWay invocation is received immediately regardless of any
target service transaction. The outcome of any transaction under which an
immediateOneWay message is processed has no effect on the processing (sending or
receipt) of that message.

The absence of either intent leads to runtime-specific behavior. The SCA runtime may send or
receive a OneWay message immediately or as part of any sender/receiver transaction. The
results of combining this intent and the managedTransaction implementation policy of the
component sending or receiving the transacted OneWay invocation are summarized below in
Table 1.

transacted/immediate
intent

managedTransaction
(client or service
implementation intent)

Results

transactedOneWay managedTransaction.global OneWay interaction (either
client message enqueue or
target service dequeue) is
committed as part of the global

SCA Service Component Architecture

Transaction Policy Specification Draft V0.51 5 September 2007

transaction.

transactedOneWay managedTransaction.local

or

noManagedTransaction

This is an "incompatible
deployment" Error

immediateOneWay Any value of
managedTransaction

The OneWay interaction occurs
immediately and is not
transacted.

<absent> Any value of
managedTransaction

Runtime-specific behavior. The
SCA runtime may send or
receive a OneWay message
immediately or as part of any
sender/receiver transaction.

Table 1 Transacted OneWay interaction intent 185

186

187

[Note: The SCA Assembly specification [1] will need to specify the semantics of oneway sends.
For example, can a oneway send result in a synchronous Runtime exception related to protocol
error that occurs during the send?]

188
189
190

191

192

193
194
195
196
197
198

199

200
201
202
203
204
205
206
207

208
209
210
211
212

213
214

215
216

1.5 Transaction interaction policies
The mutually exclusive propagatesTransaction and suspendsTransaction intents may be
attached either to an interface (e.g. Java annotation or WSDL attribute) or explicitly to an
sca:service and sca:reference XML element to describe how any client transaction context will be
made available and used by the target service component. Section 1.5.1 considers how these
intents apply to service elements and Section 1.5.2 considers how these intents apply to
reference elements.

1.5.1 Handling Inbound Transaction Context

The mutually exclusive propagatesTransaction and suspendsTransaction intents may be
attached to an sca:service XML element to describe how a propagated transaction context should
be handled by the SCA runtime, prior to dispatching a service component. If the service
requester is running within a transaction and the service interaction policy is to propagate that
transaction, then the primary business effects of the provider’s operation are coordinated as part
of the client's transaction – if the client rolls back its transaction, then work associated with the
provider's operation will also be rolled back. This allows clients to know that no compensation
business logic is necessary since transaction rollback can be used.

These intents specify a contract that MUST be implemented by the SCA runtime. This aspect of a
service component is most likely captured during application design. Either the
propagatesTransaction or suspendsTransaction intent can be attached to sca:service
elements and their children but a deployment error will occur if both intents are specified. The
intents are defined as follows:

• propagatesTransaction – The SCA runtime MUST ensure that the service is dispatched
under any propagated (client) transaction.

• suspendsTransaction – The SCA runtime MUST ensure that the service is NOT dispatched
under any propagated (client) transaction.

SCA Service Component Architecture

Transaction Policy Specification Draft V0.51 6 September 2007

217
218

219

220
221

222

223
224

225

226
227
228

The absence of either interaction intent leads to runtime-specific behavior; the client is unable to
determine from transaction intents whether its transaction will be joined.

Transaction context is never propagated on OneWay messages. The SCA runtime ignores
propagatesTransaction for OneWay methods.

These intents are independent from the implementation’s managedTransaction intent and
provides no information about the implementation’s transaction environment.

The combination of these service interaction policies and the managedTransaction
implementation policy of the containing component completely describes the transactional
behavior of an invoked service, as summarized in Table 2.

SCA Service Component Architecture

Transaction Policy Specification Draft V0.51 7 September 2007

229

service interaction
intent

managedTransaction
(component
implementation intent)

Results

propagatesTransaction managedTransaction.global Component runs in propagated
transaction if present,
otherwise a new global
transaction. This combination is
used for the managed,
shared global transaction
pattern described in Common
Transaction Patterns.

propagatesTransaction managedTransaction.local

or

noManagedTransaction

This is an "incompatible
deployment" Error

suspendsTransaction

managedTransaction.global Component runs in a new
global transaction

suspendsTransaction

managedTransaction.local

Component runs in a managed
local transaction containment.
This combination is used for
the managed, local
transaction pattern described
in Common Transaction
Patterns. This is the default
behavior for a runtime that
does not support global
transactions.

suspendsTransaction

noManagedTransaction Component is responsible for
managing its own local
transactional resources.

Table 2 Combining service transaction intents 230

231
232
233

234
235
236

237

238

239

240
241
242
243
244
245

Note - the absence of either interaction or implementation intents leads to runtime-specific
behavior. A runtime that supports global transaction coordination may choose to provide a
default behavior that is the managed, shared global transaction pattern.

In the case where the propagatesTransaction intent conflicts with the component’s
managedTransaction.local intent, an appropriate error message must be issued at
deployment. SCA tooling may also detect the error earlier in the development process.

1.5.2 Handling Outbound Transaction Context

The mutually exclusive propagatesTransaction and suspendsTransaction intents may also
be attached to an sca:reference XML element to describe whether any client transaction context
should be propagated to a target service when a synchronous interaction occurs through the
reference. These intents specify a contract that MUST be implemented by the SCA runtime. This
aspect of a service component is most likely captured during application design. Either the
propagatesTransaction or suspendsTransaction intent can be attached to sca:service

SCA Service Component Architecture

Transaction Policy Specification Draft V0.51 8 September 2007

246
247
248

249
250
251
252
253
254

255
256
257

258
259
260
261

262
263
264
265
266
267

elements and their children but a deployment error will occur if both intents are specified. The
intents are defined as defined in Section 1.5.1. When used as a reference interaction intent, the
meaning of the qualifiers is as follows:

• propagatesTransaction – any transaction context under which the client runs will be
propagated when the reference is used for a request-response interaction. To satisfy policy
framework compatible wire rules, the reference binding MUST be capable of propagating a
transaction context. The reference should be wired to a service that provides this intent and
thus will join a client’s transaction. The reference consumer can then be designed to rely on
the work of the target service being included in the caller’s transaction.

• suspendsTransaction – any transaction context under which the client runs will not be
propagated when the reference is used. The reference consumer can use this intent to ensure
that the work of the target service is not included in the caller’s transaction. .

The absence of either interaction intent leads to runtime-specific behavior. The SCA runtime may
or may not propagate any client transaction context to the referenced service, depending on the
SCA runtime capability.

These intents are independent from the client’s managedTransaction implementation intent.
The combination of the interaction intent of a reference and the managedTransaction
implementation policy of the containing component completely describes the transactional
behavior of a client’s invocation of a service. Table 3 summarizes the results of the combination
of either of these interaction intents with the managedTransaction implementation policy of
the containing component.

reference interaction
intent

managedTransaction
(client implementation
intent)

Results

propagatesTransaction managedTransaction.global Target service runs in the
client’s transaction. This
combination is used for the
managed, shared global
transaction pattern described
in Common Transaction
Patterns.

propagatesTransaction managedTransaction.local

or

noManagedTransaction

This is an "incompatible
deployment" Error

suspendsTransaction

Any value of
managedTransaction

The target service will not run
under the same transaction as
any client transaction. This
combination is used for the
managed, local transaction
pattern described in Common
Transaction Patterns.

Table 3 Transaction propagation reference intents 268

269

270
271
272

Note - the absence of either interaction or implementation intents leads to runtime-specific
behavior. A runtime that supports global transaction coordination may choose to provide a
default behavior that is the managed, shared global transaction pattern.

SCA Service Component Architecture

Transaction Policy Specification Draft V0.51 9 September 2007

273
274
275

276

277
278
279

280

In the case where the propagatesTransaction reference intent conflicts with the using
component’s managedTransaction.local intent, an appropriate error message must be issued
at deployment. SCA tooling may also detect the error earlier in the development process.

Table 4 shows the valid combination of interaction and implementation intents on the client and
service that result in a single global transaction being used when a client invokes a service
through a reference.

managedTransaction
(client implementation
intent)

reference
interaction intent

service interaction
intent

managedTransaction
(service implementation
intent)

managedTransaction.global propagatesTransaction propagatesTransaction managedTransaction.global

Table 4 Intents for end-to-end transaction propagation 281

282

283
284

285

286

287

288

289

290

Transaction context is never propagated on OneWay messages. The SCA runtime ignores
propagatesTransaction for OneWay methods.

1.6 Example

The following example shows some of the transaction polices in use for an implementation.

<?xml version="1.0" encoding="UTF-8"?> 291
<componentType xmlns:sca=" http://www.osoa.org/xmlns/sca/1.0" 292
 requires="managedTransaction.global"> 293

294
 <implementation.java class="com.acme.TransactionalComponent1" 295
 requires="managedTransaction.global"> 296

297
 <service name="Service1" requires="propagatesTransaction"> 298
 <interface /> 299
 </service> 300

301
 <reference name="Reference1" requires="transactedOneWay"> 302
 <interface /> 303
 <reference> 304

305
 <implementation/> 306

307
</componentType> 308

309

SCA Service Component Architecture

Transaction Policy Specification Draft V0.51 10 September 2007

2 Intent Definitions 310

311
312

313

314

315

316

The SCA Policy Framework specification defines an XML schema for defining abstract intents. The
following XML snippet shows the intent definitions for the transaction policy domain.

2.1 Intent.xml snippet

<?xml version="1.0" encoding="ASCII"?> 317
318

<intents xmlns="http://www.osoa.org/xmlns/sca/1.0" > 319
320

 <intent name="managedTransaction" constrains="sca:implementation"> 321
 <description> 322

Used to indicate the transaction environment desired by a component 323
implementation. 324

 </description> 325
 </intent> 326

327
 <intent name="managedTransaction.global" constrains="sca:implementation"> 328
 <description> 329

Used to indicate that a component implementation requires a managed 330
global transaction. 331

 </description> 332
 </intent> 333

334
 <intent name="managedTransaction.local" constrains="sca:implementation"> 335
 <description> 336

Used to indicate that a component implementation requires a managed local 337
transaction. 338

 </description> 339
 </intent> 340

341
 <intent name="noManagedTransaction" constrains="sca:implementation"> 342
 <description> 343

Used to indicate that a component implementation will manage its own 344
transaction resources. 345

 </description> 346
 </intent> 347

348
349

 <intent name="propagatesTransaction" constrains="sca:binding"> 350
 <description> 351

Used to indicate that a reference will propagate any client transaction 352
or that a service will be dispatched under any received transaction. 353

 </description> 354
 </intent> 355

356
 <intent name="suspendsTransaction" constrains="sca:binding"> 357
 <description> 358

Used to indicate that a reference will not propagate any client 359
transaction or that a service will not be dispatched under any received 360
transaction. 361

 </description> 362
 </intent> 363

SCA Service Component Architecture

Transaction Policy Specification Draft V0.51 11 September 2007

364
365

 <intent name="transactedOneWay" constrains="sca:binding"> 366
 <description> 367

Used to indicate that the component requires the SCA runtime to transact 368
OneWay send of messages as part of any client global transaction or 369
to transact oneWay message receipt as part of any service global 370
transaction. 371

 </description> 372
 </intent> 373

374
 <intent name="immediateOneWay" constrains="sca:binding"> 375
 <description> 376

Used to indicate that the component requires the SCA runtime to process 377
the sending or receiving of OneWay messages immediately, regardless of 378
any transaction under which the sending/receiving component runs. 379

 </description> 380
 </intent> 381

382
383

</intents> 384

SCA Service Component Architecture

Transaction Policy Specification Draft V0.51 12 September 2007

3 Issues: 385

386
387

388

389
390

391
392

393
394
395
396
397

398

399
400

401
402
403
404
405
406
407
408
409

410
411

412

413

414
415

416

417

418
419

420

421
422

423

424
425

426
427
428

• TX-1. This specification defines no intents that can be used to constrain behaviour as
follows:

1. there is no reference intent that compels a target service to run under a client transaction

2. there is no service intent that compels a client to propagate a transaction context (a la EJB
Mandatory transaction descriptor).

The authors of this spec believe we do not need such intents but wish to be clear that this is
something we considered rather than overlooked.

• TX-2. SCA context – this proposal assumes that SCA components access transactional
resource managers in some way. This proposal does not indicate how that happens, but
supports 1) direct use of a resource manager, 2) abstract a RM as a component, and 3)
abstract a RM as a binding. Make it clearer that how transaction is established and how
resources managers are accessed are out of scope.

• TX-3. TODO: converge use of exceptions, faults, return codes in terminology

• TX-4. ISSUE: in managed local tran, cannot commit work and throw an exception (i.e there
needs to be greater flexibility than: “if exception rollback else commit”).

• TX-5. Issue: Should the 4 intents for ManagedTransaction all really be qualifiers on a single
intent, since there is no meaning for an unqualified “managedTransaction” intent. Perhaps
they should be separate intents? As a variation, we could just remove
ManagedTransaction.any and replace it with the unqualified ManagedTransaction. In this
case the “none” case would still be a separate intent. Thus the intents would be:
- ManagedTransaction (unqualified means any)
- ManagedTransaction.global
- ManagedTransaction.local
- NoManagedTransaction

Further discussion :We are trying to express an intent that has 4 distinct values that are
mutually exclusive. We have proposed doing it like this:

 <intent name="managedTransaction.global" constrains=...>

where the "global" part of the intent is one of a set of mutually exclusive values rather than a
qualification of "managedTranasction".

An alternative approach is to simply make these each distinct intents:

 <intent name="managedTransaction_global" constrains=...>

i.e replace the ‘dot’ qualifier with an underscore or simply camel-case the “qualifier” part of
the intent. RESOLVED in this draft.

TX-6 TO DO. Add section on global trans; don’t assume familiarity with EJB. RESOLVED in
this draft.

•

• TX-7. Issue raised by MR on June 26 2007: Do we need this implementation policy or can we
remove it? RESOLVED in this draft.

• TX-8. Interaction policies are mutually exclusive and require additional details to be defined:
(1) the policy f/w needs a syntax to define mtually exclusive intents
(2) we need to define the behavior of “cascading intents “ i.e can a child element “reverse”

SCA Service Component Architecture

Transaction Policy Specification Draft V0.51 13 September 2007

429
430

431
432
433

434
435

436

437
438
439
440

the intent of a parent and, if not, what does that mean for using a top-level element intent as
a “default”. RESOLVED in this draft.

• TX-9: “wire compatibility” rules only relate the binding to the reference and say nothing
about the requirements on the target service. How do we (or should we) try to articulate the
requirement for a target service to provide a compatible intent.

• TX-10: Need a mechanism to exclude suspendsTransaction intent from the selection of a
binding or service.

• TX-11: Clarify the semantics of transactedOneway. RESOLVED in this draft.

• TX-12: There is no means for the service provider to indicate that it is capable of joining a
propogated transaction without requiring the client to propogate a transaction. Note: It is
possible for a binding implementation to declare capability (@provides) but not for a service
provider. This same problem is noted as issue 251 against the Policy FW spec.

SCA Service Component Architecture

Transaction Policy Specification Draft V0.51 14 September 2007

4 References 441

442

443

444

445

446

447

448

449

450

[1] SCA Assembly Model Specification v1.0

http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf

[2] SCA Policy Framework v1.0

http://www.osoa.org/download/attachments/35/SCA_Policy_Framework_V100.pdf

[3] SCA Java Common Annotations and APIs

http://www.osoa.org/download/attachments/35/SCA_JavaAnnotationsAndAPIs_V100.pdf

	 Copyright Notice
	License
	Status of this Document
	 Table of Contents
	1
	1 Overview
	1.1 Common Transaction Patterns
	1.2 Summary of SCA transaction policies
	1.3 Global and local transactions
	1.3.1 Global transactions
	1.3.2 Local transactions

	1.4 Transaction implementation policy
	1.4.1 Managed and non-managed transactions
	1.4.2 OneWay Invocations

	1.5 Transaction interaction policies
	1.5.1 Handling Inbound Transaction Context
	1.5.2 Handling Outbound Transaction Context

	1.6 Example

	2 Intent Definitions
	2.1 Intent.xml snippet

	3 Issues:
	4 References

