
LABORATOIRE

INFORMATIQUE, SIGNAUX ET SYSTÈMES
DE SOPHIA ANTIPOLIS

UMR 6070

COMPONENTS AND SERVICES: A MARRIAGE OF REASON

Philippe Collet, Thierry Coupaye, Hervé Chang, Lionel Seinturier, Guillaume Dufrêne

Projet RAINBOW

Rapport de recherche
ISRN I3S/RR–2007-17–FR

Mai 2007

Laboratoire d’Informatique de Signaux et Systèmes de Sophia Antipolis - UNSA-CNRS
2000, rte.des Lucioles – Les Algorithmes – Bât Euclide B – B.P. 121 – 06903 Sophia-Antipolis Cedex – France

Tél.: 33 (0)4 92 94 27 01 – Fax: 33 (0)4 92 94 28 98 – www.i3s.unice.fr
UMR6070



RÉSUMÉ :

MOTS CLÉS :

ABSTRACT:
Component-Based Software Engineering (CBSE) and Service-Oriented Architectures (SOA) are among todayŠs most promi-

nent software architecture approaches. This article investigates the focus and characteristics of these approaches based on works
conducted in the context of France Telecom activities, then it argues towards bringing them together, and sets up some recom-
mendations for their integration. The article reports, assesses and compares two experiments which were conducted in this line
with the Fractal component model: the first one is based on the Axis and kSOAP Web Services platforms, and the second one is
based on the Tuscany SCA platform.

KEY WORDS :
CBSE, SOA, Fractal, Web Service, SCA



Components and Services: A Marriage of Reason⋆

Philippe Collet1, Thierry Coupaye2, Hervé Chang1, Lionel Seinturier3, and
Guillaume Dufrêne3

1 Université de Nice Sophia-Antipolis, Laboratoire I3S CNRS UMR 6070
Polytech Nice - Sophia, 930 Route des Colles, BP 145, 06903 Sophia-Antipolis, France

{Philippe.Collet,Herve.Chang}@unice.fr
2 France Telecom R&D

28 chemin du Vieux Chêne, BP98, 38243 Meylan, France
thierry.coupaye@orange-ftgroup.com

3 INRIA Futurs - LIFL, Projet Jacquard/GOAL
Bâtiment M3, 59655 Villeneuve d’Ascq, France

{seinturi,Guillaume.Dufrene}@lifl.fr

Abstract. Component-Based Software Engineering (CBSE) and Service-
Oriented Architectures (SOA) are among today’s most prominent soft-
ware architecture approaches. This article investigates the focus and
characteristics of these approaches based on works conducted in the con-
text of France Telecom activities, then it argues towards bringing them
together, and sets up some recommendations for their integration. The
article reports, assesses and compares two experiments which were con-
ducted in this line with the Fractal component model: the first one is
based on the Axis and kSOAP Web Services platforms, and the second
one is based on the Tuscany SCA platform.

1 Introduction

Two approaches have raised a huge interest in the last few years in the software
architecture and distributed systems area: Component-Based Software Engineer-
ing (CBSE) and Service-Oriented Architectures (SOA). These two approaches
essentially appear as competing when reading publications or listening to their
respective proponents. Several reasons may be evoked, among which a great vari-
ability inside each approach (especially in the component world), a probable lack
of maturity (especially in the service world) and altogether a mediatization, not
to say a marketing buzz organized by the two different communities (e.g. con-
sider today the very few conferences that explicitly discuss and compare both
approaches).

This article precisely tackles the comparative study and positioning of compo-
nents and services with the overall objective of arguing that the two approaches
can be seen as much more complementary than competitors. It first describes

⋆ This work was partially supported by France Telecom under the collaboration con-
tracts number 46132097 and 46133723 with CNRS/I3S and 46131097 with INRIA,
and by the ANR RNTL FAROS project.



2 Collet et al.

the salient characteristics of CBSE and SOA and draws their respective ben-
efits and disadvantages. Both approaches are then analyzed according to two
different viewpoints: software reuse and integration, and functional and techni-
cal aspects. We argue that CBSE and SOA should be integrated to enable some
form of component-based engineering of services. To demonstrate this, two ongo-
ing experiments based on a hierarchical component model – Fractal –, and two
service technologies – Web Services and Service Component Architecture (SCA)
are presented, and the benefits of their integration and bridging are assessed.

The remaining of this paper is organized as follows. Section 2 compares syn-
thetically CBSE and SOA. Section 3 introduces some background material on
the main technologies used. Sections 4 and 5 present and assess the two ongo-
ing experiments, Fractal WS and Fractal SCA, to integrate Fractal components
with respectively Web Services and SCA. Section 6 draws conclusions on the
integration of CBSE and SOA.

2 CBSE and SOA

This section highlights the most prominent characteristics of CBSE and SOA by
notably focusing on the following criteria: encapsulation, granularity, coupling,
state and composition. It then discusses these two architectural approaches ac-
cording to two points that are, according to us, confusing and make their po-
sitioning difficult – that is software reuse and integration, and functional and
technical aspects. Finally, it discusses current industrial practice and advocates
for integration of components and services.

2.1 Characteristics of Component-Based Architectures

The most prominent characteristics of the CBSE approach are:

Black, white, gray boxes! Like SOA, CBSE promotes the principle of separa-
tion between interfaces and implementations. It even pushes this principle
a step further as components are also free to expose or not their internal
structure in terms of sub-components. This has lead to the various char-
acterization of “black boxes”, “white boxes” and even “gray boxes” unit of
composition. It is worth noticing that this debate, which is due to some ex-
tent, to the well-known definition of component given by C. Szyperski stating
that a component is ”a black box without state...”, has lost much of its initial
intensity within the CBSE community.

Arbitrary granularity The CBSE approach is agnostic about the granularity
of components. They can be of a completely arbitrary size: from the size
of a driver or pool in an operating system to a transactional monitor and
even a complete DBMS. Actually, one of the greatest strength of the CBSE
approach is precisely to enable a uniform control of any software resources
at any desired level of abstraction.



Components and services 3

State The CBSE approach is also globally agnostic about the fact that com-
ponents have a state or not, although in many application domains, as this
was experimented with the Fractal component model in several technical
software infrastructures such as OS, middleware or applications servers, com-
ponents often do have a state that needs to be handled.

Reflection Most components, at least in the most recent and advanced com-
ponent models such as OpenCOM [1] and Fractal [2–4] integrate mechanisms
to support introspection and more generally reflection capabilities, as they
are necessary to control the structural composition of components (compo-
nent bindings, life-cycle, state...). In a more general way, the needs for such
mechanisms have already been motivated in “industrial component models”
such as EJB or CCM, to control technical services and non-functional aspects
of components.

Composition A component is a software entity which conforms to a com-
ponent model. It specifies rules about the composition and interaction be-
tween components, and it is generally based on a computational or abstract
model, a programming model and sometimes an engineering model. There
is no frontal opposition here between CBSE and SOA but while SOA insists
on orchestration, CBSE insists on composition.

Structural composition Although works in CBSE are interested in various
types of interaction (synchronous, asynchronous, by signals, etc.) and com-
position (of which the behavioral composition which is not without relation
with the concept of contract), component models basically propose concepts
and mechanisms to control bindings between components and in particu-
lar the connections between components and their sub-components, that is
the hierarchical structure of a system. The coupling is thus much stronger
between components than between services, but it is weaker than in the pre-
ceding approaches, in particular in the object-oriented one. In components,
connections are not static nor “hidden in the code”. On the contrary, they
are externalized and made easily manipulable notably in a programmatic
and dynamic way as it is in the most advanced component models.

The main benefits of the CBSE approach are the flexibility, dynamicity
(greater manageability and maintainability) and predictability of systems built
by assembly of components. Component-based architectures provide structural
abstractions which make it possible to reason about the behavior of software sys-
tems with respect to integrity, security, isolation, performances, QoS, real-time...
The current major disadvantages of the CBSE approach concern the lack of ma-
ture techniques to guarantee predictable properties formally (e.g.real-time). The
principal bolt concerns the compromises between the expected flexibility and the
trust of the systems built by assembly of components.

2.2 Characteristics of Service-Oriented Architectures

The most prominent characteristics of the SOA approach are:



4 Collet et al.

Black boxes Since services do not have explicit and reified knowledge of the
implementation of other services nor of their own internal implementation,
services really appear are black boxes. The only visible part of a service
is its ’external side’ which is made of the interfaces it provides. SOA here
aligns with the architectural principle of separation between interfaces and
implementations which is now commonly applied in modern programming
languages and component-based approach.

Coarse granularity This characteristic is not so much strictly tied and in-
trinsic to the SOA approach than the previous ones. Nevertheless, the loose
coupling and the most frequent usages of the SOA technology (orchestration
of web services on the Internet, orchestration of objects/services in domestic
environments à la UPnP) imply a relatively coarse and fixed granularity for
services. In fact, a service, in the SOA approach, is rarely an operation on a
hash table or a pool in a DBMS!

Loose coupling Services are functions which are externalized and accessible
only through interfaces. They represent the services “provided” by service
producers to service consumers. Moreover, although a service may have de-
pendencies towards other services, or towards components that are part of
its implementation, such dependencies are not made explicit at the service
interface level.

Stateless A corollary and even a necessary condition for loose coupling is
that services are stateless. Actually, as a service is necessarily implemented
by one (or several) program, it does have a state. However, the state of the
service does not affect any of its interactions with the service consumers. It
is neither accessible, nor manipulable by other services or other entities (like
administration consoles).

Discovery As services do not have intrinsic dependencies nor do they have
knowledge of the other services with which they have to interact, mechanisms
for service discovery (naming, trading, brokering services) are of particular
importance.

Orchestration Since dependencies and a fortiori interactions betweens ser-
vices are not visible in service descriptions, it is necessary to specify sepa-
rately from the services themselves, how and when they interact. This is the
classical role of orchestration and choreography which basically encompass
the well-known concepts in software engineering of workflows and processes.

The main benefits of the SOA approach concern dynamicity, scalability and
availability. Indeed, since a service is basically a function which is accessible from
a well-known access point (typically a location on a network), one can easily
imagine that several services that provide the same function may be instanti-
ated and executed simultaneously on multiple network nodes. This then provides
interesting availability and scalability capabilities of service-based systems. As
for its main current weaknesses, they essentially concern aspects such as depend-
ability (security, reliability and availability) and maintainability (manageability
and QoS guarantees). It is also worth noticing that loose coupling plays a central
role in SOA. Almost all other characteristics (stateless, discovery, orchestration)



Components and services 5

of the approach result from it as well as its strengths and weaknesses. Avail-
ability is an interesting point in this approach. In an optimistic vision, one can
think that a service which is involved in an orchestration will be always available
since it can be instantiated and shared several times. However, due to loose cou-
pling, actually nothing can guarantee that, as one may also remove unilaterally
a service on a given node.

2.3 Architectural Viewpoints

Software Reuse and Integration When debating about CBSE and SOA, a first
point which complexifies their positioning and often results in opposing them
frontally relates to the problem of software integration. Software integration
constitutes a major industrial bolt, in particular with the emergence of Internet,
and in a more general way, with the convergence of computing and telecommu-
nications. In this context, software systems are thus now omnipresent and they
are still getting more and more complex and critical (complex software products,
development costs, deployment, maintenance and evolution management, pub-
lic image, time-to-market constraints). This complexity covers several aspects
among which the intrinsic algorithmic complexity of such systems (raised for ex-
ample by distribution, faults or asynchronism) but also, and this is what interests
us here, the complexity in terms of systems engineering, as a consequence of the
increasing heterogeneity at many various levels (terminals, devices, network pro-
tocols, operating systems, middleware, service platforms, services) and also the
variability (mobility, nomadism) and openness of nowadays execution environ-
ments (dynamic topology). In this context, CBSE and SOA approaches appear
different and competing, and from our point of view, although they represent
two software integration technologies, they do not relate to, in fine, the same
type of integration. The CBSE approach rather relates to a pre facto integration
whereas the SOA approach rather consists in a post facto integration.

In CBSE, the integration can be described as pre facto, as components are
explicitly built in conformity with an architectural model, which then make
it possible to compose them gracefully. The CBSE approach has the objective
to cover the whole software lifecycle (development, deployment, management,
maintenance stages), and this type of integration corresponds to a systematic
development and deployment process. Integrated components are homogeneous
but can be built with an arbitrary granularity. Moreover, coupling and control
on components are strong but dynamic. Software reuse also relates primarily
to the “reuse of code as such” (i.e. rather “types” or “libraries” of components
which can be instantiated several times), altough instance sharing as in the SOA
approach is possible. Finally, some component models like the Fractal one, also
allows one to share components within the same system but possibly in various
locations of the system.

In SOA, the integration can be described as post facto as it does focus on
how services are constructed and executed. Services exist and must be integrated
almost just as they are. The major constraints relate to the set of underlying
protocols notably used for discovery and communication (e.g. SOAP, UPnP).



6 Collet et al.

The SOA approach has the objective to expose and reuse services, and this type
of integration corresponds to an opportunistic development in which existing ser-
vices, managed by multiple administrative entities services (e.g. services on the
Web), are integrated within orchestrations. The integrated services are globally
heterogeneous, with fixed and rather coarse granularity. Moreover, coupling and
control on services are weak to null. A service is (in approaches such as UPnP,
a little bit less in approaches such as Web services) frequently a singleton (in
object-oriented terminology, a service would be an object rather than a class).
Software reuse relates to service orchestrations and corresponds to a form of
“reuse of code in execution” through “instance sharing” : a same service (single-
ton) can be shared and integrated in several orchestrations simultaneously.

Functional and Technical Aspects A second point which scrambles the debate
between CBSE and SOA relates to the bare grounds of the two approaches since
it relates to the architecture of software systems. Indeed, this might seem obvious
but the SOA approach only deals with the functional point of view of software
architecture. On the contrary, the CBSE approach covers a broader range of
aspects which concern the functional aspect (set of functions/services that form
a system) but also and mostly it deals with the structural (the organization
of functions/services) and technical aspects (the integration of non-functional
aspects).

2.4 Co-existence or Integration

In the current industrial practice, we generally observe the choice of one preferred
technology depending on considered applicative contexts. CBSE is typically pre-
ferred in middleware and embedded systems which exhibit strong non-functional
constraints. While SOA is typically preferred in e-business applications (e.g. or-
ganization of travels with online booking of transport tickets, renting cars, ho-
tels, etc.) which necessitate to chain calls to online services provided by distinct
companies (booking centrals, airlines companies, car rental companies, etc.). In
other applicative contexts, for instance that of enterprise information systems
(IS), we observe a co-existence of both technologies where they are used in differ-
ent parts of a system. CBSE is typically used to implement business components
into back office application servers (e.g. J2EE), whereas SOA is used to integrate
these components by giving an agglomerate view, and interact with other ser-
vices in the considered information system - and a fortiori with external services
typically available on the Internet. This approach matches the one proposed
in [5].

Another approach put forward by this article consists in pushing further the
integration of SOA and CBSE to show their complementarity. The proposal is
sketched by approaches like SCA (Service Component Architecture) [6] or OSGi.
These approaches tends to shuffle concepts and mechanisms coming from SOA
and CBSE, resulting in models not always homogeneous, nor very easy to handle.
We rather propose to keep intact the two complementary views. The proposal in-
cludes a component-based system engineering of services, i.e. an implementation



Components and services 7

of services compliant with a component model ; and some mechanisms (a.k.a.
bridges) to expose (or export) some components as services allowing both a
lifecycle management (deployment, administration, reconfiguration) à la CBSE,
while offering a loose coupled communication layer (including discovery) à la
SOA between these services/components.

A first experiment in this line was done in the context of the Fractal com-
ponent model with Fractal JMX [7], which allows for the automatic, non intru-
sive and declarative (with filtering and parametrization capabilities) exposure of
Fractal components as JMX MBeans - providing a JMX personnality to Fractal
components. Two other experiments are being conducted in the Fractal ecosys-
tem with Web Services and Service Component Architecture (SCA). They are
discussed in the sequel of this paper, after the next section which provides back-
ground on the context of these two experiments.

3 Background

This section introduces background material on the Fractal component model,
Web services and SCA technologies.

3.1 Fractal

Fractal [2–4] is an advanced component model and associated programming and
management support devised initially by France Telecom and INRIA since 2001.
Most developments are framed by the Fractal project4 inside the ObjectWeb
open source middleware consortium. The Fractal project targets the development
of a reflective component technology for the construction of highly adaptable and
reconfigurable distributed systems, middleware, operating systems, etc5.

The Fractal component model itself relies on some classical concepts in CBSE:
components are runtime entities that conforms to the model, interfaces are the
only interaction points between components that express dependencies between
components in terms of required/client and provided/server interfaces, bindings
are communication channels between component interfaces that can be primitive,
i.e. local to an address space or composite, i.e. made of components and bindings
for distribution or security purposes.

Fractal also exhibits more original concepts. A component is the composition
of a membrane and a content. The membrane exercises an arbitrary reflexive con-
trol over its content (including interception of messages, modification of message
parameters, etc.). A membrane is composed of a set of controllers 6 that may or

4 http://fractal.objectweb.org/
5 Several ObjectWeb softwares (http://www.objectweb.org/), such as CLIF, Speedo,

JOnAS, GOTM or Petals, embed Fractal technology and are used operationnally
e.g. the JOnAS J2EE application server is widely used inside France Telecom for its
service platforms, information systems and networks by more than 100 applications.

6 The way controllers are defined and composed inside membranes is generally what
the most distinguishes Fractal implementations one from each others.



8 Collet et al.

may not export control interfaces accessible from outside the considered compo-
nent. The model is recursive (hierarchical) with sharing at arbitrary levels. The
recursion stops with base components that have an empty content. Base compo-
nents encapsulate entities in an underlying programming language. A component
can be shared by multiple enclosing components (in this case, its behaviour is
controlled by the first super component that encapsulates the components that
share the considered shared component). Finally, the model is open: everything is
optional and extensible in the model, which only defines some common/standard
APIs for navigating into and controlling component structures e.g. controlling
the bindings between components (BindingController to introspect/bind/unbind
components interfaces), the hierarchical structure of a component system or the
components life-cycle (creation, start, stop, etc).

3.2 Web Services

Web Services is a widespread technology for integrating, wrapping and exposing
existing functionality in a platform- and programming language-independent
way, thus moving towards interoperable systems and loosely-coupled applica-
tions. On a conceptual level, these software interfaces represent units of func-
tionality provided by service producers, each handling a specific functional task.
These interfaces require to be properly described and published in service reg-
istries in such a way that service consumers can discover, localize and invoke
them dynamically. They can also be combined into higher-level tasks to provide
particular business-oriented processes. On a technical level, a Web Service is a
software interface which describes a collection of running operations available on
the Web that can be accessed over the network through standardized protocols
based on the XML language. To achieve interoperable services, Web Services re-
lies on a family of related technologies which include the three core specifications
SOAP [8], WSDL [9], and UDDI [10]. These specifications respectively address
message exchanges (message format, data encoding...), interface description (op-
erations, messages, concrete format and protocol binding...) and localization of
web services (registry and protocols). Other web services protocols (WS-*), at
different stages of maturity, are also continuously being proposed and adopted
to address higher-level aspects of the Web Services Architecture such as man-
agement, security, transactions and business processes, etc. [11].

3.3 SCA

The Service Component Architecture (SCA) is an initiative which aims at pro-
viding a component model for SOA. While Web Services mainly focus on system
interoperability and loose-coupling, SCA targets the structuring of these sys-
tems. The aim is to bring to SOA the benefits of component-based development.

The SCA specifications are being developed by the Open SOA Collabora-
tion7. SCA defines a model for the assembling of service components [12] and a

7 http://www.osoa.org/



Components and services 9

model for the creation of component services. This model is currently available
for the Java [13], C++, Spring and BPEL languages. The idea is to promote
the decoupling of the way components are implementing from the way they are
assembled. A second important idea is that SCA can accommodate various com-
munication technologies between components: Web Services which are maybe the
preferred and most common choice, but also message-oriented middleware such
as JMS, or request/response protocols such as IIOP.

The specification of the SCA assembling model [12] is currently subject to
some intense work by the Open SOA members. The remainder of this description
is based on version 0.96 draft 1 of the specification. The basic artifact of a
SCA system is the component. A component provides services and may depend
on services provided by other components. In such a case, these dependencies
are called references. Services and references are described with an interface
definition language which can be Java or WSDL. Several SCA components can
be assembled into a composite. The top-level composite is called the system.
The novelty of version 0.96 compared to 0.95 is the ability to have an arbitrate
number of inclusion levels for the hierarchy of composites and sub-components.
References and services can be connected with so-called wires. In addition, the
SCA specification defines the notion of a binding as the way to specify the
communication technology (e.g. Web Services) associated with a service or a
reference.

The SCA programming model for Java [13] defines the way SCA components,
services, references and properties can be implemented with Java. Two styles
may be used: either Java 5 annotations or unannotated POJOs (Plain Old Java
Objects) with XML component type files.

Several implementations, commercial or open source, of the SCA specification
are currently available. In the open source world, the leading platforms are the
Apache Tuscany project8 and the Eclipse STP project9. The specification is
rapidly changing and is heading towards a fully-fledged component model.

4 Fractal WS

Fractal WS is a toolkit which aims at providing means to make compatible any
Fractal component with the technology of Web services and reciprocally. On the
one hand, any interface provided by a Fractal component could be transformed
into a Web Service, thus making it accessible through web services’ protocols. On
the other hand, any (external) web service could be accessed inside an assembly
of Fractal components and at any level of hierarchy, using a dedicated proxy
component. In both cases, appropriate services or components are generated
so that the bridge can be made operational. The toolkit is based on the Julia
reference implementation in Java of the Fractal component model, and it also
relies on the Apache Axis Java-based implementation of the SOAP specification,
which provides mapping API and server support for web services. The toolkit is

8 http://incubator.apache.org/tuscany/
9 http://www.eclipse.org/stp/



10 Collet et al.

itself implemented with Fractal components. Moreover, deployment can be done
in any servlet/jsp-compliant container, like the Apache Tomcat server.

4.1 Bridging Fractal Components and Web Services

Exposing Component as a Service Producing a service consists in deploying
the Web Service that corresponds to part or all server interfaces of a Fractal
component. Deployment is made on a Tomcat server bundled with Axis. Using
the toolkit, one can provide either an ADL definition of a component or an
already instantiated component, so that for each of its server interfaces the
following files, packaged in an archive, are generated (see Figure 1a):

– the corresponding WSDL file;
– an implementation of this WSDL as a proxy rerouting all messages from the

web service to the corresponding component interface;
– deployment descriptor files (deploy.wsdd and undeploy.wsdd).

Besides, the toolkit maintains a cache of all converted interfaces, so that a
new WSDL file is generated for a component interface only if its definition is
not already in the cache. This then enables several components that provide the
same server interface to be substituted as the same implementation of a web
service.

wsdd deployment files

Web Service

Web Service

WSDL definition

implementation

generation

generation

Component
Existing

(a) From component to services.

Existing

Web Service

generation

ADL definition of the proxy component

to the WSDL definition

Proxy
implementation

Attribute (to change WS address)

Interface corresponding

(b) From service to component.

Fig. 1: Main features of the Fractal WS toolkit.

Using a Service as a Component Making a Web Service accessible as a Frac-
tal component must be done in two times. First, the proxy component and its
implementation are generated from the WSDL document of the given Web ser-
vice. Afterwards, this component can be used in a component architecture. This
must be done as the provided interface of the proxy component, which is the
component counterpart of the WSDL, is not known before by the rest of the ar-
chitecture, and thus cannot be specified as a required interface of a component
that needs the generated proxy.

More precisely, during the first stage, the toolkit takes the URI of the WSDL,
from which it generates (see figure 1b) the following files, packaged in an archive :

– the stubs, data types, as well as component interfaces and type, from the
WSDL.



Components and services 11

– an implementation of the component type, as a proxy which implements
the generated server interface and rerouts all the messages to the external
Web service. It must be noted that currently the toolkit is able to generate
proxy components implemented using either Axis client-side, or the kSOAP10

lightweight SOAP implementation. The usage of the two implementations is
illustrated in the next paragraph.

– an attribute-controller interface that allows one to dynamically change the
location of a Web service by changing the corresponding attribute of the
proxy component.

– some utility classes to be able to instantiate the proxy component through
the Fractal API and the ADL definition of the resulting component, so that
its integration in any system can be done easier.

In the same way as for service generation, a cache is also maintained so that
a WSDL file is only converted if its URI is not already present.

4.2 Application to a Dynamic Communities System

The Fractal WS system has been validated on a client-server distributed system,
Amui 11 which is mainly based on a messaging server that automatically and
dynamically groups users according to their common interests. Functionally, an
user equipped with the Amui client application connects to the Amui server and
gives some authentication information (login, password) as well as some keywords
that describe its interests. The server then automatically finds the groups whose
topics match the user’s keywords, and it automatically adds the user into the
matched group. Groups are first associated with a chat room and currently once
grouped, users are assigned in the same chat room, and they receive various
advertisements according to their group topics. However, different plugin-like
applications can still be integrated, for example to stream videos or simply to
call other applications on all clients. This application which is already operational
is based on the JiveSoftware Wildfire12 server, an enterprise instant messaging
server that uses the XMPP protocol, and which open architecture enables us to
add new features architectured using components and services.

Architecture We only focus here on some parts of the overall system that are
relevant to our purpose. The server, shown on figure 2, is represented by the
composite component AmuiServer, which is formed out of three subcomponents:
AmuiFacade pilots the Core and a proxy component to an advertisement web
service is plugged into the AmuiServer component latter. This AdvertProxy com-
ponent is actually generated using the Fractal WS toolkit. The Core is piloted
through three interfaces: one to match users’ keywords to groups’ topics, one
to manage users and the last one to manage groups. Inside Core, each interface

10 http://ksoap.objectweb.org/
11 Amui means to gather in Tahitian.
12 http://www.jivesoftware.org/wildfire/



12 Collet et al.

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

Web Service

Amui

Web Service

CC LCBC

Component

Shared compon.

WS Proxy

Server interface

Binding
Client interface

Controllers

UGMatcher

GroupManager

Core

UserManager

Amui

A
m

u
iF

ac
ad

e

Server

Control
User XMPPServer

Facade

Advert

Group
Proxy

Control XMPPServer
Facade

Adapter
LuceneMatcher

Fig. 2: Architecture of the server.

is bound to a subcomponent. UGMatcher implements the main functionality by
using the Lucene13 library encapsulated in a utility component (LuceneAdapter).
GroupManager simply controls group creation and administration, mainly through
a facade component to the XMPP underlying server (Wildfire in our case). This
enables the architecture to be reused on other XMPP server implementations.
UserManager controls functionalities related to users in the same way, and the
XMPPServerFacade component is then shared inside this component, using the
appropriate mechanisms of the Fractal platform.

Assessment In the server part shown in figure 2, both features of the toolkit are
used. The component proxy AdvertProxy is generated from a given advertise-
ment Web Service in order to use that Web Service inside the server assembly
(feature 1). Moreover, the server itself which is represented by the top-level
component AmuiServer exposes its unique provided interface as a Web Service in
order to be accessed by various clients using the Web Services standard protocols
(feature 2).

The web service exposed by AmuiServer is actually reused by the client ap-
plication of the Amui system. Figure 3 shows a very simplified view of the ar-
chitecture of the client. In particular, the AmuiClient component contains the
AmuiServerProxy component which is generated again by the Fractal WS toolkit
from the WSDL describing the web service exposed by AmuiServer. AmuiServerPro-
xy then encapsulates all the logic to connect to the AmuiServer web service, and
as the client application may be deployed on different platforms, it is possible
to use Fractal WS to generate two different implementations of this proxy (one
based on Axis client-side for client application deployed on Desktop PCs, and
another one based on the lighter implementation kSOAP for client application
deployed on Pocket PCs) and replace the AmuiServerProxy component at deploy-
ment time.

13 Lucene is a full-featured text search engine library (http://lucene.apache.org/).



Components and services 13

Using the toolkit, it is thus possible to define a web service from a component
at any level of their hierarchy. It must be noted that the main differences of
CBSE and SOA determined in section 2 are not less marked. The interface of
the concerned component must preferably be coarse-grained and stateless to
become a valid service. Finally, the use of other web services as components also
appears as very useful, especially when the other services is not at the same
business level. This simply shows that the hierarchical decomposition turns to
be also appropriate at the coarse-grained level of services. The Amui system

Manager
ConnectionGUI

Amui Client

Amui
Server
Proxy

Fig. 3: Simplified view of the client architecture.

also demonstrates the power of using a hierarchical structure of components
along with services: a facade component on the underlying messaging server is
used to access it and is also shared at different levels of hierarchy, some APIs
are simplified and accessed through a component wrapper, such as the Lucene
search library.

5 Fractal SCA

The previous section presented a solution for exposing Fractal components as
Web Services and reciprocally. This solution relies on the structural information
provided by Fractal components and Web Services to generate the glue code
which allows connecting both worlds. In contrast, the second solution presented
in this section proposes communication bridges between both world. Yet, we will
see that both solutions are close and complementary.

The main goal of the Fractal SCA experiment is to bridge component-based
applications written in the Fractal and SCA technologies. The bridge is bidirec-
tional to allow communications to and from Fractal and SCA. The goal is then
to interconnect applications written with heterogeneous component technologies.
The interoperability is based on the SOAP communication protocol. The remain-
der of this section describes the extension which has been introduced in Fractal
to achieve interoperability with SOAP. This experiment is based on the Tuscany
project and on the AOKell [14] implementation of the Fractal component model.

Communications from Fractal to SCA In terms of communication from Fractal
to SCA, we set up a solution which relies on the Factory design pattern for
creating SOAP bindings. This solution takes advantage of the extensibility of the
Fractal component framework. As explained in section 3.1, the control part of a
Fractal component can be customized to accommodate different non-functional
services. Besides the standard binding controller which creates local bindings for



14 Collet et al.

components located in the same memory address space, we set up a so-called
SOAPBindingController with the ability to create remote bindings based on
the SOAP protocol.

As illustrated in figure 4, this controller generates dynamic proxies to bind
a Fractal component to a Web Service entry point exported by a SCA mod-
ule. Taking the URI of the WSDL as input, the SOAPBindingController uses
the Java reflection API to generate a proxy instance for the specified Web Ser-
vice. This proxy instance uses an invocation handler which generates the needed
SOAP requests.

Fig. 4: Main features of the Fractal SCA toolkit.

Communications from SCA to Fractal A SOAP communication service has been
defined and implemented for handling communications from SCA to Fractal.
This service is generic in the sense that it can receive SOAP requests of any
type. Fractal components which will act as servers for SOAP requests must first
be registered with the SOAP communication service. The registration takes as
input the URI of the SOAP invocation. The communication service performs
the dispatching of an incoming request based on the registered URI.

The SOAP communication service is implemented as an assembly of Fractal
components. This assembly reuses the existing Comanche web server which is a
lightweight and minimal web server written in Fractal. The original version of
Comanche serves HTTP GET requests for static documents. A component for
handling SOAP requests has been implemented and inserted in the architecture
of Comanche.

Assessment While the SCA technology has been used in this experiment, noth-
ing is really specific to the component-oriented functionalities of SCA. We simply
rely on the fact that SOAP is the preferred solutions for handling external SCA
communications. The solution is then compatible with other Web Service plat-
forms.

Compared to the Fractal WS solution presented in section 4, the Fractal
SCA solution differs mainly by the means used to achieve the bridging: Fractal
WS uses generative programming techniques to provide statically typed proxy



Components and services 15

components, whereas the proxies are dynamically typed with Fractal SCA. A
comparison can be drawn with the stub/skeleton mechanism of CORBA mid-
dleware platform. Fractal SCA implements a solution which is similar to generic
stubs/skeletons, whereas the stubs/skeletons are statically generated with Frac-
tal WS. Static stubs/skeletons are more effective but need to be generated for
every new interface, whereas generic stubs/skeletons fit any type of interfaces at
the cost of some reduced performances.

6 Conclusion

CBSE and SOA are among today’s most prominent software architecture ap-
proaches. In this paper, we investigated their graceful integration on the basis
of two experiments that were conducted with the Fractal component model.
The first integration prototype, Fractal WS, is a toolkit to make compatible
any Fractal component with the technology of Web services. Using generative
programming techniques, any interface provided by a component can be trans-
formed into a Web service and any Web service can be seen as a Fractal proxy
component. This toolkit is currently used on a messaging server that automat-
ically put users together into groups according to common interests. The other
experiment, Fractal SCA proposes a bidirectional bridge between Fractal and the
Service Component Architecture (SCA). From Fractal to SCA, components are
enhanced so that they are able to create SOAP bindings dynamically and con-
nect them to a Fractal component. On the other hand, a SOAP communication
service is provided to handle communications from SCA to Fractal.

The two approaches turn out to be complimentary as they respectively pro-
vides static and dynamic forms of bridges. Moreover, the vision that underlies the
two experiments is that of large complex distributed systems, possibly spanning
multiple administrative domains, engineered in terms of hierarchical components
with some of these components exposed as services. In this vision, those hierar-
chical components are preferably reflective components, so as to exhibit sound
configuration, deployment and management support, including non-functional
contracts. At arbitrary hierarchical levels, some of them are exposed as services,
so to provide support for lesser coupled orchestrations with standard workflow
languages.

Consequently, integrating CBSE and SOA still need more work and experi-
ments. France Telecom will experiment shortly the Fractal WS bridge in its R&D
works in the domain of grid computing. The Fractal WS toolkit itself is going to
be extended with orchestration capabilities and used in combination with other
Fractal extensions, such as the general contracting system ConFract [15].

Some of these prototypes will also be used in the ongoing research projects
the authors are involved in: the RNTL FAROS project, in which a Model-Driven
Engineering approach is followed to provide a general model for contracting
services in platforms mixing SOA and CBSE, and the RNTL SCOrWare project,
in which the technical services offered by a service oriented platform such as SCA
will be extended with component-based services developed as Fractal assemblies.



16 Collet et al.

Acknowledgements. The authors wish to thank the members of the RNTL
FAROS project for discussions on components and services, and Moncef Ghaoui
and Ilya Naraghi for their contribution to the implementation of both the Amui
system and the Fractal WS toolkit.

References

1. Clarke, M., Blair, G., Coulson, G., Parlavantzas, N.: An Efficient Component
Model for the Construction of Adaptive Middleware. In: Proceedings of the
IFIP/ACM Middleware Conference. (2001)

2. Bruneton, E., Coupaye, T., Stefani, J.: Recursive and Dynamic Software Compo-
sition with Sharing. In: Proceedings of the 7th ECOOP International Workshop
on Component-Oriented Programming (WCOP ‘02). (2002)

3. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The Fractal
Component Model and its Support in Java. Software Practice & Experience (SPE)
36 (2006) 1257–1284

4. Coupaye, T., Stefani, J.B.: Fractal Component-Based Software Engineering. In
Consel, C., Sudholt, M., eds.: ECOOP’06 WS Reader. Volume 4379 of LNCS.,
Springer (2007) To appear.

5. Wang, G., Fung, C.K.: Architecture Paradigms and Their Influences and Impacts
on Component-Based Software Systems. In: 37th Hawaii International Conference
on System Sciences (HICSS). (2004)

6. Beisiegel, M., al.: Service Component Architecture - Building Systems using a
Service Oriented Architecture. A Joint Whitepaper by BEA, IBM, Interface21,
IONA, SAP, Siebel, Sybase (2005)

7. Rivierre, N., Coupaye, T., Bruneton, E., Andrey, L.: Fractal JMX.
http://fractal.objectweb.org/fractaljmx/ (2005)

8. W3C: SOAP Version 1.2. W3C Note (2003) http://www.w3.org/TR/soap/.
9. W3C: Web Services Description Language (WSDL) 1.1. W3C Note (2001)

http://www.w3.org/TR/wsdl.
10. UDDI.org OASIS TC: Universal Description, Discovery and Integration. OASIS

TC Draft (2004) http://www.uddi.org/specification.html.
11. W3C: Web Services Activity. web (2006) http://www.w3.org/2002/ws/arch/.
12. OSOA: SCA Service Component Architecture - Assembly Model Specification.

(2006) Version 0.96 draft 1.
13. OSOA: SCA Service Component Architecture - Client and Implementation Model

Specification for Java. (2006) Version 0.95.
14. Seinturier, L., Pessemier, N., Duchien, L., Coupaye, T.: A Component Model En-

gineered with Components and Aspects. In: Proceedings of the 9th International
SIGSOFT Symposium on Component-Based Software Engineering (CBSE’06).
Volume 4063 of Lecture Notes in Computer Science., Springer (2006) 139–153

15. Collet, P., Ozanne, A., Rivierre, N.: Towards a versatile contract model to organize
behavioral specifications. In: 33rd International Conference on Current Trends in
Theory and Practice of Computer Science SOFSEM 07, Harrachov, Czech Repub-
lic. (2007)


