
                                                                                                                      
Date: May 2009

Ontology Definition Metamodel

Version 1.0

OMG Document Number:  formal/2009-05-01
Standard document URL:  http://www.omg.org/spec/ODM/1.0
Associated Files*:  http://www.omg.org/spec/ODM/20080901
                              http://www.omg.org/spec/ODM/20080902 

*  source files:  ptc/2008-09-09 (CMOF XMI), ptc/2008-09-09 (UML2 XMI)



Copyright © 2005-2008, IBM
Copyright © 2009, Object Management Group, Inc.
Copyright © 2005-2008, Sandpiper Software, Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and 
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any 
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up, 
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version. 
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the 
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any 
computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up, 
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and 
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this 
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission 
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be 
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for 
commercial purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates 
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the 
specifications in your possession or control. 

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of 
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by 
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its 
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves 
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and 
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered 
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including 
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.



                                                                                                                      
DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN 
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE 
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING 
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF 
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.  IN NO EVENT 
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR 
ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, 
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY 
ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF 
THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 

The entire risk as to the quality and performance of software developed using this specification is borne by you. This 
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government  is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The 
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the 
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of 
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and 
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the 
Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered 
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling 
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™, 
CWM™, CWM Logo™, IIOP™ , IMM™ , MOF™, OMG Interface Definition Language (IDL)™, and OMG Systems 
Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or company 
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is 
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use 
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if 
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software 
developed only partially matching the applicable compliance points may claim only that the software was based on this 
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are 
implemented or approved by Object Management Group, Inc., software developed using this specification may claim 
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.





OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we 
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by 
completing the Issue Reporting Form listed on the main web page http://www.omg.org, under 
Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).



Table of Contents

Preface ........................................................................................................... xi

1 Scope .............................................................................................................. 1

2 Conformance .................................................................................................. 2

3 Normative References ................................................................................... 3

4 Terms and Definitions ................................................................................... 5

5 Symbols .......................................................................................................... 8

6 Additional Information ................................................................................... 9

6.1  Changes to Adopted OMG Specifications ..........................................................9

6.2  How to Read This Specification ........................................................................10

6.3  Proof of Concept ...............................................................................................11

6.4  Acknowledgements ...........................................................................................11

7 Usage Scenarios and Goals ........................................................................ 13

7.1  Introduction .......................................................................................................13

7.2  Perspectives .....................................................................................................13
7.2.1 Model-Centric Perspectives .......................................................................................... 14
7.2.2 Application-Centric Perspectives .................................................................................. 15

7.3  Usage Scenarios ...............................................................................................16

7.4  Business Applications .......................................................................................17
7.4.1 Run Time Interoperation ............................................................................................... 17
7.4.2 Application Generation ................................................................................................. 18
7.4.3 Ontology Lifecycle ........................................................................................................ 19

7.5  Analytic Applications ..........................................................................................20
7.5.1 Emergent Property Discovery.......................................................................................  20
7.5.2 Exchange of Complex Data Sets .................................................................................. 20

7.6  Engineering Applications ..................................................................................21
7.6.1 Information Systems Development ............................................................................... 21
7.6.2 Ontology Engineering ................................................................................................... 21

7.7  Goals for Generic Ontologies and Tools ...........................................................22
Ontology Definition Metamodel, v1.0        i



8 Design Principles ......................................................................................... 25

8.1  Why Not Simply Use or Extend the UML 2.0 Metamodel? ...............................25

8.2  Component Metamodel Selection .....................................................................26

8.3  Relationships among Metamodels ....................................................................26
8.3.1 The Need for Translation .............................................................................................. 26
8.3.2 UML Profiles ................................................................................................................. 27
8.3.3 Mappings ...................................................................................................................... 27
8.3.4 Mappings Are Informative, Not Normative .................................................................... 28

8.4  Why Common Logic over OCL? .......................................................................28

8.5  Why EMOF? ......................................................................................................29

8.6  M1 Issues ..........................................................................................................29

9 ODM Overview .............................................................................................. 31

10 The RDF Metamodel .................................................................................... 33

10.1  Overview .........................................................................................................33
10.1.1 Organization ............................................................................................................... 33
10.1.2 Design Considerations ............................................................................................... 34

10.2  RDFBase Package, RDF Triples ....................................................................35
10.2.1 BlankNode .................................................................................................................. 35
10.2.2 Node ........................................................................................................................... 36
10.2.3 RDFProperty ............................................................................................................... 37
10.2.4 RDFSLiteral ................................................................................................................ 37
10.2.5 RDFSResource .......................................................................................................... 38
10.2.6 RDF Triple .................................................................................................................. 39
10.2.7 UniformResourceIdentifier .......................................................................................... 39
10.2.8 URIReference ............................................................................................................. 40
10.2.9  URIReferenceNode ................................................................................................... 41

10.3  RDFBase Package, RDF Literals ....................................................................41
10.3.1 PlainLiteral .................................................................................................................. 42
10.3.2 RDFSResource (Augmented Definition) ..................................................................... 42
10.3.3 RDFXMLLiteral ........................................................................................................... 43
10.3.4 TypedLiteral ................................................................................................................ 43
10.3.5 URIReference (Augmented Definition) ....................................................................... 44

10.4  RDFBase Package, RDF Statements .............................................................44
10.4.1 RDFProperty (Augmented Definition) ......................................................................... 44
10.4.2 RDFSResource (Augmented Definition).....................................................................  44
10.4.3 RDFStatement ............................................................................................................ 44
10.4.4 Triple (Augmented Definition) ..................................................................................... 45

10.5  RDFBase Package, RDF Graphs ...................................................................45
10.5.1 NamedGraph .............................................................................................................. 45
ii    Ontology Definition Metamodel, v1.0



10.5.2 RDFGraph .................................................................................................................. 46
10.5.3 Triple (Augmented Definition) ..................................................................................... 47

10.6  RDFS Package, Classes and Utilities .............................................................47
10.6.1 RDFSClass ................................................................................................................. 48
10.6.2 RDFSDatatype ........................................................................................................... 49
10.6.3 RDFSResource (Augmented Definition)...................................................................... 50
10.6.4 TypedLiteral (Augmented Definition) .......................................................................... 50

10.7  RDFS Package, RDF Properties ....................................................................51
10.7.1 RDFProperty (Augmented Definition) ......................................................................... 51
10.7.2 RDFSClass (Augmented Definition) ........................................................................... 52

10.8  RDFS Package, Containers and Collections .................................................. 52
10.8.1 RDFAlt ........................................................................................................................ 53
10.8.2 RDFBag ...................................................................................................................... 53
10.8.3 RDFList ....................................................................................................................... 53
10.8.4 RDFSContainer .......................................................................................................... 54
10.8.5 RDFSContainerMembershipProperty.......................................................................... 54
10.8.6 RDFSeq ...................................................................................................................... 55
10.8.7 RDFSResource (Augmented Definition) ..................................................................... 55

10.9  RDF Documents and Namespaces (RDFWeb Package) ...............................56
10.9.1 Document ................................................................................................................... 59
10.9.2 LocalName ................................................................................................................. 59
10.9.3 Namespace ................................................................................................................ 60
10.9.4 NamespaceDefinition ................................................................................................. 61
10.9.5 Triple (Augmented Definition)...................................................................................... 61
10.9.6 URIReference (Augmented Definition) ....................................................................... 62

11 The OWL Metamodel ................................................................................... 63

11.1  Overview .........................................................................................................63
11.1.1 Organization of the OWL Metamodel ......................................................................... 63
11.1.2 Design Considerations ............................................................................................... 64

11.2  OWLBase Package - OWL Ontology ..............................................................65
11.2.1 OWLGraph .................................................................................................................  65
11.2.2 OWLOntology ............................................................................................................. 66
11.2.3 RDFSLiteral (Augmented Definition) ........................................................................... 68
11.2.4 Triple (Augmented Definition) ..................................................................................... 68

11.3  OWLBase Package - Class Descriptions ........................................................68
11.3.1 ComplementClass ...................................................................................................... 70
11.3.2 EnumeratedClass ....................................................................................................... 70
11.3.3 Individual .................................................................................................................... 71
11.3.4 IntersectionClass ........................................................................................................ 72
11.3.5 OWLClass .................................................................................................................. 72
11.3.6 OWLRestriction .......................................................................................................... 73
11.3.7 UnionClass ................................................................................................................. 74
11.3.8 OWLDataRange ......................................................................................................... 75
Ontology Definition Metamodel, v1.0        iii



11.3.9 Number Restrictions ................................................................................................... 75
11.3.10  RDFProperty (Augmented Definition, from RDFBase Package) ............................. 77
11.3.11  TypedLiteral (Augmented Definition, from RDFBase Package) .............................. 77
11.3.12  Value Restrictions .................................................................................................... 77

11.4  OWLBase Package - Properties .....................................................................79
11.4.1 FunctionalProperty .....................................................................................................  80
11.4.2 InverseFunctionalProperty..........................................................................................  81
11.4.3 OWLAnnotationProperty ............................................................................................. 81
11.4.4 OWLDatatypeProperty ............................................................................................... 82
11.4.5 OWLObjectProperty ................................................................................................... 82
11.4.6 OWLOntologyProperty ............................................................................................... 83
11.4.7 Property ...................................................................................................................... 84
11.4.8 SymmetricProperty ..................................................................................................... 84
11.4.9 TransitiveProperty ...................................................................................................... 85

11.5  OWLBase Package - Individuals .....................................................................85
11.5.1 OWLAllDifferent .......................................................................................................... 86

11.6  OWLBase Package - Datatypes .....................................................................86

11.7  OWLBase Package - OWL Universe ..............................................................87
11.7.1 OWLUniverse ............................................................................................................. 88
11.7.2 OWLOntology (Augmented Definition) ....................................................................... 88

11.8  OWLDL Package - Constraints for OWL DL Conformance ............................89
11.8.1 Classes in OWL DL .................................................................................................... 89
11.8.2 OWL DL Restrictions .................................................................................................. 90
11.8.3 OWL DL Property Constraints .................................................................................... 90

11.9  OWLFull Package - Constraints For OWL Full Conformance .........................92

12 The Common Logic Metamodel .................................................................. 93

12.1  Overview .........................................................................................................93
12.1.1 Design Considerations ............................................................................................... 93
12.1.2 Modeling Notes ........................................................................................................... 94

12.2  The Phrases Diagram .....................................................................................94
12.2.1 Comment .................................................................................................................... 94
12.2.2 ExclusionSet ............................................................................................................... 95
12.2.3 Identifier ...................................................................................................................... 95
12.2.4 Importation .................................................................................................................. 96
12.2.5 Module ........................................................................................................................ 97
12.2.6 Name .......................................................................................................................... 98
12.2.7 Phrase ........................................................................................................................ 99
12.2.8 Sentence .................................................................................................................... 99
12.2.9 Text ........................................................................................................................... 100

12.3  The Terms Diagram ......................................................................................101
12.3.1 Argument .................................................................................................................. 102
12.3.2 CommentedTerm ...................................................................................................... 102
iv    Ontology Definition Metamodel, v1.0



12.3.3 FunctionalTerm ......................................................................................................... 103
12.3.4 SequenceMarker ...................................................................................................... 103
12.3.5 Term ......................................................................................................................... 104

12.4  The Atoms Diagram ...................................................................................... 104
12.4.1 Atom ......................................................................................................................... 105
12.4.2 AtomicSentence ....................................................................................................... 105
12.4.3 Equation ................................................................................................................... 106

12.5  The Sentences Diagram ...............................................................................106
12.5.1 Biconditional ............................................................................................................. 107
12.5.2 BooleanSentence ..................................................................................................... 108
12.5.3 CommentedSentence ............................................................................................... 108
12.5.4 Conjunction ............................................................................................................... 109
12.5.5 Disjunction ................................................................................................................ 109
12.5.6 ExistentialQuantification ........................................................................................... 110
12.5.7 Implication ................................................................................................................ 110
12.5.8 IrregularSentence ..................................................................................................... 111
12.5.9 Negation ................................................................................................................... 111
12.5.10  QuantifiedSentence ............................................................................................... 112
12.5.11 UniversalQuantification ........................................................................................... 112

12.6  The Boolean Sentences Diagram .................................................................113

12.7  The Quantified Sentences Diagram .............................................................. 113
12.7.1 Binding ...................................................................................................................... 114

12.8  Summary of CL Metamodel Elements with Interpretation .............................115

13 The Topic Map Metamodel ........................................................................ 117

13.1  Topic Map Constructs ...................................................................................117
13.1.1 TopicMapConstruct .................................................................................................. 117
13.1.2 ReifiableConstruct .................................................................................................... 118
13.1.3 TopicMap .................................................................................................................. 118
13.1.4 Topic ......................................................................................................................... 119
13.1.5 Association ............................................................................................................... 121

13.2  Scope and Type ............................................................................................122
13.2.1 ScopeAble ................................................................................................................ 122
13.2.2 TypeAble .................................................................................................................. 123
13.2.3 AssociationRole ........................................................................................................ 123
13.2.4 Occurrence ............................................................................................................... 124
13.2.5 TopicName ............................................................................................................... 125
13.2.6 Variant ...................................................................................................................... 126

13.3  Published Subjects .......................................................................................126
13.3.1 Type-Instance Relationship Among Topics .............................................................. 127
13.3.2 Subtype-Supertype Relationship Among Topics ...................................................... 128

13.4  Example ........................................................................................................ 128
Ontology Definition Metamodel, v1.0        v



14 UML Profile for RDF and OWL .................................................................. 131

14.1  UML Profile for RDF ......................................................................................131
14.1.1 RDF Profile Package ................................................................................................ 131
14.1.2 RDF Documents ....................................................................................................... 131
14.1.3 RDF Statements ....................................................................................................... 134
14.1.4 ReificationKind........................................................................................................... 138
14.1.5 Literals ...................................................................................................................... 138
14.1.6 Classes and Utilities ................................................................................................. 141
14.1.7 Properties in RDF ..................................................................................................... 144
14.1.8 Containers and Collections ....................................................................................... 151

14.2  UML Profile for OWL .....................................................................................151
14.2.1 OWL Profile Package ............................................................................................... 151
14.2.2 OWL Ontology .......................................................................................................... 151
14.2.3 OWL Annotation Properties ...................................................................................... 152
14.2.4 OWL Ontology Properties ......................................................................................... 153
14.2.5 OWL Class Descriptions, Restrictions, and Class Axioms ....................................... 158
14.2.6   Properties ............................................................................................................... 170
14.2.7 Individuals ................................................................................................................. 175
14.2.8 Datatypes ................................................................................................................. 179

15 The Topic Map Profile ................................................................................ 181

15.1  Stereotypes ...................................................................................................181
15.1.1 Topic Map ................................................................................................................. 181
15.1.2 Topic ......................................................................................................................... 181
15.1.3 Association ............................................................................................................... 182
15.1.4 Characteristics .......................................................................................................... 182

15.2  Abstract Bases ..............................................................................................183
15.2.1 TopicMapElement ..................................................................................................... 184
15.2.2 Scoped Element ....................................................................................................... 184
15.2.3 TypedElement ........................................................................................................... 184

15.3  Example ........................................................................................................185

16 Mapping UML to OWL ................................................................................ 187

16.1  Introduction ...................................................................................................187

16.2  Features in Common (More or Less) ............................................................188
16.2.1 UML Kernel ............................................................................................................... 188
16.2.2 Class and Property - Basics ..................................................................................... 190
16.2.3 More Advanced Concepts ........................................................................................ 194
16.2.4 Summary of More-or-Less Common Features ......................................................... 198

16.3  UML to OWL .................................................................................................199
16.3.1 Naming Issues .......................................................................................................... 199
16.3.2 Package To Ontology ............................................................................................... 200
16.3.3 Class To Class ......................................................................................................... 202
vi    Ontology Definition Metamodel, v1.0



16.3.4 Attribute to Property .................................................................................................. 205
16.3.5 Binary Association To Object Property ..................................................................... 206
16.3.6 Association Classes and N-ary Associations ........................................................... 208
16.3.7 Multiplicity ................................................................................................................. 211
16.3.8 Association Generalization ....................................................................................... 212
16.3.9 Enumeration ............................................................................................................. 214
16.3.10   Powertypes ........................................................................................................... 214

16.4  OWL to UML .................................................................................................  215
16.4.1 Problematic Features of OWL ................................................................................... 215
16.4.2 Transformation Header ............................................................................................. 216
16.4.3 Packaging Construct: OWLOntology ........................................................................ 216
16.4.4 Classes ..................................................................................................................... 218
16.4.5 Hierarchy .................................................................................................................. 218
16.4.6  Constructed Classes ............................................................................................... 219
16.4.7 Data Range .............................................................................................................. 220
16.4.8 Range Restriction Restriction Classes ..................................................................... 220
16.4.9 Properties in OWL .................................................................................................... 221
16.4.10   Domains, Ranges and Property Types ................................................................. 225
16.4.11   Cardinalities and Multplicities ............................................................................... 227
16.4.12   Subproperty, Equivalent Property ......................................................................... 229
16.4.13   Annotation Properties to Comments ..................................................................... 229

16.5  OWL but not UML .........................................................................................231
16.5.1 Predicate Definition Language ................................................................................. 231
16.5.2 Names ...................................................................................................................... 232
16.5.3 Other OWL Developments ....................................................................................... 232

16.6  In UML But Not OWL ....................................................................................233
16.6.1 Behavioral and Related Features ............................................................................. 233
16.6.2 Complex Objects ......................................................................................................  233
16.6.3 Access Control ......................................................................................................... 233
16.6.4 Keywords .................................................................................................................. 234
16.6.5 Profiles ...................................................................................................................... 234

17 Mapping Topic Maps to OWL .................................................................... 235

17.1  Overview .......................................................................................................235

17.2  Topic Maps to OWL Full Mapping.................................................................  235
17.2.1 Overview ................................................................................................................... 235
17.2.2 Packaging Construct: TopicMap ............................................................................... 237
17.2.3 Most General Structure: TopicMapConstruct ........................................................... 238
17.2.4 Multiple Identifiers to SameAs .................................................................................. 240
17.2.5 Topic to OWL Class .................................................................................................. 240
17.2.6 Subtype to Subclass ................................................................................................. 241
17.2.7 Topic to Property ...................................................................................................... 242
17.2.8 Topic to Individual ..................................................................................................... 242
17.2.9 Topic Subject Identifiers ........................................................................................... 243
17.2.10   Topic Subject Locators ......................................................................................... 244
17.2.11   Association to Individual ....................................................................................... 244
Ontology Definition Metamodel, v1.0        vii



17.2.12   Association Role to Property ................................................................................ 245
17.2.13   Occurrence to Property ........................................................................................ 246
17.2.14   Topic Names to Object Properties, Variants to Property Values .......................... 247
17.2.15   Scope to Property Values ..................................................................................... 249

17.3  OWL to Topic Maps ......................................................................................249
17.3.1 Packaging Construct: OWLOntology ........................................................................ 250
17.3.2 Class to Topic ........................................................................................................... 251
17.3.3 Class Identified by URI ............................................................................................. 251
17.3.4 Restriction to Topic ................................................................................................... 251
17.3.5 Individual to Topic ..................................................................................................... 252
17.3.6 Hierarchy: RDFSsubclassOf ..................................................................................... 252
17.3.7 Object Property to Association Type ........................................................................ 253
17.3.8 Object Property Instance Statement to Association Instance ................................... 253
17.3.9 Datatype Property to Occurrence ............................................................................. 254
17.3.10   Datatype Property Instance Statement to Occurrence ......................................... 254
17.3.11   SameAs, EquivalentClass, EquivalentProperty .................................................... 255

18 Mapping RDFS and OWL to CL ................................................................ 257

18.1  Overview .......................................................................................................257

18.2  RDFS to CL Mapping ....................................................................................257
18.2.1 RDF Triples .............................................................................................................. 257
18.2.2 RDF Literals .............................................................................................................. 258
18.2.3 RDF URIs and Graphs ............................................................................................. 258
18.2.4 RDF Lists .................................................................................................................. 259
18.2.5 RDF Schema ............................................................................................................ 259
18.2.6   RDFS Semantics .................................................................................................... 260

18.3  OWL to CL Mapping ......................................................................................262

18.4  RDFS to CL Mapping in MOF QVT ...............................................................272

19 References (non-normative) ..................................................................... 275

Annex A - Foundation Library (M1) for RDF and OWL .....................................................277

Annex B - Conceptual Entity Relationship Modeling.........................................................289

Annex C - Description Logic Metamodel ............................................................................295

Annex D - Extending the ODM .............................................................................................309

Annex E - Mappings (Informative, not Normative) .............................................................313

Annex F - RDF and OWL Workarounds for MOF Multiple Classification Issue...............315

Annex G - The Relationship of the Business Nomenclature Metamodel to the ODM.....325

Annex H -  MOF QVT - A Brief Tutorial ................................................................................329

Index ...........................................................................................................................331
viii    Ontology Definition Metamodel, v1.0



Preface

About the Object Management Group

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry 
standards consortium that produces and maintains computer industry specifications for interoperable, portable and 
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information 
Technology vendors, end users, government agencies and academia. 

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's 
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to 
enterprise integration that covers multiple operating systems, programming languages, middleware and networking 
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling 
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); 
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG 
Specifications is available from the OMG website at: 

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

Business Modeling Specifications

• Business Rules and Process Management Specifications

Middleware Specifications

• CORBA/IIOP Specifications

• CORBA Component Model (CCM) Specifications

• Data Distribution Service (DDS) Specifications

• Specialized CORBA Specifications

Language Mappings

• IDL / Language Mapping Specifications

• Other Language Mapping Specifications

Modeling and Metadata Specifications

• UML®, MOF, XMI, and CWM Specifications

• UML Profiles
Ontology Definition Metamodel, v1.0                                                                                                                                 xi       



Modernization Specifications

• KDM

Platform Independent Model (PIM), Platform Specific Model (PSM) and Interface Specifications

• OMG Domain Specifications

• CORBAservices Specifications

• CORBAfacilities Specifications

• OMG Embedded Intelligence Specifications

• OMG Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG 
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, 
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English. 
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.:  Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold:  Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification, 
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
xii                                                                                                                                                                Ontology Definition Metamodel, v1.0           



1 Scope

This specification represents the foundation for an extremely important set of enabling capabilities for Model Driven 
Architecture (MDA) based software engineering, namely the formal grounding for representation, management, 
interoperability, and application of business semantics. The ODM specification offers a number of benefits to potential 
users, including:

• Options in the level of expressivity, complexity, and form available for designing and implementing conceptual 
models, ranging from familiar UML and ER methodologies to formal ontologies represented in description logics or 
first order logic.

• Grounding in formal logic, through standards-based, model-theoretic semantics for the knowledge representation 
languages supported, sufficient to enable reasoning engines to understand, validate, and apply ontologies developed 
using the ODM.

• Profiles and mappings sufficient to support not only the exchange of models developed independently in various 
formalisms but to enable consistency checking and validation in ways that have not been feasible to date.

• The basis for a family of specifications that marry MDA and Semantic Web technologies to support semantic web 
services, ontology and policy-based communications and interoperability, and declarative, policy-based applications in 
general.

The specification defines a family of independent metamodels, related profiles, and mappings among the metamodels 
corresponding to several international standards for ontology and Topic Maps definition, as well as capabilities supporting 
conventional modeling paradigms for capturing conceptual knowledge, such as entity-relationship modeling.

The ODM is applicable to knowledge representation, conceptual modeling, formal taxonomy development and ontology 
definition, and enables the use of a variety of enterprise models as starting points for ontology development through 
mappings to UML and MOF. ODM-based ontologies can be used to support:

• interchange of knowledge among heterogeneous computer systems,

• representation of knowledge in ontologies and knowledge bases,

• specification of expressions that are the input to or output from inference engines.

The ODM is not intended to encompass

• specification of proof theory or inference rules,

• specification of translation and transformations between the notations used by heterogeneous computer systems,

• free logics,

• conditional logics,

• methods of providing relationships between symbols in the logical “universe” and individuals in the “real world,”

• issues related to computability using the knowledge representation formalisms represented in the ODM (e.g., 
optimization, efficiency, tractability, etc.).
Ontology Definition Metamodel, v1.0        1



2 Conformance

There are several compliance points distinguished for the Ontology Definition Metamodel. These include:

1. None or Not Compliant, meaning that the application in question is not compliant with a particular metamodel, as 
defined by the metamodel itself, the abstract syntax, well-formedness rules, semantics, and notation specified for a 
particular package or set of packages. 

2. Compliant, meaning that the implementation fully complies with the abstract syntax, well-formedness rules, 
semantics and notation of a particular package or set of packages.

3. Interchange, indicating that the implementation provides compliance as specified in [2], and can exchange 
metamodel instances using ODM package conformant XMI.

There are several possible entry points for implementations that want to provide/claim minimal compliance with the 
ODM. These require compliance with one of the following base metamodel packages:

• RDFBase Metamodel Package (RDFBase is a sub package of the Resource Description Framework (RDF) Metamodel 
Package)

• Topic Maps (TM) Metamodel Package

• Common Logic (CL) Metamodel Package

For a given implementation to claim ODM compliance, it must be Compliant, as defined in 2, above, with one of these 
three packages.

There are several compliance options available to vendors for the RDF Metamodel Package. These include:

• RDFBase Only - as implied above, this package contains the set of elements required for core RDF support, such as is 
necessary to support a triple store implementation; the focus here is on the set of constructs defined in the RDF 
Concepts and Abstract Syntax [RDF Concepts] document.

• RDFBase + RDFWeb - provides core RDF support and fits these concepts to the World Wide Web.

• RDFBase + RDFS - moves the implementation focus from core RDF to RDF Schema, as specified in [RDF Schema].

• RDF - meaning, the implementation supports all of the concepts defined in the three sub packages, which represents 
RDF Schema fitted to the Web.

There are two possible compliance points for the OWL Metamodel Package. Each of these requires support for the entire 
RDF package, including the RDFWeb component. They include:

• OWLBase + OWLDL - focus is on a description logics application that constrains an ontology in turn for DL 
decidability.

• OWLBase + OWLFull - focus is on more expressive applications rather than on decidability of entailment.

The complete set of ODM compliance options is summarized in Table 2.1.

Note:  The mapping sections of the specification are informative.
2                 Ontology Definition Metamodel, v1.0



 

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this 
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

Table 2.1 - Summary of Compliance Points

Compliance Point Valid Options

RDFBase Only None, Compliant , Interchange

RDFBase + RDFWeb None, Compliant , Interchange

RDFBase + RDFS None, Compliant , Interchange

RDF (Full) None, Compliant , Interchange

OWLBase + OWLDL for the Semantic Web (requires RDF) None, Compliant , Interchange

OWLBase + OWLFull (requires RDF) None, Compliant , Interchange

CL Metamodel None, Compliant , Interchange

Topic Maps Metamodel None, Compliant , Interchange

UML Profile for RDF None, Compliant , Interchange

UML Profile for OWL (requires UML Profile for RDF) None, Compliant , Interchange

UML Profile for Topic Maps None, Compliant , Interchange

Mapping from UML to OWL None, Compliant (unidirectional, bidirectional)

Mapping from Topic Maps to OWL None, Compliant (unidirectional, bidirectional)

Mapping from RDFS and OWL to CL None, Compliant 

[ISO 646] ISO/IEC 646:1991, Information technology -- ISO 7-bit coded character set for information 
interchange.

[ISO 2382] ISO/IEC 2382-15:1999, Information technology -- Vocabulary -- Part 15: Programming 
languages.

[ISO 10646] ISO/IEC 10646:2003, Information technology -- Universal Multiple-Octet Coded Character 
Set (UCS).

[ISO 14977] ISO/IEC 14977, Information technology -- Syntactic metalanguage -- Extended BNF.

[ISO 24707] ISO/IEC FDIS 24707:2007(E) Information technology – Common Logic (Common Logic) – 
A framework for a family of logic-based languages. Available at http://cl.tamu.edu/.

[MOF] Meta Object Facility (MOF) Core Specification, Version 2.0. OMG Specification, formal/06-
01-01. Latest version is available at http://www.omg.org/docs/formal/06-01-01.pdf.
Ontology Definition Metamodel, v1.0        3



[MOF QVT] Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, Version 1.0, 
formal/08-04-03. Available at http://www.omg.org/spec/QVT/1.0/.

[MOF XMI] MOF 2.0/XMI (XML Metadata Interchange) Mapping Specification, v2.1.1. OMG Available 
Specification, formal/07-12-01. Available at http://www.omg.org/docs/formal/07-12-01.pdf.

[OCL] Object Constraint Language. OMG Available Specification Version 2.0, formal/2006-05-01. 
Available at http://www.omg.org/docs/formal/06-05-01.pdf

[OWL S&AS] OWL Web Ontology Language Semantics and Abstract Syntax. W3C Recommendation 10 
February 2004, Peter F. Patel-Schneider, Patrick Hayes, Ian Horrocks, eds. Latest version is 
available at http://www.w3.org/TR/owl-semantics/.

[RDF Concepts] Resource Description Framework (RDF): Concepts and Abstract Syntax. Graham Klyne and 
Jeremy J. Carroll, Editors. W3C Recommendation, 10 February 2004. Latest version is 
available at http://www.w3.org/TR/rdf-concepts/. 

[RDF MIME Type] MIME Media Types, The Internet Assigned Numbers Authority (IANA). This document is 
http://www.iana.org/assignments/media-types/. The registration for application/rdf+xml is 
archived at http://www.w3.org/2001/sw/RDFCore/mediatype-registration. 

[RDF Primer] RDF Primer. Frank Manola and Eric Miller, Editors. W3C Recommendation, 10 February 
2004. Latest version is available at http://www.w3.org/TR/rdf-primer/.

[RDF Schema] RDF Vocabulary Description Language 1.0: RDF Schema. Dan Brickley and R.V. Guha, 
Editors. W3C Recommendation, 10 February 2004. Latest version is available at http://
www.w3.org/TR/rdf-schema/.

[RDF Semantics] RDF Semantics. Patrick Hayes, Editor, W3C Recommendation, 10 February 2004. Latest 
version available at http://www.w3.org/TR/rdf-mt/. 

[RDF Syntax] RDF/XML Syntax Specification (Revised). Dave Beckett, Editor, W3C Recommendation, 10 
February 2004, http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/. Latest 
version available at http://www.w3.org/TR/rdf-syntax-grammar/.

[RFC2396] IETF (Internet Engineering Task Force) RFC 2396: Uniform Resource Identifiers (URI): 
Generic Syntax, eds. T. Berners-Lee, R. Fielding, L. Masinter. August 1998.

[RFC2732] RFC 2732 - Format for Literal IPv6 Addresses in URL's, R. Hinden, B. Carpenter and L. 
Masinter, IETF, December 1999. This document is http://www.isi.edu/in-notes/rfc2732.txt. 

[RFC3066] RFC 3066 - Tags for the Identification of Languages, H. Alvestrand, The Internet Society, 
January 2001. This document is http://www.isi.edu/in-notes/rfc3066.txt. 

[TMDM] ISO/IEC 13250-2: Topic Maps – Data Model, 2005-12-16. Latest version is available at http://
www.isotopicmaps.org/sam/sam-model/.

[UML2] Unified Modeling Language: Superstructure, version 2.1.2. OMG Specification, formal/2007-
11-02. Available at http://www.omg.org/spec/UML/2.1.2/.

[UML Infra] Unified Modeling Language: Infrastructure, version 2.1.2. OMG Specification, formal/2007-
11-04. Available at http://www.omg.org/spec/UML/2.1.2/.

[Unicode] The Unicode Standard, Version 3, The Unicode Consortium, Addison-Wesley, 2000. ISBN 0-
201-61633-5, as updated from time to time by the publication of new versions. (See http://
www.unicode.org/unicode/standard/versions/ for the latest version and additional information 
on versions of the standard and of the Unicode Character Database).
4                 Ontology Definition Metamodel, v1.0



4 Terms and Definitions

Complete MOF (CMOF)
The CMOF, or Complete MOF, Model is the model used to specify other metamodels such as UML2. It is built from EMOF 
and the Core::Constructs of UML. The CMOF package does not define any classes of its own. Rather, it merges packages with 
its extensions that together define basic metamodeling capabilities. 

Common Logic (CL) 
Common Logic is a first order logic framework intended for information exchange and transmission. The framework allows 
for a variety of different syntactic forms, called dialects, all expressible within a common XML-based syntax and all sharing a 
single semantics.

Computation Independent Model (CIM)
A computation independent model is a view of a system from the computation independent viewpoint. A CIM does not show 
details of the structure of systems. A CIM is sometimes called a domain model, and a vocabulary that is familiar to the 
practitioners of the domain in question is used in its specification. Some ontologies are essentially CIMs from a software 
engineering perspective.

Description Logics (DL) 
Description logics are knowledge representation languages tailored for expressing knowledge about concepts and concept 
hierarchies, and typically represent a decidable subset of traditional first order logic. Description logic systems have been used 
for building a variety of applications including conceptual modeling, information integration, query mechanisms, view 
maintenance, software management systems, planning systems, configuration systems, and natural language understanding. 
The Web Ontology Language (OWL) is a member of the description logics family of knowledge representation languages.

Entity-Relationship (ER) 
An ER (entity-relationship) diagram is a graphical modeling notation that illustrates the interrelationships between entities in a 
domain. ER diagrams often use symbols to represent three different types of information. Boxes are commonly used to 
represent entities. Diamonds are normally used to represent relationships and ovals are used to represent attributes.

Essential MOF (EMOF)
Essential MOF is the subset of MOF that most closely corresponds to the facilities found in object-oriented programming 
languages and in XML. It provides a straightforward framework for mapping MOF models to implementations such as JMI 
and XMI for simple metamodels. A primary goal of EMOF is to allow simple metamodels to be defined using simple concepts 
while supporting extensions (by the usual class extension mechanism in MOF) for more sophisticated metamodeling using 
CMOF.

[XLINK] XML Linking Language (XLink) Version 1.0, W3C Recommendation 27 June 2001, http://
www.w3.org/TR/xlink/.

[XML Schema 
Datatypes]

XML Schema Part 2: Datatypes. W3C Recommendation 02 May 2000. Latest version is 
available  at http://www.w3.org/TR/xmlschema-2/.

[XMLNS] Namespaces in XML; W3C Recommendation, 14 January 1999. Latest version is available at 
http://www.w3.org/TR/1999/REC-xml-names-19990114/.

[XTM] ISO/IEC FCD 13250-3: Topic Maps – XML Syntax, 2006-05-02. Latest version is available at 
http://www.isotopicmaps.org/sam/sam-xtm/.
Ontology Definition Metamodel, v1.0        5



interpretation
A relationship between individuals in a universe of discourse and the symbols and relations in a model such that the model 
expresses truths about the individuals.

Knowledge Interchange Format (KIF)
Knowledge Interchange Format (KIF) is a computer-oriented language for the interchange of knowledge among disparate 
systems. It has declarative semantics (i.e., the meaning of expressions in the representation can be understood without appeal 
to an interpreter for manipulating those expressions); it is logically comprehensive (i.e., it provides for the expression of 
arbitrary sentences in the first-order predicate calculus); it provides for the representation of knowledge about the 
representation of knowledge; it provides for the representation of non-monotonic reasoning rules; and it provides for the 
definition of objects, functions, and relations. KIF was developed in the late 1980s and early 1990s through support of the 
DARPA Knowledge Sharing Effort. There are several “flavors” of KIF in use today, including the best known versions: ANSI 
KIF (i.e., Knowledge Interchange Format dpANS, NCITS.T2/98-004, http://logic.stanford.edu/kif/dpans.html) and KIF 
Reference (i.e., Version 3.0 of the KIF Reference Manual, http://www-ksl.stanford.edu/knowledge-sharing/papers/kif.ps). For 
the purpose of this ODM specification, references to KIF should be considered references to the KIF 3.0 Reference Manual 
cited in the Non-normative References section of this specification.

Meta-Object Facility (MOF)
The Meta Object Facility (MOF), an adopted OMG standard, provides a metadata management framework, and a set of 
metadata services to enable the development and interoperability of model and metadata driven systems. Examples of these 
systems that use MOF include modeling and development tools, data warehouse systems, metadata repositories etc. For the 
purpose of this ODM specification, references to MOF should be considered references to the Meta-Object Facility 2.0 Core 
Specification, cited in Normative References, above.

Object Constraint Language (OCL)
The Object Constraint Language (OCL), an adopted OMG standard, is a formal language used to describe expressions on 
UML models. These expressions typically specify invariant conditions that must hold for the system being modeled or queries 
over objects described in a model. Note that when the OCL expressions are evaluated, they do not have side effects; i.e., their 
evaluation cannot alter the state of the corresponding executing system. For the purpose of this ODM specification, references 
to OCL should be considered references to the UML 2.0 Object Constraint Language Specification, cited in Normative 
References, above.

Ontology Definition Metamodel (ODM)
The Ontology Definition Metamodel (ODM), as defined in this specification, is a family of MOF metamodels, mappings 
between those metamodels as well as mappings to and from UML, and a set of profiles that enable ontology modeling through 
the use of UML-based tools. The metamodels that comprise the ODM reflect the abstract syntax of several standard 
knowledge representation and conceptual modeling languages that have either been recently adopted by other international 
standards bodies (e.g., RDF and OWL by the W3C), are in the process of being adopted (e.g., Common Logic and Topic Maps 
by the ISO), or are considered industry de facto standards (non-normative ER and DL appendices). 

Platform Independent Model (PIM) 
A platform independent model is a view of a system from the platform independent viewpoint. A PIM exhibits a specified 
degree of platform independence so as to be suitable for use with a number of different platforms of similar type. Examples of 
platforms range from virtual machines, to programming languages, to deployment platforms, to applications, depending on the 
perspective of the modeler and application being modeled.

Platform Specific Model (PSM)
A platform specific model is a view of a system from the platform specific viewpoint. A PSM combines the specifications in 
the PIM with the details that specify how that system uses a particular type of platform.
6                 Ontology Definition Metamodel, v1.0



Resource Description Framework (RDF)
The Resource Description Framework (RDF) is a framework for representing information in the Web. RDF has an abstract 
syntax that reflects a simple graph-based data model, and formal semantics with a rigorously defined notion of entailment 
providing a basis for well founded deductions in RDF data. The vocabulary is fully extensible, being based on URIs with 
optional fragment identifiers (URI references, or URIrefs).  For the purpose of this ODM specification, references to RDF 
should be considered references to the set of RDF recommendations available from the World Wide Web Consortium, and in 
particular, the RDF Concepts and Abstract Syntax recommendation, cited in Normative References, above.

RDF Schema (RDFS)
RDF's vocabulary description language, RDF Schema, is a semantic extension of RDF. It provides mechanisms for describing 
groups of related resources and the relationships between these resources. These resources are used to determine 
characteristics of other resources, such as the domains and ranges of properties. The RDF vocabulary description language 
class and property system is similar to the type systems of object-oriented programming languages such as Java. RDF differs 
from many such systems in that instead of defining a class in terms of the properties its instances may have, the RDF 
vocabulary description language describes properties in terms of the classes of resource to which they apply. For the purpose 
of this ODM specification, references to RDF Schema should be considered references to the set of RDF recommendations 
available from the World Wide Web Consortium, and in particular, the RDF Vocabulary Description Language 1.0: RDF 
Schema recommendation, cited in Normative References, above.

Topic Maps (TM)
Topic Maps provide a model and grammar for representing the structure of information resources used to define topics, and the 
associations (relationships) between topics. Names, resources, and relationships are said to be characteristics of abstract 
subjects, which are called topics. Topics have their characteristics within scopes: i.e., the limited contexts within which the 
names and resources are regarded as their name, resource, and relationship characteristics. One or more interrelated documents 
employing this grammar is called a “topic map.” For the purpose of this ODM specification, references to Topic Maps should 
be considered references to the draft ISO standard cited in Normative References, above.

traditional first order logic
The traditional algebraic (or mathematical) formulations of logic generally described by Russell, Whitehead, Peano, and 
Pierce dealing with quantification, negation, and logical relations as expressed in propositions that are strictly true or false. 
This specifically excludes reasoning over relations and excludes using the same name as both an individual name and a 
relation name.

Unified Modeling Language (UML)
The Unified Modeling Language, an adopted OMG standard, is a visual language for specifying, constructing and 
documenting the artifacts of systems. It is a general-purpose modeling language that can be used with all major object and 
component methods, and that can be applied to all application domains (e.g., health, finance, telecommunications, aerospace) 
and implementation platforms (e.g., J2EE, .NET). For the purpose of this ODM specification, references to UML should be 
considered references to the Unified Modeling Language 2.0 Infrastructure and Superstructure Specifications, cited in 
Normative References, above.

universe of discourse
A non-empty set over which the quantifiers of a logic language are understood to range. Sometimes called a “domain of 
discourse.”

Web Ontology Language (OWL)
The OWL Web Ontology Language is designed for use by applications that need to process the content of information instead 
of just presenting information to humans. OWL can be used to explicitly represent the meaning of terms in vocabularies and 
the relationships between those terms. This representation of terms and their interrelationships is called an ontology. OWL has 
more facilities for expressing meaning and semantics than XML, RDF, and RDF-S, and thus OWL goes beyond these 
languages in its ability to represent machine interpretable content on the Web. OWL has three increasingly-expressive sub-
languages: OWL Lite, OWL DL, and OWL Full. For the purpose of this ODM specification, references to OWL should be 
Ontology Definition Metamodel, v1.0        7



considered references to the set of OWL recommendations available from the World Wide Web Consortium, and in particular, 
the OWL Web Ontology Language Semantics and Abstract Syntax recommendation, cited in Normative References, above.

XML Metadata Interchange (XMI)
XMI is a widely used interchange format for sharing objects using XML. Sharing objects in XML is a comprehensive solution 
that build on sharing data with XML. XMI is applicable to a wide variety of objects: analysis (UML), software (Java, C++), 
components (EJB, IDL, CORBA Component Model), and databases (CWM). For the purpose of this ODM specification, 
references to XMI should be considered references to the XML Metadata Interchange (XMI) 2.0 Specification, cited in 
Normative References, above.

eXtended Markup Language (XML)
Extensible Markup Language (XML) is a simple, very flexible text format derived from SGML (ISO 8879). Originally 
designed to meet the challenges of large-scale electronic publishing, XML is also playing an increasingly important role in the 
exchange of a wide variety of data on the Web and elsewhere. RDF and OWL build on XML as a basis for representing 
business semantics on the Web. Relevant W3C recommendations are cited in the RDF and OWL documents as well as those 
cited under Normative References, above.

5 Symbols

CIM Computation Independent Model

CL Common Logic

DL Description Logics

ER Entity-Relationship

FOL First Order Logic

IRI Internationalized Resource Identifier

ISO/IEC International Organization for Standardization / International Electrotechnical Commission

KIF Knowledge Interchange Format

MDA Model Driven Architecture

MOF Meta-Object Facility 2.0

OCL UML 2.0 Object Constraint Language

ODM Ontology Definition Metamodel

OMG Object Management Group

OWL Web Ontology Language

OWL DL The Description Logics dialect of OWL

OWL Full The most expressive dialect of OWL

PIM Platform Independent Model
8                 Ontology Definition Metamodel, v1.0



PSM Platform Specific Model

QVT Query / View / Transformation

RDF Resource Description Framework

RDFS RDF Schema

RFP Request for Proposal

SW Semantic Web

TFOL Traditional First Order Logic

TM Topic Maps

UML Unified Modeling Language 2.0

URI Uniform Resource Identifier

XMI XML Metadata Interchange

XML eXtended Markup Language

6 Additional Information

6.1 Changes to Adopted OMG Specifications

In the UML Infrastructure Version 2.0 specification [UML Infra], section 9.10.1, an instance specification is explicitly 
defined as having one or more classifiers: “If multiple classifiers are specified, the instance is classified by all of them.” 

MOF 2.0 [MOF] reuses and extends certain core packages from the UML infrastructure library, including the 
Core::Abstractions package, wherein instance specification is defined. Essential MOF (EMOF) merges the Core::Basic 
package, including the definition of instance specification from the Core::Abstractions package in UML Infrastructure, 
with several new capabilities, including MOF Reflection. Section 12.1 in the MOF 2.0 specification explicitly reuses this 
definition, by stating “EMOF reuses the Basic package from UML 2.0 Infrastructure Library as is for metamodel structure 
without any extensions, although it does introduce some constraints.” and in 12.2 “The description of the model elements 
is identical to that found in UML 2.0 Infrastructure and is not repeated here.” The set of constraints introduced in section 
12.4 makes no mention of instances or instance specification, thus, the metamodel structure reused from UML is 
unchanged with regard to instances and, in particular, their definition with regard to multiple classification.

There are at least three places in the MOF specification that do not support runtime instances modeled by instance 
specifications, as described above, where: 

• The Semantic Domain model for Constructs, Figure 15.1 in the MOF specification, omits the relationship between an 
InstanceSpecification and its classifier(s).

• In the same figure, the classifier association end from ClassInstance to Class has a multiplicity of 1 instead of 1..*.

• The operation, Reflection::Element::getMetaClass() : Class is single-valued.
Ontology Definition Metamodel, v1.0        9



This is an issue for the specification of the set of metamodels defined herein, in particular, for the RDF and OWL 
metamodels. Specifics are noted in the text of Chapter 10, The RDF Metamodel, and in Chapter 11, The OWL 
Metamodel. 

The authors consider this to be a problem in the MOF specification, as documented in issue #9466, and expect it to be 
addressed in future revisions of MOF, notably, through the emerging “SMOF” or Semantic MOF RFP. As a result, the 
normative metamodels contained herein presume support in MOF (SMOF) for multiple classification. Annex F includes 
work-arounds for the issues we have uncovered related to this problem, however, for those vendors who choose to 
implement the ODM before this problem is adequately addressed in a subsequent version of the MOF specification.

6.2 How to Read This Specification

The initial nine chapters of this specification are informative, providing discussion related to how the specification 
addresses the RFP requirements (this chapter), a high-level summary of usage scenarios and goals (Chapter 7), design 
rationale (Chapter 8), and the overall structure of the set of metamodels that comprise the Ontology Definition Metamodel 
(Chapter 9). 

Chapter 10 describes a set of MOF metamodels for developing Resource Description Framework (RDF) vocabularies 
(normative).

Chapter 11 describes a set of MOF metamodels for developing Web Ontology Language (OWL) ontologies (normative).

Chapter 12 describes a MOF metamodel for developing more expressive, first-order logic (FOL) ontologies in the 
Common Logic (CL) family of languages (normative).

Chapter 13 describes a MOF metamodel for developing Topic Maps. (normative)

Chapter 14 describes UML Profiles for RDF and OWL. (normative)

Chapter 15 describes a UML Profile for Topic Maps. (normative)

Chapter 16 provides a mapping between UML and OWL using MOF QVT. (informative)

Chapter 17 provides a mapping between Topic Maps and OWL using MOF QVT. (informative)

Chapter 18 provides an embedding from RDF and OWL in CL. (informative)

Chapter 19 contains non-normative references to other work.

Annex A describes model library elements (M1) necessary for use with the RDF and OWL metamodels, and related but 
independent library elements for use with the RDF and OWL profiles. (normative)

Annex B describes extensions to UML to support Conceptual ER Modeling. (informative)

Annex C describes a MOF metamodel for general Description Logics. (informative)

Annex D describes a methodology for extending the ODM. (informative)

Annex E discusses issues related to making mappings informative rather than normative components of this specification. 
(informative)

Annex F provides work-arounds for the limitations imposed on the RDF and OWL metamodels due to the MOF multiple 
classification problem discussed in Section 6.1. (informative)
10                 Ontology Definition Metamodel, v1.0



Annex G discusses the relationship between the ODM and Business Nomenclature. (informative)

Annex H provides a short tutorial on the use of MOF QVT and its application in this specification. (informative)

6.3 Proof of Concept

DSTC Pty Ltd. carried out a seven year research program into Enterprise Distributed Systems Technology with major 
projects devoted to knowledge representation. DSTC Pty Ltd. had extensive experience in the standardization, 
implementation, and use of MOF, XMI, and UML. The DSTC developed MOF-based tools from 1996 until June 2005. 
DSTC developed the following prototypes to validate parts of this specification:

• Web-KB is a non-MOF-based implementation of many of the concepts represented in this specification. It is available 
for live demonstration on the Internet at www.webkb.org.

• Parts of the model presented in this specification were implemented using DSTC’s dMOF product (MOF 1.3) and 
DSTC’s TokTok product (HUTN 1.0) to validate the expressive power of the model.

IBM has developed the following tools that in part validate portions of this specification:

• IBM Semantics Toolkit is a toolkit for storage, manipulation, query, and inference of ontologies and corresponding 
instances. It is available for download at http://alphaworks.ibm.com/tech/semanticstk.

• EODM is a tool for manipulation of and inference over OWL ontologies and RDF vocabularies, using EMF-based 
Java APIs generated from the OWL and RDFS metamodels. It is available for download at http://alphaworks.ibm.com/
tech/semanticstk. EODM was released as an open-source Eclipse Modeling Framework subproject (contact: 
xieguot@cn.ibm.com), which may be replaced by a new ODM project in the MDT family of Eclipse projects later this 
year.

Sandpiper Software has been developing technologies and tools to support UML-based knowledge representation since 
1999. Sandpiper has developed the following products that validate parts of this specification:

• Visual Ontology Modeler (VOM) v1.5 is a UML 1.x/MOF 1.x compliant add-in to IBM Rational Rose, enabling 
component-based ontology modeling in UML with support for forward and reverse engineering of OWL ontologies. 

• Next generation support for UML2, MOF2, and ODM compliance for RDFS/OWL and CL ontologies, and a CL 
constraint editor are under development, including migration to Eclipse/EMF, IBM Rational Software Architect 
(RSA), and integration with other UML2-compliant modeling environments such as No Magic’s MagicDraw tool.

• The ODM metamodels and profiles reflected in this ODM 1.0 specification will be provided as a basis for open source 
development to the new Eclipse MDT ODM project later this year (2008).

6.4 Acknowledgements

The following companies submitted this specification:

• IBM

• Sandpiper Software, Inc.

The following companies and organizations support this specification:

• Adaptive, Inc.

• AT&T Government Solutions
Ontology Definition Metamodel, v1.0        11



• Consultative Committee for Space Data systems (CCSDS)

• Data Access Technologies

• DSTC Pty. Ltd.

• Florida Institute for Human and Machine Cognition (IHMC)

• France Telecom

• Gentleware  AG

• Hewlett-Packard Company

• Honeywell International Inc.

• Hyperion

• IKAN Group

• Institut AIFB, Universität Karlsruhe (TH)

• John Deere

• Mercury Computer Systems

• MetaMatrix

• MetLife

• No Magic

• Raytheon Company

• Stanford University, Knowledge Systems Laboratory (KSL)

• Tokyo Electric Power Company

• UMTP

• U.S. National Institute of Standards and Technology (NIST)
12                 Ontology Definition Metamodel, v1.0



7 Usage Scenarios and Goals

7.1 Introduction

The usage scenarios presented in this section highlight characteristics of ontologies that represent important design 
considerations for ontology-based applications. They also motivate some of the features and functions of the ODM and 
provide insight into when users can limit the expressivity of their ontologies to a description logics based approach, as 
well as when additional expressivity, for example from first order logic, might be needed. This set of examples is not 
intended to be exhaustive. Rather, the goal is to provide sufficiently broad coverage of the kinds of applications the ODM 
is intended to support so that ODM users can make informed decisions when choosing what parts of the ODM meet their 
development requirements and goals. 

This analysis can be compared with a similar analysis performed by the W3C Web Ontology Working Group (W3C 
2003). We believe that the six use cases and eight goals considered in W3C (2003) provide additional, and in some cases 
overlapping, examples, usage scenarios, and goals for the ODM.

7.2 Perspectives

In order to ensure a relatively complete representation of usage scenarios and their associated example applications, we 
evaluated the coverage by using a set of perspectives that characterize the domain. Table 7.1 provides an overview of 
these perspectives.

Table 7.1 - Perspectives of Applications that Use Ontologies Considered in this Analysis

Perspective One Extreme Other Extreme

Level of Authoritativeness Least authoritative, broader, 
shallowly defined ontologies

Most authoritative, narrower, more deeply 
defined ontologies

Source of Structure Passive  (Transcendent) – structure 
originates outside the system

Active (Immanent) – structure emerges from 
data or application 

Degree of Formality Informal, or primarily taxonomic Formal, having rigorously defined types, 
relations, and theories or axioms

Model Dynamics Read-only, ontologies are static Volatile, ontologies are fluid and changing.

Instance Dynamics Read-only, resource instances are 
static

Volatile, resource instances change 
continuously

Control / Degree of 
Manageability

Externally focused, public (little or no 
control)

Internally focused, private (full control)

Application Changeability Static (with periodic updates) Dynamic

Coupling Loosely-coupled Tightly-coupled

Integration Focus Information integration Application integration

Lifecycle Usage Design Time Run Time
Ontology Definition Metamodel, v1.0        13



An ontology is a specification of a conceptualization for some area; there may be distinct ontologies representing 
differing conceptualizations of the same domain. Ontologies may also differ due to the cost-benefit trade-offs associated 
with different specifications. The perspectives associated with the conceptualizations are called model centric.

An ontology can also be used in a software development process in different ways. The perspectives that reflect how an 
ontology participates in the software development process are called application centric. 

7.2.1 Model-Centric Perspectives

The model centric perspectives characterize the ontologies themselves and are concerned with the structure, formalism, 
and dynamics of the ontologies; they are: 

• Level of Authoritativeness 

• Source of Structure

• Degree of Formality

• Model Dynamics

• Instance Dynamics

7.2.1.1 Level of Authoritativeness

The conceptualization from which an ontology is developed is always produced by someone. If the ontology is developed 
by the organization that is responsible for specifying the conceptualization, then it may be definitive, and therefore highly 
authoritative. If ontology development is distant from the organization defining the conceptualization, it may not be very 
authoritative. 

Highly authoritative ontologies are typically part of the institutional fabric of the organizations that will use them. If the 
conceptualization is complex, it often pays to develop the specification in great depth. But if the authority of the 
responsible institution is limited, the specification will generally have sharp boundaries and may be relatively narrow. 
Ontologies that are not authoritative tend to be broad, since the creator can pick the most accessible concepts from many 
conceptualizations, and generally not very deep. Such ontologies may not be reliable from a user perspective, so may not 
attract sufficient resources to be developed in detail.

SNOMED1 is a very large and authoritative ontology. The periodic table of the elements is very authoritative, but small. 
However, it can be safely used as a component of larger ontologies in physics or chemistry. Ontologies used for 
demonstration or pedagogic purposes, like the Wine Ontology2, are not very authoritative. Table 7.1 can be seen as an 
ontology which at present is not very authoritative. Should the classifications gain wide use in the ontology community, 
the ontology in Table 7.1 would become more authoritative.

7.2.1.2 Source of Structure 

An ontology describes a structure that may be implemented in software of some kind. In some cases, the structure 
represents published rules of engagement, required for interoperability, that can only be revised by authorized agents in a 
well-publicized manner. In other words, the ontology is developed externally to the applications that use it; and changes 
are made systematically, through a published revision process. Such an ontology is called transcendent. SNOMED is a 
transcendent ontology defined by the various governing bodies of medicine. E-commerce exchanges are generally 
supported by transcendent ontologies.

1.  http://www.snomed.org
2.  http://www.w3.org/2001/sw/WebOnt/guide-src/wine.owl
14                 Ontology Definition Metamodel, v1.0



Alternatively, the structure may be defined by patterns arising from content knowledge, instantiated or inferred by 
applications. An ontology that emerges from content is called immanent. Examples include ontologies used by data 
mining and analysis applications, such as financial or market analysis tools that process news feeds. The set of topics 
extracted from such news feeds might define the structure of the ontology, and although changes in structure of specific 
topics may be minor, new topics can introduce radical structure change. A company may hire a new executive, but its 
management structure remains constant, for example. The outbreak of a war would introduce radical change, as can the 
introduction of a new technology like the World-Wide Web or mobile telephones. Other applications using similar 
capabilities include customer relationship management applications (such as that used by Amazon), search and security 
applications (such as those used to detect unusual patterns of credit card activity that may indicate fraudulent use). 

7.2.1.3 Degree of Formality 

Degree of formality refers to the level of formality of the specification of the conceptualization, ranging from highly 
informal or taxonomic in nature, to semantic networks, that may include complex subclass/superclass relations but no 
formal axiom expressions, to ontologies containing highly formal axioms that explicitly define concepts. SNOMED is 
taxonomic, as is the Standard Industrial Classification system (SIC) used by the US Department of Labor Statistics, while 
engineering ontologies like Gruber and Olsen (1994) are highly formal. 

7.2.1.4 Model Dynamics 

All ontologies have structure, which likely evolves over time. If the ontology is transcendent, its maintaining organization 
may decide to make a change; for immanent ontologies, new patterns may emerge from the data. The question is, how 
often does the structure change? One extreme in the model dynamics dimension is stable or read-only ontologies that 
rarely change in structure. The Periodic Table is structurally stable, as are generally the rules of an engagement. 
SNOMED is relatively stable, as is the SIC (the SIC is slowly being replaced by the North American Industry 
Classification System (NAICS) after 60 years, due to changes in the American economy in that period). 

The other extreme in model dynamics is ontologies whose structure is volatile, changing often. An ontology supporting 
tax accounting in Australia would be volatile at the model level, since the system of taxation institutional facts can 
change, sometimes quite radically, with any Budget.

7.2.1.5 Instance Dynamics

An ontology often includes a system of classes and properties (the structure), populated by instances (the extents). As 
with model dynamics, instance knowledge may be stable (read-only) or volatile. The Periodic Table is stable at the 
instance level (i.e., particular elements) as well as the model level (e.g., noble gasses or rare earths). New elements are 
possible but rarely discovered. On the other hand, an ontology supporting an e-commerce exchange is volatile at the 
instance level but possibly not at the model level. Z39.50 based applications are very stable in their model dynamics, but 
volatile in their instance dynamics. Libraries are continually turning over their collections.

7.2.2 Application-Centric Perspectives

Application centric perspectives are concerned with how applications use and manipulate the ontologies, they are:

• Control / Degree of Manageability 

• Application Changeability

• Coupling

• Integration Focus

• Lifecycle Usage
Ontology Definition Metamodel, v1.0        15



7.2.2.1 Control / Degree of Manageability

This dimension considers who decides when and how much change to make to an ontology. One extreme is when the 
body responsible for the ontology has sole decision on change (internally focused). The SIC is internally focused. Change 
is required because the structure of the US economy has changed over the years, but the Bureau of Labor Statistics 
decides how and when change is introduced.

The other extreme is when changes to the ontology are mandated by outside agencies (externally focused). In the US, 
ontologies in the finance industry were required to change by the Sarbanes-Oxley Act of 2002, and changes in ontologies 
in many areas were mandated by the Patriot Act, passed shortly after the World Trade Center attacks in 2001. An 
ontology on taxation matters managed by a trade association of accountants is subject to change as the relevant taxation 
acts are changed by governments.

7.2.2.2 Application Changeability 

An ontology may be used in applications. The applications may be developed once, as for an e-commerce exchange 
(static) with periodic updates. On the other extreme, applications may be constructed dynamically (dynamic), as in an 
application that composes web services at run time. 

7.2.2.3 Coupling 

This dimension describes how closely coupled applications committed to shared ontologies are to each other. The 
applications in an e-commerce exchange are tightly coupled, since they must interoperate at run time. At the other 
extreme, applications using the Periodic Table or the Engineering Mathematics ontology may have nothing in common at 
run time. They are loosely coupled, solely because they share a component. 

7.2.2.4 Integration Focus 

Some ontologies specify the structure of interoperation but not content. Z39.50 exclusive of the use attribute sets is a 
good example. The MPEG-21 multimedia framework is another example. It specifies the structure of multimedia objects 
without regard for their content. This extreme is called application integration, because they can be used to link programs 
together so that the output of one is a valid input for the other.

Other ontologies specify content structure. An ontology may specify the structure of a shared knowledge base, for 
example, for use by agents that exchange information about shared objects. This extreme is called information 
integration. Ontologies used for integration may be both application and information focused.

7.2.2.5 Lifecycle Usage 

An ontology may be used by an application in the specification or design phases of the software life cycle, but not 
explicitly at run time. Use of the Periodic Table or Engineering Mathematics ontology in the specification of an 
engineering or scientific application is an example of design time usage. In a large e-commerce exchange, the exchange 
may check every message to see whether it conforms to the ontology and if so, what version. The message is then sent to 
the recipient with a certification, therefore relieving the players from having to do the checks themselves. In this case, the 
ontology is used at run time.

7.3 Usage Scenarios

As might be expected, some perspectives tend to correlate, forming application areas with similar characteristics. Our 
analysis, summarized in Table 7.2, identified three major clusters of application types that share perspective values:

• Business Applications have transcendent source of structure, a high degree of formality and external control relative to 
nearly all users.
16                 Ontology Definition Metamodel, v1.0



• Analytic Applications have highly changeable and flexible ontologies, using large collections of mostly read-only 
instance data.

• Engineering Applications have transcendent source of structure, but users control them primarily internally and they 
are considered more authoritative.

7.4 Business Applications

7.4.1 Run Time Interoperation

Externally focused information interoperability applications are typically characterized by strong de-coupling of the 
components realizing the applications. They are focused specifically on information rather than application integration 
(and here we include some semantic web service applications, which may involve composition of vocabularies, services 
and processes but not necessarily APIs or database schemas). Because the community using them must agree upon the 
ontologies in advance, their application tends to be static in nature rather than dynamic.

Table 7.2  - Usage Scenario Perspective Values

Use Case 
Clusters

Characteristic Perspective 
Values

Model Centric Application Centric

Description Authoritative Structure Formality Model 
Dynamics

Instance 
Dynamics

Control Change Coupling Focus Life 
Cycle

7.4 Business 
Applications

Transcendent Formal External

7.4.1 Run-time 
Interoperation

Least/Broad Transcendent Formal Read-
Only

Volatile External Static Tight Information Real 
Time

7.4.2 Application 
Generation

Most/Deep Transcendent Formal Read-
Only

Read-
Only

External Static Loose Application All

7.4.3 Ontology 
Lifecycle

Middle/
Broad& Deep

Transcendent Semi-
Formal/ 
Formal

Read-
Only

Read-
Only

External Static Tight Information Real 
Time

7.5 Analytic 
Applications

Volatile Read-
Only

Dynamic Flexible

7.5.1 Emergent 
Property 
Discovery

Broad & 
Deep

Immanent Informal Volatile Read-
Only

Internal 
& 
External

Dynamic Flexible Information Real 
Time

7.5.2 Exchange of 
Complex 
Data Sets

Broad & 
Deep

Immanent Informal Volatile Read-
Only/ 
Volatile

Internal 
& 
External

Dynamic Flexible Information Real 
Time

7.6 Engineering 
Application

Broad & 
Deep

Transcendent Internal

7.6.1 Information 
System 
Development 

Broad & 
Deep

Transcendent Semi-
Formal / 
Formal

Read-
Only

Volatile Internal Evolving Tight Information Design 
Time

7.6.2 Ontology 
Engineering

Broad & 
Deep

Transcendent Semi-
Formal / 
Formal

Volatile Volatile Internal Evolving Flexible ??? Design 
Time
Ontology Definition Metamodel, v1.0        17



Perspectives that drive characterization of these scenarios include: 

• The ontology must be sufficiently authoritative to support the investment. 

• Whether the control is external to the community members. 

• Whether or not there is a design time component to ontology development and usage.

• Whether or not the knowledge bases and information resources that implement the ontologies are modified at run time 
(since the source of structure remains relatively unchanged in these cases, or the ontologies are only changed in a 
highly controlled, limited manner).

These applications may require mediation middleware that leverages the ontologies and knowledge bases that implement 
them, potentially on either side of the firewall – in next generation web services and electronic commerce architectures as 
well as in other cross-organizational applications, for example: 

• For semantically grounded information interoperability, supporting highly distributed, intra- and inter-organizational 
environments with dynamic participation of potential community members (as when multiple emergency services 
organizations come together to address a specific crisis) with diverse and often conflicting organizational goals.

• For semantically grounded discovery and composition of information and computing resources, including Web 
services (applicable in business process integration and grid computing).

In electronic commerce exchange applications based on state-full protocols such as EDI or Z39.50, where there are 
multiple players taking roles performing acts by sending and receiving messages whose content refers to a common 
world. 

In these cases, we envision a number of agents and/or applications interoperating with one another using fully specified 
ontologies. Support for query interoperation across multiple, heterogeneous databases is considered a part of this scenario. 

While the requirements for ontologies to support these kinds of applications are extensive, key features include: 

• the ability to represent situational concepts, such as player/actor – role – action – object – state, 

• the necessity for multiple representations and/or views of the same concepts and relations, and 

• separation of concerns, such as separating the vocabularies and semantics relevant to particular interfaces, protocols, 
processes, and services from the semantics of the domain. 

• Service checking that messages commit to the ontology at run time. These communities can have thousands of 
autonomous players, so that no player can trust any other to send messages properly committed to the ontology.

7.4.2 Application Generation

A common worldview, universe of discourse, or domain is described by a set of ontologies, providing the context or 
situational environment required for use by some set of agents, services, and/or applications. These applications might be 
internally focused in very large organizations, such as within a specific hospital with multiple, loosely coupled clinics, but 
are more likely multi- or cross-organizational applications. Characteristics include: 

• Authoritative environments, with tighter coupling between resources and applications than in cases that are less 
authoritative or involve broader domains, though likely on the “looser side” of the overall continuum.

• Ontologies shared among organizations are highly controlled from a standards perspective, but may be specialized by 
the individual organizations that use them within agreed parameters. 
18                 Ontology Definition Metamodel, v1.0



• The knowledge bases implementing the ontologies are likely to be dynamically modified, augmented at run time by 
new metadata, gathered or inferred by the applications using them. 

• The ontologies themselves are likely to be deeper and narrower, with a high degree of formality in their definition, 
focused on the specific domain of interest or concepts and perspectives related to those domains.

For example: 

• Dynamic regulatory compliance and policy administration applications for security, logistics, manufacturing, financial 
services, or other industries.

• Applications that support sharing clinical observation, test results, medical imagery, prescription and non-prescription 
drug information (with resolution support for interaction), relevant insurance coverage information, and so forth across 
clinical environments, enabling true continuity of patient care.

Requirements:

• The ontologies used by the applications may be fully specified where they interoperate with external organizations and 
components, but not necessarily fully specified where the interaction is internal. 

• Conceptual knowledge representing priorities and precedence operations, time and temporal relevance, bulk domains 
where individuals don’t make sense, rich manufacturing processes, and other complex notions may be required, 
depending on the domain and application requirements.

7.4.3 Ontology Lifecycle 

In this scenario we are concerned with activity, which has as its principle objectives conceptual knowledge analysis, 
capture, representation, and maintenance. Ontology repositories should be able to support rich ontologies suitable for use 
in knowledge-based applications, intelligent agents, and semantic web services. Examples include:

• maintenance, storage, and archiving of ontologies for legal, administrative, and historical purposes,

• test suite generation, and 

• audits and controllability analysis.

Ontological information will be included in a standard repository for management, storage, and archiving. This may be to 
satisfy legal or operations requirements to maintain version histories.

These types of applications require that Knowledge Engineers interact with Subject Matter Experts to collect knowledge 
to be captured. UML models provide a visual representation of ontologies facilitating interaction. The existence of meta-
data standards, such as XMI and ODM, will support the development of tools specifically for Quality Assurance 
Engineers and Repository Librarians.

Requirements implications:

• Full life-cycle support will be needed to provide managed and controlled progression from analysis, through design, 
implementation, test and deployment, continuing on through the supported systems maintenance period. 

• Part of the lifecycle of ontologies must include collaboration with development teams and their tools, specifically in 
this case configuration and requirements management tools. Ideally, any ontology management tool will also be 
ontology aware. 

• It will provide an inherent quality assurance capability by providing consistency checking and validation.  
Ontology Definition Metamodel, v1.0        19



• It will also provide mappings and similarity analysis support to integrate multiple internal and external ontologies into 
a federated web.

7.5 Analytic Applications

7.5.1 Emergent Property Discovery

By this we mean applications that analyze, observe, learn from, and evolve as a result of or manage other applications and 
environments. The ontologies required to support such applications include ontologies that express properties of these 
external applications or the resources they use. The environments may or may not be authoritative; the ontologies they use 
may be specific to the application or may be standard or utility ontologies used by a broader community. The knowledge 
bases that implement the ontologies are likely to be dynamically augmented with metadata gathered as a part of the work 
performed by these applications. External information resources and applications are accessed in a read-only mode.

• Semantically grounded knowledge discovery and analysis (e.g., financial, market research, intelligence operations).

• Semantics assisted search of data stored in databases or content stored on the Web (e.g., using domain ontologies to 
assist database search, using linguistic ontologies to assist Web content search).

• Semantically assisted systems, network, and / or applications management.

• Conflict discovery and prediction in information resources for self-service and manned support operations (e.g., 
technology call center operations, clinical response centers, drug interaction).

What these have in common is that the ontology is typically not directly expressed in the data of interest, but represents 
theories about the processes generating the data or emergent properties of the data. Requirements include representation 
of the objects in the ontology as rules, predicates, queries, or patterns in the underlying primary data.

7.5.2 Exchange of Complex Data Sets

Applications in this class are primarily interested in the exchange of complex (multi-media) data in scientific, 
engineering, or other cooperative work. The ontologies are typically used to describe the often complex multimedia 
containers for data, but typically not the contents or interpretation of the data, which is often either at issue or proprietary 
to particular players. (The OMG standards development process is an example of this kind of application.)

Here the ontology functions more like a rich type system. It would often be combined with ontologies of other kinds (for 
example, an ontology of radiological images might be linked to SNOMED for medical records and insurance 
reimbursement purposes).

Requirements include 

• Representation of complex objects (aggregations of parts).

• Multiple inheritance where each semantic dimension or facet can have complex structure.

• Tools to assemble and disassemble complex sets of scientific and multi-media data.

• Facilities for mapping ontologies to create a cross reference. These do not need to be at the same level of granularity. 
For the purposes of information exchange, the lower levels of two ontologies may be mapped to a higher level 
common abstraction of a third, creating a sort of index.
20                 Ontology Definition Metamodel, v1.0



7.6 Engineering Applications

The requirements for ontology development environments need to consider both externally and internally focused 
applications, as externally focused but authoritative environments may require collaborative ontology development. 

7.6.1 Information Systems Development

The kinds of applications considered here are those that use ontologies and knowledge bases to support enterprise systems 
design and interoperation. They may include: 

• Methodology and tooling, where an application actually composes various components and/or creates software to 
implement a world that is described by one or more component ontologies. 

• Semantic integration of heterogeneous data sources and applications (involving diverse types of data schema formats 
and structures, applicable in information integration, data warehousing, and enterprise application integration).

• Application development for knowledge based systems, in general.

In the case of model-based applications, extent-descriptive predicates are needed to provide enough meta-information to 
exercise design options in the generated software (e.g., describing class size, probability of realization of optional 
classes). An example paradigm might reflect how an SQL query optimizer uses system catalog information to generate a 
query plan to satisfy the specification provided by an SQL query. Similar sorts of predicates are needed to represent 
quality-type meta-attributes in semantic web type applications (comprehensiveness, authoritativeness, currency).

7.6.2 Ontology Engineering

Applications in this class are intended for use by an information systems development team, for utilization in the 
development and exploitation of ontologies that make implicit design artifacts explicit, such as ontologies representing 
process or service vocabularies relevant to some set of components. Examples include:

• Tools for ontology analysis, visualization, and interface generation

• Reverse engineering and design recovery applications

The ontologies are used throughout the enterprise system development life cycle process to augment and enhance the 
target system as well as to support validation and maintenance. Such ontologies should be complementary to and augment 
other UML modeling artifacts developed as part of the enterprise software development process. Knowledge engineering 
requirements may include some ontology development for traditional domain, process, or service ontologies, but may also 
include: 

• Generation of standard ontology descriptions (e.g., OWL) from UML models.

• Generation of UML models from standard ontology descriptions (e.g., OWL).

• Integration of standard ontology descriptions (e.g., OWL) with UML models.

Key requirements for ontology development environments supporting such activities include:

• Collaborative development

• Concurrent access and ontology sharing capabilities, including configuration management and version control of 
ontologies in conjunction with other software models and artifacts at the atomic level within a given ontology, 
including deprecated and deleted ontology elements.

• Forward and reverse engineering of ontologies throughout all phases of the software development lifecycle.
Ontology Definition Metamodel, v1.0        21



• Ease of use, with as much transparency with respect to the knowledge engineering details as possible from the user 
perspective.

• Interoperation with other tools in the software development environment; integrated development environments.

• Localization support

• Cross-language support (ontology languages as opposed to natural or software languages, such as generation of 
ontologies in the RDF(S)/OWL family of description logics languages, or in the Knowledge Interchange Format (KIF) 
where first or higher order logics are required).

• Support for ontology analysis, including deductive closure; ontology comparison, merging, alignment, and 
transformation.

• Support for import/reverse engineering of RDBMS schemas, XML schemas and other semi-structured resources as a 
basis for ontology development.

7.7 Goals for Generic Ontologies and Tools

The diversity of the usage scenarios illustrates the wide applicability of ontologies within many domains. Table 7.3 brings 
these requirements together. To address all of these requirements would be an enormous task, beyond the capacity of the 
ODM development team. The team is therefore concentrating on the most widely applicable and most readily achievable 
goals. The resulting ODM will be not a final solution to the problem, but will be intended as a solid start that will be 
refined as experience accumulates.

Table 7.3 - Summary of Requirements

Requirement Section

Structural features

Support ontologies expressed in existing description logic, (e.g. OWL/DL) and higher 
order logic languages (e.g., OWL Full and KIF), as well as emerging and new 
formalisms.

7.4.2
7.5.1
7.6.2

Represent complex objects as aggregations of parts 7.5.2

Multiple inheritance of complex types 7.5.2

Separation of concerns 7.4.1

Full or partial specification 7.4.2

Model-based architectures require extent-descriptive predicates to provide a description 
of a resource in an ontology, then generating a specific instantiation of that resource. 

7.6.1

Efficient mechanisms will be needed to represent large numbers of similar classes or 
instances. 

7.4.1

Generic content

Support physical world concepts, including time, space, bulk or mass nouns like ‘water,’ 
and things that do not have identifiable instances.

7.4.2
22                 Ontology Definition Metamodel, v1.0



The table classifies the requirements into 

• structural features – knowledge representation requirements 

• generic content – aspects of the world common to many applications 

• run-time tools – use of the ontology during interoperation

• design-time tools – needed for the design of ontologies 

Associated with each requirement are the usage scenario from which it mainly arises.

Support object concepts that have multiple facets of representations, e.g., conceptual 
versus representational classes.

7.4.1

Provide a basis for describing stateful representations, such as finite state automaton to 
support an autonomous agent’s world representation.

7.4.1

Provide a basis for information systems process descriptions to support interoperability, 
including such concepts as player, role, action, and object.

7.4.1

Other generic concepts supporting particular kinds of domains 7.4.2

Run-time tools

Tools to assemble and disassemble complex sets of scientific and multi-media data. 7.5.2

Service to check message commitment to ontology 7.4.1

Design-time tools

Full life-cycle support 7.4.3
7.6.2

Support for collaborative teams 7.4.3
7.6.2

Ease of use, transparency with respect to details 7.6.2

Support for modules and version control. 7.4.3

Consistency checking and validation, deductive closure 7.4.3
7.6.2

Mappings and similarity analysis 7.4.3
7.5.2
7.6.2

Interoperation with other tools, forward and reverse engineering 7.6.2

Localization support 7.6.2

Table 7.3 - Summary of Requirements
Ontology Definition Metamodel, v1.0        23



24                 Ontology Definition Metamodel, v1.0



8 Design Principles

The ODM uses the design principles, such as modularity, layering, partitioning, extensibility and reuse, that are 
articulated in the UML Infrastructure document [UML Infra].

8.1 Why Not Simply Use or Extend the UML 2.0 Metamodel?

An ontology is a conceptual model, and shares characteristics with more traditional data models. The UML Class 
Diagram is a rich representation system, widely used, and well-supported with software tools. Why not simply use UML 
for representing ontologies?

OWL concepts, particularly those of OWL DL, represent an implementation of a subset of traditional first order logic 
called Description Logics (DL), and are largely focused on sets and mappings between sets in order to support efficient, 
automated inference. UML class diagrams are also based in set semantics, but these semantics are not as complete; 
additionally, in UML, not as much care is taken to ensure the semantics are followed sufficiently for the purposes of 
automatic inference. This can potentially be rectified with OCL, which is part of UML 2.0. The issues can be categorized 
by cases where UML is overly restrictive, not restrictive enough, or simply doesn’t provide the explicit construct 
necessary. For example: 

• UML disjointedness requires disjoint classes to have a common super-type, which is not the case in OWL (aside from 
the fact that all OWL classes are ultimately subclasses of owl:Thing, and similarly that all classes in RDF Schema are 
resources).

• To model set intersection in UML one might consider using multiple inheritance, but this still allows an instance of all 
the super-classes to be omitted from the subclass.

• There is no UML construct for set complement. 

The lack of reliable set semantics and model theory for UML prevents the use of automated reasoners on UML models. 
Such a capability is important to applying Model Drive Architecture to systems integration. A reasoner can automatically 
determine if two models are compatible, assuming they have a rigorous semantics and axioms are defined to relate 
concepts in the various systems.

Another distinction is in the ability to fully specify individuals apart from classes, and for individuals to have properties 
independently of any class they might be an instance of in OWL. In this regard, UML shows its software heritage, in which 
it is not possible for an instance to exist without a class to define its structure, a characteristic that derives from classes 
used as abstractions of memory layout. It is not hard to work around this using singleton classes as proposed in the 
profile, but for methodologies that start with instances and derive classes from them, this is clutter obviously introduced 
from a practice in which the reverse is the norm. 

In OWL Full, it is also common to reify individuals as classes. OWL Full allows classes to have instances that are 
themselves classes or properties; classes and properties can be the domains of other properties. Elements of an ontology 
frequently cross meta-levels, and may represent the equivalent of multiple meta-levels depending on the domain, 
application, usage model, and so forth. Ontologists frequently want to see a combination of these classes and individuals 
on the same diagram, and find it unnatural if they cannot. Many software languages reify classes, but UML has been only 
half-hearted in supporting this mechanism. One can also work around this, however, as shown in the profile. The four-
layer meta level architecture that UML resides in does not restrict class reification, even though it is often confused with 
reification. Classes and instances can reside on a single level of the architecture, at least if UML is used to describe that 
layer.
Ontology Definition Metamodel, v1.0        25



While some claim that UML would need to support properties independently of classes to be used in the OWL style, this 
is not actually the case. In fact, independent properties in OWL are semantically equivalent to properties on owl:Thing, 
which is directly translatable to UML using a model library, corresponding to the one proposed in the Foundation 
Ontology given in Annex A. OWL does not require the use of owl:Thing for properties without defined domains, but this 
is really just syntactic sugar. Note that the same is true when RDF vocabularies are developed without using any OWL 
constructs; for the purposes of this specification, the model library should be used in either case.

The above problems could potentially be addressed in a revision of UML. However, the RFP to which this specification 
is responding did not call for that. 

8.2 Component Metamodel Selection

A trigger for the call for development of an ODM was the development by the World-Wide Web Consortium of a set of 
languages that form the foundation of the Semantic Web, including the Resource Description Framework (RDF), RDF 
Schema, and the Web Ontology Language (OWL). In addition, there have been many other ontology language 
development efforts, including International Standards Organization (ISO) projects for Topic Maps and Common Logic 
(CL). Topic Maps is a metalanguage designed to express the “aboutness” of an information structure with key model 
elements topic and association. Common Logic represents a family of knowledge representation languages. Common 
Logic, or CL, is a first order logic, analogous to predicate calculus, and is the successor to KIF (Knowledge Interchange 
Format). Both Topic Maps and CL have XML serializations, and were designed to express semantics for knowledge 
exchanged over the World Wide Web. These languages overlap with some parts of OWL as might be expected, but are 
used for different purposes and have different or no requirements for automated reasoning. CL is more expressive than 
OWL, and is better suited to applications involving declarative representation of rules and processes, for example.

As an initial part of the ODM development process, the team determined that understanding the requirements for ontology 
development using ODM metamodels was essential to establishing the ODM architecture and selecting an appropriate set 
of languages to be incorporated in the specification. The results of this requirements analysis are summarized in Chapter 
7. The set of languages represented, the architecture, and potential extensions currently envisioned developed as a direct 
consequence of this effort. This includes the notion that organizations developing ontologies may need to leverage pre-
existing data and process models represented in UML, Entity-Relationship (ER), or another modeling language even if the 
development effort itself is conducted using an ODM metamodel. For some possible extensions to better support certain 
classes of vocabularies or ontologies, see Annex D. 

A significant exception is immanent ontologies, whose structure is derived from the information being exchanged as 
distinguished from transcendent ontologies, whose structure is provided a priori by schemas and the like. News feeds, 
results of data mining, and intelligence applications are examples of immanent ontologies, while e-commerce exchanges, 
engineering applications, and controlled vocabularies generally are transcendent. Immanent ontologies are represented by 
at least collections of terms, but often also by some numeric representation of the relationship among terms: co-
occurrence matrices, conditional probabilities of co-occurrence, and eigenvectors of co-occurrence matrices, for example. 
These kinds of applications have not attracted the development of standardized representation structures as have 
transcendent ontologies. The ODM team considered that it was outside the scope of this specification to innovate in areas 
such as immanent ontology development without existing standard representations.

8.3 Relationships among Metamodels

8.3.1 The Need for Translation

The various metamodels in the ODM are treated equally, in that they are generally independent of each other. It is not 
necessary to understand or be aware of the others to understand any one in particular. The one exception to this is that the 
metamodel for OWL extends the metamodel for RDF, as the OWL language itself extends the RDF language.
26                 Ontology Definition Metamodel, v1.0



However, in an ontology development project it might be necessary to use several of the metamodels, and to represent a 
given fragment of an ontology component in more than one. For example, consider a large e-commerce exchange project. 
The developers might choose to represent the ontology specifying the shared world governing the exchange in OWL. But 
the exchange might have evolved from a single large company’s electronic procurement system (as was the case for 
example with the General Electric Global Exchange Service [GE]). The original procurement system might have been 
designed using UML, so that it would be a significant saving in development cost to be able to translate the UML 
specification to OWL as a starting point for development of the ontology.

Once such an exchange is operating, it may have thousands of members, each of which will have its own information 
system performing a variety of tasks in addition to interoperating through the exchange. These systems are all 
autonomous, and the exchange has no interest in how they generate and interpret the messages they use to interoperate so 
long as they commit to the ontology. Let us assume that the various members have systems with data models in UML or 
dialects of the ER model. A given member will need to subscribe to at least a fragment of the ontology and make sure its 
internal data model conforms to the fragment. It would therefore be an advantage to be able to translate a fragment of the 
ontology to UML or ER to facilitate the member making any changes to its internal operations necessary for it to commit 
to the ontology. Alternatively, a member might have a large investment in UML and would like the development to 
leverage UML experience and UML tools to make at least a first approximation to alignment with the OWL model.

It is extremely important for those leveraging existing artifacts for ontology development to understand that “what makes 
a good object-oriented software component model” does not necessarily make a good ontology. Once a particular model 
has been translated to OWL, for example, care needs to be taken to ensure that the resultant model will support the 
desired assertions in a knowledge base. Significant restructuring is often required, in other words. 

The ODM therefore needs to provide facilities for making relationships among instances of its metamodels, including 
UML. There are two ways to accomplish this: UML profiles and mappings. 

8.3.2 UML Profiles

The goal of a UML profile from the ODM perspective is to provide a bridge between the UML and knowledge 
representation communities on a well-grounded, semantic basis, with a broader goal of relating software and logical 
approaches to representing information. Profiles facilitate implementation using common notation on existing UML tools. 
They support renaming and specializing UML model elements in consistent ways, so that an instance of a UML model 
can be seen as an extended metamodel. Profiles allow a developer to leverage UML experience and tools while moving to 
integrating with an ontology represented in another metamodel.

We have provided such profiles for the Topic Maps, RDFS, and OWL metamodels, as one of the primary goals that 
emerged from our use case development work was to enable use of existing UML tools for ontology modeling. The 
profiles provided in Chapter 14 and Chapter15 were designed specifically for use in UML 2.0 tools. A profile for 
Common Logic is under consideration as an extension to this specification through the OMG’s RFC process, as potential 
applications for its use in business semantics and production rules applications were identified late in the specification 
development process. 

8.3.3 Mappings

Working with multiple metamodels may require a model element by model element translation of model instances from 
one metamodel to another. UML profiling provides some capability for users to leverage UML as a basis for ontology 
development for a specific knowledge representation language, such as RDF or OWL, but not necessarily to facilitate 
complete transformations across the set of representation paradigms included in the ODM metamodels. We therefore need 
to specify mappings from one metamodel to another. 
Ontology Definition Metamodel, v1.0        27



Over the course of the ODM development, a parallel RFP effort called MOF QVT (Query/View/Transform) also reached 
finalization, providing a standardized MOF-based platform for mapping instances of MOF metamodels from one 
metamodel to another [MOF QVT]. Although the QVT specification is not yet finalized, it is sufficiently mature for use 
in defining informative mappings in the ODM. 

Translation between metamodels has the fundamental problem that there may not be a single and separate model element 
in the target corresponding to each model element in the source (indeed, if the metamodels are not simply syntactic 
variations, this would be the normal situation). We will call this situation structure loss. Some of the issues involved with 
structure loss and what to do about it using one of the earlier QVT proposals are discussed in [MSDW].

An overview of the mapping strategy used in the ODM is illustrated in Chapter 9. Note that there are mappings from each 
metamodel to and from OWL Full, except for Common Logic (CL) for which there is only a mapping from OWL Full. A 
lossy, reverse mapping defined in QVT from CL to OWL, and bi-directional mappings between UML and CL are 
planned, and may be added through an RFP/RFC process. 

8.3.4 Mappings Are Informative, Not Normative

In Chapter 9, The ODM is shown as having metamodels for several languages (RDFS/OWL, Topic Maps, and Common 
Logic) tied together by mappings to and from OWL (including UML to and from OWL). Common Logic is the exception, 
with mappings from OWL to CL only.

An argument for the infeasibility of normative mappings is presented in Annex E. In a nutshell, the mappings provided in 
the ODM are very general. Due to the very different scope and structure of the systems metamodeled, mappings based 
solely on the general structure of the languages will often lead to less than ideal choices for mapping some structures. 
Any particular mapping project will have additional constraints arising from the structure of the particular models to be 
mapped and the purposes of the project, so will very likely make different mapping choices than those provided in the 
ODM. An industry of consultants will likely arise, adding value by exactly this activity. They can use the ODM mappings 
as a takeoff point, and as an aid to understanding the comparative model structure, so the ODM mappings have value as 
informative, but not as normative.

8.4 Why Common Logic over OCL?

Common Logic (CL) is qualitatively different from some of the other metamodels in that it represents a dialect of 
traditional first order logic, rather than a modeling language. UML already supports a constraint (rule) language, which 
includes similar logic features, OCL [OCL], so why not use it?

The short answer to that question is that the ODM does include OCL in the same way it includes UML. Unfortunately, 
just as UML lacks a formal model theoretic semantics, OCL also has neither a formal model theory nor a formal proof 
theory, and thus cannot be used for automated reasoning (today). Common Logic, on the other hand, has both, and 
therefore can be used either as an expression language for ontology definition or as an ontology development language in 
its own right. 

CL represents work that has been ongoing in the knowledge representation and logic community for a number of years. It 
is a second-generation language intended to have an extremely concise kernel for efficient reasoning, has a surface syntax 
for use with Semantic Web applications, and is rooted in the Knowledge Interchange Format (KIF Reference Manual v3.0 
was published in 1992) as well as in other knowledge representation formalisms. It has also reached final committee draft 
status (24707) in JTC 1 / SC32 of the ISO/IEC standards community, and should be finalized by the end of 2006.

Our original work with regard to the metamodel was done with active participation of the CL language authors, and 
sought to be true to the abstract syntax of the CL language to the extent possible. Our intent was to enable ontologies 
developed using the ODM to be operated on by DL and CL reasoners downstream. There are a number of such reasoners 
28                 Ontology Definition Metamodel, v1.0



available today, including Cerebra, FaCT, Pellet, Racer, and others from the DL community, as well as KIF-based 
reasoners such as Stanford's Java Theorem Prover (JTP) and OntologyWorks, CLIPS (similar to KIF) based reasoners 
such as Jess, and so forth, which ODM users can leverage for model consistency checking, model validation, and for 
applications development.

Finally, given that the ODM includes mappings among the metamodels for the modeling languages, why not include 
mappings between OCL and CL? Such a mapping should in principle be possible, but both languages are very rich. A 
mapping between them must deal with concerns about issues related to unintended semantics, the ability to write complex 
expressions involving multiple variables that preserve quantifier scope, and so forth. These issues are very important from 
a reasoning perspective, and thus our approach needs to be well developed and tested using both OCL and CL reasoners 
if we are to go down that path. This represents a longer term activity that may be taken up in the Ontology PSIG if there 
is sufficient commercial interest in doing so.

8.5 Why EMOF?

MOF 2 has two flavors, EMOF (Essential MOF) and CMOF (Complete MOF), with EMOF being equivalent to a subset 
of CMOF. We have used EMOF for the ODM for two reasons:

• The advantage of using EMOF is that the modeling tools available during ODM development, such as IBM Rational 
Rose, support EMOF (or close to it) but not CMOF. It was therefore possible to use such tools to define ODM meta-
models. At present, the newness of CMOF means that CMOF facilities are not supported by most tools. Therefore use 
of CMOF facilities imposes a significant burden. 

• The ODM metamodels can be represented in EMOF without sacrificing major syntactic or semantic considerations.

On the other hand, some of the possible extensions discussed in Annex D do require CMOF facilities. Use of EMOF in 
the development of the ODM does not preclude extensions to CMOF as might be advantageous, and as the tools evolve 
to support it.

8.6 M1 Issues

The ODM team encountered some issues in developing MOF-based metamodels for the W3C languages RDF, RDFS and 
OWL, and to a lesser extent the ISO language Topic Maps. A MOF-based metamodel has a strict separation of meta-
levels. The number and designation of meta-levels is changed in MOF2 from MOF 1.4, but the issue can be described in 
the MOF 1.4 designations:

• M3 – the MOF

• M2 – a MOF class model, specifying the classes and associations of the system being modeled, the structure of OWL, 
for example.

• M1 – an instance of an M2 model, describing a particular instance of the system being modeled, a particular OWL 
ontology, for example.

• M0 – ground individuals. A population of instances of the classes in a particular OWL ontology, for example.

RDFS and OWL are defined as specializations of RDF. RDF has natively a very simple model. There are resources and 
properties. The entire structure of RDF, RDFS, and OWL is defined in terms of instances of resources, properties, and 
other structures like classes, which are defined in terms of built-in resources and properties. In fact, even property is 
formally defined as an instance of resource, and resource (the set of resources) is itself an instance of resource. These 
languages are self-referential in a way that a native MOF metamodel could never be.
Ontology Definition Metamodel, v1.0        29



The same is true to a lesser degree of Topic Maps. Although the ISO standard provides a Topic Map Data Model, some 
important constructs like class and subclass are defined as published subjects, which are instances of topics. Topics are 
defined at the M2 level, so published subjects are M1 objects.

The Topic Maps metamodel in the ODM deals with the M1 problem by having an M2 structure following the published 
Topic Map Data Model, with a note detailing the built-in M1 published subjects, but this approach does not suit the W3C 
languages. In the ODM we have modeled RDF, RDF Schema, and OWL at the M2 level, following the published abstract 
syntax for them. Certain built-in RDF/S and OWL constructs have relevance at multiple MOF meta-levels. Some of these, 
such as annotation properties including rdfs:seeAlso, are included as M2 elements in the RDFS Metamodel; others, such 
as ontology properties including owl:priorVersion, are included as M2 elements in the OWL Metamodel. 

Some important constructs, however, are not appropriate to model at all at the M2 level. These are provided in an 
ontology as an M1 model library (given in Annex A), and include:

• Two built-in classes - owl:Thing and owl:Nothing

• The built-in empty list - rdf:Nil

• The built-in rdf:value property, suggested for use with structured values but not recommended for use by ODM team 
members

• Instances of rdfs:ContainerMembershipProperty (e.g., rdf:_1, rdf:_2, etc.)

• The set of XML Schema datatypes that are supported in RDF/S and OWL - xsd:string, xsd:boolean, 
xsd:decimal, xsd:float, xsd:double, xsd:dateTime, xsd:time, xsd:date, xsd:gYearMonth, 
xsd:gYear, xsd:gMonthDay, xsd:gDay, xsd:gMonth, xsd:hexBinary, xsd:base64Binary, 
xsd:anyURI, xsd:normalizedString, xsd:token, xsd:language, xsd:NMTOKEN, xsd:Name, 
xsd:NCName, xsd:integer, xsd:nonPositiveInteger, xsd:negativeInteger, xsd:long, xsd:int, 
xsd:short, xsd:byte, xsd:nonNegativeInteger, xsd:unsignedLong, xsd:unsignedInt, 
xsd:unsignedShort, xsd:unsignedByte and xsd:positiveInteger

• Additional RDF/S and OWL constructs that may have counterparts in the M2 metamodels (e.g., annotation properties 
such as rdfs:label and rdfs:comment)
30                 Ontology Definition Metamodel, v1.0



9 ODM Overview

As introduced briefly in the RFP [ODM RFP], ontology is a discipline rooted in philosophy and formal logic, introduced 
by the Artificial Intelligence community in the 1980s to describe real world concepts that are independent of specific 
applications. Over the past two decades, knowledge representation methodologies and technologies have subsequently 
been used in other branches of computing where there is a need to represent and share contextual knowledge 
independently of applications. 

The following definition was adopted from the RFP: 

An ontology defines the common terms and concepts (meaning) used to describe and represent an area of knowl-
edge. An ontology can range in expressivity from a Taxonomy (knowledge with minimal hierarchy or a parent/child 
structure), to a Thesaurus (words and synonyms), to a Conceptual Model (with more complex knowledge), to a 
Logical Theory (with very rich, complex, consistent, and meaningful knowledge).

This definition, and the analysis presented in Chapter 7, led to the determination that the ODM would ultimately include 
six metamodels (four that are normative, and two that are informative). These are grouped logically together according to 
the nature of the representation formalism that each represents: formal first order and description logics, structural and 
subsumption / descriptive representations, and traditional conceptual or object-oriented software modeling. 

At the core are two metamodels that represent formal logic languages: DL (Description Logics, which, although it is non-
normative, is included as informative for those unfamiliar with description logics, [BCMNP]) and CL (Common Logic), 
a declarative first-order predicate language. While the heritage of these languages is distinct, together they cover a broad 
range of representations that lie on a continuum ranging from higher order, modal, probabilistic, and intentional 
representations to very simple taxonomic expression. 

There are three metamodels that represent more structural or descriptive representations that are somewhat less expressive 
in nature than CL and some DLs. These include metamodels of the abstract syntax for RDFS [RDF Schema], OWL 
[OWL Reference]; [OWL S&AS], and TM (Topic Maps, [TMDM]). RDFS, OWL, and TM are commonly used in the 
semantic web community for describing vocabularies, ontologies, and topics, respectively.

Two additional metamodels considered essential to the ODM represent more traditional, software engineering approaches 
to conceptual modeling: UML2 [UML2], [UML Infra], and ER (Entity Relationship) diagramming. UML and ER 
methodologies are arguably the two most widely used modeling languages in software engineering today, particularly for 
conceptual or logical modeling. Interoperability with and use of intellectual capital developed in these languages as a 
basis for ontology development and further refinement is a key goal of the ODM. Since UML2 is an adopted OMG 
standard, we simply reference it in the ODM, and provide an additional non-normative mechanism for handling keys from 
an ER perspective in Annex B. We anticipate a full metamodel for ER diagramming will be provided in the upcoming 
Information Modeling and Management specification, the follow-on to the current Common Warehouse Metamodel 
(CWM), and that there will be a mapping developed from the ODM to this new ER metamodel when it becomes 
available.

Three UML profiles have been identified for use with the ODM for RDF, OWL, and Topic Maps. These enable the use of 
UML notation (and tools) for ontology modeling and facilitate generation of corresponding ontology descriptions in RDF, 
OWL, and TM, respectively.   
Ontology Definition Metamodel, v1.0        31



In addition, to support the use of legacy models as a starting point for ontology development, and to enable ODM users 
to make design trade-offs in expressivity based on application requirements, mappings among a number of the 
metamodels are provided. As discussed in Section 8.3.3, “Mappings,” these mappings are expressed in the MOF QVT 
Relations Language. To avoid an n-squared set of mappings, the ODM includes direct mappings to and from OWL for 
UML and Topic Maps. 

CL is an exception to this strategy. CL is much more expressive than the other metamodels, and is therefore much more 
difficult to map into the other metamodels. CL can be used to define constraints and predicates that cannot be expressed 
(or are difficult to express) in the other metamodels. Some predicates might be specified in a primary metamodel, for 
example, in OWL, and refined or further constrained in CL. The relevant elements of the M1 model expressed in the 
primary metamodel will be mapped into CL. Thus, uni-directional mappings (to CL) only are included or planned at this 
time. 

Figure 9.1 shows the organization of the metamodels the relationships between the RDF and OWL packages.

Figure 9.1  - ODM Metamodels: Package Structure

CL
<<metamodel>>

(from org.omg.odm)

TM
<<metamodel>>

(from org.omg.odm)

RDFS
<<metamodel>>

(from RDF)

RDFWeb
<<metamodel>>

(from RDF)

OWLBase
<<metamodel>>

(from OWL)

DL
<<metamodel>>

(from org.omg.odm)

RDFBase
<<metamodel>>

(from RDF)

RDF
<<metamodel>>

(from org.omg.odm)

<<merge>>

<<merge>>

OWLDL
<<metamodel>>

(from OWL)

OWLFull
<<metamodel>>

(from OWL)

<<merge>> <<merge>>

<<merge>> <<merge>>

OWL
<<metamodel>>

(from org.omg.odm)

(non-normat ive)
32                 Ontology Definition Metamodel, v1.0



10 The RDF Metamodel

10.1 Overview 
The Resource Description Framework (RDF) is a language standardized by the World Wide Web Consortium for 
representing information (metaknowledge) about resources in the World Wide Web. It builds on a number of existing 
W3C standards (including XML, URI, and related specifications), and provides a standardized way of defining 
vocabularies for the Web that have an underlying formal model theoretic semantics, sufficient to support automated 
reasoning if so desired.

10.1.1 Organization

The set of specifications that define RDF are divided into several components: basic concepts and abstract syntax, RDF 
Schema that provides additional vocabulary development capabilities building on RDF, and a number of concrete syntax 
variations, notably N3 and RDF/XML. 

The RDF, RDF Schema (RDFS), RDFBase, and RDFWeb metamodels, defined herein, are MOF2 compliant metamodels 
that allow a user to define RDF vocabularies using the terminology and concepts defined in the RDF specifications. 

At the core, the RDFBase package reflects core concepts required by virtually all RDF applications, roughly, the set of 
concepts defined in the RDF Concepts and Abstract Syntax specification [RDF Concepts].  

The RDFS metamodel includes the concepts defined in the RDFBase package, and extends them to support the 
vocabulary language defined in the RDF Schema specification [RDF Schema].  

Finally, the RDFWeb package includes additional concepts that are not specific to RDF, but that define web document 
content, specified in other W3C standards, and are required for complete representation of any concrete serialization of 
RDF, including RDF/XML [RDF Syntax]. They are also necessary to support interoperability with other metamodels of 
the ODM as well as with other external languages and applications. 

Figure 10.1 provides an overview of the package structure. Note that the RDFBase package is part of the broader RDFS 
package, but that RDFWeb is external to both, such that vendors choosing to support RDFBase without RDFS can 
leverage the syntactic definitions from RDFWeb as needed.
Ontology Definition Metamodel, v1.0        33



Figure 10.1 - Structure of the RDF Metamodel

10.1.2 Design Considerations

10.1.2.1  Metamodel Constructs

RDF classes are represented by MOF classes. RDF properties are represented either by MOF classes or associations, as 
appropriate. 

RDF properties are first-class entities with unique identifiers. In addition, an RDF property can be a subproperty of 
another RDF property. MOF associations, on the other hand, are not first-class entities. They are defined between two 
MOF classes and their role names are locally scoped. In addition, in EMOF, a MOF association cannot be a sub 
association of another MOF association, which exemplifies an inherent impedance mismatch between RDF Schema and 
EMOF. Naming conventions, constraints in OCL, and textual description are used to overcome this impedance mismatch.

One issue that the authors were not able to work around is lack of support for multiple classification in MOF. This is 
manifested in the RDFBase package in the definition of BlankNode. Blank nodes may have optional, local identifiers in 
RDF, which are represented as a property called nodeID. BlankNode, URIReferenceNode, and RDFSLiteral form a 
complete subclass partition of RDFSResource. In some cases, such as when defining anonymous classes in OWL, one 
may need to know both the nodeID and identity in terms of the class description of the anonymous node. The nodeID may 
not be available, however, due to lack of accessibility to BlankNode via MOF reflection. A work-around for this problem 
is provided in Annex F.

10.1.2.2 Naming

Classes and properties defined in the RDF metamodel(s) have prefixed names derived from the way RDF and RDFS 
namespaces are partitioned. One notable exception is RDFGraph, which does not have an explicit equivalent in the RDF 
specifications but is differentiated for the sake of clarity with respect to the OWL metamodel. 

Several RDF language co-authors shared that the distinction between the RDF and RDFS namespaces has become less 
important and blurred over time, which has caused confusion in the Semantic Web community and created challenges for 
metamodeling. Distinguishing between the RDFBase and RDFS packages along namespace boundaries was impossible 
34                 Ontology Definition Metamodel, v1.0



from a UML perspective for a number of reasons. rdfs:Container generalizes rdf:Alt, rdf:Bag, and rdf:Seq, for 
example, and there are other such cases. In order to retain the original namespace naming conventions in a set of packages 
that are not segregated by namespace, we have prefixed those concepts that relate directly to their RDF/S counterparts 
accordingly.

In addition, names of MOF classes are package qualified rather than globally scoped, as is the case with conventional 
XML uniform resource identifiers (URIs). In fact, rdfs:Class, rdf:Property, and other names specified in the RDF 
specifications are actually abbreviations for URIs using conventional namespace prefixes and concatenation. To make 
matters worse, names of MOF association roles are local to the MOF classes where they are defined. The prefix 
convention we have adopted assists in overcoming this impedance mismatch. For example, RDFSClass represents 
rdfs:Class and RDFProperty represents rdf:Property. Concepts that are not explicitly part of the concrete 
vocabulary of RDF/S, aside from RDFGraph, are not prefixed in this manner. 

10.2 RDFBase Package, RDF Triples
Figure 10.2 depicts the RDF base graph data model. For those applications that require use of the RDF graph model, as 
specified in [RDF Concepts], support for explicit manipulation of blank nodes may be needed. The definitions provided 
herein facilitate resolution of blank node semantics and finer granularity in manipulation of nodes in an RDF graph. 

RDF provides a reification vocabulary for making statements about triples. This is described in Section 10.4 RDFBase 
Package, RDF Statements.

Figure 10.2 - RDFBase Package, The Graph Data Model

10.2.1 BlankNode

Description

A blank node is a node that is not a URI reference or a literal. In the RDF abstract syntax, a blank node is simply a unique 
node that can be used in one or more RDF statements, but has no intrinsic name.
Ontology Definition Metamodel, v1.0        35



A convention used to refer to blank nodes by some linear representations of an RDF graph is to use a blank node 
identifier, which is a local identifier that can be distinguished from URIs and literals. When graphs are merged, their 
blank nodes must be kept distinct if meaning is to be preserved. Blank node identifiers are not part of the RDF abstract 
syntax, and the representation of triples containing blank nodes is dependent on the particular concrete syntax used, thus 
no constraints are provided here on blank node identifiers. They are optional, included strictly as a placeholder for tool 
vendors whose applications require them, and in particular, for interoperability among such tools.

Attributes

• nodeID: String [0..1] - the optional blank node identifier.

Associations

• uriRef: URIReference [0] in derived association URIRefForResource - the URI reference(s) associated with a 
resource.

• Specialize Class Node.

Constraints

[1] The multiplicity on the derived URIRefForResource association on the uriRef role must be 0 for BlankNodes.

Semantics

RDF makes no reference to the internal structure of blank nodes. The methodology for making such a determination is 
left to the applications that use them, for example, through reasoning about them.

Blank nodes are treated as simply indicating the existence of a thing, without using or saying anything about the name of 
that thing. (This is not the same as assuming that the blank node indicates an ‘unknown’ URI reference; for example, it 
does not assume that there is any URI reference that refers to the thing.) Thus, they are essentially treated as existentially 
quantified variables in the graph in which they occur, and have the scope of the entire graph. More on the semantics of 
blank nodes is given in [RDF Semantics].

10.2.2 Node

Description

The subject and object of a Triple are of type Node. URIReferenceNode, BlankNode, and RDFSLiteral form a complete and 
disjoint covering of Node.

Attributes

None

Associations

• tripleWithSubject: Triple [0..*] in association SubjectForTriple - the triple for which this node is a subject.

• tripleWithObject: Triple [0..*] in association ObjectForTriple - the triple for which this node is an object. 

• Specialize Class RDFSResource.

Constraints

[1] The set of blank nodes, the set of all RDF URI references (i.e., URIReferenceNodes) and the set of all literals 
are pairwise disjoint.
36                 Ontology Definition Metamodel, v1.0



[2] URIReferenceNode, BlankNode, and RDFSLiteral form a complete covering of Node.
   context Node inv DisjointPartition:
    (self.uriRef->notEmpty implies self.oclIsTypeOf(URIReferenceNode)) and
    (self.oclIsTypeOf(URIReferenceNode) implies self.uriRef->notEmpty) and
    (self.oclIsTypeOf(URIReferenceNode) or self.oclIsTypeOf(BlankNode) or
        self.oclIsTypeOf(RDFSLiteral)) and
      not (self.oclIsTypeOf(URIReferenceNode) and self.oclIsTypeOf(BlankNode)) and
      not (self.oclIsTypeOf(BlankNode) and self.isTypeOf(RDFSLiteral)) and
      not (self.oclIsTypeOf(URIReferenceNode) and self.oclIsTypeOf(RDFSLiteral))

Semantics

This type represents the nodes in RDF Graphs.

10.2.3 RDFProperty

Description

The RDF Concepts and Abstract Syntax specification [RDF Concepts] describes the concept of an RDF property as a 
relation between subject resources and object resources. Every property is associated with a set of instances, called the 
property extension. Instances of properties are pairs of RDF resources.

Attributes

None

Associations

• tripleWithPredicate: Triple [0..*] in association PredicateForTriple -- links a triple to its predicate

• uriRef: URIReference [1..*] in derived association URIRefForResource - the URI reference(s) associated with a 
resource

• Specialize Class RDFSResource

Constraints

[1] The predicate of an RDF triple is a URI Reference (thus, a resource that is an RDF property, when used as the 
predicate of a triple, must have a URI reference).

context RDFProperty HasURI inv:
self.uriRef->notEmpty

Semantics

A property relates resources to resources or literals. A property can be declared with or without specifying its domain 
(i.e., classes which the property can apply to) or range (i.e., classes or datatypes that the property may have value(s) 
from). This type represents the arc in RDF graphs.

10.2.4 RDFSLiteral

Description

Literals are used to identify values such as numbers and dates by means of a lexical representation. Anything represented 
by a literal could also be represented by a URI, but it is often more convenient or intuitive to use literals.
Ontology Definition Metamodel, v1.0        37



A literal may be the object of an RDF statement, but not the subject or the predicate.

Literals may be plain or typed:

• A plain literal is a string combined with an optional language tag. This may be used for plain text in a natural language. 

• A typed literal is a string combined with a datatype URI. 

Attributes

• lexicalForm: String [1] - represents a Unicode string in Normal Form C.

• uriRef: URIReference [0] in derived association URIRefForResource - the URI reference(s) associated with a 
resource.

Associations

• Specialize Class Node

Constraints

[1] The multiplicity on the derived URIRefForResource association on the uriRef role must be 0 for literals.

[2] PlainLiteral and TypedLiteral are disjoint and form a complete covering of RDFSLiteral.
context RDFSLiteral inv DisjointPartition:

(self.oclIsKindOf(PlainLiteral) xor self.oclIsKindOf(TypedLiteral))

Semantics

Plain literals are self-denoting. Typed literals denote the member of the identified datatype’s value space obtained by 
applying the lexical-to-value mapping to the literal string.

10.2.5 RDFSResource

Description

All things described by RDF are called resources. This is the class of everything. All other classes are subclasses of this 
class.

Attributes

None

Associations

• uriRef: URIReference [0..*] in association URIRefForResource - the URI reference(s) associated with a resource.

Constraints

None

Semantics

The uriRef property is used to uniquely identify an RDF resource globally. Note that this property has a multiplicity of 
[0..*] that provides for the possibility of the absence of an identifier, as in the case of blank nodes and literals. A 
particular resource may be identified by more than one URI reference.
38                 Ontology Definition Metamodel, v1.0



10.2.6 RDF Triple

Description

An RDF triple contains three components:

• The subject, which is an RDF URI reference or a blank node.

• The predicate, which is an RDF URI reference and represents a relationship.

• The object, which is an RDF URI reference, a literal, or a blank node.

An RDF triple is conventionally written in the order subject, predicate, object. The relationship represented by the 
predicate is also known as the property of the triple. The direction of the arc is significant: it always points toward the 
object.

Attributes

None

Associations

• RDFsubject: Node [1] in association SubjectForTriple - links a triple to the node that is the subject of the triple.

• RDFpredicate: RDFProperty [1] in association PredicateForTriple - links a triple to the property that is the predicate of 
the triple.

• RDFobject: Node [1] in association ObjectForTriple - links a triple to the node that is the object of the triple.

Constraints

[1] The resource (node) representing an RDFsubject can be a URI reference or a blank node but not a literal.
context Triple SubjectNotALiteral inv:

not self.RDFsubject.oclIsKindOf(RDFSLiteral)

[2] An RDFpredicate must be a URI reference (i.e., must not be a literal or blank node).
context Triple PredicateNotALiteral inv:

not self.RDFpredicate.oclIsKindOf(RDFSLiteral)
context RDFStatement PredicateNotABlankNode inv:

not self.RDFpredicate.oclIsKindOf(BlankNode)

Note: Both of these constraints are subject to change (may be relaxed) based on user experience in the Semantic Web 
community. However, in any case, the constraint that a predicate must not be a literal is likely to remain.

Semantics

Each triple represents a statement of a relationship between the things denoted by the nodes that it links. The assertion of 
an RDF triple says that some relationship, indicated by the predicate, holds between the things denoted by subject and 
object of the triple.

10.2.7 UniformResourceIdentifier

Description

The RDF abstract syntax is concerned primarily with URI references. The definition of a URI, distinct from URI 
reference, is included for mapping purposes. See [RDF Syntax] for definition details.
Ontology Definition Metamodel, v1.0        39



Attributes

• name: String [1] - the string representing the URI.

Associations

• uriRef: URIReference [0..*] in association URIForURIReference - zero or more URI references associated with the 
URI.

• Specialize Class URIReference

Constraints

URIs must conform to the character encoding (including escape sequences and so forth) defined in [RDF Syntax] and are 
globally defined. This is in contrast to naming and namespace conventions in UML2, which can be limited to the package 
level or to a set of nested namespaces. While it may not be possible to define constraints on character strings in OCL to 
enforce this, tools that implement this metamodel will be expected to support the W3C standards and related RFCs in this 
regard.

Semantics

None

10.2.8 URIReference

Description

RDF uses URI references to identify resources and properties. A URI reference within an RDF graph (an RDF URI 
reference) is a Unicode string conforming to the characteristics defined in [RDF Concepts] and [RDF Syntax].

RDF URI references can be:

• given as XML attribute values interpreted as relative URI references that are resolved against the in-scope base URI to 
give absolute RDF URI references.

• transformed from XML namespace-qualified element and attribute names (QNames).

• transformed from rdf:ID attribute values.

More on URI references and transformations from QNames is given in the discussion in Section 10.9 and in [RDF 
Syntax].

Attributes

None

Associations

• resource: RDFSResource [0..*] in association URIRefForResource - links a URI reference to a resource.

• uri: UniformResourceIdentifier [0..1] in association URIForURIReference - links URIReference to the URI it 
contains/represents.
40                 Ontology Definition Metamodel, v1.0



Constraints

[1] URI references must conform to the specifications given under Description, above. While it may not be 
possible to define constraints on character strings in OCL to enforce this, tools that implement this metamodel 
will be expected to support the W3C standards and related RFCs in this regard.

Semantics

Two RDF URI references are equal if and only if they compare as equal, character by character, as Unicode strings. 

10.2.9  URIReferenceNode

Description

A URI reference or literal used as a node identifies what that node represents. URIReferenceNode is included in order to 
more precisely model the intended semantics in UML (i.e., not all URI references are nodes). A URI reference used as a 
predicate identifies a relationship between the things represented by the nodes it connects. A predicate URI reference may 
also be a node in the graph.

Attributes

None

Associations

• uriRef: URIReference [1..*] in derived association URIRefForResource - the URI reference(s) associated with a 
resource.

• Specialize Class Node

Constraints

[1] URIReferenceNode must inherit a URI from RDFSResource. In other words, the minimum multiplicity on the 
derived URIRefForResource association on the uriRef role must be 1 for URIReferenceNodes.

context URIReferenceNode HasURI inv:
self.uriRef->notEmpty

Semantics

No additional semantics

10.3 RDFBase Package, RDF Literals
Figure 10.3 provides the remaining definitions included in the base package for RDF, namely, the definitions specific to 
RDF literals.
Ontology Definition Metamodel, v1.0        41



Figure 10.3 - RDFBase Package, The Literals Diagram

10.3.1 PlainLiteral

Description

A plain literal is a string combined with an optional language tag. This may be used for plain text in a natural language. 

Attributes

• language: String [0..1] - the optional language tag.

Associations

• commentedResource: RDFSResource [1] in association CommentForResource - links a comment to a resource.

• labeledResource: RDFSResource [1] in association LabelForResource - links a human readable label with a resource.

• Specialize Class RDFSLiteral.

Constraints

No additional constraints

Semantics

As recommended in the RDF formal semantics  [RDF Semantics], plain literals are self-denoting.

10.3.2 RDFSResource (Augmented Definition)

Associations

• RDFScomment: PlainLiteral [0..*] in association CommentForResource - links a resource to a comment, or human-
readable description, about that resource.

• RDFSlabel: PlainLiteral [0..*] in association LabelForResource - links a resource to a human-readable name for that 
resource.

RDFSLiteral

RDFXMLLiteral

RDFSResource

PlainLiteral
language : String

0..1

0..*

+commentedResource
0..1

+RDFScomment
0..*

CommentForResource

0..1

0..*

+labeledResource
0..1

+RDFSlabel
0..*

LabelForResource

URIReference

TypedLiteral

1

0..1

+datatypeURI
1

+literal
0..1

DatatypeForTypedLiteral

[0..1]
42                 Ontology Definition Metamodel, v1.0



10.3.3 RDFXMLLiteral

Description

The class rdf:XMLLiteral is the class of XML literal values. It is an instance of RDFSDatatype and a subclass of 
TypedLiteral.

Attributes

None

Associations

• Specialize Class TypedLiteral

Constraints

[1] The datatype name associated with an RDFXMLLiteral must refer to rdf:XMLLiteral.

Semantics

RDFXMLLiteral is a predefined RDF datatype used specifically for encoding XML in an RDF document. See [RDF 
Concepts] for additional details.

10.3.4 TypedLiteral

Description

Typed literals have a lexical form, which is a Unicode string, and a datatype URI being an RDF URI reference.

Attributes

None

Associations

• datatypeURI: URIReference [1] in association DatatypeForTypedLiteral - the link between the typed literal and the 
RDFSDatatype that defines its type (of which it is an instance), specifying the URI for the datatype specification.

• Specialize Class RDFSLiteral.

Constraints

[1] A typed literal must have a datatype URI.

Semantics

The datatype URI refers to a datatype. For XML Schema built-in datatypes, URIs such as http://www.w3.org/2001/
XMLSchema#int are used. The URI of the datatype rdf:XMLLiteral may be used. There may be other, implementation 
dependent, mechanisms by which URIs refer to datatypes.

The value associated with a typed literal is found by applying the lexical-to-value mapping associated with the datatype 
URI to the lexical form. If the lexical form is not in the lexical space of the datatype associated with the datatype URI, 
then no literal value can be associated with the typed literal. Such a case, while in error, is not syntactically ill formed.
Ontology Definition Metamodel, v1.0        43



10.3.5 URIReference (Augmented Definition)

Associations

• literal: TypedLiteral [0..1] in association DatatypeForTypedLiteral.

10.4 RDFBase Package, RDF Statements
RDF provides a reification vocabulary with no formal semantics [RDF Schema].

Figure 10.4 RDFBase Package, the Reification Diagram

10.4.1 RDFProperty (Augmented Definition)

Associations

• statementWithPredicate: RDFStatement [0..*] in association RDFPredicate - links a statement to its predicate.

10.4.2 RDFSResource (Augmented Definition)

Associations

• statementWithObject: RDFStatement [0..*] in association RDFObject - a resource represents an object of zero or more 
RDF statements.

• StatementWithSubject: RDFStatement [0..*] in association RDFSubject - a resource represents a subject of zero or 
more RDF statements.

10.4.3 RDFStatement

Description

RDF Statement provides a way to make statements about triples or describe statements without asserting them.

Attributes

None
44                 Ontology Definition Metamodel, v1.0



Associations

• RDFobject :RDFSResource [1] in association RDFObject - links a statement to the resource that is its object.

• RDFpredicate: RDFSProperty [1] in association RDFPredicate - links a statement to a property that is its predicate.

• RDFsubject: RDFSResource [1] in association RDFSubject - links a statement to a resource that is its subject.

• triple: Triple [0..1] in association ReificationForTriple - links a statement to the triple it reifies, if such a triple exists.

• Specialize Class RDFSResource.

Constraints

None

Semantics

None

10.4.4 Triple (Augmented Definition)

Associations

• statement: RDFStatement [0..1] in association ReificationForTriple - the statement that reifies the triple, if such a 
statement exists.

10.5 RDFBase Package, RDF Graphs

Figure 10.5 RDFBase Package, the Graphs Diagram

10.5.1 NamedGraph

Description

A named graph is a uri reference and RDF graph pair. It effectively provides a way to name an RDF graph and thus refer to the 
graph in a graph.

At the time of this writing, NamedGraphs are not a part of RDF, but have been proposed as a way of associating metadata with 
semantic web content that can be used to handle issues of trust and access, among other things.  A named graph construct is 
Ontology Definition Metamodel, v1.0        45



included here because of the importance of this feature and the expectation that it will eventually be incorporated into the 
semantic web infrastructure. However, ODM tools are not required to support this element, and it may change in future 

revisions if the W3C standardizes this in a form that differs from that described in Named Graphs, Provenance and Trust3.

Attributes

None

Associations

• graphForNG: RDFGraph [1] in association GraphForNamedGraph - a named graph is associated with exactly one 
RDF graph.

• subGraphOf: NamedGraph [0..*] in association SubGraphOf - links a named graph with named graphs for which it is a 
subgraph.

• RDFGequivalentGraph: NamedGraph[0..*] in association EquivalentGraph - links a named graph with named graphs 
that are equivalent.

• Specialize class RDFResource.

Constraints

[1] The multiplicity on the derived URIRefForResource association on the uriRef role must be 1 for 
NamedGraphs.

Semantics

A named graph is a first class object that represents an RDF graph.  It is named with a URIReference. Two relationship types 
are predefined for relationships among named graphs (EquivalentGraph and SubGraphOf). These assert equivalence and 
subset relationships respectively among the RDF graphs (in the graphForNG role) that correspond to the named graphs linked 
by these relationships.

10.5.2 RDFGraph

Description

An RDF graph is a set of RDF triples. The set of nodes of an RDF graph is the set of subjects and objects of triples in the 
graph.

A number of classes in the metamodel, including RDFGraph, RDFStatement, Document, etc., are included (1) for the 
sake of completeness, and (2) are provided for vendors to use, as needed from an application perspective. They may not 
be necessary for all tools, and may not necessarily be accessible to end users, again, depending on the application 
requirements.

Attributes

None

Associations

• namedGraph: NamedGraph [0..*] in association GraphForNamedGraph - links an RDF graph with named graphs that 
may represent it.

3. http://www2005.org/cdrom/docs/p613.pdf
46                 Ontology Definition Metamodel, v1.0



• triple: Triple [0..*] in association TripleForGraph - links a graph to the triples it contains.

Constraints

None

Semantics

As described in [RDF Semantics], RDF is an assertional language, intended for use in defining formal vocabularies and 
using them to state facts and axioms about some domain. 

An RDF graph is defined as a set of RDF triples. A subgraph of an RDF graph is a subset of the triples in the graph. A 
triple is identified with the singleton set containing it, so that each triple in a graph is considered to be a subgraph. A 
proper subgraph is a proper subset of the triples in the graph. A ground RDF graph is one with no blank nodes. 

The assertion of an RDF triple says that some relationship, indicated by the predicate, holds between the things denoted 
by subject and object of the triple. The assertion of an RDF graph amounts to asserting all the triples in it, so the meaning 
of an RDF graph is the conjunction (logical AND) of the statements corresponding to all the triples it contains.

10.5.3 Triple (Augmented Definition)

Associations

• graph: RDFGraph [1..*] in association TripleForGraph - the graph(s) containing the triple.

10.6 RDFS Package, Classes and Utilities
As shown in Figure 10.6, resources may be divided into groups called classes. The members of a class are known as 
instances of the class. Classes are themselves resources. They are often identified by URI references and may be 
described using RDF properties. The rdf:type property may be used to state that a resource is an instance of a class.

RDFS distinguishes between a class and the set of its instances. Associated with each class is a set, called the class 
extension of the class, which is the set of the instances of the class. Two classes may have the same set of instances but 
be different classes. A class may be a member of its own class extension and may be an instance of itself. This feature of 
RDF Schema (and, as a result, of OWL) may be unintuitive for a traditional UML user, and makes distinguishing 
metalevels in an ontology challenging.
Ontology Definition Metamodel, v1.0        47



Figure 10.6 - RDFS Package, The Classes & Utilities Diagram

10.6.1 RDFSClass

Description

The group of resources that are RDF Schema classes is itself a class, called rdfs:Class. Classes provide an abstraction 
mechanism for grouping resources with similar characteristics.

If a class C is a subclass of a class C', then all instances of C will also be instances of C'. The rdfs:subClassOf 
property may be used to state that one class is a subclass of another. The term superClassOf is used as the inverse of 
rdfs:subClassOf. If a class C' is a superclass of a class C, then all instances of C are also instances of C'.

Attributes

None

Associations

• RDFSsubClassOf: RDFSClass [0..*] in association ClassGeneralization - links a class to another class that generalizes 
it.

• superClassOf: RDFSClass [0..*] in association ClassGeneralization - links a class to another class that specializes it 
(note that superClassOf is not an RDF concept).

• typedResource: RDFSResource [0..*] in association TypeForResource - links a class to a resource that is an instance of 
the class.

• Specialize Class RDFSResource.

Constraints

None

RDFSDatatypeRDFSClass0..*

0..*

+RDFSsubClassOf
0..*

ClassGeneralization
+superClassOf

0..*

RDFSResource
(from RDFBase)

0..*

0..*

+RDFSisDefinedBy
0..*

DefinedByResource
+definedResource
0..*

0..*

0.. *

+RDFSseeAlso
0..*SeeAlsoForResource

+referringResource
0.. *

1..*

0..*

+RDFtype
1..*

+typedResource
0..*

TypeForResource
48                 Ontology Definition Metamodel, v1.0



Semantics

A resource can be a member of multiple classes in RDF Schema.

10.6.2 RDFSDatatype

Description

Datatypes are used by RDF in the representation of values such as integers, floating point numbers and dates. A datatype 
consists of a lexical space, a value space, and a lexical-to-value mapping.

RDF predefines just one datatype rdf:XMLLiteral, used for embedding XML in RDF. There are no built-in concepts 
for numbers, dates, or other common values. Rather, RDF defers to datatypes that are defined separately and identified 
with URI references. The predefined XML Schema Datatypes [XML Schema Datatypes] are expected to be used for this 
purpose. Additionally, RDF provides no mechanism for defining new datatypes. XML Schema provides a framework 
suitable for defining new datatypes for use in RDF.

rdfs:Datatype is the class of datatypes. All instances of rdfs:Datatype correspond to the RDF model of a datatype 
described in the RDF Concepts specification [RDF Concepts] rdfs:Datatype is both an instance of and a subclass of 
rdfs:Class. Each instance of rdfs:Datatype is a subclass of rdfs:Literal. 

Attributes

None

Associations

• uriRef: URIReference [1..*] in derived association URIRefForResource - the URI reference(s) associated with a 
resource.

• Specialize Class RDFSClass

Constraints

[1] RDFSDatatype classes must inherit URI references from RDFSResource.
context RDFSDatatype HasURI inv:

self.uriRef->notEmpty

[2] Each instance of RDFSDatatype is a subclass of TypedLiteral:
context RDFSDatatype InstancesAreLiterals inv:

self.instance->forall (instance | instance.oclIsKindOf(TypedLiteral ))

Semantics

RDF provides for the use of externally defined datatypes identified by a particular URI reference, but imposes minimal 
conditions on datatype definitions. It includes a single built-in datatype, rdf:XMLLiteral.

The semantics given for datatype definitions are minimal. RDF makes no provision for associating a datatype with a 
property so that it applies to all values of the property, and does not provide any way of explicitly asserting that a blank 
node denotes a particular datatype value. Such features may be provided in the future, for example, more elaborate 
datatyping conditions. Semantic extensions may also refer to other kinds of information about a datatype, such as 
orderings of the value space.

A datatype is an entity characterized by a set of character strings called lexical forms and a mapping from that set to a set 
of values. How these sets and mappings are defined is considered external to RDF.
Ontology Definition Metamodel, v1.0        49



Formally, a datatype d is defined by three items:

• a non-empty set of character strings called the lexical space of d;

• a non-empty set called the value space of d;

• a mapping from the lexical space of d to the value space of d, called the lexical-to-value mapping of d.

The set of datatypes from [XML Schema Datatypes] available for use in RDF is limited to those with well defined 
semantics, those that do not depend on enclosing XML documents (e.g., xsd:QName is excluded), those that are not used 
for XML document cross-reference purposes, and so forth. The set of allowable datatypes is provided in Annex A.

10.6.3 RDFSResource (Augmented Definition)

Description

Note that the multiplicity on RDFtype is [1..*], meaning that every resource must be typed. Yet, many resources in RDF 
are not explicitly typed, so this may seem unintuitive from an RDF perspective. In essence, this says that every resource 
is, at a minimum, of type rdfs:Resource (required from a metamodeling and mapping perspective to support 
representation of RDF and OWL individuals without the addition of other artificial constructs). This does not, however, 
necessarily mean that vendors should add the inferred triples automatically when generating RDF/S and/or OWL from a 
model instance. This should only be done deliberately, depending on the application.

Associations

• definedResource: RDFSResource [0..*] in association DefinedByResource - relates a particular resource to other 
resources that it defines.

• RDFSisDefinedBy: RDFSResource [0..*] in association DefinedByResource - relates a resource to another resource 
that defines it; rdfs:isDefinedBy is a subPropertyOf rdfs:seeAlso.

• RDFSseeAlso: RDFSResource [0..*] in association SeeAlsoForResource - relates a resource to another resource that 
may provide additional information about it.

• referringResource: RDFSResource [0..*] in association SeeAlsoForResource - relates a particular resource to other 
resources that it may assist in defining.

• RDFtype: RDFSClass [1..*] in association TypeForResource - relates a resource to its type (i.e., states that the resource 
is an instance of the class that is its type).

Constraints

[1] RDFSseeAlso and RDFSisDefinedBy must have non-empty URI references.

[2] RDFSisDefinedBy is a subPropertyOf RDFSseeAlso.

10.6.4 TypedLiteral (Augmented Definition)

Associations

• datatypeURI: RDFSDatatype [1] in association DatatypeForTypedLiteral - the link between the typed literal and the 
RDFSDatatype that defines its type (of which it is an instance), specifying the URI for the datatype specification (note 
that because TypedLiteral is defined in RDFBase, the constraint requiring the URI reference to point to an instance of 
RDFSDatatype is refined here).
50                 Ontology Definition Metamodel, v1.0



Constraints

[1] A typed literal must have a datatype URI. Further, the URI reference must refer to an instance of 
RDFSDatatype.

10.7 RDFS Package, RDF Properties
The RDF Concepts and Abstract Syntax specification [RDF Concepts] describes the concept of an RDF property as a 
relation between pairs of resources.

RDF Schema defines the concept of subproperty. The rdfs:subPropertyOf property may be used to state that one property 
is a subproperty of another. If a property P is a subproperty of property P', then all pairs of resources that are related by P 
are also related by P'. The term super-property is often used as the inverse of subproperty. If a property P' is a super-
property of a property P, then all pairs of resources that are related by P are also related by P'. 

RDF/RDFS does not define a top property that is the super-property of all properties. Such a definition may be included 
in a model library if vendors so desire. The properties diagram is shown in Figure 10.7.

Figure 10.7 - RDFS Package, The Properties Diagram

10.7.1 RDFProperty (Augmented Definition)

Associations

• RDFSdomain: RDFSClass [0..*] in association DomainForProperty - links a property to zero or more classes 
representing the domain of that property. A triple of the form: P rdfs:domain C . states that P is an instance of the 
class rdf:Property, that C is an instance of the class rdfs:Class and that the resources denoted by the subjects of 
triples whose predicate is P are instances of the class C. Where a property P has more than one rdfs:domain 
property, then the resources denoted by subjects of triples with predicate P are instances of all the classes stated by the 
rdfs:domain properties.

• RDFSrange: RDFSClass [0..*] in association RangeForProperty - links a property to zero or more classes representing 
the range of that property. A triple of the form: P rdfs:range C . states that P is an instance of the class 
rdf:Property, that C is an instance of the class rdfs:Class and that the resources denoted by the objects of triples 
whose predicate is P are instances of the class C. Where P has more than one rdfs:range property, then the resources 
denoted by the objects of triples with predicate P are instances of all the classes stated by the rdfs:range properties.

• RDFSsubPropertyOf: RDFProperty [0..*] in association PropertyGeneralization - links a property to another property 
that generalizes it. The property rdfs:subPropertyOf is used to state that all resources related by one property are 

RDFSResource
(from RDFBase)

RDFSClassRDFProperty
(from RDFBase)

0..*

0..*

+RDFSsubPropertyOf
0..*

PropertyGeneralization

+superPropertyOf
0..*

0.. *0..*
+RDFSdomain

0.. *

+propertyForDomain
0..* DomainForProperty

0..*0..*

+RDFSrange

0..*

+propertyForRange
0..* RangeForProperty
Ontology Definition Metamodel, v1.0        51



also related by another. A triple of the form: P1 rdfs:subPropertyOf P2 . states that P1 is an instance of 
rdf:Property, P2 is an instance of rdf:Property and P1 is a subproperty of P2. The rdfs:subPropertyOf 
property is transitive.

• superPropertyOf: RDFProperty [0..*] in association PropertyGeneralization - links a property to another property that 
specializes it (note that superPropertyOf is not an RDFS concept).

Semantics

Properties may be specialized. The existence of an instance of a specializing property implies the existence of an instance 
of the specialized property, relating the same set of resources.

10.7.2 RDFSClass (Augmented Definition)

Associations

• propertyForDomain: RDFProperty [0..*] in association DomainForProperty - links a class to a property for which it is 
the domain.

• propertyForRange: RDFProperty [0..*] in association RangeForProperty - links a class to a property for which it is the 
range.

10.8 RDFS Package, Containers and Collections
RDF containers are resources that are used to represent groupings. The same resource may appear in a container more 
than once. Unlike containment in the physical world, a container may be contained in itself. 

Figure 10.8 provides the metamodel elements defined to support RDF containers and collections.

Figure 10.8 - RDFS Package, The Containers and Collections Diagram

Three different kinds of container are defined for different intended uses. An rdf:Bag is used to indicate that the 
container is intended to be unordered. An rdf:Seq is used to indicate that the order indicated by the numerical order of 
the container membership properties of the container is intended to be significant. An rdf:Alt container is used to 
indicate that typical processing of the container will be to select one of the members.

RDFSContainer

RDFAlt RDFBag RDFSeq RDFSContainerMembershipProperty

RDFProperty
(from RDFBas e)

RDFList

0..1

0..*

+RDFrest

0..1 RestOfList

+originalList
0..*RDFSResource

(from RDFBase)

0..*

0..*

+RDFSmember
0..*

MemberOfResource

+container
0..* 0..*0..1

+list
0..*

+RDFfirst
0..1

FirstElementInList
52                 Ontology Definition Metamodel, v1.0



10.8.1 RDFAlt

Description

This is the class of RDF “Alternative” containers. The rdf:Alt class is used conventionally to indicate to a human 
reader that typical processing will be to select one of the members of the container. The first member of the container, i.e., 
the value of the rdf:_1 property, is the default choice.

Attributes

None

Associations

• Specialize Class RDFSContainer

Constraints

None

Semantics

See discussion in [RDF Concepts] of container membership semantics. (Note that the blank nodes are intended to be 
interpreted as existentially quantified variables representing instances of URIs in rdf:Property.)

10.8.2 RDFBag

Description

This is the class of RDF “Bag” containers. It is used conventionally to indicate that the container is intended to be 
unordered.

Attributes

None

Associations

• Specialize Class RDFSContainer

Constraints

None

Semantics

See discussion in [RDF Concepts] of container membership semantics.

10.8.3 RDFList

Description

This class represents descriptions of RDF collections, conventionally called lists, and other list-like structures.
Ontology Definition Metamodel, v1.0        53



Attributes

No additional attributes

Associations

• originalList: RDFList [0..*] in association RestOfList - the original list for rdf:rest. 

• RDFfirst: RDFSResource [0..1] in association FirstElementInList - links a list to its first element.

• RDFrest: RDFList [0..1] in association RestOfList - links a list to its sublist excluding its first element.

• Specialize Class RDFSResource.

Constraints

None

Semantics

rdf:Nil is a predefined instance of rdf:List that explicitly denotes the termination of an rdf:List. Since rdf:Nil 
is at the model level, it is not explicitly represented, outside of the model library provided in Annex A.

10.8.4 RDFSContainer

Description

This is a super-class of RDF container classes. 

Attributes

None

Associations

• Specialize Class RDFSResource

Constraints

None

Semantics

The same resource may appear in a container more than once. A property of a container is not necessarily a property of 
all of its members.

10.8.5 RDFSContainerMembershipProperty

Description

The rdfs:ContainerMembershipProperty class has as instances the properties rdf:_1, rdf:_2, rdf:_3 ... that are 
used to state that a resource is a member of a container. Each instance of this class is an rdfs:subPropertyOf the 
rdfs:memberOf property.
54                 Ontology Definition Metamodel, v1.0



Attributes

None

Associations

• Specialize Class RDFProperty

Constraints

None

Semantics

Container membership properties may be applied to resources other than containers. (Note that the blank nodes are 
intended to be interpreted as existentially quantified variables representing instances of URIs in rdf:Property.) The 
instances that make up this class are provided in the model library given in Annex A.

10.8.6 RDFSeq

Description

This is the class of RDF “Sequence” containers. It is used conventionally to indicate that the numerical ordering of the 
container membership properties of the container is intended to be significant.

Attributes

None

Associations

• Specialize Class RDFSContainer

Constraints

None

Semantics

See discussion in [RDF Concepts] of container membership semantics.

10.8.7 RDFSResource (Augmented Definition)

Associations

• container: RDFSResource [0..*] in association MemberOfResource - relates a particular resource to other resources 
that are its members.

• list: RDFList [0..*] in association FirstElementInList - relates a particular resource to the list(s) for which it is the 
initial element.

• RDFSmember: RDFSResource [0..*] in association MemberOfResource - relates a resource to another resource of 
which it is a member (i.e., a resource that contains it).
Ontology Definition Metamodel, v1.0        55



10.9 RDF Documents and Namespaces (RDFWeb Package)

RDF is the place in the Semantic Web “layer cake” where the languages (including RDF and OWL) are fitted to the Web. 
As a result, a few elements are included that are really part of the web architecture, including namespaces, for example, 
defined in the RDF syntax specification. This may appear to introduce unnecessary overhead or complexity, but in fact, 
these elements are necessary for a complete metamodel designed to support interoperability across modeling paradigms. 

Concepts including RDF document, namespaces, the definitions that map namespaces to namespace prefixes, and the 
associations between a set of statements and the document that contains them facilitate the systematic exchange of these 
definitions across modeling environments, and can be mapped to similar features in a Common Logic ontology, Topic 
Map, UML, or ER conceptual model.

Figure 10.9 specifies several concepts that link an RDF document to the names and statements it contains. While both 
documents and graphs may have sets of statements associated with them, namespace definitions, and the mappings 
between namespace prefixes and URIs are associated with RDF documents (in this simplified view of XML Schema - in 
actuality, they are associated with XML elements), not with RDF graphs. 

Note that the model supports multiple graphs within a document, and the notion that a particular graph may cover 
multiple documents. While in common practice there can be a one to one correspondence between a document and a 
graph, examples of both kinds of exceptions are included in the set of RDF specifications defining the language and in 
related W3C documents.

Single graph covering multiple documents. The ability to refer to definitions that are external to a particular document 
(e.g., XML Schema Datatypes) and in OWL, the ability to directly import such definitions, naturally extends a graph 
beyond the boundaries of a single document. Additionally, in [RDF Primer], there is a discussion of the use of XML Base, 
such that relative URIs may be defined based on a base URI other than that of the document in which they occur. This 
may be appropriate, for example, when there are mirror sites that share common definitions and extend them at the mirror 
site, but where it is not necessary to duplicate all definitions at every such site. In such cases, a graph can span multiple 
documents, and the URI of the mirror site document is distinct from that of its base. As a result, the metamodel provides 
for the optional definition of an xml:base distinct from the URI of the document. 

Multiple graphs in the same document. It is common practice in ontology development to have multiple “main nodes” 
in the same document - for example, multiple concepts whose parent class is simply owl:Thing, or classes without a 
defined “parent class” in RDF. Some explicit examples are provided in the discussion of Named Graphs (see http://
www.w3.org/2004/03/trix/, particularly those given on the TriG Homepage, at http://www.wiwiss.fu-berlin.de/suhl/bizer/
TriG/). One can imagine others such as when defining SKOS-based concept schemes, or thesauri, and managing multiple 
versions of such schemes (see the SKOS Core Guide, http://www.w3.org/TR/swbp-skos-core-guide, and http://
www.w3.org/TR/swbp-thesaurus-pubguide, for more information). The ability to name a graph provides a means by 
which multiple component graphs defined in the same document can be referenced externally as a unit, enabling graph 
mapping and alignment, for example. Thus, the NamedGraph class can be used to support naming graphs for those 
applications that require this feature. While the notion of a named graph is not yet part of the formal RDF W3C 
recommendations, emerging work on SKOS vocabularies and SPARQL confirms that use of named graphs is becoming 
increasingly important to applications, and is considered mainstream. 

Bounding an RDF vocabulary. The notion of scope is somewhat opaque in the current set of recommendations that 
together define RDF and its vocabulary language, RDF Schema. This is, in part, due to the fact that URIs have global 
scope in RDF. Yet, we need a way of talking about and modeling the set of resources that describe a particular vocabulary. 
Each document is associated with a resource whose URI reference is the primary URL where the document is published. 
It is good practice to include this URL in the serialized form of an RDF XML document, as the value of an xml:base on 
its root element. The bounds of a particular RDF vocabulary is the collection of statements (triples) sharing a base URI, 
or, in the absence of such a URI, a graph whose base URI is, by default, that of the document that contains it.
56                 Ontology Definition Metamodel, v1.0



Qualified Names and Transformations. Instructions regarding how QNames and rdf:ID attribute values can be 
transformed into RDF URI references are defined in [RDF Syntax]. Additionally, RDF/XML allows further abbreviating 
RDF URI references through the use of the XML Infoset mechanism for setting a base URI that is used to resolve relative 
RDF URI references (xml:base), or by considering the base URI to be that of the document. The base URI applies to all 
RDF/XML attributes that deal with RDF URI references, including rdf:about, rdf:resource, rdf:ID, and 
rdf:datatype. (See http://www.w3.org/TR/xmlbase/ for more on XML Base.)

Secondly, the rdf:ID attribute on a node element (not property element) can be used instead of rdf:about and gives a 
relative RDF URI reference equivalent to # concatenated with the rdf:ID attribute value. So for example if 
rdf:ID="name", that would be equivalent to rdf:about="#name". rdf:ID provides an additional check since the same 
name can only appear once in the scope of an xml:base value (or document, if none is given), so is useful for defining 
a set of distinct, related terms relative to the same RDF URI reference.

Both forms require a base URI to be known, either from an in-scope xml:base, or, in the case of a reference to a 
definition outside of the current document, from the URI of the RDF/XML document in which the target definition is 
specified.
Ontology Definition Metamodel, v1.0        57



Figure 10.9 - RDFWeb Package, The Documents Diagram
58                 Ontology Definition Metamodel, v1.0



10.9.1 Document

Description

RDF's conceptual model is a graph. RDF also provides an XML syntax for writing down and exchanging RDF graphs, 
called RDF/XML. An RDF document is a serialization of an RDF graph into a concrete syntax, as specified in [RDF 
Syntax], which provides the container for the graph, and conventionally also contains declarations of the XML 
namespaces referenced by the statements in the document. 

RDF refers to a set of URI references as a vocabulary. Often, the URI references in such vocabularies are organized so 
that they can be represented as sets of QNames using common prefixes. URI references that are contained in the 
vocabulary are formed by appending individual local names to the relevant prefix. This practice is also commonly used in 
OWL ontology development for improved readability. While the metamodel does not explicitly support QNames, the 
elements required to enable such support in vendor implementations are provided. 

Attributes

None

 Associations

• localName: LocalName [0..*] in association DocumentContainsLocalName - links a document to the set of local 
names it contains.

• namespaceDefinition: NamespaceDefinition [0..*] in association NamespaceDefinitionForDocument - links a 
document to zero or more namespace definitions that may be used in any RDF (or OWL) assertions contained within 
the document.

• triple: Triple[1..*] in association TripleForDocument - links a document to the set of triples it contains.

• uriRef: URIReference [1..*] in derived association URIRefForResource - the URI reference(s) associated with a 
resource.

• xmlBase: Namespace [0..*] in association DefaultNamespaceForDocument - links a document to one or more default 
namespaces (xml:base namespaces) associated with the statements in the document.

• Specialize Class RDFSResource.

Constraints

[1] A document must have a URI.

[2] Local names with URIs that match the URI of the document are contained by (local to) the document.

Semantics

An RDF/XML document is only required to be well-formed XML; it is not intended to be validated against an XML DTD 
(or an XML Schema).

10.9.2 LocalName

Description

RDF uses an RDF URI Reference, which may include a fragment identifier, as a context free identifier for a resource. The 
meaning of a fragment identifier depends on the MIME content-type of a document, i.e., is context dependent. 
Ontology Definition Metamodel, v1.0        59



These apparently conflicting views are reconciled by considering that a URI reference in an RDF graph is treated with 
respect to the MIME type application/rdf+xml. Given an RDF URI reference consisting of an absolute URI and a 
fragment identifier, the fragment identifier identifies the same thing that it does in an application/rdf+xml representation 
of the resource identified by the absolute URI component. 

The typical practice is to split a URI reference into two parts such that the right is maximal being an NCName as 
specified by XML Namespaces, which might best be implemented by vendors as a method on the model. Atypical (but 
formally permitted) practice includes allowing multiple LocalNames for each URIReference, i.e., any split as above, 
without the right part being maximal. Also note that some URIrefs (specifically those suggested for user defined 
datatypes in XML Schema) cannot be split in this way, since they have no rightmost NCName. 

The definitions provided in this metamodel are also sufficient to generate QNames: split each URI reference as above (or 
using LocalName), look the first half up as a namespace, and then form a qname. 

Attributes

• name: String [1] - the string representing the local name or fragment identifier.

Associations

• document: Document [1..1] in association DocumentContainsLocalName - links local names to the document that 
contains them.

• uriRef: URIReference [0..*] in association FragmentIdentifierForURIRef - links the fragment identifier to zero or 
more URIs that reference it.

Constraints

None

Semantics

None

10.9.3 Namespace

Description

An XML namespace is a collection of names, identified by a URI reference, which are used in XML documents as 
element types and attribute names. 

Attributes

None

Associations

• document: Document [1..*] in association NamespaceForDocument - the document(s) for which it is the default 
namespace (or xml:base).

• namespaceDefinition: NamespaceDefinition [0..*] in association NamespaceForNamespaceDefinition - links a 
namespace definition to the namespace it describes (resolves to).

• namespaceURIRef: URIReference [1..1] in association URIReferenceForNamespace - links a namespace to the 
corresponding URI reference.
60                 Ontology Definition Metamodel, v1.0



• uriRefInNamespace: URIReference [0..*] in association URIReferenceInNamespace - links a namespace to the URI 
reference(s) it owns.

Constraints

[1] Namespaces should conform to the specification given in “[XMLNS]” on page 4. While it may not be possible 
to define constraints on character strings in OCL to enforce this (and while the namespace recommendation 
may not explicitly require enforcement), tools that implement this metamodel will be expected to support the 
W3C standards and related RFCs to the extent possible.

Semantics

None

10.9.4 NamespaceDefinition

Description

A namespace is declared using a family of reserved attributes. These attributes, like any other XML attributes, may be 
provided directly or by default. Some names in XML documents (constructs corresponding to the non-terminal Name) 
may be given as qualified names. The prefix provides the namespace prefix part of the qualified name, and must be 
associated with a namespace URI in a namespace declaration. 

Namespace definitions are used in RDF and OWL for referencing and/or importing externally specified terms, 
vocabularies, or ontologies.

Attributes

• namespacePrefix: String [1] - the string representing the namespace prefix.

Associations

• document: Document [1] in association NamespaceDefinitionForDocument - the document(s) using the namespace 
definition.

• namespace: Namespace [1] in association NamespaceDefinitionForNamespace - indicates that a namespace definition, 
if it exists, resolves to exactly one namespace.

Constraints

[1] Namespace definitions should conform to the specification given in [XMLNS].

Semantics

None

10.9.5 Triple (Augmented Definition)

Associations

• document: Document [1..*] in association TripleForDocument - the document(s) containing the triple. 
Ontology Definition Metamodel, v1.0        61



10.9.6 URIReference (Augmented Definition)

Associations

• fragmentIdentifier: LocalName [0..1] in association FragmentIdentifierForURIRef - links URIReference to an optional 
fragment identifier.

• namespace: Namespace [0..1] in association URIReferenceForNamespace - links a URI reference to an optional 
namespace it identifies.

• owningNamespace: Namespace [0..1] in association URIReferenceInNamespace - links a URI reference to the 
namespace that owns it. 

Constraints

[1] A non-empty fragmentIdentifier associated with an empty uri implies that the uri is the xml:base (default 
namespace) of the document.
62                 Ontology Definition Metamodel, v1.0



11 The OWL Metamodel

11.1 Overview
The Web Ontology Language (OWL) is a semantic markup language for publishing and sharing ontologies on the World 
Wide Web. Where earlier knowledge representation languages have been used to develop tools and ontologies for specific 
user communities (particularly in the sciences and in company-specific e-commerce applications), they were not defined 
to be compatible with the architecture of the World Wide Web in general, and the Semantic Web in particular.

OWL uses both URIs for naming and the description framework for the Web provided by RDF to add the following 
capabilities to ontologies:

• Ability to be distributed across many systems

• Scalability to Web needs

• Compatibility with Web standards for accessibility and internationalization

• Openness and extensibility

OWL builds on RDF and RDF Schema and augments the RDFS vocabulary for describing properties and classes: among 
others, relations between classes (e.g., disjointedness), cardinality (e.g., “exactly one”), equality, richer typing of 
properties, characteristics of properties (e.g., symmetry), and enumerated classes. 

The OWL Metamodel is a MOF2 compliant metamodel that allows a user to specify ontologies using the terminology and 
underlying model theoretic semantics of OWL [OWL S&AS]. The OWL Metamodel extends the set of metamodels 
defined herein for RDFBase, RDFS (RDF Schema), and RDFWeb.

OWL provides three increasingly expressive sublanguages designed for use by specific communities of users and 
implementors:

• OWL Lite - which supports users primarily needing a classification hierarchy and simple constraints.

• OWL DL - which supports users who want maximum expressiveness without losing computational completeness and 
decidability of reasoning systems.

• OWL Full - which is intended for users who want maximum expressiveness and the syntactic freedom of RDF without 
computational guarantees. 

Based on requirements derived from the usage scenarios described in Chapter 7, Usage Scenarios and Goals, the ODM 
was designed to enable ontology development using either OWL DL or OWL Full, which essentially share abstract syntax 
constructs and differ primarily in terms of constraints. We have not explicitly covered OWL Lite, but all constructs and 
many relevant constraints are provided in the base OWL and OWL DL packages. Vendors who are interested in 
supporting OWL Lite can simply use the relevant constructs from the base package and tighten constraints from the OWL 
DL package, as required.

11.1.1 Organization of the OWL Metamodel

The primary OWLBase package contains the metamodel constructs common to both OWL DL and OWL Full - 
corresponding to the abstract syntax elements of the Web Ontology Language. Two additional sub packages contain 
constraints required to distinguish the two dialects (OWLDL and OWLFull) from one another. From a compliance 
Ontology Definition Metamodel, v1.0        63



perspective, vendors can elect to support the primary package and either or both of the subordinate packages in order to 
have complete coverage of either or both dialects of OWL. The package structure for the OWL metamodel and its 
dependencies on the RDF metamodel are shown in Figure 11.1.

Figure 11.1 - The OWL Metamodel Package Structure

11.1.2 Design Considerations

11.1.2.1 Naming

As in the RDF metamodels, prefixes are used in naming MOF classes and MOF properties that directly represent OWL 
classes and OWL properties, respectively. For example, OWLClass represents owl:Class and OWLimports represents 
owl:imports. Individual, which does not have a prefix, represents something that is not explicitly defined in the RDF/
64                 Ontology Definition Metamodel, v1.0



XML serialization of OWL. Exceptions to this convention include OWLUniverse, OWLGraph, and OWLStatement, 
included for vendor use in mapping RDF graphs and/or statements to OWL, for mapping to other metamodels, and so 
forth.

11.2 OWLBase Package - OWL Ontology
As shown in Figure 11.2, an OWL ontology consists of a collection of facts, axioms, and annotations defined in terms of 
RDF graphs and triples. The ontologyID (in the form of the URI reference it has by virtue of being a resource) allows us 
to make statements about a particular ontology - including annotations such as the relationship between a particular 
ontology and other ontologies, version information, and so forth.

Figure 11.2 - The Ontology Diagram 

11.2.1 OWLGraph

Description

As defined in Chapter 10, an RDF graph is a set of RDF triples. The set of nodes of an RDF graph is the set of subjects 
and objects of triples in the graph. Not all RDF graphs are valid OWL graphs, however. The OWLGraph class specifies 
the subset of RDF graphs that are valid OWL graphs.

Attributes

None
Ontology Definition Metamodel, v1.0        65



Associations

• ontology: OWLOntology [0..*] in association GraphForOntology - relates zero or more ontologies to the graphs they 
contain.

• triple: Triple [1..*] in association TripleForOntology (derived) - links an OWL graph to the set of triples it contains.

• Specialize Class RDFGraph.

Constraints

[1] If an OWL Triple t of OWLOntology o, identified through TripleForOntology, is linked through 
TripleForGraph to an OWLGraph g, then that OWLGraph g must be linked with OWL Ontology o.

[2] If an OWLGraph g is linked with an OWLOntology o, then they must have a triple in common.

Semantics

No additional semantics

11.2.2 OWLOntology

Description

An OWL ontology contains a sequence of annotations, axioms, and facts. Annotations on OWL ontologies can be used to 
record authorship and other information associated with an ontology, including imports references to other ontologies. 
The main content of OWLOntology is carried in its axioms and facts, which provide information about classes, properties, 
and individuals in the ontology. 

Names of ontologies are used in the abstract syntax to carry the meaning associated with publishing an ontology on the 
Web. The intent is that the name of an ontology in the abstract syntax is the URI where it can be found, although this is 
not part of the formal meaning of OWL. Imports annotations, in effect, are directives to retrieve a Web document and 
treat it as an OWL ontology. 

Attributes

None

Associations

• owlGraph: OWLGraph [1..*] in association GraphForOntology - links an ontology to one or more graphs containing 
the triples that define it.

• currentOntology: OWLOntology [0..*] in association BackwardCompatibleWith - links an ontology to zero or more 
other ontologies it has backwards compatibility with.

• OWLbackwardCompatibleWith: OWLOntology [0..*] in association BackwardCompatibleWith - links an ontology to 
zero or more other ontologies it has backwards compatibility with.

• importingOntology: OWLOntology [0..*] in association Imports - links an ontology to zero or more other ontologies it 
imports.

• OWLimports: OWLOntology [0..*] in association Imports - links an ontology to zero or more other ontologies it 
imports. 
66                 Ontology Definition Metamodel, v1.0



• incompatibleOntology: OWLOntology [0..*] in association IncompatibleWith - links an ontology to zero or more other 
ontologies it is not compatible with (typically used to say that a newer version of a particular ontology introduces 
destructive changes from a prior version).

• OWLincompatibleWith: OWLOntology [0..*] in association IncompatibleWith - links an ontology to zero or more 
other ontologies it is not compatible with.

• newerOntology: OWLOntology [0..*] in association PriorVersion - links an ontology to zero or more other ontologies 
that are earlier versions of the current ontology.

• OWLpriorVersion: OWLOntology [0..*] in association PriorVersion - links an ontology to zero or more other 
ontologies that are earlier versions of the current ontology.

• OWLversionInfo: RDFSLiteral [0..*] in association VersionInfo - links an ontology to an annotation providing version 
information.

• triple: Triple [1..*] in association TripleForOntology - links an ontology to one or more triples it contains.

• Specialize Class RDFSResource.

Constraints

[1] If an OWLOntology o is not named (i.e., does not inherit a URI reference from RDFSResource, and no 
xmlBase namespace is specified), then its main node is a blank node when mapped to an OWLGraph g; 
otherwise, its main node is the main node of the OWLGraph g corresponding to the URIReference u that names 
it.

[2] If a Triple t of OWLOntology o, identified through TripleForOntology, is linked through TripleForGraph to an 
OWLGraph g, then that OWLGraph g must be linked with OWLOntology o.

[3] If an OWLGraph g is linked with an OWLOntology o, then they must have a triple in common.

[4] If a Triple t is linked through TripleForGraph to an OWLGraph g of an OWLOntology o (identified through 
GraphForOntology), then that Triple t must be in OWLOntology o.

Semantics

The semantics of OWL ontology are described in [OWL S&AS].

An owl:imports statement references another OWL ontology containing definitions, whose meaning is considered to be 
part of the meaning of the importing ontology. Each reference consists of a URI specifying from where the ontology is to 
be imported. Syntactically, owl:imports is a property with the class owl:Ontology as its domain and range. 

The owl:imports statements are transitive, that is, if ontology A imports B, and B imports C, then A imports both B and 
C. Importing an ontology into itself is considered a null action, so if ontology A imports B and B imports A, then they are 
considered to be equivalent.

An owl:versionInfo statement generally has as its object a string giving information about this version, for example 
RCS/CVS keywords. This statement does not contribute to the logical meaning of the ontology other than that given by 
the RDF(S) model theory. Although this property is typically used to make statements about ontologies, it may be applied 
to any OWL construct.

An owl:priorVersion statement contains a reference to another ontology. This identifies the specified ontology as a 
prior version of the containing ontology. This has no meaning in the model-theoretic semantics other than that given by 
the RDF(S) model theory. However, it may be used by software to organize ontologies by versions.
Ontology Definition Metamodel, v1.0        67



An owl:backwardCompatibleWith statement contains a reference to another ontology. This identifies the specified 
ontology as a prior version of the containing ontology, and further indicates that it is backward compatible with it. In 
particular, this indicates that all identifiers from the previous version have the same intended interpretations in the new 
version. Thus, it is a hint to document authors that they can safely change their documents to commit to the new version 
(by simply updating namespace declarations and owl:imports statements to refer to the URL of the new version). If 
owl:backwardCompatibleWith is not declared for two versions, then compatibility should not be assumed.

An owl:incompatibleWith statement contains a reference to another ontology. This indicates that the containing 
ontology is a later version of the referenced ontology, but is not backward compatible with it. Essentially, this is for use 
by ontology authors who want to be explicit that documents cannot upgrade to use the new version without checking 
whether changes are required.

11.2.3 RDFSLiteral (Augmented Definition)

Associations

• dataRange: OWLDataRange [0..*] in association ElementsForDataRange - links one or more literals in an enumerated 
list to zero or more OWL DataRanges. 

• ontology: OWLOntology [1] in association VersionInfo - links an owl:versionInfo annotation to the ontology it 
describes.

• restrictionClass: HasValueRestriction [0..*] in association HasLiteralValue - optionally links one literal to a has value 
property restriction.

11.2.4 Triple (Augmented Definition)

Associations

• ontology: OWLOntology [0..*] in association TripleForOntology - relates zero or more ontologies to the triples they 
contain. 

• owlGraph: OWLGraph [1..*] in association TripleForGraph (derived) - links an OWL graph to the set of triples it 
contains.

Constraints

[1] If an OWL Triple t is linked through TripleForGraph to an OWLGraph g of an OWLOntology o (identified 
through GraphForOntology), then that Triple t must be in OWLOntology o.

11.3 OWLBase Package - Class Descriptions
As described in [OWL Reference], classes provide an abstraction mechanism for grouping resources with similar 
characteristics. Like RDF classes, every OWL class is associated with a set of individuals, called the class extension. The 
individuals in the class extension are called the instances of the class. A class has an intensional meaning (the underlying 
concept) that is related but not equal to its class extension. Thus, two classes may have the same class extension, but still 
be different classes. OWL classes are described through “class descriptions,” which can be combined into “class axioms.”

A class description, as shown in Figure 11.3, describes an OWL class, either by a class name or by specifying the class 
extension of an unnamed anonymous class. OWL distinguishes six types of class descriptions: 

1. a class identifier (a URI reference)

2. an exhaustive enumeration of individuals
68                 Ontology Definition Metamodel, v1.0



3. a property restriction

4. the intersection of class descriptions

5. the union of class descriptions

6. the complement of a class description

The first type is special in the sense that it describes a class through a class name (syntactically represented as a URI 
reference). The other five types of class descriptions describe an anonymous class by placing constraints on the class 
extension. Note that it is not required that these other five types of class descriptions be anonymous (unnamed), and for 
convenience, reuse, and readability purposes, such naming is common.

Figure 11.3 - The OWL Class Descriptions Diagram

OWL property restrictions describe special kinds of class descriptions, that may (or may not) be anonymous classes, 
consisting of all individuals that satisfy the restriction, as shown in Figure 11.4.

OWL distinguishes two kinds of property restrictions: value constraints and cardinality constraints. OWL value 
constraints are used to constrain the range of a property when applied to the particular class description, which is distinct 
from the concept of an rdfs:range property (which is essentially global and applies to all cases where the property is 
used). OWL cardinality constraints are similar to UML multiplicities, and constrain the number of values a property can 
have, again in the context of the particular class description it is applied to. 

The three types of advanced class constructors that are used in Description Logic can be viewed as representing the AND, 
OR, and NOT operators on classes. The corresponding operators have the standard set-operator names: intersection, 
union, and complement. These language constructs also share the characteristic that they can contain nested class 
descriptions, either one (complement) or more (union, intersection).

Individual

EnumeratedClass

0..*

0..*

+OWLoneOf
0..*

+enumeratedClass
0..*

IndividualForEnumeratedClass

RDFSClass
(from RDFS)

OWLRestrictionComplementClass IntersectionClass UnionClass

OWLClass
isDeprecated : Boolean

0..*

0..*

+OWLdisjointWith
0..* DisjointClass

+disjointClass
0..*0..*

0..*
+OWLequivalentClass

0..*

EquivalentClass
+equivalentClass 0..*

0..*

1

+complementClass
0..*

+OWLcomplementOf

1

ComplementClassForComplement

0..*

0..*

+intersectionClass
0..*

+OWLintersectionOf

0..*

IntersectionClassForIntersection

0..*

0..*

+unionClass
0..*

+OWLunionOf
0..*

UnionClassForUnion

[0..1]
Ontology Definition Metamodel, v1.0        69



11.3.1 ComplementClass

Description

An owl:complementOf statement describes a class for which the class extension contains exactly those individuals that 
do not belong to the class extension of the class description that is the object of the statement. It is analogous to logical 
negation: the class extension consists of those individuals that are NOT members of the class extension of the 
complement class.

Attributes

None

Associations

• OWLcomplementOf: OWLClass [1] in association ComplementClassForComplement - links a class to its set 
complement.

• Specialize Class OWLClass

Constraints

None

Semantics

See the formal [OWL S&AS] for additional semantics.

11.3.2 EnumeratedClass

Description

A class description of the “enumeration” kind is defined with the owl:oneOf property. The value of this built-in OWL 
property must be a list of individuals that are the instances of the class. This enables a class to be described by 
exhaustively enumerating its instances. The class extension of a class described with owl:oneOf contains exactly the 
enumerated individuals, no more, no less. The list of individuals is typically represented with the help of the RDF 
construct rdf:parseType="Collection" that provides a convenient shorthand for writing down a set of list elements.

Attributes

None

Associations

• OWLoneOf: Individual [0..*] in association EnumeratedClassForIndividual - links a class to the list of individuals that 
are its instances.

• Specialize Class OWLClass

Constraints

[1] The set of individuals specified represents a complete definition of the class extension.
70                 Ontology Definition Metamodel, v1.0



Semantics

Note that use of an enumeration presumes that the class extension is complete. Also, the elements of an enumerated class 
are not necessarily unique and no unique names assumption applies.

11.3.3 Individual

Description

Individuals are defined with individual axioms (also called “facts”). Two types of facts are supported in OWL: (1) Facts 
about class membership and property values of individuals, and (2) Facts about individual identity. Many facts are 
statements that define class membership of individuals and property values of individuals; these can also refer to 
anonymous individuals.

Attributes

None

Associations

• allDifferent: OWLAllDifferent [0..*] in association DistinctIndividuals - links an individual to an idiomatic class, 
OWLAllDifferent, of which it is a member, indicating that it is pairwise disjoint with (unique from) the other members 
of the class.

• enumeratedClass: EnumeratedClass [0..*] in association IndividualForEnumeratedClass - links an individual to zero or 
more enumerated classes of which it is a member.

• differentIndividual: Individual [0..*] in association DifferentIndividual - links an individual to another individual that 
it is different from (pairwise disjoint with).

• OWLdifferentFrom: Individual [0..*] in association DifferentIndividual - links an individual to another individual that 
it is different from (pairwise disjoint with).

• sameIndividual: Individual [0..*] in association SameIndividual - links an individual to another individual that it is 
equal to (the same as).

• OWLsameAs: Individual [0..*] in association SameIndividual - links an individual to another individual that it is equal 
to (the same as).

• restrictionClass: HasValueRestriction [0..*] in association HasIndividualValue - links an individual to a restriction 
class for which it represents the value.

• Specialize Class RDFSResource.

Constraints

No additional constraints

Semantics

Note that individuals in OWL have a “default type” (i.e., owl:Thing), and can have zero or more explicit “types” (i.e., 
can be members of zero or more classes in addition to owl:Thing). What this means is that one can say that an 
individual exists in an OWL ontology without necessarily saying anything about its class membership, other properties it 
may have, or the values for any properties it may have. This is common in ontology development, unlike more traditional 
UML modeling. Multiple inheritance is also supported. See the formal [OWL S&AS] for additional semantics.
Ontology Definition Metamodel, v1.0        71



11.3.4 IntersectionClass

Description

The owl:intersectionOf property links a class to a list of class descriptions. An owl:intersectionOf statement 
describes a class for which the class extension contains precisely those individuals that are members of the class extension 
of all class descriptions in the list.

Attributes

None

Associations

• OWLintersectionOf: OWLClass [0..*] in association IntersectionClassForIntersection - links an intersection class to 
the classes participating in the intersection.

• Specialize Class OWLClass

Constraints

No additional constraints

Semantics

owl:intersectionOf can be viewed as being analogous to logical conjunction.

11.3.5 OWLClass

Description

A class description describes an OWL class, either by a class name or by specifying the class extension of an unnamed 
anonymous class.

Attributes

• isDeprecated: Boolean [0..1] - indicates that use of this class description is deprecated.

Associations

• complementClass: ComplementClass [0..*] in association ComplementClassForComplement - links a class to another 
class defined as its set complement.

• disjointClass: OWLClass [0..*] in association DisjointWith - links a class to zero or more classes that it is disjoint with.

• OWLdisjointWith: OWLClass [0..*] in association DisjointWith - links a class to zero or more classes that it is disjoint 
with.

• equivalentClass: OWLClass [0..*] in association EquivalentClass - links a class to zero or more classes that it is 
considered equivalent to.

• OWLequivalentClass: OWLClass [0..*] in association EquivalentClass - links a class to zero or more classes that it is 
considered equivalent to. 
72                 Ontology Definition Metamodel, v1.0



• intersectionClass: IntersectionClass [0..*] in association IntersectionClassForIntersection - links a class to zero or 
more intersections that it participates in.

• restrictionClass: AllValuesFromRestriction [0..*] in association AllValuesFromClass - links a class to an 
owl:allValuesFrom restriction for which it provides the range (or set of values).

• restrictionClass: SomeValuesFromRestriction [0..*] in association SomeValuesFromClass - links a class to an 
owl:someValuesFrom restriction for which it provides the range (or set of values).

• unionClass: UnionClass [0..*] in association UnionClassForUnion - links a class to zero or more unions that it 
participates in.

• Specialize Class RDFSClass.

Constraints

No additional constraints

Semantics

See the formal [OWL S&AS] for additional semantics.

11.3.6 OWLRestriction

Description

The class owl:Restriction is defined as a subclass of owl:Class. A restriction class should have exactly one triple 
linking the restriction to a particular property, using the owl:onProperty property. The restriction class should also have 
exactly one triple that represents the value or cardinality constraint on the property under consideration, e.g., that the 
cardinality of the property is exactly 1. 

Property restrictions can be applied both to datatype properties (properties for which the value is a data literal) and object 
properties (properties for which the value is an individual). 

Attributes

None

Associations

• OWLonProperty: RDFProperty [1] in association RestrictionOnProperty - links an OWL restriction class to the 
property that constrains it.

• Specialize Class OWLClass.

Constraints

[1] A restriction class must have exactly one number or value constraint.

Semantics

See the formal [OWL S&AS] for additional semantics.
Ontology Definition Metamodel, v1.0        73



11.3.7 UnionClass

Description

The owl:unionOf property links a class to a list of class descriptions. An owl:unionOf statement describes an 
anonymous class for which the class extension contains those individuals that occur in at least one of the class extensions 
of the class descriptions in the list.

Attributes

None

Associations

• OWLunionOf: OWLClass [0..*] in association UnionClassForUnion - links a union class to the class descriptions that 
participate in the union.

• Specialize class OWLClass.

Constraints

No additional constraints

Semantics

owl:unionOf is analogous to logical disjunction.

Figure 11.4 - The OWL Restrictions Diagram

AllValuesFromRestriction

OWLClass

0..1

0..*

+OWLallValuesFromClass
0..1

+restrictionClass
0..*

AllValuesFromClass

OWLDataRange

0..1

0..*

+OWLallValuesFromDataRange
0..1

+restrictionClass
0..*

AllValuesFromDataRange

SomeValuesFromRestriction

0..1

0..*

+OWLsomeValuesFromClass
0..1

+restrictionClass
0..*

SomeValuesFromClass

0..1

0..*

+OWLsomeValuesFromDataRange
0..1

+restrictionClass
0..*

SomeValuesFromDataRange

CardinalityRestriction MaxCardinalityRestriction

TypedLiteral
(from RDFBase)1

0..*

+OWLcardinality
1

+cardinalityRestriction
0..*

Cardinality

1

0..*

+OWLmaxCardinality
1

+maxCardinalityRestriction
0..*

MaxCardinality

MinCardinalityRestriction

1

0..*

+OWLminCardinality
1

+minCardinalityRestriction
0..*

MinCardinality

IndividualRDFSLiteral
(from RDFBase)

HasValueRestriction

0..1

0..*

+OWLhasIndividualValue

0..1

+restrictionClass
0..*

HasIndividualValue

0..1

0..*

+OWLhasLiteralValue
0..1

+restrictionClass
0..*

HasLiteralValue

RDFProperty
(from RDFBase)

OWLRestriction

10..*
+OWLonProperty

1
+propertyRestriction
0..*

RestrictionOnProperty
74                 Ontology Definition Metamodel, v1.0



11.3.8 OWLDataRange

Description

In place of the RDF datatypes, OWL provides two constructs for defining a range of data values, namely (1) an 
enumerated datatype, which is an enumerated list of literals or (2) it identifies a specific datatype class from the RDF 
datatypes (e.g., xsd:integer) that a value in the data range must reflect. 

Attributes

None

Associations

• datatype: RDFSDatatype [0..1] in association DataTypeForDataRange - links a data range to the datatype that fills its 
role.

• restrictionClass: AllValuesFromRestriction [0..*] in association AllValuesFromDataRange - links a data range to an 
owl:allValuesFrom restriction for which it provides the range (or set of values).

• restrictionClass: SomeValuesFromRestriction [0..*] in association SomeValuesFromDataRange - links a class to an 
owl:someValuesFrom restriction for which it provides the range (or set of values).

• OWLoneOf: RDFSLiteral [0..*] in association DataElementsForDataRange - links a data range to the enumerated list 
of literals that fill its role.

• Specialize Class RDFSClass.

Constraints

[1] An OWLDataRange can be connected to 1 RDFSDatatype or to 1 or more RDFSLiterals, but not to both 
(RDFSDatatype and RDFSLiteral).

Semantics

No additional semantics

11.3.9 Number Restrictions

11.3.9.1   CardinalityRestriction

Description

The cardinality constraint owl:cardinality is a built-in OWL property that links a restriction class to a data value 
belonging to the range of the XML Schema datatype xsd:nonNegativeInteger. A restriction containing an 
owl:cardinality constraint describes a class of all individuals that have exactly N semantically distinct values 
(individuals or data values) for the property concerned, where N is the value of the cardinality constraint. Syntactically, 
the cardinality constraint is represented as an RDF property element with the corresponding rdf:datatype attribute.

Attributes

None
Ontology Definition Metamodel, v1.0        75



Associations

• OWLcardinality: TypedLiteral [1] in association Cardinality - links a property to the cardinality of its range.

• Specialize Class OWLRestriction.

Constraints

[1] The datatype of the TypedLiteral for owl:cardinality must be xsd:nonNegativeInteger.

Semantics

No additional semantics

11.3.9.2   MaxCardinalityRestriction

Description

The cardinality constraint owl:maxCardinality is a built-in OWL property that links a restriction class to a data value 
belonging to the value space of the XML Schema datatype xsd:nonNegativeInteger. A restriction containing an 
owl:maxCardinality constraint describes a class of all individuals that have at most N semantically distinct values 
(individuals or data values) for the property concerned, where N is the value of the cardinality constraint. Syntactically, 
the cardinality constraint is represented as an RDF property element with the corresponding rdf:datatype attribute.

Attributes

None

Associations

• OWLmaxCardinality: TypedLiteral [1] in association MaxCardinality - links a property to the maximum cardinality of 
its range.

• Specialize Class OWLRestriction 

Constraints

[1] The datatype of the TypedLiteral for owl:maxCardinality must be xsd:nonnegativeInteger.

Semantics

No additional semantics

11.3.9.3   MinCardinalityRestriction

Description

The cardinality constraint owl:minCardinality is a built-in OWL property that links a restriction class to a data value 
belonging to the value space of the XML Schema datatype xsd:nonNegativeInteger. A restriction containing an 
owl:minCardinality constraint describes a class of all individuals that have at least N semantically distinct values 
(individuals or data values) for the property concerned, where N is the value of the cardinality constraint. Syntactically, 
the cardinality constraint is represented as an RDF property element with the corresponding rdf:datatype attribute.

Attributes

None
76                 Ontology Definition Metamodel, v1.0



Associations

• OWLminCardinality: TypedLiteral [1] in association MinCardinality - links a property to the minimum cardinality of 
its range.

• Specialize Class OWLRestriction.

Constraints

[1] The datatype of the TypedLiteral for owl:minCardinality must be xsd:nonnegativeInteger.

Semantics

No additional semantics

11.3.10 RDFProperty (Augmented Definition, from RDFBase Package)

Associations

• propertyRestriction: OWLRestriction [0..*] in association RestrictionOnProperty - links an OWL restriction class to 
the property it constrains. 

11.3.11 TypedLiteral (Augmented Definition, from RDFBase Package)

Associations

• cardinalityRestriction: CardinalityRestriction [0..*] in association Cardinality - links an OWL restriction class to a 
cardinality constraint 

• maxCardinalityRestriction: MaxCardinalityRestriction [0..*] in association MaxCardinality - links an OWL restriction 
class to a maximum cardinality constraint 

• minCardinalityRestriction: MinCardinalityRestriction [0..*] in association MinCardinality - links an OWL restriction 
class to a minimum cardinality constraint 

11.3.12 Value Restrictions

11.3.12.1  AllValuesFromRestriction

Description

An AllValuesFromRestriction describes a class for which all values of the property under consideration are either 
members of the class extension of the class description or are data values within the specified data range. In other words, 
it defines a class of individuals x for which holds that if the pair (x, y) is an instance of P (the property concerned), then 
y should be an instance of the class description or a value in the data range, respectively.

Attributes

None

Associations

• OWLallValuesFromClass: OWLClass [0..1] in association AllValuesFromClass - links the restriction class to the class 
description containing all of the individuals in its range.
Ontology Definition Metamodel, v1.0        77



• OWLallValuesFromDataRange: OWLDataRange [0..1] in association AllValuesFromDataRange - links the restriction 
class to the data range containing all of the data values in its range.

• Specialize Class OWLRestriction.

Constraints

[1] An AllValuesFromRestriction identifies either one OWLClass or one OWLDataRange through either the 
AllValuesFromClass association or the AllValuesFromDataRange association, respectively.

Semantics

An owl:allValuesFrom constraint is analogous to the universal (for-all) quantifier of Predicate logic - for each instance 
of the class that is being described, every value for P must fulfill the constraint.

11.3.12.2  HasValueRestriction

Description

A HasValueRestriction describes a class of all individuals for which the property concerned has at least one value 
semantically equal to V (it may have other values as well).

Attributes

None

Associations

• OWLhasIndividualValue: Individual [0..1] in association HasIndividualValue - links the restriction class to the class 
description containing the individual that fills its value role.

• OWLhasLiteralValue: RDFSLiteral [0..1] in association HasLiteralValue -links the restriction class to the literal that 
fills its value role.

• Specialize Class OWLRestriction.

Constraints

[1] A HasValueRestriction links to only one value, either an individual through OWLhasIndividualValue or a 
literal through OWLhasLiteralValue.

Semantics

No additional semantics

11.3.12.3  SomeValuesFromRestriction

Description

A SomeValuesFromRestriction describes a class for which at least one value of the property under consideration is either 
a member of the class extension of the class description or is a data value within the specified data range. In other words, 
it defines a class of individuals x for which there is at least one y (either an instance of the class description or value in 
the data range) such that the pair (x, y) is an instance of P (the property concerned). This does not exclude that there are 
other instances (x, y') of P for which y' does not belong to the class description or data range.
78                 Ontology Definition Metamodel, v1.0



Attributes

None

Associations

• OWLsomeValuesFromClass: OWLClass [0..1] in association SomeValuesFromClass - links the restriction class to a 
class description containing at least one of the values in its range.

• OWLsomeValuesFromDataRange: OWLDataRange [0..1] in association SomeValuesFromDataRange - links the 
restriction class to a data range containing at least one of the data values in its range.

• Specialize Class OWLRestriction.

Constraints

[1] A SomeValuesFromRestriction identifies either one OWLClass or one OWLDataRange through either the 
SomeValuesFromClass association or the SomeValuesFromDataRange association, respectively.

Semantics

An owl:someValuesFrom constraint is analogous to the existential (there-exists) quantifier of Predicate logic - for each 
instance of the class that is being described, at least one value for P must fulfill the constraint.

11.4 OWLBase Package - Properties
As shown in Figure 11.5, OWL refines the notion of an RDF property to support two main categories of properties as well 
as annotation properties that may be useful for ontology documentation:

• Object properties - which relate individuals to other individuals.

• Datatype properties - which relate individuals to data values.

• Annotation properties - which allow us to annotate various constructs in an ontology.

• Ontology properties - which allow us to say things about ontologies themselves.

The distinction made between kinds of annotation properties (i.e., annotation vs. ontology properties) are needed to 
support OWL DL semantics. In addition, a number of property axioms are provided for property characterization.

Note: Certain information regarding OWL property inheritance, for example whether or not a particular object or 
datatype property is also functional, may not be accessible to some applications due to issue #9466 regarding multiple 
classification in MOF. See Annex F for details on how to work around this until the MOF issue is adequately addressed 
and MOF tool support for multiple classification is available.
Ontology Definition Metamodel, v1.0        79



Figure 11.5 - The OWL Properties Diagram

11.4.1 FunctionalProperty

Description

A functional property is a property that can have only one (unique) value y for each instance x, i.e., there cannot be two 
distinct values y1 and y2 such that the pairs (x, y1) and (x, y2) are both instances of this property. Both object properties 
and datatype properties can be declared as “functional.” For this purpose, OWL defines the built-in class 
owl:FunctionalProperty as a special subclass of the RDF class rdf:Property.

Attributes

None

Associations

• Specialize Class Property

Constraints

No additional constraints

Semantics

Note that owl:FunctionalProperty specifies global cardinality constraints. That is, no matter which class the property 
is applied to, the cardinality constraints must hold. This is different from the cardinality constraints contained in property 
restrictions. The latter are class descriptions and are only enforced on the property when applied to that class.

RDFProperty
(from RDFBase)

Property

isDeprecated : Boolean

0..*

0..*

+OWLequivalentProperty
0..* EquivalentProperty

+equivalentProperty
0..*OWLOntologyPropertyOWLAnnotationProperty

OWLDatatypeProperty OWLObjectProperty

0.. *

0..*

+OWLinverseOf
0.. * InverseProperty

+inverseProperty
0..*

[0..1]

FunctionalProperty

InverseFunctionalProperty SymmetricProperty TransitiveProperty
80                 Ontology Definition Metamodel, v1.0



11.4.2 InverseFunctionalProperty

Description

If a property is declared to be inverse-functional, then the object of a property statement uniquely determines the subject 
(some individual). More formally, if we state that P is an owl:InverseFunctionalProperty, then this asserts that a 
value y can only be the value of P for a single instance x, i.e., there cannot be two distinct instances x1 and x2 such that 
both pairs (x1, y) and (x2, y) are instances of P.

Syntactically, an inverse-functional property axiom is specified by declaring the property to be an instance of the built-in 
OWL class owl:InverseFunctionalProperty, which is a subclass of the OWL class owl:ObjectProperty.

Inverse-functional properties resemble the notion of a key in databases.

Attributes

None

Associations

• Specialize Class ObjectProperty

Constraints

No additional constraints

Semantics

One difference with functional properties is that for inverse-functional properties no additional object-property or 
datatype-property axiom is required: inverse-functional properties are by definition object properties.

Note that owl:InverseFunctionalProperty specifies global cardinality constraints. That is, no matter which class the 
property is applied to, the cardinality constraints must hold. This is different from the cardinality constraints contained in 
property restrictions. The latter are class descriptions and are only enforced on the property when applied to that class.

11.4.3 OWLAnnotationProperty

Description

OWL Full does not put any constraints on annotations in an ontology. OWL DL allows annotations on classes, properties, 
individuals and ontology headers, as outlined in Section 11.8.1, “Classes in OWL DL.”

Five annotation properties are predefined by OWL, namely:

• owl:versionInfo 

• rdfs:label

• rdfs:comment

• rdfs:seeAlso

• rdfs:isDefinedBy

In addition to the associations given in the metamodel representing these properties, they are defined in the model library 
provided in Annex A.
Ontology Definition Metamodel, v1.0        81



Attributes

None

Associations

• Specialize Class RDFProperty

Constraints

[1] The object of an annotation property must be RDFSLiteral, Individual, or URIReference.

Semantics

No additional semantics

11.4.4 OWLDatatypeProperty

Description

Datatype properties are used to link individuals to data values. A datatype property is defined as an instance of the built-
in OWL class owl:DatatypeProperty.

Attributes

None

Associations

• Specialize Class Property

Constraints

[1] The range of an OWLDatatypeProperty is restricted to the set of data values, i.e., a member of the class 
extension of RDFSLiteral or an instance of OWLDataRange.

context OWLDatatypeProperty RangeIsLiteral inv:

       self.RDFSrange.oclIsKindOf (RDFSLiteral) or self.RDFSrange.oclIsKindOf (OWLDataRange)

Semantics

See the formal [OWL S&AS] for additional semantics.

11.4.5 OWLObjectProperty

Description

An object property relates an individual to other individuals. An object property is defined as an instance of the built-in 
OWL class owl:ObjectProperty.

Attributes

None

Associations

• inverseProperty: OWLObjectProperty [0..*] in association InverseProperty
82                 Ontology Definition Metamodel, v1.0



• OWLinverseOf: OWLObjectProperty [0..*] in association InverseProperty

• Specialize Class Property

Constraints

[1] The range of an OWLObjectProperty is restricted to the set of individuals, i.e., a member of the class extension 
of OWLClass.

context OWLObjectPropertyRangeIsOWLClass inv:

       (self.RDFSrange.oclIsKindOf (OWLClass))

Semantics

See the formal [OWL S&AS] for additional semantics.

11.4.6 OWLOntologyProperty

Description

A document describing an ontology typically contains information about the ontology itself. An ontology is a resource, so 
it may be described using properties from the OWL and other namespaces. An ontology property is essentially an 
annotation property that allows us to say things about the current and other ontologies, such as indicating that a particular 
ontology is a prior version of the current ontology.

Several ontology properties are predefined by OWL, namely:

• owl:imports 

• owl:priorVersion

• owl:backwardCompatibleWith

• owl:incompatibleWith

Attributes

None

Associations

• Specialize Class RDFProperty

Constraints

[1] Instances of owl:OntologyProperty must have the class owl:Ontology as their domain and range.

context OWLOntologyPropertyDomainRangeIsOWLOntology inv:

      (self.RDFSdomain.oclIsKindOf(OWLOntology) and

      self.RDFSrange.oclIsKindOf(OWLOntology))

Semantics

No additional semantics
Ontology Definition Metamodel, v1.0        83



11.4.7 Property

Description

Property is an abstract class that simplifies representation of property equivalence and deprecation, simplifies constraints 
for OWL DL and OWL Full, and facilitates mappings with other metamodels. 

Attributes

• isDeprecated: Boolean [0..1] - indicates that use of this property is deprecated.

Associations

• equivalentProperty: Property [0..*] in association EquivalentProperty - links a property to zero or more properties that 
it is considered equivalent to.

• OWLequivalentProperty: Property [0..*] in association EquivalentProperty - links a property to zero or more 
properties that it is considered equivalent to.

• Specialize Class RDFProperty.

Constraints

No additional constraints. Note that in OWL as in RDF, properties are required to have URI references, which in this case 
are inherited from RDFProperty.

Semantics

No additional semantics

11.4.8 SymmetricProperty

Description

A symmetric property is a property for which holds that if the pair (x, y) is an instance of P, then the pair (y, x) is also an 
instance of P. Syntactically, a property is defined as symmetric by making it an instance of the built-in OWL class 
owl:SymmetricProperty, a subclass of owl:ObjectProperty.

Attributes

None

Associations

• Specialize Class ObjectProperty

Constraints

[1] The domain and range of a symmetric property must be the same.

Semantics

No additional semantics
84                 Ontology Definition Metamodel, v1.0



11.4.9 TransitiveProperty

Description

When one defines a property P to be a transitive property, this means that if a pair (x, y) is an instance of P, and the pair 
(y, z) is also instance of P, then we can infer the pair (x, z) is also an instance of P.

Syntactically, a property is defined as being transitive by making it an instance of the built-in OWL class 
owl:TransitiveProperty, which is defined as a subclass of owl:ObjectProperty.

Attributes

None

Associations

• Specialize Class ObjectProperty

Constraints

No additional constraints

Semantics

No additional semantics

11.5 OWLBase Package - Individuals
Individuals in OWL are defined through individual axioms (also called “facts”). Two types of facts are available for use 
in ontology development:

• Facts about class membership and property values of individuals

• Facts about individual identity

Many languages have a so-called “unique names” assumption: different names refer to different things in the world. On 
the web, such an assumption is not possible. For example, the same person could be referred to in many different ways 
(i.e., with different URI references). For this reason OWL does not make this assumption. Unless an explicit statement is 
being made that two URI references refer to the same or to different individuals, OWL tools should in principle assume 
either situation is possible. Figure 11.6 depicts the set of constructs available to state facts about individual identity in 
OWL.
Ontology Definition Metamodel, v1.0        85



Figure 11.6 - The OWL Individuals Diagram

11.5.1 OWLAllDifferent

Description

For ontologies in which the unique-names assumption holds, the use of owl:differentFrom is likely to lead to a large 
number of statements, as all individuals have to be declared pairwise disjoint. For such situations OWL provides a special 
idiom in the form of the construct owl:AllDifferent. owl:AllDifferent is a special built-in OWL class, for which 
the property owl:distinctMembers is defined, which links an instance of owl:AllDifferent to a list of individuals. 
The intended meaning of such a statement is that all individuals in the list are all different from each other.

Note that instances of owl:AllDifferent are blank nodes.

Attributes

No additional attributes

Associations

• OWLdistinctMembers: Individual [2..*] in association DistinctIndividuals - specifies that a particular set of 
individuals are distinct from one another.

• Specialize Class OWLClass.

Constraints

[1] All members of a particular instance of the class owl:AllDifferent are pairwise disjoint from each other.

Semantics

No additional semantics

11.6 OWLBase Package - Datatypes
OWL allows three types of data range specifications:

• An RDF datatype specification.

• The RDFS class rdfs:Literal.

RDFSResource
(from RDFBase)

OWLAllDi fferent
Individual

0..*2..*
+allDifferent

0..*
+OWLdistinctMembers
2..*

Dist inctIndividuals

0..*

0..*

+OWLdifferentFrom

0..*
DifferentIndividual

+differentIndividual
0..*

0..*

0..*

+OWLsameAs
0..*SameIndividual +sameIndividual

0..*

OWLClass
86                 Ontology Definition Metamodel, v1.0



• An enumerated datatype, using the owl:oneOf construct.

OWL makes use of the RDF datatyping scheme, which provides a mechanism for referring to XML Schema datatypes 
[XML Schema Datatypes]. Note that only a subset of the XML Schema datatypes are recommended for use in RDF and 
OWL, as discussed in Chapter 10. 

OWL provides an additional construct for defining a range of data values, namely an enumerated datatype. This datatype 
format makes use of the owl:oneOf construct, that is also used for describing an enumerated class. In the case of an 
enumerated datatype, the subject of owl:oneOf is a blank node of class owl:DataRange and the object is a list of 
literals. 

The Datatypes diagram is provided in Figure 11.7.

Figure 11.7 - The OWL Datatypes Diagram 

11.7 OWLBase Package - OWL Universe
One of the more difficult OWL concepts for UML users to grasp is that an ontology can be a very large graph spanning 
multiple documents, with additional definitions that are distributed over even more documents “somewhere out in the 
wild, wild Web.” Yet, we want to be able to represent such notions using UML tools, and to map other kinds of models 
to this metamodel as a starting point for ontology development. While it is true that one can determine the contents of a 
particular ontology by “walking the graph” to determine the set of statements it contains, this approach can be awkward 
from a mapping perspective in particular.

Additionally, we want to be able to define the set of constraints that will allow us to differentiate between an ontology 
that conforms to OWL DL and one that is OWL Full compliant. In Figure 11.8, we provide the notion of an abstract 
OWLUniverse class, which facilitates ontology traversal for mapping purposes as well as utility in defining constraints for 
distinguishing these two dialects of OWL.

RDFSClass
(from RDFS)

RDFSDatatype
(from RDFS)

RDFSLiteral
(from RDFBase)

OWLDataRange
0..10..*

+datatype
0..1

+dataRange
0..*

DatatypeForDataRange

0.. *

0..*

+OWLoneOf
0.. *

+dataRange
0..*

ElementsForDataRange
Ontology Definition Metamodel, v1.0        87



Figure 11.8 - The OWL Universe Diagram

11.7.1 OWLUniverse

Description

This class is intended to simplify packaging / mapping requirements for cases where the ability to determine the set of 
classes, individuals, and properties that together comprise a particular OWL ontology is required.

Attributes

No additional attributes

Associations

• ontology: OWLOntology [1..*] in association UniverseForOntology - specifies one or more OWLOntology that 
members of this universe are associated with/describe.

• Specialize Class RDFSResource

Constraints

No additional constraints

Semantics

No additional semantics

11.7.2 OWLOntology (Augmented Definition)

Associations

• owlUniverse: OWLUniverse [*] in association UniverseForOntology - specifies an OWL universe(s) for this ontology.

OWLOntologyProperty

OWLClass Individual

OWLDataRange

OWLAnnotationProperty

Property

OWLOntologyOWLUniverse
1..**

+ontology
1..*+owlUniverse*

UniverseForOntology

RDFSResource
(from RDFBase)
88                 Ontology Definition Metamodel, v1.0



11.8 OWLDL Package - Constraints for OWL DL Conformance
The RDF-Compatible Model-Theoretic Semantics for OWL [OWL S&AS] defines the OWL DL universe as being the 
subset of the RDF universe that contains the set of OWL classes, individuals, and properties, as shown in Figure 11.8. In 
that context, the set of classes, datatypes, datatype properties, object properties, annotation properties, ontology 
properties, individuals, data values, and other built-in vocabulary are pairwise disjoint.

context OWLUniverse inv OWLDLDisjointPartition:

-- subclasses exhaust OWLUniverse

(self.oclIsKindOf(OWLClass) or self.oclIsKindOf(Individual) or self.oclIsKindOf(Property) or        

 self.oclIsKindOf(OWLDataRange) or self.oclIsKindOf(OWLAnnotationProperty) or

 self.oclIsKindOf(OWLOntologyProperty)) and

-- subclasses are pairwise disjoint

not (self.oclIsKindOf(OWLClass) and self.oclIsKindOf(Individual)) and

not (self.oclIsKindOf(OWLClass) and self.oclIsKindOf(Property)) and

not (self.oclIsKindOf(OWLClass) and self.oclIsKindOf(OWLDataRange)) and

not (self.oclIsKindOf(OWLClass) and self.oclIsKindOf(OWLAnnotationProperty)) and

not (self.oclIsKindOf(OWLClass) and self.oclIsKindOf(OWLOntologyProperty)) and

not (self.oclIsKindOf(Individual) and self.oclIsKindOf(Property)) and

not (self.oclIsKindOf(Individual) and self.oclIsKindOf(OWLDataRange)) and

not (self.oclIsKindOf(Individual) and self.oclIsKindOf(OWLAnnotationProperty)) and

not (self.oclIsKindOf(Individual) and self.oclIsKindOf(OWLOntologyProperty)) and

not (self.oclIsKindOf(Property) and self.oclIsKindOf(OWLDataRange)) and

not (self.oclIsKindOf(Property) and self.oclIsKindOf(OWLAnnotationProperty)) and

not (self.oclIsKindOf(Property) and self.oclIsKindOf(OWLOntologyProperty)) and

not (self.oclIsKindOf(OWLDataRange) and self.oclIsKindOf(OWLAnnotationProperty)) and

not (self.oclIsKindOf(OWLDataRange) and self.oclIsKindOf(OWLOntologyProperty)) and

not (self.oclIsKindOf(OWLAnnotationProperty) and self.oclIsKindOf(OWLOntologyProperty))

Several additional constraints must be applied in general in OWL DL:

• All classes and properties must be explicitly typed.

• Axioms about individual equality and difference must be about named individuals only (a consequence of category 
separation).

• There are severe limitations on the use of RDF vocabulary in OWL DL  [OWL S&AS].

• OWL, RDF, and RDFS vocabularies cannot be modified by statements in OWL DL.

11.8.1 Classes in OWL DL

In OWL DL, OWLClass is defined as a proper subset of RDFSClass.
Ontology Definition Metamodel, v1.0        89



11.8.2 OWL DL Restrictions

Additional restrictions apply to OWL DL value restrictions, as follows.

11.8.2.1   AllValuesFromRestriction

Constraints

[1] If the property linked to the AllValuesFromRestriction is an OWLDatatypeProperty, then the restriction is 
linked to exactly 1 OWLDataRange and 0 OWLClass. 

[2] If the property linked to the AllValuesFromRestriction is an OWLObjectProperty, the restriction is linked to 
exactly 1 OWLCLass and 0 OWLDataRange.

11.8.2.2   HasValueRestriction

Constraints

[1] If the property linked to the HasValueRestriction is an OWLDatatypeProperty, then the restriction is linked to 
exactly 1 RDFSLiteral and 0 Individual. 

[2] If the property linked to the HasValueRestriction is an OWLObjectProperty, then the restriction is linked to 
exactly 1 Individual and 0 RDFSLiteral.

11.8.2.3   SomeValuesFromRestriction

Constraints

[1] If the property linked to the SomeValuesFromRestriction is an OWLDatatypeProperty, then the restriction is 
linked to exactly 1 DataRange and 0 Class.

[2] If the property linked to the SomeValuesFromRestriction is an OWLObjectProperty, then the restriction is 
linked to exactly 1 Class and 0 DataRange.

11.8.3 OWL DL Property Constraints

Pairwise separation between datatype, object, annotation, and ontology properties must be strictly maintained in OWL 
DL.

context RDFProperty inv OWLDLDisjointPartition:

-- subclasses exhaust RDFProperty

(self.oclIsKindOf(OWLAnnotationProperty) or self.oclIsKindOf(OWLDatatypeProperty) or

 self.oclIsKindOf(OWLObjectProperty) or self.oclIsKindOf(OWLOntologyProperty)) and

-- subclasses are pairwise disjoint

not (self.oclIsKindOf(OWLAnnotationProperty) and self.oclIsKindOf(OWLDatatypeProperty)) and

not (self.oclIsKindOf(OWLAnnotationProperty) and self.oclIsKindOf(OWLObjectProperty)) and

not (self.oclIsKindOf(OWLAnnotationProperty) and self.oclIsKindOf(OWLOntologyProperty)) and

not (self.oclIsKindOf(OWLDatatypeProperty) and self.oclIsKindOf(OWLObjectProperty)) and

not (self.oclIsKindOf(OWLDatatypeProperty) and self.oclIsKindOf(OWLOntologyProperty)) and

not (self.oclIsKindOf(OWLObjectProperty) and self.oclIsKindOf(OWLOntologyProperty))
90                 Ontology Definition Metamodel, v1.0



11.8.3.1   OWLAnnotationProperty

Description

The following additional restrictions on the use of annotation properties apply:

• Annotation properties must have an explicit typing triple of the form: 

AnnotationPropertyID rdf:type owl:AnnotationProperty.

• Annotation properties must not be used in property axioms. Thus, in OWL DL one cannot define subproperties or 
domain/range constraints for annotation properties.

• The object of an annotation property must be either a data literal, a URI reference, or an individual.

Constraints

[1] The association RDFSrange cannot be used with an OWLAnnotationProperty.

[2] The association RDFSdomain cannot be used with an OWLAnnotationProperty.

[3] Hierarchies of annotation properties are disallowed: the association RDFSsubPropertyOf cannot be used with 
an OWLAnnotationProperty.

11.8.3.2   OWLDatatypeProperty

Description

The following additional restrictions apply to the use of datatype properties in OWL DL:

• The range of a datatype property must be either a data range or literal.

• Property equivalence only holds among datatype properties.

• Property characteristics including inverse, inverse functional, symmetric, and transitive cannot be applied to datatype 
properties.

Constraints

[1] If the association OWLequivalentProperty is defined on an OWLDatatypeProperty, the Property on the other 
end of that equivalence must also be of type OWLDatatypeProperty.

[2] If the association RDFSsubPropertyOf is defined on an OWLDatatypeProperty, the RDFProperty on the other 
end of the generalization must also be of type OWLDatatypeProperty.

[3] The range of OWLDatatypeProperty (association RDFSrange on superclass RDFProperty) is limited to 
OWLDataRange.

11.8.3.3   OWLObjectProperty

Description

The following additional restrictions apply to the use of object properties in OWL DL:

• The sets of object properties, datatype properties, annotation properties, and ontology properties must be mutually 
disjoint.

• Cardinality constraints (local or global) cannot be applied to transitive properties, to their inverses, or to any of their 
super properties.

• Inverse functional, symmetric and transitive properties must be object properties.
Ontology Definition Metamodel, v1.0        91



• A property that is the subject or object of inverseOf must be an object property. 

Constraints

[1] If the association OWLEquivalentProperty is defined on an OWLObjectProperty, the Property on the other end 
of the equivalence must also be of type OWLObjectProperty.

[2] If the association RDFSsubPropertyOf is defined on an OWLObjectProperty, the RDFProperty on the other end 
of the generalization must also be of type OWLObjectProperty.

[3] The range of OWLObjectProperty (association RDFSrange on superclass RDFProperty) is limited to 
OWLClass.

11.8.3.4   OWLOntologyProperty

Description

Similar restrictions to those on the use of annotation properties apply to ontology properties:

• Ontology properties must have an explicit typing triple of the form: 

OntologyPropertyID rdf:type owl:OntologyProperty .

• Ontology properties must not be used in property axioms. Thus, in OWL DL one cannot define subproperties or 
domain/range constraints for ontology properties.

• The subject and object of an ontology property must be an ontology.

Constraints

[1] The association RDFSrange cannot be used with an OWLOntologyProperty.

[2] The association RDFSdomain cannot be used with an OWLOntologyProperty.

[3] Hierarchies of ontology properties are disallowed: RDFSsubPropertyOf cannot be used with an 
OWLOntologyProperty.

11.8.3.5   TransitiveProperty

Constraints

[1] No local or global cardinality constraints can be declared on a transitive property or on any of its super 
properties, nor on the inverse of the property or any of the inverse’s superProperty.

11.9 OWLFull Package - Constraints For OWL Full Conformance
There are several key distinctions between OWL DL and OWL Full. These include:

• Unconstrained use of the RDF vocabulary.

• Lack of disjointedness between classes and individuals -- which allows for variation in the role that a particular 
concept plays given different perspectives within the same or a group of ontologies.

• Equivalence between rdfs:class and owl:class in OWL Full (whereas in OWL DL, OWLClass is a proper subset 
of RDFSClass -- meaning that not all RDF classes are OWL DL classes).

• Data values are not disjoint from individuals in OWL Full, thus the distinction between datatype properties and object 
properties is relaxed: (1) owl:Thing is equivalent to rdfs:Resource, (2) owl:ObjectProperty is equivalent to 
rdf:Property, (3) and thus effectively, owl:DatatypeProperty is a subclass of owl:ObjectProperty.
92                 Ontology Definition Metamodel, v1.0



12 The Common Logic Metamodel

12.1 Overview
Common Logic (CL) is a first-order logical language intended for information exchange and transmission over an open 
network [ISO 24707] . It allows for a variety of different syntactic forms, called dialects, all expressible within a common 
XML-based syntax and all sharing a single semantics. The language has declarative semantics, which means that it is 
possible to understand the meaning of expressions written in CL without requiring an interpreter to manipulate those 
expressions. CL is logically comprehensive – at its most general, it provides for the expression of arbitrary logical 
expressions. CL has a purely first-order semantics, and satisfies all the usual semantic criteria for a first-order language, 
such as compactness and the downward Skolem-Löwenheim property. 

Motivation for its consideration as an integral component of the Ontology Definition Metamodel (ODM) includes: 

• The potential need by ontologists using the ODM to be able to represent constraints and rules with expressiveness 
beyond that supported by description logics (e.g., for composition of semantic web services), as highlighted in Chapter 
7, Usage Scenarios and Goals.

• The availability of normative mappings from CL to syntactic forms for several commonly used knowledge 
representation standards, defined in [ISO 24707], including the Knowledge Interchange Format [KIF]  and Conceptual 
Graphs  [CGS].

• The availability of a normative XML-based surface syntax for CL, called XCL (also defined in [ISO 24707], which 
dramatically increases its potential for use in web-based applications.

• The availability of a direct mapping from the Web Ontology Language (OWL) [OWL S&AS] to CL, such that CL 
reasoners can leverage both the ontologies expressed in OWL and constraints written in CL to solve a wider range of 
problems than can be addressed by OWL alone (see Chapter 18, Mapping RDFS and OWL to CL).

In general, first order logic provides the basis for most commonly used knowledge representation languages, including 
relational databases; more application domains have been formalized using first order logic than any other formalism – its 
meta-mathematical properties are thoroughly understood. CL in particular provides a modern form of first order logic that 
takes advantage of recent insights in some of these application areas including the semantic web.

First order logic can also provide the formal grounding for business semantics. Although work on the OMG’s Business 
Semantics For Business Rules (BSBR) RFP was initially done in parallel with the ODM, there has been significant effort 
to leverage CL as the first order logic basis for the Semantics of Business Vocabulary and Business Rules (SBVR) 
specification. Common Logic (and thus ODM) now supports irregular sentences, a recent addition to the abstract syntax 
of CL required for the SBVR modality representations, for example. Subsequent versions of both specifications will be 
amended to accommodate additional interoperability requirements to the extent possible.

12.1.1 Design Considerations

The CL Metamodel is defined per [ISO 24707] and was developed with the help of the CL language authors to be a 
comprehensive and accurate representation of the abstract syntax of CL. As indicated in Chapter 8, Design Rationale, a 
decision was made not to depend on the OCL 2.0 Metamodel specifically because such a dependency would introduce 
unnecessary complexity and semantics that may be inconsistent with the simplicity, efficiency, and formal semantics of 
CL. Inconsistencies in the semantics can have unintended consequences for downstream reasoning, limiting the utility of 
an ODM-based application that leverages the CL metamodel. A mapping between CL and OCL may be considered in an 
add-on to the ODM (through OMG’s RFC process). Such a mapping would require validation through the use of CL and 
OCL-based reasoning engines, which will likely not be available prior to finalization of this specification.
Ontology Definition Metamodel, v 1.0        93



To date, although a number of proposals have been put forth to the W3C for a rule language for OWL, there is no formal 
recommendation available from the W3C today. Such a standard may be considered for integration with, or as an 
additional candidate for mapping to, the CL metamodel through a subsequent RFP/RFC. 

The complete syntax and formal semantics for CL are documented in [ISO 24707] and are considered essential to 
understanding the expressions that might be imported, managed, manipulated, or generated by any ODM/CL-compliant 
tool. 

12.1.2 Modeling Notes

All of the OCL constraints documented below have been validated using OCL tools. 

12.2 The Phrases Diagram
Phrases provide mechanisms for grouping and scoping the elements that constitute an ontology (or set of constraints 
associated with an OWL ontology), authored in Common Logic or any of its syntactic variants. An overview of the top-
level elements of the CL metamodel is provided in Figure 12.1.

Figure 12.1 - Phrases

12.2.1 Comment

Description

A Comment is a “piece of data” that provides the facility for commenting on a particular phrase or set of sentences. 
Common Logic places no restrictions on the nature of comments.

Sentence

Name
name : String

ExclusionSet

0..*

0..*

+excludedName
0..*

+exclusionSet
0..*

ExcludedName

Importation

Phrase

Module
0..1 0..*

+exclusionSet
0..1

+module
0..*

ExcludedSet

Identifier

1

1

+localDomain
1

+module
1

ModuleName

1

0..*

+assertedContent
1

+context
0..*

NameForImportation

Comment

comment : String

Text

0.. *

0..*

+phrase
0.. *

+text
0..*

PhraseForText

1

0..*

+body
1

+moduleForBody
0..*

ModuleBody

0..1

0..*

+identifierForText
0..1

+namedText
0..*NameForText

0..*

0..1

+commentForText
0..*

+commentedText
0..1

CommentedText
94                 Ontology Definition Metamodel, v 1.0



Attributes

• comment: String [1] – the character string that is the comment on the phrase.

Associations

• commentedText: Text [0..1] in association CommentedText – the text to which the comment applies.

• Specialize Class Phrase

Constraints

None

Semantics

None

12.2.2 ExclusionSet

Description

A module may optionally have an exclusion list of names whose denotations might be excluded from the local domain of 
discourse. These are called non-discourse names.

Attributes

None

Associations

• excludedName: Name [0..*] in association ExcludedName – the names that are members of the ExclusionSet.

• module: Module [0..*] in association ExcludedSet – the module(s) that excludes this set of names.

Constraints

None

Semantics

An ExclusionSet essentially represents some set of non-discourse names as they relate to a particular domain of discourse. 
See [ISO 24707] for additional detail.

12.2.3 Identifier

Description

An identifier is a name explicitly used to identify a module or piece of common logic text.

Attributes

None
Ontology Definition Metamodel, v 1.0        95



Associations

• context: Importation [0..*] in association NameForImportation – links an identifier to an importation that references it.

• module: Module [1] in association ModuleName – links an identifier to the module it names.

• namedText: Text [0..1] in association NameForText – links an identifier to the text it names.

• Specialize Class Name.

Constraints

None

Semantics

Names used to name texts on a network are understood to be rigid and to be global in scope, so that the name can be used 
to identify the thing named – in this case, the Common Logic text or module – across the entire communication network. 
(See [RFC2396] for further discussion.) A name that is globally attached to its denotation in this way is an identifier, and 
is typically associated with a system of conventions and protocols that govern the use of such names to identify, locate, 
and transmit pieces of information across the network on which the dialect is used. While the details of such conventions 
are beyond the scope of this specification, we can summarize their effect by saying that the act of publishing a named 
Common Logic text (or module) is intended to establish the name as a rigid identifier of the text, and Common Logic 
acknowledges this by requiring that all interpretations shall conform to such conventions when they apply to the network 
situation in which the publication takes place.

Note that in the case of an importation, the name serves to identify the module, which is accomplished through a double 
interpretation in the semantics. The ‘import’ condition is that (import x) is true in I just when I(I(x)) is true. In other 
words, interpreting an identifier gets what it denotes. If the name happens to be a CL ontology (I(x) is an ontology), then 
interpreting it again I(I(x)) returns a truth-value; thus, (import x) says that x is an ontology that *this* ontology (the one 
doing the importing) asserts to be true.

12.2.4 Importation

Description

An importation contains a name. The intention is that the name is an identifier of a piece of Common Logic content 
represented externally to the text, and the importation re-asserts that content in the text.

Attributes

None

Associations

• assertedContent: Identifier [1] in association NameForImportation – the name of the module to be imported; the name 
argument of an importation will usually be a URI.

• Specialize Class Phrase

Constraints

None
96                 Ontology Definition Metamodel, v 1.0



Semantics

An import construction requires that we assume the existence of a global module-naming convention, and that module 
names refer to entities in formal interpretations. Common Logic uses the same semantic web conventions used in RDF 
and OWL, based on W3C recommendation for representing namespaces in XML (see “[XMLNS]” on page 4). The 
meaning of an importation phrase is that the name it contains shall be understood to identify some Common Logic 
content, and the importation is true just when that content is true. Thus, an importation amounts to a virtual ‘copying’ of 
some Common Logic content from one ‘place’ to another. This idea of ‘place’ and ‘copying’ can be understood only in 
the context of deploying logical content on a communication network. A communication network, or simply a network, is 
a system of agents that can store, publish, or process common logic text, and can transmit common logic text to one 
another by means of information transfer protocols associated with the network. 

12.2.5 Module

Description

A module consists of a name, an optional set of names called an exclusion set, and a text called the body text. The module 
name indicates the “local universe of discourse” in which the text is understood; the exclusion list indicates any names in 
the text that are excluded from the local domain (i.e., variables whose scope is external to the local domain). 

Attributes

None

Associations

• body: Text [1] in association ModuleBody – the body, or set of phrases, that are contained in the module.

• exclusionSet: ExclusionSet [0..1] in association ExcludedSet – the optional set of names, or exclusion list, associated 
with a given module.

• localDomain: Identifier [1] in association ModuleName – the logical name associated with a module (for most 
applications, particularly those that are web based, module names must be unique).

• Specialize Class Phrase.

Constraints

In cases where CL is used to define ontologies for the Web, module names take the form of Uniform Resource Identifiers 
[RDF Syntax] or URI references, and are global (thus must be unique).

Semantics

A module provides the scoping mechanism for a CL ontology, corresponding to an RDF graph [RDF Primer] or 
document, or to an OWL ontology. The name of a module should be the name of the corresponding RDF document in 
cases where CL constraints are associated with an RDFS/OWL ontology, and has the same URI or URI reference (i.e., 
that of the RDFS/OWL ontology).

The CL syntax provides for modules to state an intended domain of discourse, to relate modules explicitly to other 
domains of discourse, and to express intended restrictions on the syntactic roles of symbols. This feature is critical to 
component-based ontology (or micro-theory) construction, and therefore relevant to any MDA-based authoring 
environment. 
Ontology Definition Metamodel, v 1.0        97



12.2.6 Name

Description

A name is any lexical token, or character string, which is understood to refer to something in the universe. Part of the 
design philosophy of CL is to avoid syntactic distinctions between name types, allowing ontologies freedom to use names 
without requiring mechanisms for syntactic alignment. Names are primitive referring elements in CL, and refer to 
elements of a particular ontology, such as module names, role names, relations, or numbers.

Dialects intended for use on the Web should allow Universal Resource Identifiers and URI references [RDF Syntax]  to 
be used as names. Common Logic dialects should define names in terms of Unicode [ISO 10646] conventions.

Attributes

• name: String [1] – the character string symbolizing the name.

Associations

• exclusionSet: ExclusionSet [0..*] in association ExcludedName – the optional exclusion list referring to the name.

• binding: Binding [1] in association BoundName – associates a name (variable) with the related binding (i.e., the name 
becomes a binding) in quantified sentences.

• Specialize Class Term

Constraints 

[1] The lexical syntax for several CL dialects identifies a number of rules for specifying valid names that cannot be 
expressed in OCL, and are thus delegated to CL parsers (such as identification of special characters that cannot 
be embedded in names, the requirement for conformance to Unicode conventions, additional constraints on 
logical names that are URIs or URI references, and so forth).

[2] Names and sequence markers are disjoint syntax categories, and each is disjoint from all other syntax 
categories.

Semantics

The only undefined terms in the CL abstract syntax are name and sequence marker. The only required constraint on these 
is that they must be exclusive. Common Logic does not require names to be distinguished from variables, nor does it 
require names to be partitioned into distinct classes such as relation, function or individual names, or impose sortal 
restrictions on names. Particular Common Logic dialects may make these or other distinctions between subclasses of 
names, and impose extra restrictions on the occurrence of types of names or terms in expressions - for example, by 
requiring that bindings be written with a special variable prefix, as in KIF, or with a particular style, as in Prolog; or by 
requiring that operators be in a distinguished category of relation names, as in conventional first-order syntax. 

A dialect may impose particular semantic conditions on some categories of names, and apply syntactic constraints to limit 
where such names occur in expressions. For example, the core syntax treats numbers as having a fixed denotation, and 
prohibits their use as identifiers. A dialect may require some names to be non-discourse names. This requirement may be 
imposed by, for example, partitioning the vocabulary, or by requiring names that occur in certain syntactic positions to be 
non-denoting. A dialect with non-discourse names is called segregated. 
98                 Ontology Definition Metamodel, v 1.0



12.2.7 Phrase

Description

A phrase is a syntactic unit of text. A phrase is either a comment, or a module, or a sentence, or an importation, or a 
phrase with an attached comment.

Attributes

None

Associations

• text: Text [0..*] in association PhraseForText – the text(s) in which the phrase occurs.

Constraints

[1] Module, Importation, Sentence, and Comment are specializations of Phrase and form a disjoint partition, as 
follows:

context Phrase inv XOR:

   (self.oclIsKindOf(Module) xor self.oclIsKindOf(Importation) xor

    self.oclIsKindOf(Sentence) xor self.oclIsKindOf(Comment))

Semantics

No additional semantics

12.2.8 Sentence

Description

CL provides facilities for expressing several kinds of sentences, including atomic sentences as well as compound 
sentences built up from atomic sentences or terms with a set of logical constructors. A sentence is either a quantified 
sentence or a Boolean sentence or an atom, or a sentence with an attached comment, or an irregular sentence. CL 
sentences can be classified (or used) as phrases, as stated above and as shown in Figure 12.1. 

The convention used in CL for expressing sentences differs from the approach taken in the informative DL metamodel. In 
the DL case, constructors are uniquely defined, whereas in CL the constructors are an integral part of the sentence, named 
for the kind of construction used in the sentence.

Attributes

None

Associations

• biconditional: Biconditional [0..1] in association LvalueForBiconditional – associates a sentence as the “lvalue” (or 
left-hand side) of a Biconditional or biconditional relation.

• biconditional: Biconditional [0..1] in association RvalueForBiconditional – associates a sentence as the “rvalue” (or 
right-hand side) of a Biconditional or biconditional relation.

• comment: CommentedSentence [0..1] in association CommentForSentence – provides the facility for commenting any 
given CL sentence.
Ontology Definition Metamodel, v 1.0        99



• conjunction: Conjunction [0..1] in association Conjunction – associates a sentence to its conjuncts in a conjunction.

• disjunction: Disjunction [0..1] in association Disjunction – associates a sentence to its disjuncts in a disjunction.

• implication: Implication [0..1] in association AntecedentForImplication – associates a sentence as the antecedent of an 
implication.

• implication: Implication [0..1] in association ConsequentForImplication – associates a sentence as the consequent of 
an implication.

• negation: Negation [0..1] in association NegatedSentence – associates a sentence with a negation. 

• quantification: QuantifiedSentence [0..1] in association QuantificationForSentence – associates a sentence (body) with 
a quantifier and optional bindings.

• Specialize Class Phrase

Constraints

The partition formed by the subclasses of Sentence is disjoint:

context Sentence inv DisjointPartition:
(self.oclIsKindOf(Conjunction) xor self.oclIsKindOf(Disjunction) xor

    self.oclIsKindOf(Negation) xor self.oclIsKindOf(Implication) xor
 self.oclIsKindOf(Biconditional) xor self.oclIsKindOf(UniversalQuantification) xor
 self.oclIsKindOf(ExistentialQuantification) xor self.oclIsKindOf(Atom) xor
 self.oclIsKindOf(CommentedSentence))

Semantics

No additional semantics

12.2.9 Text

Description

Text is a collection of phrases (set, sequence, or bag optionally specified by a CL dialect) optionally identified by a name. 
A module is a named piece of text with an optional exclusion set containing names considered to be outside the domain 
of discourse for the module. 

Attributes

None

Associations

• commentForText: Comment [0..*] in association CommentedText – optional comment(s) associated with the text.

• identifierForText: Identifier [0..1] in association NameForText – links a text with an identifier in a named text.

• phrase: Phrase [0..*] in association PhraseForText – the phrase(s) or sentence(s) that comprise the text.

• moduleForBody: Module [0..*] in association ModuleBody – the module(s) owning the text.

Constraints

None
100                 Ontology Definition Metamodel, v 1.0



Semantics

The semantics of Common Logic is defined in terms of a satisfaction relation between CL text and structures called 
interpretations. All dialects must apply these semantic conditions to all common logic expressions, that is, to any of the 
forms given in the abstract syntax. They may in addition apply further semantic conditions to subclasses of common logic 
expressions, or to other expressions.

A vocabulary is a set of names and sequence markers. The vocabulary of a Common Logic text is the set of names and 
sequence markers that occur in the text. In a segregated dialect, vocabularies are partitioned into denoting names and non-
discourse names.

An interpretation I of a vocabulary V is a set UI, the universe, with a distinguished non-empty subset DI, the domain of 
discourse, or simply domain, and four mappings: relI from UI to subsets of DI*, funI from UI to FunctionalTerms DI*->DI, 
(which we will also consider to be the set DI* x DI), intI from names in V to UI, and seqI from sequence markers in V to 
DI*. If the dialect is segregated, then intI(x) is in DI if and only if x is a denoting name. If the dialect recognizes irregular 
sentences, then they are treated as names of propositions, and intI also includes a mapping from the irregular sentences of 
a text to the truth values {true, false}.

Intuitively, DI is the domain of discourse containing all the individual things the interpretation is ‘about’ and over which 
the quantifiers range. UI is a potentially larger set of things that might also contain entities that are not in the universe of 
discourse. All names are interpreted in the same way, whether or not they are understood to denote something in the 
domain of discourse; this is why there is only a single interpretation mapping applying to all names regardless of their 
syntactic role. In particular, relI(x) is in DI* even when x is not in D. When considering only segregated dialects, the 
universe outside the domain may be considered to contain names and can be ignored; when considering only unsegregated 
dialects, the distinction between universe and domain is unnecessary. The distinction is required in order to give a 
uniform treatment of all dialects. Irregular sentences are treated as though they were arbitrary propositional variables.

A discussion of the semantics regarding text interpretation is given in “[ISO 24707]” on page 4, including distinctions in 
quantifier scope, features enabling structured relationships among modules, closed-world and unique naming issues, and 
so forth.

12.3 The Terms Diagram
The Terms Diagram, shown in Figure 12.2 provides additional insight into the core syntactic elements of Common Logic. 
These include names, commented terms, and term sequences (FunctionalTerms).

Figure 12.2 - Valid Terms in CL

Name

SequenceMarker

CommentedTerm

comment : String

Term
1

0..1

+term
1

+commentedTerm
0..1

CommentForTerm

ArgumentFunctionalTerm

1

0..*

+operator
1

+functionalTerm
0..*

OperatorForFunctionalTerm

0..*0..*
+argument

0..*

{ordered}
+functionalTerm
0..*

ArgumentSequenceForFunctionalTerm
Ontology Definition Metamodel, v 1.0        101



12.3.1 Argument

Description 

An argument sequence is a finite ordered sequence of bindings, which are terms or sequence markers. A sequence may be 
empty or may consist of a single sequence marker.

Attributes

None

Associations

• atomicSentence: AtomicSentence [0..*] in association ArgumentSequenceForAtomicSentence – links an argument 
sequence to an atomic sentence. 

• functionalTerm: FunctionalTerm [0..*] in association ArgumentSequenceForFunctionalTerm – links an argument 
sequence to a functional term.

Constraints

[1] The terms in an argument sequence are ordered.

Semantics

An argument sequence represents a sequence of argument terms. A sequence marker stands for a sequence of terms, 
considered to be inserted into the sequence in place of the marker.

12.3.2 CommentedTerm

Description 

Terms may have an attached comment.

Attributes

• comment: String [1] – supports comments on individual terms (or names)

Associations

• term: Term [1] in association CommentForTerm – links the comment to the term

• Specialize Class Term

Constraints

None

Semantics

None
102                 Ontology Definition Metamodel, v 1.0



12.3.3 FunctionalTerm

Description

A FunctionalTerm consists of a term, called the operator, and a term sequence called the argument sequence, containing 
terms called arguments.

Attributes

None

Associations

• argument: Argument [0..*] in association ArgumentSequenceForFunctionalTerm – links zero or more additional terms 
(i.e., arguments) to a functional term.

• operator: Term [1] in association OperatorForTerm – links an operator to a functional term.

• Specialize Class Term

Constraints

[1] The argument sequence of a functional term is ordered.

Semantics

See additional discussion of the semantics of functional term in CL in [ISO 24707].

12.3.4 SequenceMarker

Description

An argument sequence is a finite ordered sequence of bindings, which are terms or sequence markers. A sequence may be 
empty or may consist of a single sequence marker. Atomic sentences consist of an application of one term, denoting a 
relation to a finite sequence of other terms. Such argument sequences may be empty, but they must be present in the 
syntax, as an application of a relation term to an empty sequence does not have the same meaning as the relation term 
alone.

Attributes

None

Associations

• binding: Binding [1] in association BoundSequenceMarker – associates a sequence marker with the related binding in 
quantified sentences.

• Specialize Class Argument

Constraints

[1] Names and sequence markers are disjoint syntax categories, and each is disjoint from all other syntax 
categories.
Ontology Definition Metamodel, v 1.0        103



Semantics

Sequence markers take Common Logic beyond first-order expressiveness. A sequence marker stands for an arbitrary 
sequence of arguments. Sequence markers can be universally quantified, and a sentence containing such a quantifier has 
the same semantic import as the infinite conjunction of all the expressions obtained by replacing the sequence marker by 
a finite sequence of names, all universally quantified.

A dialect that does not provide for sequence markers, but is otherwise fully conformant, is a compact dialect, and may be 
described as a fully conformant compact dialect if it provides for all other constructions in the abstract syntax. Additional 
discussion on the semantics and use of sequence markers in CL is provided in the [ISO 24707] Common Logic 
specification.

12.3.5 Term

Description

A term is either a name or a functional term, or a term with an attached comment. 

Attributes

None

Associations

• atomicSentence: AtomicSentence [0..*] in association PredicateForAtomicSentence – links a predicate (term) to the 
relation in which it participates.

• commentedTerm: CommentedTerm [0..1] in association CommentForTerm – provides the facility for commenting any 
CL term.

• function: FunctionalTerm [0..*] in association OperatorForFunction – links an operator to the FunctionalTerm that it is 
a part of.

• equation: Equation [0..*] in association LvalueForIdentity – links the term representing the ‘lvalue’ to an equation.

• equation: Equation [0..*] in association RvalueForIdentity – links the term representing the ‘rvalue’ to an equation.

Constraints

The Name / CommentedTerm / FunctionalTerm partition is disjoint.

  context Term inv DisjointPartion:
(self.oclIsKindOf(Name) xor self.oclIsKindOf(CommentedTerm) xor

     self.oclIsKindOf(FunctionalTerm))

Semantics

See additional discussion of the semantics of terms in CL in [ISO 24707].

12.4 The Atoms Diagram
Atomic sentences are similar in structure to terms, as shown in Figure 12.3. Equations are considered to be atomic 
sentences. Equations are distinguished as a special category because of their special semantic role and special handling by 
many applications. 
104                 Ontology Definition Metamodel, v 1.0



Figure 12.3 - Atomic Sentences

12.4.1 Atom

Description

An atom is either an equation containing two arguments that are terms, or consists of a term, called the predicate, and 
term sequence called the argument sequence containing terms called arguments of the atom.   

Attributes

None

Associations

• Specialize Class Sentence

Constraints

[1] The AtomicSentence/Equation partition is disjoint.
context Atom inv DisjointPartition:

(self.oclIsKindOf(AtomicSentence) xor self.oclIsKindOf(Equation)) 

Semantics

An atom, or atomic sentence, asserts that a relation holds between arguments. Its general syntactic form is that of a 
relation term applied to an argument sequence.

12.4.2 AtomicSentence 

Description

An atomic sentence consists of a relation term (predicate) applied to an argument sequence.

Attributes

None

Atom

SequenceMarker Equation

Term

1

0..*

+lvalue
1

+equation
0..*

LvalueForEquation

1

0..*

+rvalue
1

+equation
0..*

RvalueForEquat ion

Argument

AtomicSentence

1

0..*

+predicate
1

+atomicSentence
0..*

PredicateForAtomicSentence

0..*

0..*

+argument
0..*

{ordered}

+atomicSentence
0..*

ArgumentSequenceForAtomicSentence
Ontology Definition Metamodel, v 1.0        105



Associations

• argument: Argument [0..*] in association ArgumentSequenceForAtomicSentence – links an argument sequence to the 
relation that the argument(s) participate in.

• predicate: Term [1] in association PredicateForAtomicSentence – links a predicate to the relation (atomic sentence) it 
participates in.

• Specialize Class Atom

Constraints

None

Semantics

See additional discussion of the semantics of relations in CL in [ISO 24707].

12.4.3 Equation

Description

An equation asserts that its arguments are equal and consists of exactly two terms.

Attributes

None

Associations

• lvalue: Term [1] in association LvalueForIdentity – associates a term as the “lvalue” of the equation (identity relation).

• rvalue: Term [1] in association RvalueForIdentity – associates a term as the “rvalue” of the equation (identity relation).

• Specialize Class Atom

Constraints

None

Semantics

Equations are distinguished as a special category because of their special semantic role and special handling by many 
applications. See additional discussion of the semantics of equations in CL in [ISO 24707].

12.5 The Sentences Diagram
As shown in Figure 12.4, a sentence is either an atom, a boolean or quantified sentence, an irregular sentence, or a 
sentence with an attached comment, or an irregular sentence. The current specification does not recognize any irregular 
sentence forms. They are included in the abstract syntax to accommodate future extensions to Common Logic, such as 
modalities for SBVR.
106                 Ontology Definition Metamodel, v 1.0



Figure 12.4 - Sentences

12.5.1 Biconditional

Description

A Biconditional (or equivalence), consisting of (iff s1 s2), asserts that it is.

true if I(s1) = I(s2), otherwise false. 

Attributes

None

Associations

• lvalue: Sentence [1] in association LvalueForBiconditional – associates exactly one sentence as the ‘lvalue’ of the 
expression.

• rvalue: Sentence [1] in association RvalueForBiconditional – associates exactly one sentence as the ‘rvalue’ of the 
expression.

• Specialize Class BooleanSentence

Constraints

None

Semantics

This asserts that two sentences have the same truth value. See additional discussion of the semantics of sentences in CL 
in [ISO 24707].

Sentence

CommentedSentence
comment : String

1

0..1

+sentence
1

+comment
0..1

CommentForSentence

Conjunction Disjunction Implication BiconditionalNegation

QuantifiedSentenceAtom

ExistentialQuanti fication UniversalQuantification

IrregularSentenceBooleanSentence
Ontology Definition Metamodel, v 1.0        107



12.5.2 BooleanSentence

Description

BooleanSentence is an abstract class representing boolean sentences. A Boolean sentence has a type, called a connective, 
and a number of sentences called the components of the Boolean sentence. The number depends on the particular type. 
Every Common Logic dialect shall distinguish the conjunction, disjunction, negation, implication, and biconditional types 
with respectively any number, any number, one, two and two components.

Attributes

None

Associations

• Specialize Class Sentence

Constraints

None

Semantics

See additional discussion of the semantics of sentences in CL in [ISO 24707].

12.5.3 CommentedSentence

Description

This feature enables annotation of sentences. 

Attributes

• comment: String [1] – represents the comment about the sentence.

Associations

• sentence: Sentence [1] in association CommentForSentence – associates exactly one sentence as the argument of the 
expression.

• Specialize Class Sentence

Constraints

None

Semantics

No additional sentences
108                 Ontology Definition Metamodel, v 1.0



12.5.4 Conjunction

Description

A conjunction, consisting of a set of conjuncts, (and s1 ... sn), asserts that it is

false if I(si) = false  for some i in 1 … n, otherwise true. 

Essentially, a conjunction means that all its components are true. Note that true is defined as the empty case of a 
conjunction – there are no explicit definitions of true and false in CL. These definitions are conventional in formal logic 
and knowledge representation work.

Attributes

None

Associations

• conjunct: Sentence [0..*] in association Conjunction – associates zero or more sentences as conjuncts of the 
expression.

• Specialize Class BooleanSentence

Constraints

None

Semantics

See additional discussion of the semantics of sentences in CL in [ISO 24707].

12.5.5 Disjunction

Description

A disjunction, consisting of a set of disjuncts, (or s1 ... sn), asserts that it is

true if I(si) = true for some i in 1 … n, otherwise false. 

Essentially, a disjunction means that at least one of its components is true. Note that false is defined as the empty case of 
a disjunction.

Attributes

None

Associations

• disjunct: Sentence [0..*] in association Disjunction – associates zero or more sentences as disjuncts of the expression.

• Specialize Class BooleanSentence

Constraints

None
Ontology Definition Metamodel, v 1.0        109



Semantics

See additional discussion of the semantics of sentences in CL in [ISO 24707].

12.5.6 ExistentialQuantification

Description

An existentially quantified sentence, consisting of (exists (var) body), asserts that some things exist in the universe 
of discourse that satisfy the description in the body. An existentially quantified sentence means that its body is true for 
some re-interpretation of its bindings. Bindings may be names or sequence markers, which are re-interpreted respectively 
as referring to things or sequences of things, in the universe of discourse.

Attributes

None

Associations

• Specialize Class QuantifiedSentence

Constraints

None

Semantics

See additional discussion of the semantics of sentences in CL in [ISO 24707].

12.5.7 Implication

Description

An implication, consisting of (implies s1 s2), asserts that it is

false if I(s1) = true and I(s2) = false, otherwise true. 

Essentially, this means that the antecedent implies the consequent.

Attributes

None

Associations

• antecedent: Sentence [1] in association AntecedentForImplication – associates exactly one sentence as the antecedent 
of the expression.

• consequent: Sentence [1] in association ConsequentForImplication – associates exactly one sentence as the consequent 
of the expression.

• Specialize Class BooleanSentence

Constraints

None
110                 Ontology Definition Metamodel, v 1.0



Semantics

See additional discussion of the semantics of sentences in CL in [ISO 24707].

12.5.8 IrregularSentence

Description

Provides the placeholder for irregular sentences in the metamodel, potentially for use with modal sentence requirements 
for the Semantics for Business Vocabularies and Rules (SBVR) specification.

Attributes

None

Associations

• Specialize Class Sentence

Constraints

None

Semantics

None

12.5.9 Negation

Description

A negation, consisting of (not s), asserts that it is true if I(s) = false, otherwise false. Essentially, a 
negation means that its inner sentence is false.

Attributes

None

Associations

• sentence: Sentence [1] in association NegatedSentence – associates exactly one sentence as the argument of the 
expression.

• Specialize Class BooleanSentence.

Constraints

None

Semantics

See additional discussion of the semantics of sentences in CL in [ISO 24707].
Ontology Definition Metamodel, v 1.0        111



12.5.10 QuantifiedSentence

Description

QuantifiedSentence is an abstract class representing quantified sentences. A quantified sentence has a type, called a 
quantifier, a finite sequence of names or sequence markers called bindings, and a sentence called the body of the 
quantified sentence. Every Common Logic dialect shall distinguish the universal and the existential types of quantified  
sentence. 

Quantifiers may bind any number of variables; bindings may be restricted to a named category.

Attributes

None

Associations

• body: Sentence [1] in association QuantificationForSentence – associates exactly one sentence (body) with the 
expression.

• binding: Binding [0..*] in association BindingSequenceForQuantifiedSentence – associates zero or more ordered 
bindings with the expression.

• Specialize Class Sentence

Constraints

None

Semantics

See additional discussion of the semantics of sentences in CL in [ISO 24707].

12.5.11UniversalQuantification

Description

A universally quantified sentence, consisting of (forall (var) body), asserts that everything that exists in the 
universe of discourse satisfies the description in the body. A universally quantified sentence means that its body is true for 
any interpretation of its bindings. It consists of a sequence of bindings and a body that is a sentence.

Attributes

None

Associations

• Specialize Class QuantifiedSentence

Constraints

None

Semantics

See additional discussion of the semantics of sentences in CL in [ISO 24707].
112                 Ontology Definition Metamodel, v 1.0



12.6 The Boolean Sentences Diagram
A Boolean sentence has a type, called a connective, and a number of sentences called the components of the Boolean 
sentence, as shown in Figure 12.5. The number depends on the particular type. Every common logic dialect must 
distinguish the conjunction, disjunction, negation, implication, and biconditional types with respectively any number, any 
number, one, two, and two components.

 

Figure 12.5 - Boolean Sentences

12.7 The Quantified Sentences Diagram
A quantified sentence has a type, called a quantifier, and a set of names called the bindings, and a sentence called the 
body of the quantified sentence, as shown in Figure 12.6. Every common logic dialect must distinguish the universal and 
the existential types of quantified sentence. 

Conjunction Disjunction Negation Implication

Sentence

0..*

0..1

+conjunct
0..*

+conjunction
0..1

Conjunction

0..*

0..1

+disjunct
0..*

+disjunct ion
0..1

Disjunction

1

0..1

+sentence
1

+negation
0..1

NegatedSentence

1

0..1

+antecedent
1

+implication
0..1

AntecedentForImplication

1

0..1

+consequent
1

+implication
0..1

ConsequentForImplicat ion

Biconditional

1

0..1

+lvalue
1

+biconditional
0..1

LvalueForBiconditional

1

0..1

+rvalue
1

+biconditional
0..1

RvalueForBiconditional

There are no explicit 'true' and 'false' elements in the metamodel.  These 
are empty cases of Conjunction (true) and Disjunction (false).  That is 
why a Disjunction or Conjunction of zero sentences is allowed.

BooleanSentence
Ontology Definition Metamodel, v 1.0        113



Figure 12.6 - Quantified Sentences

12.7.1 Binding

Description

A quantified sentence has (i) a type, called a quantifier, (ii) a finite, non-repeating sequence of names and sequence 
markers called the binding sequence, each element of which is called a binding of the quantified sentence, and (iii) a 
sentence called the body of the quantified sentence. A name or sequence marker that occurs in the binding sequence is 
said to be bound in the body. Any name or sequence marker that is not bound in the body is said to be free in the body.

Attributes

None

Associations

• quantifiedSentence: QuantifiedSentence [0..1] in association BindingSequenceForQuantifiedSentence - associates an 
optional sentence with a binding.

• boundName: Name [0..1] in association BoundName  - associates an optional name with a particular binding.

• boundSequenceMarker: SequenceMarker [0..1] in association BoundSequenceMarker  - associates an optional 
sequence marker with a particular binding.

Constraints

   [1] Name and SequenceMarker form a complete covering of Binding.

context Binding inv DisjointPartition:

   (self.oclIsTypeOf(Name) xor self.oclIsTypeOf(SequenceMarker))

UniversalQuantification ExistentialQuantification

Sentence

QuantifiedSentence

0..1

1

+quantification
0..1

+body
1

QuantificationForSentence

Name SequenceMarker

Binding0..*0..1
+binding

0..*

{ordered}
+quantifiedSentence

0..1

BindingSequenceForQuantifiedSentence

0..1

1

+boundName
0..1

+binding
1

BoundName

0..1

1

+boundSequenceMarker
0..1

+binding
1

BoundSequenceMarker
114                 Ontology Definition Metamodel, v 1.0



Semantics

No additional semantics.

12.8 Summary of CL Metamodel Elements with Interpretation
Table 12.1 presents a summary of the elements in the metamodel (not exhaustive) with the corresponding elements of the 
core abstract syntax and their interpretation, derived from the summary given in Section 6.5 of the 
[ISO 24707] Common Logic Specification. 

Table 12.1 - CL Metamodel Summary with Interpretation

CL Metamodel 
Element(s)

CL Core Syntax Interpretation

If E is an expression of the form then I(E) =

Name name N intI(N)

SequenceMarker sequence marker s seqI(s)

Argument term sequence t1...tn: 
[t1]...[tn]

<I(t1)...I(tn)>

Argument term sequence t1...tn with sequence 
marker s: [t1]...[tn][s]

<I(t1)...I(tn)>;I(s)

FunctionalTerm term with operator o and term 
sequence s: ([o][s])

funI(I(o))(I(s)), i.e., the x such 
that <(I(s),x)> is in (I(o))

Equation atom which is an equation 
containing terms t1, t2

true if I[t1] = I[t2], otherwise 
false

Atom, AtomicSentence atomic sentence with predicate p 
and term sequence s

true if I(s) is in relI(I(p)), 
otherwise false

BooleanSentence, 
Negation

boolean sentence of type negation 
and component c

true if I(c) = false, otherwise 
false

BooleanSentence, 
Conjunction

boolean sentence of type 
conjunction and components c1...cn

true if I(c1) = ... = I(cn) = true, 
otherwise false

BooleanSentence, 
Disjunction

boolean sentence of type 
disjunction and components c1...cn

false if I(c1) = ... = I(cn) = 
false, otherwise true

BooleanSentence, 
Implication

boolean sentence of type 
implication and components c1, c2

false if I(c1) = true and I(c2) = 
false, otherwise true

BooleanSentence, 
Biconditional

boolean sentence of type 
biconditional and components c1, 
c2

true if I(c1) = I(c2), otherwise 
false

QuantifiedSentence, 
UniversalQuantification

quantified sentence of type 
universal with bindings N and 
body B

true if for every N-variant J of 

I, J(B) is true; otherwise false
Ontology Definition Metamodel, v 1.0        115



QuantifiedSentence, 
ExistentialQuantification

quantified sentence of type 
existential with bindings N and 
body B

true if for some N-variant J of 
I, J(B) is true; otherwise false

Sentence, 
IrregularSentence

irregular sentence [S] intI(S)

Phrase, Sentence phrase which is a sentence: [S] I(S)

Phrase, Importation phrase which is an importation 
containing name N

true if I(text(I(N))) = true, 
otherwise false.

Module, ExclusionSet, 
Text

module with name N, exclusion set 
L and body text B

true if [I<L](B) = true and 
relI(I(N)) = UD[I<L]*, otherwise 
false

Text text containing phrases S1...Sn true if I(S1) = … = I(Sn) = true, 
otherwise false.

Text a text T with a name N URI contains a named text value t 
with text(t) = T and name(t) = N

Table 12.1 - CL Metamodel Summary with Interpretation

CL Metamodel 
Element(s)

CL Core Syntax Interpretation
116                 Ontology Definition Metamodel, v 1.0



13 The Topic Map Metamodel

The Topic Maps Meta-Model is defined based primarily upon ISO 13250-2 Data Model [TMDM] and to a lesser degree 
ISO 13250-3 XML Syntax. The TMDM provides the most authoritative definition of the abstract syntax for Topic Maps. 
The following discussion assumes a basic understanding of Topic Maps.

The TMDM includes UML diagrams illustrating its data structures and their relationships. However, the normative 
specification is textual. The UML diagrams are informative only. The ODM includes a MOF 2 metamodel for Topic Maps 
to provide such a normative metamodel, and because one of the objectives coming out of the usage requirements analysis 
was to enable interoperability between UML, RDF, OWL CL, and Topic Maps. The latter requirement, in turn, requires a 
TM metamodel to support mappings, XMI, Java API generation, and interoperability with other MOF-compliant tools. 
The ODM metamodel for Topic Maps is similar to that specified in [TMDM], with named meta-associations, UML/MOF 
compliant naming conventions, and a few additional abstract classes. 

13.1 Topic Map Constructs

Some of the primary elements in the TM meta-model are shown in Figure 13.1. Topic Maps are composed of a set of 
Topics and a set of Associations defining multi-way relations among those Topics.  

Figure 13.1 - Primary Elements in the Topic Map Metamodel

Each Topic is about a single Subject. Subjects in TM may be anything physical or conceptual. A machine addressable 
Subject will have a locator (e.g., a URL) while non-machine addressable subjects will have an identifier (e.g., the URL of 
a page about the subject or a URN). Topics are roughly equivalent to RDF Resources, describing elements in a world of 
discourse. Note that this similarity does not include RDF Literals that in TMs are not normally considered Topics. 

13.1.1 TopicMapConstruct

Description

TopicMapConstructs are the abstract collection of elements that are part of any Topic Map. All first class elements are a 
sub-type of Topic Map Construct and may optionally have a Source Locator.

TopicMapConstruct

itemIdentifier : String

AssociationAssociationRole TopicName

value : String

Occurrence

value : String
datatype : String

Variant

value : String
datatype : String

TopicMap

0..* 1
+association
0..*

+parent
1

TopicMapAssociation

Topic

subjectLocator : String
subjectItentifier : String 0..*

1

+topic
0..*

+parent
1

TopicMapTopicReifiableConstruct

0..10..1
+reified

0..1
+reifier
0..1

Reification

[0..*]

[0..1]
[0..*]
Ontology Definition Metamodel, v1.0        117



Attributes

• itemIdentifier [0..*] : String - each instance is identifying.

Associations

None

Constraints

[1] It is an error for two different Topic Map Constructs to have source locators that are equal, expressed as the 
following OCL:

context TopicMapConstruct inv:

TopicMapConstruct.allInstances()->

    forAll(v_tmc1, v_tmc2 | v_tmc1.itemIdentifier->

    forAll(v_sl1 | not(v_tmc2.itemIdentifier-> includes(v_sl1)))

)

Semantics

The itemIdentifier assigned to a TopicMapConstruct allows references to it. ItemIdentifiers may be freely assigned to 
TopicMapConstructs based upon source syntax or other implementation defined methods. 

13.1.2 ReifiableConstruct

Description

ReifiableConstruct defines an abstract class that groups together the kinds of topic map constructs that can be reified by 
being associated with a topic. All constructs except Topic can be reified.

Attributes

None

Associations

• reified [0..1]: Topic in association Reification - relates the reifiable construct to the topic it reifies.

• Specialize class TopicMapConstruct.

Constraints

None

Semantics

The act of reification is the act of making a topic represent the subject of another topic map construct in the same topic 
map. For example, creating a topic that represents the relationship represented by an Association is reification.

13.1.3 TopicMap

Description

A Topic Map represents a particular view of a set of subjects. It is a collection of MapItems.
118                 Ontology Definition Metamodel, v1.0



Similar Terms

RDF Graph, Ontology

Attributes

None

Associations

• topic [0..*]: Topic in association TopicMapTopic – the set of Topics contained in this topic map.

• association [0..*]: Association in association TopicMapAssociation – the set of associations contained in this topic 
map.

• Specialize class ReifiableConstruct

Constraints

None

Semantics

A TopicMap itself does not represent anything, and in particular has no subject associated with it. It has no significance 
beyond its use as a container for Topics and Associations and the information about subjects they represent. 

13.1.4 Topic

Description

Topic is the fundamental MapItem in a Topic Map. The class diagram for Topic is shown in Figure 13.2. Each Topic 
represents a Subject in the domain of discourse.
Ontology Definition Metamodel, v1.0        119



 

Figure 13.2 - The Topic Class

Similar Terms

Node, Resource, Entity

Attributes

• subjectLocator [0..1]: String – an optional resource reference that locates a machine addressable subject.

• subjectIdentifier [0..*]: String – the set of 0 or more resource references that identify a machine addressable indicator 
of a non-machine addressable subject.

Associations

• occurrence [0..*]: Occurrence in association TopicOccurrence – the set of 0 or more occurrences for this Topic.

• parent [1]:TopicMap in association TopicMapTopic – the required TopicMap that this Topic is part of.

• reifier [0..1]: TopicMapConstruct in association Reification – a TopicMapConstruct may optionally be reified, becom-
ing the subject of a Topic. A TopicMapConstruct is reified if it is another Topic’s subjectIdentifier.

• role [0..*]: AssociationRole in association TopicRole – the collection of AssociationRoles that are the roles that this 
Topic plays in Associations.

• scopedConstruct [0..*] : ScopeAble in association ScopeTopic - the set of 0 or more instaces of ScopeAble of which 
this Topic is the scope.

Association

AssociationRole

1

1..*

+parent
1

+role
1..*

RoleForAssociation

Occurrence

Topic

0..*1
+role
0..*

+player
1

TopicRole

0..*1
+occurrence

0..*
+parent
1

TopicOccurrence

TopicName

1 0..*
+parent
1

+topicName
0..*

TopicTopicName

Variant

1

0.. *

+parent
1

+variant
0.. *

TopicNameVariantName
120                 Ontology Definition Metamodel, v1.0



• scopedVariant [0..*] : Variant in association VscopeTopic - the set of 0 or more instaces of Variant of which this Topic 
is the scope.

• topicName [0..*]: TopicName in association TopicTopicName – the set of 0 or more topic names for this Topic.

• typedConstruct [0..*] : TypeAble in association TypeTopic - the set of 0 or more instaces of TypeAble of which this 
Topic is the type.

• Specialize class TopicMapConstruct

Constraints

• All topics must have a value for at least one subject identifier or subject locator that is neither the empty set nor null, 
expressed in the following OCL.

context Topic inv:

self.subjectIdentifier->notEmpty() or

self.subjectLocator->notEmpty()

Semantics

Each instance of Topic is associated with exactly one Subject. A subject indicator, subject identifier, or a subject locator 
identifies that subject. The Topic Map Data Model defines these terms in part as:

• A subject indicator is an information resource that is referred to from a topic map in an attempt to unambiguously 
identify the subject of a topic to a human being. 

• A subject identifier is a locator that refers to a subject indicator. 

• A subject locator is a locator that refers to the information resource that is the subject of a topic. 

Topic maps contain only subject identifiers and subject locators, both of which refer to a subject indicator.

Topic is a very flexible concept. A topic can be a type whose instances are other topics, or associations, or association 
roles, or occurrences, or topic names. But a topic can be outside any type system, or a type that is an instance can itself 
be a type.

13.1.5 Association

Description

An Association is a multi-way relationship between one or more Topics. Associations must have a type and may be 
defined for a specified scope.

Similar Terms

Relation, Property

Attributes

None

Associations

• parent[1]:TopicMap in association TopicMapAssociation – the required TopicMap that this Association is part of. 
Ontology Definition Metamodel, v1.0        121



• role [1..*]:AssociationRole in association RoleForAssociation – an instance of Association is required to be linked to 
at least one instance of AssociationRole.

• Specialize class ReifiableConstruct.

• Specialize class ScopeAble. 

• Specialize class TypeAble.

Constraints

None

Semantics

The relationship defined by an Association is a relationship among the included Topic’s subjects, rather than the Topics 
themselves.

An association is an individual-level concept. Although an association must have a type, there is no constraint preventing 
different instances of the same type having different association roles, or for an association role for different instances to 
be linked to topics of different types, or no type at all.

13.2 Scope and Type

These ‘Able’ abstract classes are intended as a concise mechanism to give a specific set of meta-classes in the TM meta-
model the capability to be typed and scoped; those meta-classes are shown in Figure 13.3.

13.2.1 ScopeAble

Description

ScopeAble defines an abstract class that provides the TM scoping mechanism. Subclasses of ScopeAble may have a 
defined scope of applicability.

Similar Terms

Context, Provenance, Qualification

Attributes

None

Associations

• scope[0..*]: Topic in association ScopeTopic – the topics that define the scope.

Constraints

None

Semantics

If the scope association is empty, then the ScopeAble items have the default scope.
122                 Ontology Definition Metamodel, v1.0



13.2.2 TypeAble

Description

TypeAble defines an abstract class that provides the typing mechanism. Subclasses of TypeAble must define types. 
Elements in TM are singly typed. A typed construct is an instance of its type. Type describes the nature of the represented 
construct.

Similar Terms

Type, isA, kindOf

Attributes

None

Associations

• type [1..1]: Topic in association TypeTopic – the required topic which defines at most a single type.

Constraints

None

Semantics

Typing is not transitive.

See also Section 13.3 discussing published subjects.

13.2.3 AssociationRole

Description

An Association is composed of a collection of roles, which are played by Topics. The AssociationRole captures this 
relation. A Topic in an Association plays a particular part or role in the Association. This is specified in an Association 
Role. The Association and Association Role construct is similar to a UML Association or to an RDF Property. 

Similar Terms

Role, UML Association End, UML Property

Attributes

None

Associations

• parent[1]: Association in association RoleFor Association – the required Association which the AssociationRole is part 
of.

• player[1]: Topic in association TopicRole – the required Topic that plays this role in the parent Association.

• Specialize class ReifiableConstruct

• Specialize class TypeAble
Ontology Definition Metamodel, v1.0        123



Constraints

None

Semantics

An AssociationRole is the representation of the participation of subjects in an association. The association role has a topic 
playing the role and a type that defines the nature of the participation of the player in the association. The roles and 
associations are representing the relationships between the participating Topic’s subject, rather than the topics themselves.

AssociationRole is an individual-level concept. An instance of AssociationRole links an instance of Topic with an 
instance of Association. 

13.2.4 Occurrence

Description 

An Occurrence is very similar to an attribute. 

Similar Terms

Attribute, Slot

Attributes

• value[1]:String – If the datatype is IRI, a locator referring to the information resource the occurrence connects with the 
subject, otherwise the string is the information resource.

• datatype[1]:String – A locator identifying the datatype of the occurrence value.

Associations

• parent[1] : Topic in association TopicOccurrence - the required Topic which owns the Occurrence.

• Specialize class ReifiableConstruct

• Specialize class ScopeAble 

• Specialize class TypeAble

Constraints

None

Semantics

It may be mistakenly inferred by the name ‘Occurrence’ that this construct refers only to instances of a Topic. This is not 
the case. An Occurrence may be any descriptive information about a Topic, including instances, and may represent any 
characteristic of a Topic, including an ‘occurrence’ or instance of the subject. Occurrences are semantically similar to 
UML Attributes.
124                 Ontology Definition Metamodel, v1.0



.

Figure 13.3 - Type and Scope

13.2.5 TopicName

Description

A TopicName is intended to provide a human readable text name for a topic. 

Similar Terms

Label, Comment, Description (Brief)

Attributes

• value: String [1] – the Base Name for this Topic; the string is UNICODE.

Associations

• variant [0..*]: VariantName in association TopicNameVariantName – Zero or more variations of the TopicName.

• Specialize class ReifiableConstruct

• Specialize class ScopeAble 

• Specialize class TypeAble

Constraints

None

Semantics

The term ‘name’ should not be misconstrued to imply uniqueness. Neither the topic name, nor its variants, are identifying; 
they serve only as human readable labels.

Occurrence AssociationAssociationRole

ScopeAbleTypeAble Topic

0..* 0..*
+scope
0..*

+scopedConstruct
0..*

ScopeTopic

10..*
+type

1
+typedConstruct
0..*

TypeTopic

Variant

1..*

0..*

+s cope
1..*

+scopedVariant
0..*

VscopeTopic

TopicName
Ontology Definition Metamodel, v1.0        125



13.2.6 Variant

Description

Variant allows alternative names for a Topic to be specified. These names may be any format, including text, documents, 
images, or icons. Variants must have scope.

Similar Terms

Label, Comment, Description (Brief), Icon

Attributes

• value[1]:String – If the datatype is IRI, a locator referring to the information resource the occurrence connects with the 
subject, otherwise the string is the information resource.

• datatype[1]:String – A locator identifying the datatype of the occurrence value.

Associations

• scope[1..*] : Topic in association VscopeTopic –  one or more  topics that define the scope.

• Specialize class ReifiableConstruct.

Constraints

• A Variant is restricted to being a composite part of a TopicName. It cannot exist as a standalone construct as con-
strained by the TopicNameVariantName association multiplicity.

Semantics

Like TopicName, variants are not identifying. 

13.3 Published Subjects

A Core set of Topic instances, termed Published Subjects, has been defined as part of the TM standard. These topics 
represent special instances of the TM meta-model and any implementation of the TM meta-model should handle these 
items as special, reserved topics with meanings as defined in Section 7 of the Topic Map Data Model [TMDM]. 

In summary, they represent five key areas:

• Types and Instance –Types and their instances are related by three subjects representing the type-instance association 
and the type and instance association roles. A type is an abstraction that captures characteristics common to a set of 
instances. A type may itself be an instance of another type, and the type-instance relationship is not transitive. 

• Super and Sub Types – Types may be arranged into a type hierarchy using the supertype-subtype association and, 
supertype and subtype association roles. The supertype-subtype relationship is the relationship between a more general 
type (the supertype) and a specialization of that type (the subtype). The supertype-subtype relationship is transitive.

• Special Variant Names – Display and Sort are two special types of variant names appropriate for human display and 
sorting. 

• Uniqueness – A unique topic characteristic can be used to definitively identify a topic.

• Topic Map Constructs –Subjects that represent the reification of topic map constructs such as association, associations-
role, or occurrence. 
126                 Ontology Definition Metamodel, v1.0



These published subjects are identified by uri with base http://psi.topicmaps.com/iso13250/, called in the ODM by the 
Qname prefix ‘tmcore:’

13.3.1 Type-Instance Relationship Among Topics

Besides being a type whose instances are Associations, AssociationRoles, Occurrences or TopicNames, a Topic can be a 
type whose instances are other Topics. This relationship is constructed as an instance of Association having two roles, the 
Association and each role having a type from the published subjects, as in the Instances diagram in Figure 13.4. The 
instance of Topic labeled ‘inst’ is declared as an instance of the instance of Topic labeled ‘type.’

 

Figure 13.4 - Instances Diagram for Topic Type-Instance Relationship

 

parent 

role 

type 

role parent 
:AssociationRole :Association 

inst:Topic 

type 

:Topic 
subjectIdentifier = 'tmcore:type' 

:Topic 
subjectIdentifier = 'tmcore:type-instance' 

role 
:AssociationRole 

type:Topic 

type 

:Topic 
subjectIdentifier = 'tmcore:instance' 

role 

player 

player 
Ontology Definition Metamodel, v1.0        127



13.3.2 Subtype-Supertype Relationship Among Topics

Figure 13.5 - Instances Diagram for Topic Subtype-Supertype Relationship

In a similar way, that two topics are in a subtype-supertype relationship is declared by an association with two roles, the 
association and both roles of types taken from the published subjects, as in Figure 13.5. The instance of Topic labeled 
‘subt’ is declared as a subtype of the instance of Topic labeled ‘supert.’

13.4 Example

Figure 13.6 depicts a simple instance model of the TM meta-model. The model depicted represents the following 
statements:

• A Personal Car is a Car (which may be owned by a Person).

• A Car is a Vehicle (which may have a Color).

• Carl is a person that owns a Personal Car that is red.

The parenthetical statements are not directly represented in Topic Maps.

 

parent 

parent 
role 

role 

player 
role 

type 

role player 

:AssociationRole :Association 

supert:Topic 

subt:Topic 

:AssociationRole 

type 

type 

:Topic 
subjectIdentifier = 'tmcore:subType' 

:Topic 
subjectIdentifier = 'tmcore:superType-subType' 

:Topic 
subjectIdentifier = 'tmcore:superType' 
128                 Ontology Definition Metamodel, v1.0



 

Figure 13.6 - Instance of Topic Map Metamodel

 

role role 

_anon_1:AssociationRole 

hasColor:Topic 

type 

Carl:Topic 

PersonalCar:Topic 

Car:Topic 

Vehicle:Topic 

isColor:Topic 

Red:Topic 

Color:Topic 

ColorOf:Topic Owner:Topic Owned:Topic 

Ownership:Topic 

Person:Topic

CarlsRedCar:Topic 

_anon_4:AssociationRol_anon_3:AssociationRole _anon_2:AssociationRole 

CarlOwnsCar:Association CarColorRed:Association 

type type type 

type type type 

type 

type 

type 

type 

player player player player 

role role 
Ontology Definition Metamodel, v1.0        129



130                 Ontology Definition Metamodel, v1.0



14 UML Profile for RDF and OWL

This profile is based on the UML Kernel package defined in “Unified Modeling Language: Superstructure,” version 2 
[UML2] as well as on the Profiles section of the same document. It is designed to support modelers developing 
vocabularies in RDF and richer ontologies in the Web Ontology Language (OWL) through reuse of UML notation using 
tools that support UML2 extension mechanisms. The profile:

• Reuses UML constructs when they have the same semantics as OWL, or, when this is not possible, stereotypes UML 
constructs that are consistent and as close as possible to OWL semantics.

• Uses standard UML 2 notation, or, in the few cases where this is not possible, follows the clarifications and 
elaborations of stereotype notation defined in UML 2.1 (See [UML2.1], Profiles chapter).

• Leverages the model library provided in Annex A. 

The profile has been partitioned to support users who wish to restrict their vocabularies to RDF/S, as well as to reflect the 
structure of the RDF and OWL metamodels (and the languages themselves). It leverages stereotypes extensively and uses 
stereotype properties in traditional fashion. It complements the metamodels defined in Chapter 10, and in Chapter 11, 
respectively, for overall structure, semantics and language mapping. It also depends on model elements included in 
Annex A, for certain basic definitions, such as the M1 level elements discussed in Chapter 8, Design Rationale.

14.1 UML Profile for RDF

14.1.1 RDF Profile Package

Description

The following sections specify the set of stereotypes that comprise the UML2 profile for using UML to represent RDF/S 
vocabularies. It is designed to support all of RDF, as reflected in the RDF metamodel (Base, RDFS, and Web, together) 
provided in Chapter 10, with minor limitations, is based on the presumption that vendors (and users) are interested in 
developing RDF vocabularies that make use of the schema elements of the language in the context of the Web. The 
document related elements are recommended as a basis for exchanging namespace information, at a minimum, even in 
cases where a document representation is not required. 

Figure 14.1 - RDF Profile Package

Constraints

[1] All classes in a package stereotyped by «rdfDocument» must be stereotyped by «rdfsClass» (or an appropriate 
subclass, such as «owlClass»).

14.1.2 RDF Documents

Stereotypes and other profile elements corresponding to the RDF Web and document specific definitions given in 
Section 10.9, “RDF Documents and Namespaces (RDFWeb Package),” are defined in this section.

RDF
<<profile>>

(from org.omg.odm)
Ontology Definition Metamodel, v1.0        131



14.1.2.1   NamespaceDefinition

Description

A namespace is declared using a family of reserved attributes. These attributes, like any other XML attributes, may be 
provided directly or by default. Some names in XML documents (constructs corresponding to the non-terminal Name) 
may be given as qualified names. The prefix provides the namespace prefix part of the qualified name, and must be 
associated with a namespace URI in a namespace declaration.

Stereotype and Base Class

No stereotype is defined for this class.

Parent

None

Properties

• namespacePrefix: String [1] - the string representing the namespace prefix

• namespaceURI: String [1] - the string representing the namespace URI

Constraints

[1] The string value of namespacePrefix must conform to the specification given in [XMLNS].

[2] The string value of the namespace URI must conform to the character encoding (including escape sequences and 
so forth) defined in [RDF Syntax] and [XMLNS].

14.1.2.2   RDFDocument

Description

An RDF document represents the primary namespace mechanism / container for an RDF/S vocabulary. The ordered set of 
definitions (statements) that comprise an RDF vocabulary are contained in a document. This set of statements may also 
correspond to one or more graphs contained in the document.

Note that this approach supports RDF graphs that span multiple documents, and enables multiple graphs to occur within 
a particular document (although it is more natural from a UML modeling perspective to assume that there is a 1-1 
mapping between a graph and a document). 

Stereotype and Base Class
«rdfDocument» with base class of UML::Package

Parent

None

Properties

RDF namespace declarations are associated with the RDF document that acts as the container for the set of RDF graphs 
that make up the vocabulary or ontology component, rather than with the optional ontology header definition (in the case 
of an OWL ontology) or other statements.
132                 Ontology Definition Metamodel, v1.0



• defaultNamespace: String [0..1] – provides the default namespace, or base for the document, if available.

• xmlBase: String [0..*] – provides zero or more base namespaces used in the document.

• namespaceDefinition: NamespaceDefinition [0..*] – defines zero or more namespace definitions used in the document.

• statementForDocument: InstanceSpecification [1..*] {ordered} – the set of statements in the document.

Constraints

[1] Either defaultNamespace must be present or at least one xmlBase must be specified. (An «rdfDocument» must have 
an IRI/URI.)

[2] The string value for any defaultNamespace property must conform to the character encoding (including escape 
sequences and so forth) defined in defined in [RDF Syntax] and [XMLNS].

[3] The string value for any xmlBase property must conform to the character encoding (including escape sequences 
and so forth) defined in defined in [RDF Syntax] and [XMLNS].

[4] The classifier of the InstanceSpecification(s) for the statements in a document must be RDFStatement.

14.1.2.3   UniformResourceIdentifier

Description

The RDF abstract syntax is concerned primarily with URI references. This definition of a URI and related stereotype, 
distinct from URI reference, is included primarily for mapping purposes (i.e., mapping across RDF vocabularies and 
OWL ontologies, as well as among the paradigms covered in this specification). The distinction between a URI and URI 
reference is covered more thoroughly in Chapter 10. Also, see [RDF Syntax] for further definition detail.

Note that URIs and IRI/URI references specified using this RDF profile are globally defined, in contrast to naming and 
namespace conventions in UML2, which can be limited to the package level or to a set of nested namespaces.

Stereotype and Base Class

«uniformResourceIdentifier» with base class of UML::LiteralString

Parent

None

Properties

None

Constraints

[1] The string value for the «uniformResourceIdentifier» must conform to the character encoding (including escape 
sequences and so forth) defined in defined in [RDF Syntax] and [XMLNS].

[2] The string value for the «uniformResourceIdentifier» must be present (i.e., the IRI/URI).

14.1.2.4 URIReference

Description

RDF uses URI references to identify resources and properties. A URI reference within an RDF graph (an RDF URI 
reference) is a Unicode string conforming to the characteristics defined in [RDF Concepts] and [RDF Syntax].
Ontology Definition Metamodel, v1.0        133



RDF URI references can be:

• given as XML attribute values interpreted as relative URI references that are resolved against the in-scope base URI to 
give absolute RDF URI references.

• transformed from XML namespace-qualified element and attribute names (QNames).

• transformed from rdf:ID attribute values.

Stereotype and Base Class

«uriReference» with base class of UML::LiteralString

Parent

None

Properties

• uri: LiteralString [0..1] – links a URIReference to the URI/IRI it contains/represents.

Constraints

[1] The string value of the «uriReference» must conform to the constraints defined in [RDF Syntax] and [XMLNS].

[2] The value of the uri property must be a UML::LiteralString that is stereotyped by «uniformResourceIdentifier».

[3] (Semantic) The string value of the «uriReference» corresponds to the optional fragment identifier of the IRI/URI.

14.1.3 RDF Statements 

The stereotypes and other profile elements corresponding to the RDF base definitions given in Section 10.2, “RDFBase 
Package, RDF Triples” are defined in this section.

14.1.3.1   BlankNode

Description

A blank node is a node that is not a URI reference or a literal. In the RDF abstract syntax, a blank node is simply a unique 
node that can be used in one or more RDF statements, but has no intrinsic name. Blank nodes are an integral part of the 
RDF language, and are used extensively in OWL class descriptions. In practice in a UML tool environment, it is likely 
that they will be needed when reverse engineering RDF vocabularies and OWL ontologies, and most importantly for 
coreference resolution when mapping across ontologies.

Stereotype and Base Class

«blankNode» with base class of UML::InstanceSpecification

Parent

«rdfsResource»

Properties

• nodeID: String [0..1] – provides an optional blank node identifier.
134                 Ontology Definition Metamodel, v1.0



Constraints

[1] The uriRef property inherited from «rdfsResource» must not have a value (i.e., must be empty).

[2] An InstanceSpecification cannot be stereotyped by «blankNode» and «uriReferenceNode» at the same time.

14.1.3.2   RDFGraph

Description

An RDF graph is the container for the set of statements (subject, predicate, object subgraphs) in an RDF/S vocabulary. In 
UML this container is a package. This definition of a graph is included in the profile to support identification / 
componentization of RDF vocabularies through the use of named graphs, and for vocabulary mapping purposes.

Stereotype and Base Class

«rdfGraph» with base class of UML::Package

Parent

None

Properties

• graphName: LiteralString [0..1] – the optional URI reference naming the graph.

• statementForGraph: InstanceSpecification [1..*] – the set of statements in the graph.

Constraints

[1] The string value of the graphName property must be a UML::LiteralString that is stereotyped by «uriReference».

[2] The value of any statementForGraph property must be a UML::InstanceSpecification classified by RDFStatement, 
and may have the «rdfsResource» stereotype applied.

14.1.3.3   RDFSLiteral

Description

Literals are used to identify values such as numbers and dates by means of a lexical representation. Anything represented 
by a literal could also be represented by a URI, but it is often more convenient or intuitive to use literals.

A literal may be the object of an RDF statement, but not the subject or the predicate.

Literals may be plain or typed. The string value associated with an «rdfsLiteral» corresponds to its lexical form.

Stereotype and Base Class

«rdfsLiteral» with base class of UML::LiteralString

Parent

None

Properties

None
Ontology Definition Metamodel, v1.0        135



Constraints

[1] The string value associated with an «rdfsLiteral» must be a Unicode string in Normal Form C [Unicode].

14.1.3.4   RDFSResource

Description

All things described by RDF are called resources.

The uriRef property is used to uniquely identify an RDF resource globally. Note that this property has a multiplicity of 
[0..*] that provides for the possibility of the absence of an identifier, as in the case of blank nodes, and the possibility of 
multiple identifiers. 

A particular resource may be identified by more than one URI reference, and may be reified by another resource (see 
«reifies», below).

Stereotype and Base Class

«rdfsResource» with base class of UML::InstanceSpecification

Parent

None

Properties

• uriRef: LiteralString [0..*] – the URI reference(s) associated with a resource.

• memberOf: LiteralString [0..*] – a URI reference(s) relating a particular resource to another in terms of membership 
(i.e., in a class or container).

Constraints

[1] The string value(s) of the uriRef property must be a UML::LiteralString that is stereotyped by «uriReference».

[2] The string value(s) of the memberOf property must be a UML::LiteralString that is stereotyped by «uriReference».

14.1.3.5   RDFStatement

Description

An RDF triple contains three components:

• the subject, which is an RDF URI reference or a blank node.

• the predicate, which is an RDF URI reference and represents a relationship.

• the object, which is an RDF URI reference, a literal, or a blank node.

An RDF triple is conventionally written in the order subject, predicate, object. The relationship represented by the 
predicate is also known as the property of the triple. The direction of the arc is significant: it always points toward the 
object.

Stereotype and Base Class

No stereotype is defined for this class.
136                 Ontology Definition Metamodel, v1.0



Parent

None

Properties

• reification: ReificationKind [1] – indicates whether or not a particular statement (triple) is reified but not asserted, 
reified, or neither; default value is “none.”

• subject: InstanceSpecification [0..1] – the resource that is the subject of the statement.

• predicate: AssociationClass [0..1] – the predicate for the statement.

• object: InstanceSpecification [0..1] – the resource that is the object of the statement.

Constraints

[1] The value of the subject property must be a UML::InstanceSpecification that is classified by «uriReferenceNode» or 
«blankNode».

[2] The value of the predicate property must be a UML::AssociationClass that is classified by «rdfProperty».

[3] The value of the object property must be a UML::InstanceSpecification that is classified by «rdfsResource».

[4] If the value of the reification property is “reified,” then the subject, predicate, and object must be filled.

14.1.3.6   Reification

Description

A particular resource may be identified by more than one URI/IRI reference, and may be reified by another resource, 
represented by a dependency between instance specifications (resources) stereotyped by «reifies».

Stereotype and Base Class
«reifies» with base class of UML::Dependency

Parent

None

Properties

None

Constraints

[1] The «reifies» stereotype can only be applied to a UML::Dependency that links two UML::InstanceSpecifications 
that are stereotyped by «rdfsResource». The dependency must be navigable from the reifying resource to the 
resource it reifies.

14.1.3.7   URIReferenceNode

Description

A URI reference or literal used as a node identifies what that node represents. URIReferenceNode is included in order to 
more precisely model the intended semantics (i.e., not all URI references are nodes). A URI reference used as a predicate 
identifies a relationship between the things represented by the nodes it connects. A predicate URI reference may also be 
a node in the graph.
Ontology Definition Metamodel, v1.0        137



Stereotype and Base Class

«uriReferenceNode» with base class of UML::InstanceSpecification

Parent

«rdfsResource»

Properties

None

Constraints

[1] The uriRef property, inherited from «rdfsResource», must have a value.

[2] The string value of the uriRef property must be a UML::LiteralString that is stereotyped by «uriReference».

[3] An InstanceSpecification cannot be stereotyped by «blankNode» and «uriReferenceNode» at the same time.

14.1.4 ReificationKind

Description

ReificationKind is an enumerated type used by the reification property on RDFStatement. It has three possible values: 
none (which is the default value), reified (meaning that the statement is both asserted and reified), and reifiedOnly 
(meaning that a statement is reified but not asserted - providing a placeholder in a UML model representing an RDF 
vocabulary for such a statement, which is necessary when we want to say things about statements that occur in some 
external vocabulary that are not available to this model).

Stereotype and Base Class

No stereotype is defined for this enumeration.

Parent

None

Properties

None

Constraints

[1] ReificationKind has three possible values: ‘none,’ ‘reified,’ and ‘reifiedOnly.’

[2] The default value of ReificationKind is ‘none.’

14.1.5 Literals

The stereotypes associated with the definitions given in “RDFBase Package, RDF Literals” on page 41, in addition to 
those given above, are defined in this section.
138                 Ontology Definition Metamodel, v1.0



14.1.5.1   PlainLiteral

Description

A plain literal is a string combined with an optional language tag. This may be used for plain text in a natural language. 
Plain literals are self-denoting.

Stereotype and Base Class

«plainLiteral» with base class of UML::LiteralString

Parent

«rdfsLiteral»

Properties

• language: String [0..1] - the optional language tag.

Constraints

[1] A LiteralString cannot be stereotyped by «plainLiteral» and «typedLiteral» at the same time.

[2] The string value of the language property, if present, must conform to the syntax and encoding specified in 
[RFC3066]. 

14.1.5.2   RDFSComment

Description

A comment is a plain literal, contained by the resource it describes, and can be applied to any resource. Because it seems 
natural from a UML perspective to use a UML Comment for this feature, rather than inheriting or having a relationship 
with «plainLiteral», we’ve added a property to Comment to optionally support language tags.

Stereotype and Base Class

«rdfsComment» with base class of UML::Comment

Parent

None

Properties

• language: String [0..1] - an optional language tag.

Constraints

[1] The string value of the language property, if present, must conform to the syntax and encoding specified in 
[RFC3066].

14.1.5.3   RDFSLabel

Description

A label is a plain literal, contained by the resource it describes, and provides a human-readable label, or “pretty name” 
that can be applied to any resource. 
Ontology Definition Metamodel, v1.0        139



Stereotype and Base Class

«rdfsLabel» with base class of UML::LiteralString

Parent

«plainLiteral»

Properties

None

Constraints

No additional constraints

14.1.5.4   RDFXMLLiteral

Description

rdf:XMLLiteral is a predefined RDF datatype used specifically for encoding XML in an RDF document. The value of 
the datatypeURI property must correspond to the URI for rdf:XMLLiteral. 

Stereotype and Base Class

«rdfXMLLiteral» with base class of UML::LiteralString

Parent

«typedLiteral»

Properties

None

Constraints

[1] The value of the datatypeURI property must be the IRI/URI for rdf:XMLLiteral.

14.1.5.5   TypedLiteral

Description

Typed literals have a lexical form, which is a Unicode string, and a datatype URI being an RDF URI reference.

The datatype URI refers to a datatype. For XML Schema built-in datatypes, URIs such as http://www.w3.org/2001/
XMLSchema#integer are used. The URI of the datatype rdf:XMLLiteral may be used. There may be other, 
implementation dependent, mechanisms by which URIs refer to datatypes.

The value associated with a typed literal is found by applying the lexical-to-value mapping associated with the datatype 
URI to the lexical form. If the lexical form is not in the lexical space of the datatype associated with the datatype URI, 
then no literal value can be associated with the typed literal. Such a case, while semantically in error, is syntactically well-
formed.

Stereotype and Base Class

«typedLiteral» with base class of UML::LiteralString
140                 Ontology Definition Metamodel, v1.0



Parent

«rdfsLiteral»

Properties

• datatypeURI: LiteralString [1] – specifies the URI for the datatype specification that defines its type (of which it is an 
instance).

Constraints

[1] A typed literal must have a value for the datatypeURI property.

[2] The string value of the datatypeURI property must be a UML::LiteralString that is stereotyped by «uriReference».

[3] For built-in datatypes (i.e., those that are not user-defined), the string value of the datatypeURI must be that of an 
XML Schema Datatype as defined in [XML Schema Datatypes], and as given in Annex A.

[4] A LiteralString cannot be stereotyped by «plainLiteral» and «typedLiteral» at the same time.

[5] (Semantic) The value of the datatypeURI property must match a URI corresponding to a datatype definition of the 
appropriate type.

14.1.6 Classes and Utilities

The stereotypes associated with the definitions given in 10.6 (“RDFS Package, Classes and Utilities”), in addition to those 
given above, are defined in this section.

14.1.6.1   RDFSClass

Description

The collection of resources that represents RDF Schema classes is itself a class, called rdfs:Class. Classes provide an 
abstraction mechanism for grouping resources with similar characteristics. The members of a class are known as instances 
of the class. Classes are resources. They are often identified by RDF URI References and may be described using RDF 
properties.

An RDFS class maps closely to the UML definition of a class; one notable exception is that an RDFS class may have a 
URI reference. The definition of the «rdfsClass» stereotype corresponds to “RDFSClass” on page 48.

Stereotype and Base Class

«rdfsClass» with base class of UML::Class

Parent

None

Properties

• uriRef: LiteralString [0..*] – the URI reference(s) associated with an «rdfsClass».

Constraints

[1] The value of the uriRef property must be a UML::LiteralString that is stereotyped by «uriReference».
Ontology Definition Metamodel, v1.0        141



14.1.6.2   RDFSDatatype

Description

rdfs:Datatype represents the class of datatypes in RDF. Instances of rdfs:Datatype correspond to the RDF model of 
a datatype described in the RDF Concepts specification [RDF Concepts]. Note that built-in instances of rdfs:Datatype 
correspond to the subset of datatypes (defined in [XML Schema Datatypes]) allowable for use in RDF, as specified in 
[RDF Concepts]. These are provided for use with the metamodel(s) and profile(s) in the model library given in Annex A 
(“Foundation Library (M1) for RDF and OWL”). Use of user-defined datatypes should be carefully considered against 
any desire for reasoning over an RDF vocabulary, OWL ontology, or knowledge base.

Stereotype and Base Class

«rdfsDatatype» with base class of UML::Datatype

Parent

None

Properties

• uriRef: LiteralString [1..*] – the URI reference(s) associated with the datatype.

Constraints

[1] The value of the uriRef property must be a UML::LiteralString that is stereotyped by «uriReference».

[2] For built-in datatypes (i.e., those that are not user-defined), the string value of the uriRef must be that of an XML 
Schema Datatype as defined in [XML Schema Datatypes], and as given in Annex A. 

[3] (Semantic) The value of the uriRef property must link the «rdfsDatatype» to either an XML Schema Datatype or 
user-defined type corresponding to a datatype definition of the appropriate type.

14.1.6.3   RDFSisDefinedBy

Description

rdfs:isDefinedBy provides a means to indicate that a particular resource (the source, or owning classifier) is defined by 
another resource (the target resource). Note that RDF does not constrain the usage of rdfs:isDefinedBy, though in 
practice, vocabularies that use this construct, such as the Dublin Core, will do so.

Stereotype and Base Class

«rdfsIsDefinedBy» with base class of UML::Dependency

Parent

«rdfsSeeAlso»

Properties

None

Constraints 

[1] (Semantic) The «rdfsIsDefinedBy» stereotype is used to state that a particular resource (the subject of the RDF 
statement) is defined by another resource (the object of the RDF statement). In theory, this stereotype can be applied 
142                 Ontology Definition Metamodel, v1.0



to a dependency between any two “generic” resources, but in practice, we recommend that it is applied to a 
UML::Dependency that links two UML::InstanceSpecifications that are stereotyped by «rdfsResource».

14.1.6.4   RDFSseeAlso

Description

rdfs:seeAlso indicates that more information about a particular resource (the source, or owning classifier) can be 
found at the target resource.

Stereotype and Base Class

«rdfsSeeAlso» with base class of UML::Dependency.

Parent

None

Properties

None

Constraints

[1] (Semantic) The «rdfsSeeAlso» stereotype is used to state that additional information about a particular resource (the 
subject of the RDF statement) is given by another resource (the object of the RDF statement). As with 
«rdfsIsDefinedBy», this stereotype can be applied to a dependency between any two “generic” resources, but in 
practice, we recommend that it is applied to a UML::Dependency that links two UML::InstanceSpecifications that 
are stereotyped by «rdfsResource».

14.1.6.5   RDFSsubClassOf

Description

rdfs:subClassOf indicates that the resource is a subclass of the general class; it has the semantics of UML 
Generalization. However, classes on both ends of the generalization must be stereotyped «rdfsClass», or «owlClass», if 
used with the profile for OWL. 

Note in OWL DL that mixing inheritance among RDFS and OWL classes is permitted, as long as proper subclassing 
semantics is maintained. In order for a model to be well formed an OWL class can be a subclass of an RDFS class but not 
vice versa. In other words for OWL DL, once you're in OWL you need to stay there. 

Stereotype and Base Class

«rdfsSubClassOf» with base class of UML::Generalization

Parent

None

Properties

None
Ontology Definition Metamodel, v1.0        143



Constraints

[1] Classes on both ends of the generalization must be stereotyped «rdfsClass», or «owlClass», if used with the profile 
for OWL.

[2] In OWL DL, a class stereotyped by «owlClass» may specialize a class stereotyped by «rdfsClass», but not vice 
versa.

14.1.6.6   RDFType

Description

rdf:type maps to the relation between instance and classifier in UML. This can be represented in a UML model by the 
relation between an instance specification and its classifiers. For M1, rdf:type maps to the classifier association 
between an instance specification and classifiers in UML. Note that resources in RDF can be multiply classified. No 
stereotype is needed.

14.1.7 Properties in RDF

14.1.7.1   RDFProperty

Description

A property in UML can be defined as part of an association or not. When it is not part of an association, the property is 
owned by the class that defines its domain, and the type of the property is the class that defines its range. When a property 
is part of an association, the association is binary, with the class that defines the domain of the property owning that property.

Properties in RDF and OWL are defined globally, that is, they are available to all classes in all vocabularies and 
ontologies – not only to classes in the vocabulary or ontology they are defined in, but to classes in other vocabularies and 
ontologies, including those that are imported. For RDF properties that are defined without specifying a domain or range, 
the profile uses an anonymous class (analogous to owl:Thing in OWL ontologies) for the “missing” end class. 

Stereotype and Base Class

«rdfProperty» with base class of UML::Class, UML::AssociationClass, UML::Property, and UML::Association

Parent

None

Properties

• uriRef: LiteralString [1] – the URI reference(s) associated with an «rdfProperty».

Constraints

[1] The value of the uriRef property must be a UML::LiteralString that is stereotyped by «uriReference».

[2] Association classes with «rdfProperty» applied are binary, and have unidirectional navigation (i.e., explicitly from 
the class that defines its domain to the class that defines its range, in other words from the class that owns it to its 
type). 

[3] Properties cannot have the same value twice (i.e., in UML, isUnique=true). 

[4] Property values are not ordered (i.e., in UML, isOrdered=false).
144                 Ontology Definition Metamodel, v1.0



Graphical Representation

There are several alternatives for representing various aspects of RDF properties in UML, as follows.

A.   Properties without a specified domain or range may be represented using a stereotyped class, as shown in  Figure 
14.2.

Figure 14.2 Property hasColor - Class  
Notation Without Specified Domain or Range

B.   Properties without a specified domain are considered to be defined on an anonymous class, (or possibly on 
owl:Thing in the case of an OWL ontology), for example, as shown in Figure 14.3.

Figure 14.3 - Property hasColor Without Specified Domain

From a UML perspective, properties are semantically equivalent to binary associations with unidirectional navigation 
(“one-way” associations). 

Figure 14.4 - Property hasColor Without Specified Domain, Alternate Representation

Figure 14.4 shows that there is efficient navigation from an instance of an anonymous class to an instance of Color 
through the hasColor end, just like a UML property. The only difference from a property on the anonymous class is that 
the underlying repository will have an association with the hasColor property as one of its ends. The other end will be 
owned by the association itself, and be marked as non-navigable.

RDF properties may be represented as AssociationClasses, as shown in Figure 14.5:

h a s C o lo r  :  C o lo r

< < r d fs C l a s s > >

Color
<<rdfsClass>><<rdfsClass>> +hasColor

<<rdfProperty>>
Ontology Definition Metamodel, v1.0        145



Figure 14.5 - Property hasColor Without Specified Domain - Association Class Representation

An association class can have properties, associations, and participate in generalization as any other class. Notice that the 
association has a (slightly) different name than the property, by capitalizing the first letter, to distinguish the association 
class (of links, tuples) from the mapping (across those links, tuples). A stereotype «rdfProperty» is introduced to highlight 
such binary, unidirectional association classes, as shown in Figure 14.5. In the examples given in the remainder of the 
profile, the notation showing properties in class rectangles is sometimes used, but unidirectional associations and 
association classes could be used instead.

Figure 14.6 Property hasColor Without Specified Domain, Class Notation

A stereotype indicating that the association between the hasColor property and Color class representing the RDF range 
restriction is introduced here and defined in Section 14.1.7.4.

C.  Properties with a domain are defined on a UML class for the domain, where the property is not inherited from a 
supertype. 

Figure 14.7 - Properties With Defined Domain, Undefined Range

Normally UML models introduce properties and restrict them with multiplicities in the same class. This translates to 
RDF/OWL as global properties of an anonymous class (or possibly to owl:Thing in OWL, and to restrictions on 
subclasses of owl:Thing). An optional stereotype «rdfGlobal» is introduced to highlight properties on the class where 
they are introduced, which will translate to global properties in OWL. Properties that are inherited are distinguished in 
UML by subsetting or redefinition, as discussed below.

HasColor
<<rdfProperty>>

Color
<<rdfsClass>><<rdfsClass>>

+hasColor

<<rdfProperty>>

<<rdfsClass>>
Dog

<<rdfsClass>>

+chases

Chases
<<rdfProperty>>

<<rdfProperty>>
146                 Ontology Definition Metamodel, v1.0



D.  Properties with a defined range have the range class as their type in UML. Properties with no range may have an 
anonymous class as their type in UML, as shown in Figure 14.7. 

E.   Properties with a range have the range class as their type in UML. Property types are shown to the right of the  
colon after the property name, as shown in Figure 14.3.

F.   Properties with a defined domain and range may also be specified using the class notation as shown in Figure 14.8.

Figure 14.8 - Property hasColor With Specified Domain and Range, Class Notation

The «rdfsDomain» stereotype introduced above is defined in section 14.1.7.3, below.

G.  The notation for RDF/S and OWL property subtyping (i.e., rdfs:subPropertyOf) uses UML property/
unidirectional association subsetting, association class subtyping, or generalization/specialization.

One option for property subsetting in UML is to use “{subsets <super-property-name>}” at the end of the property entry 
in a class, as shown in Figure 14.9.

Figure 14.9 - Property Subsetting, Notation on Property Entry for Class

Alternatively, the representation given in Figure 14.10 may be used for unidirectional association subsetting.

Figure 14.10 - Property Subsetting, Unidirectional Association Representation

For use with association classes, the representation shown in Figure 14.11, which uses a UML Generalization with the 
stereotype «rdfsSubPropertyOf», is preferred. Note that «rdfsSubPropertyOf» may not be required – it does not change 
the semantics, only adds constraints on its own usage. 

Dog

fol lows
chases {  su bsets fol lows }

<<rdfsClass>>

<<rdfsClass>>
Dog

<<rdfsClass>>
+fol lows

+chases

<<rdfProperty>>

<<rdfProperty>>
Ontology Definition Metamodel, v1.0        147



Figure 14.11 - Property Subsetting, Association Class Representation

Figure 14.12 provides another example of RDFS property subtyping, in this case using UML classes to represent the 
relevant RDF properties.

Figure 14.12 - Property Subsetting - Class Notation

14.1.7.2   RDFGlobalProperty

Description

An optional stereotype on a unidirectional association class, class, or property with «rdfProperty» applied, indicating the 
association/class property is defined globally, i.e., that class having the property, or on the non-navigable end of the 
association, is the class on which the class property/association is introduced, i.e., the property is not inherited from a 
superclass.

Stereotype and Base Class

«rdfGlobal» with base class of UML::Class, UML::AssociationClass, UML::Property, and UML::Association

Parent

«rdfProperty»

Dog
<<rdfsClass>> <<rdfsClass>>

+follows

+chases

Follows
<<rdfProperty>>

Chases
<<rdfProperty>>

<<rdfsSubPropertyOf>>

<<rdfProperty>>

<<rdfProperty>>
148                 Ontology Definition Metamodel, v1.0



Properties

None

Constraints

[1]  The property being stereotyped must be on an anonymous class (or possibly on an instance of owl:Thing in 
OWL), or on an association class for a unidirectional association that has an anonymous class on the non-navigable 
end.

14.1.7.3 RDFSDomain

Description

rdfs:domain indicates that RDF resources denoted by the subjects of triples whose predicate is a given property P are 
instances of the class denoted by the domain. When a property has multiple domains, then the resources denoted by the 
subjects of triples whose predicate is P are instances of all of the classes stated by the rdfs:domain properties (In OWL, 
this is typically thought of as an anonymous class representing the intersection of all of the classes said to be in the 
domain of the property).

Stereotype and Base Class

«rdfsDomain» with base class of UML::Association

Parent

None

Properties

None

Constraints

[1]  Applies only to associations between a class with an «rdfsClass» stereotype applied (or any of its children, e.g., 
«owlClass»), and a class with «rdfProperty» applied.

[2]  Associations with «rdfsDomain» applied are binary.

[3]  Associations with «rdfsDomain» applied have unidirectional navigation (from the class with the «rdfProperty» 
stereotype applied to the class with the «rdfsClass» stereotype applied).

Graphical Notation

Figure 14.13 - «rdfsDomain» Stereotype Notation - Class Notation for RDF Property
Ontology Definition Metamodel, v1.0        149



14.1.7.4 RDFSRange

Description

rdfs:range indicates that the values of a given property P are instances of the class denoted by the range. When a 
property has multiple rdfs:range  properties, then the resources denoted by the objects of triples whose predicate is P 
are instances of all of the classes stated by the rdfs:range properties. (In OWL, this is typically thought of as an 
anonymous class representing the intersection of all of the range classes.)

Stereotype and Base Class

«rdfsRange» with base class of UML::Association

Parent

None

Properties

None

Constraints

[1] Applies only to associations between a class with an «rdfsClass» stereotype applied (or any of its children, e.g., 
«owlClass»), and a class with «rdfProperty» applied.

[2] Associations with «rdfsRange» applied are binary.

[3] Associations with «rdfsRange» applied have unidirectional navigation (from the class with the «rdfProperty» 
stereotype applied to the class with the «rdfsClass» stereotype applied).

Graphical Notation

Figure 14.14 - «rdfsRange» Stereotype Notation - Class Notation for RDF Property

14.1.7.5   RDFSsubPropertyOf

Description
rdfs:subPropertyOf is used to specialize RDF properties, similar to class generalization/specialization, and indicates 
that all the instances of the extension of the subproperty are instances of the extension of the super property. See above for 
further discussion and representation options, if used.

Stereotype and Base Class

«rdfsSubPropertyOf» with base class of UML::Generalization

Parent

None
150                 Ontology Definition Metamodel, v1.0



Properties

None

Constraints

[1]  Association classes on both ends of the generalization must be stereotyped «rdfProperty» or «objectProperty» or 
«datatypeProperty», if used with the profile for OWL.

[2]  In OWL DL, an association class stereotyped by «objectProperty» or «datatypeProperty» may specialize a class 
stereotyped by «rdfProperty», but not vice versa.

14.1.8 Containers and Collections

The stereotypes associated with the definitions given in 10.8 (“RDFS Package, Containers and Collections”) are defined 
in Annex A (“Foundation Library (M1) for RDF and OWL”) including definition of container membership properties and 
lists.

14.2 UML Profile for OWL
This section specifies the UML profile for OWL. It is organized loosely on the structure of the OWL metamodel, with 
sections reordered to facilitate understanding and utility.

14.2.1 OWL Profile Package

The following sections specify the set of stereotypes, stereotype properties, and other elements that comprise the UML2 
profile for OWL. As shown in Figure 14.15, the OWL profile package provides the container for the profile and imports 
the «rdf» profile.

Figure 14.15 - Web Ontology Language (OWL) Profile Package

14.2.2 OWL Ontology

Description

An OWL ontology consists of zero or more optional ontology headers (typically at most one), which may include a set of 
ontology properties, such as owl:Imports statements, plus any number of class axioms, property axioms, and facts about 
individuals. 

R D F
< <pr o file> >

(from  org .om g.odm )

O W L
<< pr o fi le>>

(from  org .om g.odm )

Im po rts
Ontology Definition Metamodel, v1.0        151



In a UML representation, we capture some of the header constructs by specializing «rdfDocument». Others are specified 
as ontology and annotation properties, defined below.

Stereotype and Base Class

«owlOntology» with base class of UML::Package

Parent

«rdfDocument»

Properties

None

Constraints

[1] All classes (except association classes) in a package stereotyped by «owlOntology» must be stereotyped by 
«rdfsClass» or by «owlClass» (or an appropriate subclass).

[2] For applications intending to support OWL DL, all classes (except association classes) in a package stereotyped by 
«owlOntology» must be stereotyped by «owlClass» (or one of its subclasses).

14.2.3 OWL Annotation Properties

OWL annotation properties correspond, for the most part, to other stereotype properties defined in RDF or in this profile, 
although users may define their own.

14.2.3.1   OWLAnnotationProperty

Description

«owlAnnotation» represents the class of user-defined annotation properties in OWL (corresponding roughly to 
“OWLAnnotationProperty” on page 81. OWL annotations can be applied to any ontology element (e.g., ontologies, 
classes, properties, individuals).

Stereotype and Base Class

«owlAnnotation» with base class of UML::Class, UML::AssociationClass, UML::Property, and UML::Association

Parent

«rdfProperty»

Properties

None

Constraints

None
152                 Ontology Definition Metamodel, v1.0



14.2.3.2   owl:versionInfo

Description

An owl:versionInfo property generally has a string that provides information about the version of the element to 
which it is applied, for example RCS/CVS keywords. It does not contribute to the logical meaning of the ontology other 
than that given by the RDF(S) model theory.

Although typically used to make statements about ontologies, it may be applied to instance of any OWL construct. For 
example, one could apply an owl:versionInfo property to a class stereotyped by «owlClass», or to an instance of the 
RDFStatement class. 

Stereotype and Base Class

No stereotype; implemented as a UML Property of the stereotype or model library class it describes.

• versionInfo: String [0..*] – the string containing the version information.

Parent

None

Properties

None

Constraints

None

Graphical Representation

In the case of an ontology, with a package stereotyped by «owlOntology» or «rdfDocument», the normal stereotype 
notation can be used, with property values specified in braces under the stereotype label4, as shown in Figure 14.16. 

Figure 14.16 - Representation for versionInfo Applied to an Ontology or RDF Document

14.2.4 OWL Ontology Properties

OWL ontology properties are similar to annotation properties, in that they support annotations on OWL ontologies. The 
«owlOntologyProperty» stereotype can be applied to a property on a package stereotyped by «owlOntology» or 
«rdfDocument», and should be typed by another package that is similarly stereotyped. 

4. The stereotype property follows the clarifications and elaborations of stereotype notation defined in Unified Modeling Language: 
(UML) Superstructure, Profiles chapter, http://www.omg.org/spec/UML..

{  vers ionInfo =  " 1.1" } 
M yOn tology

<<rdfDocument>>
Ontology Definition Metamodel, v1.0        153



OWL provides several built-in ontology properties, and also allows users to define such properties. Users can use some 
discretion in defining ontology properties, using either UML::Property or UML::Constraint as a base class, as appropriate.

14.2.4.1   owl:OntologyProperty

Description

owl:OntologyProperty represents the class of ontology properties in OWL, both built-in and user defined, 
corresponding to Section 11.4.6, “OWLOntologyProperty.”

User-defined ontology properties are properties defined on the «owlOntology» or «rdfDocument» stereotypes, that can 
apply only between packages having these stereotypes.

Stereotype and Base Class

«owlOntologyProperty» with base class of UML::Property and UML::Constraint

Parent

None

Properties

None

Constraints

[1] Applies only to properties of «owlOntology» or «rdfDocument». 

[2] Types of properties stereotyped by «owlOntologyProperty» must be stereotyped by «owlOntology» or 
«rdfDocument».

14.2.4.2   owl:backwardCompatibleWith

Description

owl:backwardCompatibleWith  refers to another ontology, and identifies the specified ontology as a prior version, and 
further indicates that it is backward compatible with it.

Stereotype and Base Class

«backwardCompatibleWith» with base class of UML::Constraint

Parent

None

Properties

None

Constraints

[1] Applies only to constraints between packages stereotyped by «owlOntology» or «rdfDocument».

[2] Classes and properties in the new version that have the same name as classes and properties in the earlier version  
must either be equivalent to or extend those in the earlier versions.
154                 Ontology Definition Metamodel, v1.0



[3] The later version must be logically consistent with the earlier version.

[4] (Semantic) Identifiers in the later version have the same interpretation in the earlier version.

Graphical Representation

Dashed line between two instances with stereotype label, arrowhead towards the earlier version, as shown in Figure 
14.17.

Figure 14.17 - Stereotype Representation for owl:backwardCompatibleWith

14.2.4.3   owl:imports

Description

owl:imports references another OWL ontology containing definitions, whose meaning is considered to be part of the 
meaning of the importing ontology. Each reference consists of a URI specifying from where the ontology is to be 
imported.

Stereotype and Base Class

«owlImports» with base class of UML::PackageImports 

Parent

None

Properties

None

Constraints

[1] Applies only to imports between packages stereotyped by «owlOntology» or «rdfDocument».

Graphical Representation

Dashed line between two instances with stereotype label, arrowhead towards the imported ontology, as shown in Figure 
14.18.

{ versionInfo = "1.1" } 
MyOntology

<<rdfDocument>>
{ versionInfo = "1.2" } 

MyNewOntology

<<rdfDocument>>

<<backwardCompatibleWith>>
Ontology Definition Metamodel, v1.0        155



Figure 14.18 - Stereotype Representation for owl:imports

14.2.4.4   owl:incompatibleWith

Description

owl:incompatibleWith indicates that the containing ontology is a later version of the referenced ontology, but is not 
necessarily backward compatible with it. Essentially, this allows ontology authors to specify that a document cannot be 
upgraded without verifying consistency with the specified ontology.

Stereotype and Base Class

«incompatibleWith» with base class of UML::Constraint

Parent

None

Properties

None

Constraints

[1] Applies only to constraints between packages stereotyped by «owlOntology» or «rdfDocument».

Graphical Representation

Dashed line between two instances with stereotype label, arrowhead towards the earlier version, as shown in Figure 
14.19.

Figure 14.19 - Stereotype Representation for owl:incompatibleWith

{ versionInfo = "1.1" } 
MyOntology

<<rdfDocument>>
AnotherOntology

<<rdfDocument>>

<<owlImports>>

{ versionInfo = "1.1" } 
MyOntology

<<rdfDocument>>
{ versionInfo = "1.2" } 

MyNewOntology

<<rdfDocument>>

<<incompat ibleWith>>
156                 Ontology Definition Metamodel, v1.0



Note: While it might seem reasonable to eliminate the arrowhead in this case, and make the relationship bi-directional, 
all RDF graphs and thus such relationships are unidirectional in RDF, RDF Schema, and OWL. Applications that leverage 
this representation may optionally allow the user to indicate that they want a particular instance of «incompatibleWith» to 
be bidirectional, eliminate the arrowhead, and use a single dashed line; the interpretation of such notation should be two 
instances of «incompatibleWith», however. 

14.2.4.5   owl:priorVersion

Description

owl:priorVersion identifies the specified ontology as a prior version of the containing ontology. This has no meaning 
in the model-theoretic semantics other than that given by the RDF(S) model theory. However, it may be used by software 
to organize ontologies by versions.

Because of the lack of semantics, there is no obvious UML element to reuse or stereotype for this particular OWL 
property. However, assuming that the spirit of this property is similar to though not quite as strong as that of 
«backwardCompatibleWith», the same base class is used.

Stereotype and Base Class

«priorVersion» with base class of UML::Constraint

Parent

None

Properties

None

Constraints

[1] Applies only to constraints between packages stereotyped by «owlOntology» or «rdfDocument».

Graphical Representation

Dashed line between two instances with stereotype label, arrowhead towards the earlier version, as shown in Figure 
14.20.

Figure 14.20 - Stereotype Representation for owl:priorVersion

{ versionInfo = "1.1" } 
MyOntology

<<rdfDocument>>
{ versionInfo = "1.2" } 

MyNewOntology

<<rdfDocument>>

<<priorVersion>>
Ontology Definition Metamodel, v1.0        157



14.2.5 OWL Class Descriptions, Restrictions, and Class Axioms

Classes provide an abstraction mechanism for identifying the common characteristics among a group of resources. Like 
RDF classes, every OWL class is associated with a set of individuals, called the class extension. The individuals in the 
class extension are called the instances of the class. A class has an intensional meaning (the underlying concept) that is 
related but not equal to its class extension. Thus, two classes may have the same class extension, but still be different 
classes, (e.g., classes representing “the morning star” and “the evening star”).

A class description is the term used in [OWL S&AS] for the basic building blocks of class axioms. A class description 
describes an OWL class, either by a class name or by specifying the class extension of an unnamed anonymous class.

OWL distinguishes six types of class descriptions:

1. a class identifier (a URI reference)

2. an exhaustive enumeration of individuals that together form the instances of a class

3. a property restriction

4. the intersection of two or more class descriptions

5. the union of two or more class descriptions

6. the complement of a class description

The first type is special in the sense that it describes a class through a class name (syntactically represented as a URI 
reference). The other five types of class descriptions typically describe an anonymous class by placing constraints on the 
class extension. They consist of a set of RDF triples in which a blank node represents the class being described. This 
blank node has a type property whose value is «owlClass». Note that multiple class descriptions can be applied to the 
same class, however, such that these anonymous classes can ultimately also be named.

Class descriptions of type 2-6 describe, respectively, a class that contains exactly the enumerated individuals (2nd type), 
a class of all individuals that satisfy a particular property restriction (3rd type), or a class that satisfies boolean 
combinations of class descriptions (4th, 5th, and 6th type). Intersection, union, and complement can be respectively seen 
as the logical AND, OR, and NOT operators. The four latter types of class descriptions lead to nested class descriptions 
and can thus in theory lead to arbitrarily complex class descriptions. In practice, the level of nesting is usually limited. 
Stereotypes for OWL class descriptions are given below.

14.2.5.1   OWLClass

Description

owl:Class describes a class through a class name, and corresponds to 11.3.5 (“OWLClass”).

Note: owl:Class is defined as a subclass of rdfs:Class. The rationale for having a separate OWL class construct lies 
in the restrictions on OWL DL (and thus also on OWL Lite), which imply that not all RDFS classes are legal OWL DL 
classes. In OWL Full these restrictions do not exist and therefore owl:Class and rdfs:Class are equivalent in OWL 
Full.

Stereotype and Base Class

«owlClass» with base class of UML::Class
158                 Ontology Definition Metamodel, v1.0



Parent

«rdfsClass»

Properties

• isDeprecated: Boolean [0..1] – provides an additional annotation that indicates a particular class definition is 
deprecated. 

Constraints

None

14.2.5.2   EnumeratedClass

Description

«enumeratedClass» describes a class by enumerating the set of individuals, or UML instance specifications, that are 
members of the class, and corresponds to Section 11.3.2, “EnumeratedClass.”

Stereotype and Base Class

«enumeratedClass» with base class of UML::Class

Parent

«owlClass»

Properties

• isComplete: Boolean [0..1] – indicates whether the set of enumerated individuals is complete, meaning, that this 
provides a complete specification for the class.

Constraints

None

14.2.5.3   RestrictionClass

Description

owl:Restriction reifies a special kind of class. The restriction class is a subtype of the domain of the restricted 
property, and identifies a class specifying exactly the necessary and sufficient conditions that make a particular individual 
a member of that class. It describes an anonymous class, namely a class of all individuals that satisfy the restriction. It can 
be used with other classes in a number of ways, and when paired with exactly one other class, will be either a supertype, 
a subtype, or equivalent (necessary, sufficient, or both). When used in another class, the restriction class is effectively a 
supertype of the containing class, applying the restriction to all individuals of the containing class. 

OWL distinguishes two kinds of property restrictions: value constraints and cardinality constraints. Property restrictions 
can be applied both to datatype properties (properties for which the value is a data literal) and object properties 
(properties for which the value is an individual).

Note: Although restriction classes are typically anonymous, they are not required to be and can be named (via a class ID 
URI reference/name).
Ontology Definition Metamodel, v1.0        159



Stereotype and Base Class

«owlRestriction» with base class of UML::Class

Parent

«owlClass»

Properties

• onProperty: Property [1] – identifies the property to which the restriction applies.

Constraints

[1] (Semantic) Instances of the class are all and only those instances satisfying the restriction.

14.2.5.4   Cardinality Constraints

Description

In OWL, like in RDF, it is assumed that any instance of a class may have an arbitrary number (zero or more) of values 
for a particular property. To make a property required (at least one), to allow only a specific number of values for that 
property, or to insist that a property must not occur, cardinality constraints can be used. OWL provides three constructs 
for restricting the cardinality of properties locally within a class context: owl:maxCardinality, owl:minCardinality, and 
owl:Cardinality. These constructs are analogous to multiplicity in UML, thus the approach taken is for:

• Properties whose initial definition includes the cardinality constraint - simply apply multiplicities as appropriate.

• Inherited properties - redefine the property with new multiplicity.

Value specifications for multiplicities in OWL must be non-negative integer literals. Additionally, isOrdered = false and 
isUnique = true on all RDF and OWL properties, meaning that the values are a set, not a bag.

Stereotype and Base Class

None. UML multiplicities are presented using the standard presentation options defined in section 7.3.32, “Unified 
Modeling Language: Superstructure,” version 2 [UML2].

Parent

None

Properties

None

Constraints

None

Graphical Representation

For inherited properties, show the property with restricted multiplicity in subtype, and using “{redefines <restricted-
property-name> }” at the end of the property entry in a class (can be elided), as shown in Figure 14.21.  
160                 Ontology Definition Metamodel, v1.0



Figure 14.21 - owl:Cardinality - Restricted Multiplicity in Subtype

Alternatively, when unidirectional associations are desirable, cardinality constraints can be represented as shown in Figure 
14.22.

Figure 14.22 - owl:Cardinality - Restricted Multiplicity in Subtype

When class notation for properties is desirable, cardinality constraints can be represented as shown in Figure 14.23.

Figure 14.23 - owl:Cardinality - Restricted Multiplicity in Subtype

Thing

hasColor : Color

<<owlClass>>

SingleColoredThing

hasColor : Color

<<owlClass>>

[1..1]

Thing
<<owlClass>>

SingleColoredThing
<<owlClass>>

Color
<<owlClass>>+hasColor

1..1
+hasColor

{redefines hasColor}

1..1
Ontology Definition Metamodel, v1.0        161



14.2.5.5   owl:allValuesFrom Constraint

Description

The value constraint owl:allValuesFrom is a built-in OWL property that links a restriction class to either a class 
description or a data range. A restriction containing owl:allValuesFrom specifies a class or data range for which all 
values of the property under consideration are either members of the described class, or are data values within the 
specified data range.

Essentially, owl:allValuesFrom is used to redefine the type of a particular property. In effect, this constraint defines a 
subproperty similar to UML property redefinition. 

Stereotype and Base Class

None. Uses UML Generalization and property redefinition, as shown under Graphical Representation, below.   

Note that the domain and/or target (for owl:allValuesFrom) for the subproperty will not always be a direct descendent 
of the superclass that the property is defined on, as it happens to be in the examples.

If the attribute form of representation is used, then “{redefines <parent-class>::<property-name>}” should be given at the 
end (i.e., to the right) of the property entry. The parent class is optional if the property inherits from only one parent. 

Parent

None

Properties

None

Constraints

[1] Property name is not changed in redefinition.

[2] The redefined child class (or data range) must be stereotyped «owlClass» (or «owlDataRange»).

Graphical Representation

Several representation approaches are provided here, in keeping with the representation used for properties in the profile 
for RDF/S. First, we can show the property with restricted type in subtype, by adding “{redefines <restricted-property-
name>}” at the end of the property entry (can be elided), as in Figure 14.24.

Figure 14.24 - Simple Property Redefinition Example For owl:allValuesFrom

BrightColoredThing

hasColor : BrightColor

<<owlClass>>

Thing

hasColor : Color

<<owlClass>>

{ redefines hasColor }
162                 Ontology Definition Metamodel, v1.0



Secondly, we can show the same thing using unidirectional association style properties, as shown in Figure 14.25.

Figure 14.25 - Property Redefinition For owl:allValuesFrom With Unidirectional Associations

An alternative using association classes is shown below.

Figure 14.26 - Property Redefinition For owl:allValuesFrom With Association Classes

In addition to the «rdfsSubPropertyOf» stereotype, in order to facilitate disambiguation, vendors may optionally apply the 
«owlValue» stereotype (defined in section 14.2.5.6) to the association redefining the property (i.e., the association 
representing the restriction), by setting the allValuesFrom property to the class filling the value restriction with a 
multiplicity of 1.

In cases where UML classes are used to represent OWL properties, the option shown in Figure 14.27, may be used.  
Again, vendors may optionally apply the «owlValue» stereotype (defined in section 14.2.5.6) to the association redefining 
the property (i.e., the association representing the restriction).

Color
<<owlClass>>

Thing
<<owlClass>> +hasColor

BrightColoredThing
<<owlClass>>

BrightColor
<<owlClass>>

+hasColor
{redefines hasColor}

Color
<<owlClass>>

Thing
<<owlClass>> +hasColor

BrightColor
<<owlClass>>

BrightColoredThing
<<owlClass>>

+hasColor
{redefines hasColor}

HasColor
<<objectProperty>>

HasBrightColor
<<objectProperty>>

<<rdfsSubPropertyOf>>
Ontology Definition Metamodel, v1.0        163



Figure 14.27 - Property Redefinition for owl:allValuesFrom Using Classes

14.2.5.6   owl:someValuesFrom and owl:hasValue Constraints

Description

Similar to owl:allValuesFrom, owl:someValuesFrom is a built-in OWL property that links a restriction class to 
either a class description or a data range. A restriction containing an owl:someValuesFrom constraint is used to describe 
a class or data range for which at least one value of the property concerned is either a member of the class extension of 
the class description or a data value within the specified data range. In other words, it defines a class of individuals x for 
which there is at least one y (either an instance of the class description or value of the data range) such that the pair (x,y) 
is an instance of P. This does not exclude that there are other instances (x,y') of P for which y' does not belong to the class 
description or data range.

The value constraint owl:hasValue is a built-in OWL property that links a restriction class to a value V, which can be 
either an individual or a data value. A restriction containing an owl:hasValue constraint describes a class of all 
individuals for which the property concerned has at least one value semantically equal to V (it may have other values as 
well).

Again, like owl:allValuesFrom, owl:someValuesFrom and owl:hasValue are used to redefine the type of a 
particular property, similar to UML property redefinition. 

Stereotype and Base Class

A stereotype «owlValue» with base class of UML::Property is applied to properties that are redefined. The stereotype has 
these properties.

Parent

None.

Properties

• allValuesFrom: Class [0..1] – identifies a class stereotyped by «owlClass» or «owlDataRange»

• hasValue: InstanceSpecification [0..*] – identifies the individual value(s) or data value(s)

• someValuesFrom: Class [0..1] – identifies a class stereotyped by «owlClass» or «owlDataRange»
164                 Ontology Definition Metamodel, v1.0



Constraints

[1] Can be applied to properties stereotyped by «rdfProperty», «objectProperty», «datatypeProperty», or any of their 
children, but only to properties that redefine other properties.

[2] The value of the someValuesFrom property must be stereotyped «owlClass» or «owlDataRange».

[3] The value of the allValuesFrom property must be stereotyped «owlClass» or «owlDataRange».

Graphical Representation

The graphical notation for owl:someValuesFrom is the same as the notation given in Section 14.2.5.5 for 
owl:allValuesFrom, with the distinction being the choice of property selected (someValuesFrom in this case). For 
owl:hasValue, one option using the class notation is shown in Figure 14.28, below. Again in this case, use of the 
«owlValue» stereotype, and property hasValue whose value would be the instance specification that is a member of the 
singleton class, Red, is optional.

Figure 14.28 - Property Redefinition for owl:hasValue Using Classes

14.2.5.7   owl:intersectionOf Class Description

Description

owl:intersectionOf links a class to a list of class descriptions, describing an anonymous class for which the class 
extension contains precisely those individuals that are members of the class extension of all class descriptions in the list. 
«intersectionOf» is analogous to logical conjunction.

Stereotype and Base Class

«intersectionOf» with base class of UML::Constraint

Parent

None

Properties

None

Constraints

[1] Applies to generalizations with a common subtype.

[2] All instances that are instances of every super type along generalizations that are stereotyped by «intersectionOf» 
are instances of the subtype.

[3] (Semantic) All instances of the subtype are instances of all of the super types.
Ontology Definition Metamodel, v1.0        165



Graphical Representation

Dashed line between generalization lines with stereotype label, as shown in Figure 14.29.

Figure 14.29 - Example Using owl:intersectionOf

The stereotype is based on UML::Generalization rather than UML::Class, so there can be other supertypes not required by 
the intersection. Use of UML::GeneralizationSet was prohibited in this case, because it requires one supertype – its 
semantics refers to the instances of the subtypes, not the supertypes.

14.2.5.8   owl:unionOf Class Description

Description

owl:unionOf links a class to a list of class descriptions, describing an anonymous class for which the class extension 
contains those individuals that occur in at least one of the class extensions of the class descriptions in the list. 
owl:unionOf is analogous to logical disjunction.

Stereotype and Base Class

No stereotype needed. Use UML::GeneralizationSet with isCovering = true, as shown in Figure 14.30. For consistency 
with the other class descriptions, vendors can also optionally define a «unionOf» stereotype of UML::Constraint, applied 
to UML::Generalization (similar to intersection, above).

Parent

None

Properties

None

Constraints

[1] (Semantic) All instances of the supertype are instances of at least one of the subtypes.

Graphical Representation

Dashed line between generalization lines labeled with “{complete}.”

Person
<<owlClass>>

Tall Thing
<<owlClass>>

Tall Person
<<owlClass>>

<<intersectionOf>>  - - - - - - - - - - - - - - - - - - - 
166                 Ontology Definition Metamodel, v1.0



Figure 14.30 - Example Using owl:unionOf

14.2.5.9   owl:complementOf Class Description

Description

owl:complementOf links a class to precisely one other class, and describes a class for which the extension contains 
exactly those individuals that do not belong to the extension of the other class. owl:complementOf is analogous to 
logical negation: the class extension consists of those individuals that are NOT members of the extension of the 
complement class.

Stereotype and Base Class

«complementOf» with base class of UML::Constraint.

Parent

None

Properties

None

Constraints

[1] Applies to constraints between exactly two classes.

[2] (Semantic). All instances (of owl:Thing) are instances of exactly one of the two classes. 

Graphical Representation

Dashed line between two classes with stereotype label. An arrowhead should be used opposite from the class that will have 
owl:complementOf in XML syntax (since all RDF, RDF Schema, and OWL graphs are unidirectional, by definition). 
Shorthand representation that eliminates the arrowhead may be used within an ontology, but XML production in this case 
should result in two instances of owl:complementOf – one for each “side” of the bidirectional constraint.

Figure 14.31 - Example Using owl:complementOf

Gender
<<owlClass>>

Female
<<owlClass>>

Male
<<owlClass>>

{ complete }        - - - - - - - - - - - - - - - - - - - - - - - - - 

NonHuman
<<owlClass>>

Human Being
<<owlClass>> <<complementOf>>
Ontology Definition Metamodel, v1.0        167



14.2.5.10  owl:disjointWith Class Axiom

Description

owl:disjointWith is a built-in OWL property with a class description as domain and range. Each owl:disjointWith 
statement asserts that the class extensions of the two class descriptions involved have no individuals in common. A class 
axiom may also contain (multiple) owl:disjointWith statements. Like axioms with rdfs:subClassOf, declaring two 
classes to be disjoint is a partial definition: it imposes a necessary but not sufficient condition on the class.

Stereotype and Base Class

«disjointWith» with base class of UML::Constraint, or use disjoint UML generalizations with no stereotype.

Parent

None

Properties

None

Constraints

[1] Applies only to constraints between classes.

[2] (Semantic). An individual can only be a member of one class participating in a particular disjoint set of classes. 

Graphical Representation

Dashed line between two classes with stereotype label. An arrowhead should be used opposite from the class that will have 
«disjointWith» in XML syntax (since all RDF, RDF Schema, and OWL graphs are unidirectional, by definition). Shorthand 
representation that eliminates the arrowhead may be used within an ontology, but XML production in this case should result 
in two instances of «disjointWith» – one for each “side” of the bidirectional constraint.

Figure 14.32 - Example Using owl:disjointWith

In cases where there are multiple participants in the same «disjointWith» class axiom, a constraint note with stereotype 
label and dashed lines to more than one class should be used, as shown in Figure 14.33.

Female
<<owlClass>>

Male
<<owlClass>>

<<disjointWith>>
168                 Ontology Definition Metamodel, v1.0



Figure 14.33 - Example Using owl:disjointWith With Multiple Participants

Alternatively, if the classes have a common supertype, use UML::GeneralizationSet with isDisjoint = true. Representation is 
dashed line between generalization lines labeled with “{disjoint}.”

 

Figure 14.34 - Example Using owl:disjointWith With Common Supertype

14.2.5.11  owl:equivalentClass Class Axiom

Description

owl:equivalentClass is a built-in property that links a class description to another class description. The meaning of 
such a class axiom is that the two class descriptions involved have the same class extension (i.e., both class extensions 
contain exactly the same set of individuals). A class axiom may contain (multiple) owl:equivalentClass statements.

Stereotype and Base Class

«equivalentClass» with base class of UML::Constraint.

Parent

None

Properties

None

Constraints

[1] Applies only to constraints between classes.

Star
<<owlClass>>

Planet
<<owlClass>>

Comet
<<owlClass>>

<<disjointWith>>

CelestialBody
<<owlClass>>

Star
<<owlClass>>

Planet
<<owlClass>>

Comet
<<owlClass>>

       { disjoint }     - - - - - - - - - - - - - - - - - - - - - - - -
Ontology Definition Metamodel, v1.0        169



[2] (Semantic). The classes have exactly the same instances. 

Graphical Representation

Dashed line between two classes with stereotype label. An arrowhead should be used opposite from the class that will have 
owl:equivalentClass in XML syntax. Shorthand notation that eliminates the arrowhead may be used within an ontology, but 
XML production in this case should result in two instances of «equivalentClass» – one for each “side” of the bidirectional 
constraint.

Figure 14.35 - Example Using owl:equivalentClass

Alternatively two UML::Generalizations may be used, again within a given ontology, if such circular definitions are 
supported by the tool (i.e., class a generalizes class b and vice versa). 

In cases where there are multiple participants in the same «equivalentClass» class axiom, a constraint note with stereotype 
label and dashed lines to more than one class should be used, similarly to the example used for «disjointWith».

14.2.6   Properties

OWL distinguishes between two main categories of properties:

• Object properties link individuals to individuals.

• Datatype properties link individuals to data values.

Note: OWL also has the notion of annotation properties (owl:AnnotationProperty) and ontology properties 
(owl:OntologyProperty).

A property axiom defines characteristics of a property. In its simplest form, a property axiom just defines the existence of 
a property. Often, property axioms define additional characteristics of properties. OWL supports the following constructs 
for property axioms:

• RDF Schema constructs: rdfs:subPropertyOf, rdfs:domain and rdfs:range

• relations to other properties: owl:equivalentProperty and owl:inverseOf

• global cardinality constraints: owl:FunctionalProperty and owl:InverseFunctionalProperty

• logical property characteristics: owl:SymmetricProperty and owl:TransitiveProperty

The relevant RDF Schema concepts are defined in Section 14.1.7, “Properties in RDF;” global cardinality constraints and 
logical property characteristics are represented as UML properties on either «owlProperty» or «objectProperty», as given 
below. 

Human Being
<<owlClass>>

Person
<<owlClass>><<equivalentClass>>
170                 Ontology Definition Metamodel, v1.0



14.2.6.1   owl:DatatypeProperty

Description

A datatype property is defined as an instance of the built-in OWL class owl:DatatypeProperty. The built-in class, 
owl:DatatypeProperty, is a subclass of the built-in class rdf:Property. 

Note:  In OWL Full, object properties and datatype properties are not disjoint. Because data values can be treated as 
individuals, datatype properties are effectively subclasses of object properties. In OWL Full owl:ObjectProperty is 
equivalent to rdf:Property. In practice, this mainly has consequences for the use of 
owl:InverseFunctionalProperty.

Stereotype and Base Class

«datatypeProperty» with base class of UML::Class, UML::AssociationClass, UML::Property, and UML::Association

Parent

«owlProperty»

Properties

None

Constraints

[1] (Semantics) The values of a property stereotyped by «datatypeProperty» must be either strings that can be 
represented as UML::LiteralString stereotyped by «rdfsLiteral», values corresponding to the enumerated literals 
represented as a UML::Enumeration stereotyped by «dataRange», or instances of a UML::Class stereotyped by 
«rdfsDatatype» (i.e., one of the XML Schema Datatypes or a built-in datatype).

14.2.6.2 owl:ObjectProperty

Description

An object property is defined as an instance of the built-in OWL class owl:ObjectProperty. The built-in class, 
owl:ObjectProperty, is a subclass of the built-in class rdf:Property.

If a property is declared to be inverse-functional, then the object of a property statement uniquely determines the subject 
(some individual). More formally, if we state that P is an owl:InverseFunctionalProperty, then this asserts that a 
value y can only be the value of P for a single instance x, i.e., there cannot be two distinct instances x1 and x2 such that 
both pairs (x1, y) and (x2, y) are instances of P. See section 4.3.2 of [OWL Reference] for additional detail, including an 
explanation of the notion of global cardinality constraints and use of owl:InverseFunctionalProperty to represent 
keys in the context of a relational database.

A symmetric property is a property for which holds that if the pair (x, y) is an instance of P, then the pair (y, x) is also an 
instance of P.

When one defines a property P to be a transitive property, this means that if a pair (x, y) is an instance of P, and the pair 
(y, z) is also instance of P, then we can infer the pair (x, z) is also an instance of P.

Stereotype and Base Class

«objectProperty» with base class of UML::Class, UML::AssociationClass, UML::Property, and UML::Association
Ontology Definition Metamodel, v1.0        171



Parent

«owlProperty»

Properties

• isInverseFunctional: Boolean [0..1] – when true, indicates that the property in question is inverse functional.

• isSymmetric: Boolean [0..1] – when true, indicates that the property in question is symmetric.

• isTransitive: Boolean [0..1] – when true, indicates that the property in question is transitive.

Constraints

[1] The type of a property stereotyped by «objectProperty» must be a UML::Class stereotyped by «owlClass».

[2] In OWL Full, the isInverseFunctional, isSymmetric, and isTransitive properties apply only to properties stereotyped 
by «owlProperty», «objectProperty», or «datatypeProperty».

[3] In OWL DL, the isInverseFunctional, isSymmetric, and isTransitive properties apply only to properties stereotyped 
by «objectProperty».

[4] The type of a property with isSymmetric set to true must be the same as the class on which it is defined.

[5] In OWL DL, no local or global cardinality constraints can be declared on a property with isTransitive set to true, or 
on any of its super properties, nor on its inverse or on any super properties of its inverse.

14.2.6.3   owl:Property

Description

The notion of an owl:Property, as defined in the metamodel and redefined here in the profile is an abstract class.

A functional property is a property that can have only one (unique) value y for each instance x, i.e., there cannot be two 
distinct values y1 and y2 such that the pairs (x, y1) and (x, y2) are both instances of this property. Both object properties and 
datatype properties can be declared as “functional,” thus, we introduce it at owl:Property.

Stereotype and Base Class

«owlProperty» with base class of UML::Class, UML::AssociationClass, UML::Property, and UML::Association

Parent

«rdfProperty»

Properties

• isDeprecated: Boolean [0..1] – indicates a particular property definition is deprecated. 

• isFunctional: Boolean [0..1] – when true, indicates that the property in question is functional. 

Constraints

[1] The isFunctional property applies only to properties stereotyped by «owlProperty», «objectProperty», or 
«datatypeProperty».
172                 Ontology Definition Metamodel, v1.0



14.2.6.4   owl:equivalentProperty Relation

Description

owl:equivalentProperty can be used to state that two properties have the same property extension. Syntactically, 
owl:equivalentProperty is a built-in OWL property with rdf:Property as its domain and range.

Note: Property equivalence is not the same as property equality. Equivalent properties have the same “values” (i.e., the 
same property extension), but may have different intensional meaning (i.e., denote different concepts). Property equality 
should be expressed with the owl:sameAs construct. As this requires that properties are treated as individuals, such 
axioms are only allowed in OWL Full.

Stereotype and Base Class

«equivalentProperty» stereotype of UML::Constraint between classes stereotyped as «rdfProperty», «owlProperty», 
«objectProperty», or «datatypeProperty».

Parent

None

Properties

None

Constraints

[1] Applies only to constraints between properties with «rdfGlobal» applied, or properties on the class at which they 
are introduced.

[2] (Semantic) Instances of equivalent properties (property extensions, or sets of tuples) are the same. 

Graphical Representation

Dashed line between two association classes with stereotype label. An arrowhead should be used opposite from the 
association class that will have «equivalentProperty» in XML syntax. Shorthand notation that eliminates the arrowhead may 
be used within an ontology, but XML production should result in two instances of «equivalentProperty» – one for each 
“side” of the bidirectional constraint.

In cases where there are multiple participants in the same «equivalentProperty» relation, a constraint note with stereotype 
label and dashed lines to more than one association class representing the property should be used, similarly to the example 
for «disjointWith».

14.2.6.5   owl:inverseOf Relation

Description

OWL properties have a direction, from domain to range. In practice, people often find it useful to define relations in both 
directions: persons own cars, cars are owned by persons. owl:inverseOf can be used to define such an inverse relation 
between properties.

Syntactically, owl:inverseOf is a built-in OWL property with owl:ObjectProperty as its domain and range. An 
OWL axiom of the form  P1 owl:inverseOf P2 asserts that for every pair (x, y) in the property extension of P1, there 
is a pair (y, x) in the property extension of P2, and vice versa. Thus, owl:inverseOf is a symmetric property.
Ontology Definition Metamodel, v1.0        173



Stereotype and Base Class

«inverseOf» with base class of UML::Association, or use bidirectional associations with no stereotype.

Parent

None

Properties

None

Constraints

[1] Applies only to associations with «rdfGlobal» applied, or to properties on the class at which they are introduced.

[2] Applies only to binary, unidirectional associations.

[3] (UML) A property cannot be an inverse of itself (use the isSymmetric property).

Graphical Representation

We describe several options for modeling/representing inverses in UML. 

A.  The first is to use a simple association with properties as ends, i.e., a line between classes with properties on the 
      ends closest to their ranges, for example, as shown in Figure 14.36.

Figure 14.36 - Using owl:inverseOf With Bidirectional Representation

Additional constraint if this approach is taken:

[4] (UML) A property can have at most one inverse.

B.   Alternatively, one could use an «inverseOf» stereotype of UML::Constraint between association classes for 
       binary, unidirectional associations, as shown in Figure 14.37. An arrowhead should be used opposite from the 
       association class that will have owl:inverseOf in XML syntax. Shorthand notation that eliminates the  
       arrowhead may be used within an ontology, but XML production should result in two instances of  
        «inverseOf» – one for each “side” of the bidirectional constraint.

Male
<<owlClass>>

Female
<<owlClass>>+brotherOf+sisterOf
174                 Ontology Definition Metamodel, v1.0



Figure 14.37 - Using owl:inverseOf Between Association Classes

C. A third notational option would be to use a stereotype «inverse» of a UML::Property with a property:

OF of type UML::Property

Using a similar representation to the approach taken in 14.2.5.6 (“owl:someValuesFrom and owl:hasValue Con-
straints”), put before the property name: “«inverse» {of = <property-name>, <property-name>}”.

Additional constraint if this approach is taken:

[5] Value of OF property must refer to a property with «rdfGlobal» applied, or to properties on the class at which they 
were introduced.

14.2.7 Individuals

Individuals are defined with individual axioms (also called “facts”). These include:

• Facts about class membership and property values of individuals

• Facts about individual identity

Many languages have a so-called “unique names” assumption: different names refer to different things in the world. On 
the web, such an assumption is not possible. For example, the same person could be referred to in many different ways 
(i.e., with different URI references). For this reason OWL does not make this assumption. Unless an explicit statement is 
being made that two URI references refer to the same or to different individuals, OWL tools should in principle assume 
either situation is possible.

OWL provides three constructs for stating facts about the identity of individuals:

• owl:sameAs is used to state that two URI references refer to the same individual.

• owl:differentFrom is used to state that two URI references refer to different individuals

• owl:AllDifferent provides an idiom for stating that a list of individuals are all different.

brotherOf
<<objectProperty>>

sisterOf
<<objectProperty>>

Female
<<owlClass>>

Male
<<owlClass>>

+brotherOf

+sisterOf

<<inverseOf>>
<<inverseOf>>
Ontology Definition Metamodel, v1.0        175



14.2.7.1   Class Membership and Property Values of Individuals

Description

Many facts typically are statements indicating class membership of individuals and property values of individuals. 
Individual axioms need not necessarily be about named individuals: they can also refer to anonymous individuals.

Stereotype and Base Class

«owlIndividual» with a base class of UML::InstanceSpecification, typed by a class having the properties desired for the 
individual. The class may be stereotyped by «singleton» to indicate it is for a specific individual5. Classes stereotyped by 
«singleton» are not translated to OWL, and their properties appear in OWL as properties of the individual. 

Parent

None

Properties

None

Constraints

[1] Classes stereotyped by «singleton» have exactly one instance each. 

[2] The instance specification stereotyped by «owlIndividual» has only one value, i.e., it specifies a single individual.

Graphical Representation

Instance specifications use the same symbol as classes, but their names are underlined, and have a colon separating the 
instance name from the class name. Singleton classes can be anonymous, omitted from the representation, and generated 
by tools. Instances of anonymous classes show nothing after the colon. 

14.2.7.2   owl:sameAs Relation

Description

owl:sameAs links an individual to an individual, indicating that two URI references actually refer to the same thing: the 
individuals have the same “identity.” owl:sameAs statements are often used in defining mappings between ontologies.

Additionally, in OWL Full, where a class can be treated as instances of (meta)classes, owl:sameAs can be used to define 
class equality, thus indicating that two concepts have the same intensional meaning.

Stereotype and Base Class

«sameAs» with base class of UML::Constraint. 

Parent

None

Properties

None

5. UML supports individuals without classes and properties on such individuals, for tools that choose to support it. 
176                 Ontology Definition Metamodel, v1.0



Constraints

     [1]   Applies only to constraints between instance specifications, or for modeling OWL Full, between instances or 
 between classes. 

Graphical Representation

Dashed line between two instances (or classes) with stereotype label. An arrowhead can be used opposite from the 
instance (or class) that will have «sameAs» in XML syntax.

Figure 14.38 - Using owl:sameAs Between Instances

Constraint note with stereotype label and dashed lines to more than one instance (or class - translates to multiple 
«sameAs» statements). 

Figure 14.39 - Using owl:sameAs Between Instances

14.2.7.3   owl:differentFrom Relation

Description

The built-in owl:differentFrom property links an individual to an individual, indicating that two URI references refer 
to different individuals.

Stereotype and Base Class

«differentFrom» with base class of UML::Constraint. 

Parent

None

Properties

None

Constraints
     [1] Applies only to constraints between instance specifications. 

Shaggy : Dog Our Dog : Dog<<sameAs>>

Shaggy : Dog Our Dog : Dog Hey You : Dog

<<sameAs>>
Ontology Definition Metamodel, v1.0        177



Graphical Representation

Dashed line between two instances with stereotype label. An arrowhead can be used opposite from the instance that will 
have «differentFrom» in XML syntax.

Figure 14.40 - Using owl:differentFrom Between Instances

Constraint note with stereotype label and dashed lines to more than one instance (translates to multiple «differentFrom» 
statements). 

Figure 14.41 - Using owl:differentFrom Between Instances

14.2.7.4   owl:AllDifferent Construct

Description

For ontologies in which the unique-names assumption holds, the use of owl:differentFrom is likely to lead to a large 
number of statements, as all individuals have to be declared pairwise disjoint. For such situations OWL provides a special 
idiom in the form of owl:AllDifferent. owl:AllDifferent is a special built-in OWL class, for which the property 
owl:distinctMembers is defined, which links an instance of owl:AllDifferent to a list of individuals. The intended 
meaning of such a statement is that all individuals in the list are all different from each other.

Stereotype and Base Class

«allDifferent» with base class of UML::Constraint. 

Parent

None

Properties

None

Constraints

     [1] Applies only to constraints between instance specifications. 

Shaggy : Dog Lassie : Dog<<differentFrom>>

Shaggy : Dog Lassie : Dog Goofy : Dog

<<differentFrom>>
178                 Ontology Definition Metamodel, v1.0



Graphical Representation

Constraint note with stereotype label and dashed lines to more than one instance. 

Figure 14.42 - Using owl:AllDifferent Between Instances

14.2.7.5   Individual Property Values

Description

In RDF, RDF Schema and OWL properties of individuals are accessed essentially through the triples (or statements), 
where the individual is the subject of the triple. In this profile, while we have optionally provided explicit access to the 
elements of the triple in a way that identifies the subject for this purpose, we also provide a more intuitive representation 
from a UML perspective.

Stereotype and Base Class

No stereotype, use UML::Slot to represent properties on individuals.

Parent

None

Properties

None

Constraints

     [1] Values must conform to constraints on the property, such as type and multiplicity.  

Graphical Representation

Put values after equal sign at end of property entry in instance. 

14.2.8 Datatypes

OWL allows three types of data range specifications:

• An RDF datatype specification.

• The RDFS class rdfs:Literal.

• An enumerated datatype, using the owl:oneOf construct.

Shaggy : Dog Lassie : Dog Goofy : Dog

<<allDifferent>>
Ontology Definition Metamodel, v1.0        179



OWL makes use of the RDF datatyping scheme, which provides a mechanism for referring to XML Schema datatypes. 
Data values are instances of the RDF Schema class rdfs:Literal. Datatypes are instances of the class 
rdfs:Datatype.

The RDF Semantics document recommends use of a subset of the simple built-in XML Schema datatypes. The set of 
XML Schema datatypes that are allowable for use in OWL DL are given in the model library provided in Annex A.

Note: It is not illegal, although not recommended, for applications to define their own datatypes by defining an instance 
of rdfs:Datatype. Such datatypes are “unrecognized,” but are treated in a similar fashion as “unsupported datatypes.”

14.2.8.1   Enumerated Data Values

Description

In addition to the RDF datatypes, OWL provides one additional construct for defining a range of data values, namely an 
enumerated datatype, where the enumerated values are the enumeration literals (a kind of instance specification) of the 
enumeration.

In OWL, this datatype format makes use of the owl:oneOf construct that is also used for describing an enumerated class. 
In the case of an enumerated datatype, the subject of owl:oneOf is a blank node of class owl:DataRange and the object 
is a list of literals.

Stereotype and Base Class

«dataRange» with base class of UML::Enumeration

Parent

None

Properties

None

Constraints

None

Graphical Representation

Use UML enumeration notation. 
180                 Ontology Definition Metamodel, v1.0



15 The Topic Map Profile

This chapter defines a UML2 profile to support the usage of UML notation for the modeling of Topic Maps.

Note that the structure of Topic Maps differs considerably from UML, making the profiles somewhat misleading. UML 
specifies a class structure, with instances specified by a generic instances model. Topic Map constructs are largely at the 
individual level, in some cases gathered into classes via a type association.

In particular, the stereotype Topic extends UML Class. An instance of Class is itself a class, while an instance of Topic in 
the TM metamodel is generally not, although some instances of Topic serve as types for others. The profile only models 
instances of Topic that are types. 

Further, the stereotype Association extends UML Association. An instance of UML Association specifies a set of tuples. 
An instance of TM Association specifies a particular link among particular individual instances of Topic. However, a TM 
Association is linked to an instance of Topic that serves as its type. So the stereotype models the instance of Topic that is 
the type of the TM Association.

15.1 Stereotypes

15.1.1 Topic Map

The Topic Map stereotype is defined as an extension of the UML Package base meta-class, as shown in Figure 15.1.

Figure 15.1 - Topic Map Stereotype

Applying this stereotype to a package requires that the UML constructs contained within the package be interpreted 
according to this profile definition. 

Tagged Values

• itemIdentifiers - used to specify the storage location of the Topic Map, it must be a URI String.

15.1.2 Topic

The Topic stereotype extends the UML Class meta-class, as shown in Figure 15.2. Its application indicates that the UML 
Class is interpreted as a Topic that has been declared as a type, which takes other instances of Topic as instances.

To p ic Ma p
<<s tereoty pe>>

Pac k ag e
<<m etac lass >><<ex tens ion>>
Ontology Definition Metamodel, v1.0        181



Figure 15.2 - Topic Stereotype

Tagged Values

• subjectIdentifiers - used to reference the Topic’s subjectIdentifier, it must be a URI string.

• subjectLocators - used to reference the Topic’s subjectLocators, it must be a URI string.

• itemIdentifiers - used to specify the storage location of the Topic Map, it must be a URI String.

15.1.3 Association

The association stereotype extends the UML Association meta-class, as shown in Figure 15.3. Its application indicates the 
UML Association is interpreted as a Topic Map Association. Both binary and n-ary associations are supported.

Note that the Topic Maps Association construct is an individual-level concept. The stereotype represents the topic that is 
the type of a set of instances of Association. An association in UML includes a set of ends that are instances of Property 
with associated Types. So, each instance of the Topic Map Association must be associated with the same pattern of 
instances of AssociationRole that have the same corresponding instances of Topic as type, corresponding to the UML 
association end properties. Further, each instance of Topic linked to an AssociationRole must be in a type-instance 
relationship with an instance of Topic corresponding to the UML type of the corresponding UML property. 

Figure 15.3 - Association Stereotype

Tagged Values

• itemIdentifiers - used to specify the storage location of the Association, it must be a URI String.

15.1.4 Characteristics

The abstract class Characteristic is not a concept from [TMDM] nor is it used in the ODM Topic Maps metamodel. It is 
used here to define a shared set of stereotypes that extend the UML Properties meta-class, as shown in Figure 15.4. All 
the metaclasses extending Characteristics are individual-level concepts, so that the stereotypes all represent topics that are 
either the type or scope of collections of instances. 

Tagged Values

• name - used to specify the name of the Characteristic. Must be a  String that can be a URI. 

• datatype - used to specify the datatype of the Characteristic. Must be a  String. 

• value - used to specify the value of the Characteristic. Must be a  String. 

C las s
<<m etac las s >>Topic

s ub jec tLoc a to rs  :  s t ring
s ub jec t Ident if ie rs  :  s t ring

<<s te reo ty pe>>
<<ex tens ion>>

U ML As soc iat ion
<<m etac lass>>

Ass oci at io n
<<s tereoty pe>> << ex te ns i on> >
182                 Ontology Definition Metamodel, v1.0



Figure 15.4 - Characteristic Stereotype

AssociationRole

The AssociationRole stereotype is used to indicate a UML Association owned end Property is a Topic Map 
AssociationRole. The owning UML Association must be stereotyped using the Association stereotype. The stereotype 
represents the instance of Topic that is the type of a collection of instances of AssociationRole.

Occurrence

The Occurrence stereotype may be applied to either a UML Attribute or a UML Association owned-end Property. Values 
of this property are interpreted as Topic Map Occurrence values. The property itself represents the topic that is the type 
of the collection of instances of Occurrence.

TopicName

The TopicName stereotype may be applied to char array or string typed attributes to indicate that values of the attribute 
represent Topic Names. The property itself represents the topic that is the type of the collection of instances of 
TopicName. The TopicName stereotyped Property may have multiple values for the tagged value ‘variant’ indicating a set 
of Variant stereotype Properties that are associated with this TopicName.

Variant

The Variant stereotype may be applied to any UML Property, including attributes and association ends, to indicate these 
values represent Variants. The property itself represents the topic that is the scope of the collection of instances of Variant. 
The Variant stereotype Property is required to have a tagged value ‘parent’ linking the variant to a parent TopicName.

15.2 Abstract Bases

Several abstract base meta-classes are defined in the profile. The purpose is to define shared tagged values for sets of 
stereotype meta-classes.

Charac teris tic
<<stereoty pe>>

Prop erty
<<m etac lass>><<extens ion>>

Assoc iationR ole
<<stereoty pe>>

Occurrence

na me : s tring
da taty pe  : strin g

<<stereoty pe>>

TopicN am e

v alue : String

<< stereoty pe>>

Variant

v al ue : s tring
da taty pe  :  String

<<stereoty pe>>
Ontology Definition Metamodel, v1.0        183



15.2.1 TopicMapElement

All stereotypes in the profile are specializations of the TopicMapELement abstract base class, as shown in Figure 15.5. 
This class provides all profile stereotypes with the ‘itemIdentifiers’ tagged value.

Figure 15.5 - TopicMapElement Stereotypes

Tagged Values

• itemIdentifiers - used to optionally provide an application specific unique identifier to the stereotyped elements; it 
must be a URI String.

15.2.2 Scoped Element

Some stereotyped elements in a profiled model, as shown in Figure 15.6, may have ‘scope’ tagged values that define 
when this scoped element is applicable.

Figure 15.6 - ScopedElement Stereotypes

Tagged Values

• scope – a set of references to Topic Stereotyped elements that define the scope of the element.

15.2.3 TypedElement

Some stereotyped elements in the profiled model, as shown in Figure 15.7, may have a ‘type’ tagged value. This value 
references a Topic stereotyped class that defines the general nature of the owning element.

TopicMapCons truct

item Identifiers  : s tring

C ha ra cte ristic
<< ste re otyp e> >

TopicMap
<<stereotype>>

As so ciati on
<<stereotype>>

Topic
<< ste re otyp e> >

Occurrence
<<stereotype>>

ScopedElement

scope : Topic

TopicName
<<stereotype>>

Variant
<<stereotype>>

Association
<<stereotype>>
184                 Ontology Definition Metamodel, v1.0



Figure 15.7 - TypedElement Stereotypes

Tagged Values

• type – a reference to a Topic stereotyped element that is the type of this element.

15.3 Example

Figure 15.8, show an example profile applied to a simple UML model of:

• A Personal Car is a Car, which may be owned by a Person.

• A Car is a Vehicle, which may have a Color.

• Carl is a person that owns one Personal Car that is red and another that is blue.

O ccu rre n ce
<<ste re o typ e >>

T o p i cNa m e
<<ste re o typ e >>

A sso cia ti o n
<<ste re o typ e >>

T yp e d E le m e n t

typ e  : T o p i c

A sso cia tio n Ro le
<<ste re o typ e >>
Ontology Definition Metamodel, v1.0        185



Figure 15.8 - Example Profile

<< topic >>

Vehicle

<< topic >>

Car

<< topic >>

PersonalCar

<< topic >>

Color

<< topic >>

Person

owned+

owner+

ownership

<< association >>

isColor+

 ColorOf+

 hasColor

<< association >>

 

Carl : Person 

Blue : C olor 

R ed : C olor CarlsR edCar : PersonalC ar 

CarlsBlueCar : PersonalCar 
186                 Ontology Definition Metamodel, v1.0



16 Mapping UML to OWL

16.1 Introduction

This chapter provides an informative comparison between UML and the mandated ontology representation language 
OWL. It compares the features of OWL Full (as summarized in OWL Web Ontology Language Overview [OWL OV]) 
with the features of UML 2.0 [UML2]. It first looks at the features the two have in common, although sometimes 
represented differently, then reviews the features that are prevalent in one but not the other. Little attempt is made to 
distinguish the features of OWL Lite or OWL DL from those of OWL Full. This overview also ignores secondary features 
such as headers, comments, and version control. In the features in common, a sketch is given of the translation from a 
model expressed in UML to an OWL expression. In several cases, there are alternative ways to translate UML constructs 
to OWL constructs. This chapter selects a particular way in each case, but the translation is not intended to be normative. 
In particular applications, other choices may be preferable.

This chapter also includes informative formal mappings from UML to OWL and from OWL to UML, both expressed in 
QVT [MOF QVT].

UML models are defined within a larger meta-modeling framework standardized by OMG. This framework defines a 
series of metalevels for UML:

• M3 is the MOF, the universal modeling language in which modeling systems are specified.

• M2 is the model of a particular modeling system. The UML metamodel is an M2 construct, as it is specified in the M3 
MOF. 

• M1 is the model of a particular application represented in a particular modeling system. The UML Class diagram 
model of an order entry system is an M1 construct expressed in the M2 metamodel for the UML Class diagram.

• M0 is the population of a particular application. The population of a particular order entry system at a particular time is 
an M0 construct.
Ontology Definition Metamodel, v1.0        187



16.2 Features in Common (More or Less)

16.2.1 UML Kernel

Figure 16.1 - Key Aspects of UML Class Diagram

The formal structure of UML is quite different from OWL. What we are trying to do is to understand the relationship 
between an M1/M0 model in UML and the equivalent model in OWL, so we need to understand how the M1 model is 
represented in the M2 structure shown. First, a few observations from Figure 16.1.

• Most of the content of a UML model instance is in the M1 specification. The M0 model can be anything that meets the 
specification of the M1 model.

• There is no direct linkage between Association and Class. The linkage is mediated by Property. 

• A Property is a structural feature (not shown), which is typed. The M1 model is built from structural features.

• Both Class and Association are types.

• A class can have properties that characterize instances of the class.

• A property may or may not be owned by a class. A property may be either navigable or not navigable. Associations 
ends are properties.

It will help if we represent a simple M1 model in this structure (Figure 16.2).

Figure 16.2 - Simple M1 Model

Association

Generalization

Classifier
+general

+specific

Type

Class

Property

0..1

2..n

0..1

+memberEnd
2..n

0..1

n

0..1

+ownedEnd
n

0..1

+type

0..1

n

0..10..1

+ownedAttribute
n

C o u rs e

c o d e
d e s c r ip t io n
N u m E n ro l le d

S t u d e n t

ID
n a m e

e n ro l l e d
188                 Ontology Definition Metamodel, v1.0



The properties with their types are listed in Table 16.1. 

The classes are: Course, Student.

Classes are represented by sets of ownedAttribute properties.

Associations are: enrolled

The association can be modeled in a number of different ways, depending on how classes are implemented. If classes are 
implemented as in Table 16.2, one way is as the disjoint union of the owned attributes of the two classes.

But there are other ways to implement a class. If it is known that the property code identifies instances of Course and that 
the property ID identifies instances of Student, then an alternative implementation of enrolled is shown below:

In this case, the properties code and ID would be of type Course and Student respectively.

Table 16.1 - Properties and Types in Simple Model

Property Type

code CourseIdentifier 

description string 

NumEnrolled integer

ID StudentIdentifier

name string

Table 16.2 - Classes and Owned Properties in Simple Model

Class ownedAttribute Properties

Course code, description, NumEnrolled

Student ID, name

Table 16.3 - Implementation of Association in Simple Model

Association Implementation

enrolled code, description, NumEnrolled, ID, name

Table 16.4 - Alternative Implementation of Association in Simple Model

Association Implementation

enrolled code, ID
Ontology Definition Metamodel, v1.0        189



16.2.2 Class and Property - Basics

Both OWL and UML are based on classes. A class in OWL is a set of zero or more instances. A class in UML is a more 
general construct, but one of its uses is as a set of instances. The set of instances associated at a particular time with a 
class is called the class’ extent. There are subtle differences between OWL classes and UML classes that represent sets.

In UML the extent of a class is a set of zero or more instances of M0 objects. (Instances may be specified at the M1 level 
in a model library, but they specify possibly several M0 objects.) An instance consists of a set of slots each of which 
contains a value drawn from the type of the property of the slot. The instance is associated with one or more classifiers. 
An instance of the class Course might be as shown in Table 16.5.

In OWL, the extent of a class is a set of individuals identified by URIs. Individual is defined independently of classes. 
There is a universal class Thing whose extent is all individuals in a given OWL model, and all classes are subclasses of 
Thing. The main difference between UML and OWL in respect of instances is that in OWL an individual may be an 
instance of Thing and not necessarily any other class, so could be outside the system in a UML model. It is of course 
possible to include a universal class in an M1 model library, but the concept is central to OWL.

An OWL class is declared by assigning a name to the relevant type. For example:

<owl:Class rdf:ID=”Course”/>

An individual is at bottom an RDFS resource, which is essentially a name, so the individual INFS3101 will be declared 
with something like

<owl:Thing rdf:ID=“INFS3101”/>

Relationships among classes in OWL are called properties. That the class course has the relationship with the class 
student called enrolled, which was represented in the UML model as the association enrolled, is represented in OWL as a 
property.

<owl:ObjectProperty rdf:ID = “enrolled”/>

Properties are not necessarily tied to classes. By default, a property is a binary relation between Thing and Thing.

So, in order to translate the M1 model of Figure 16.2 to OWL, UML Class goes to owl:Class. 

The relationships among classes represented in OWL by owl:ObjectProperty and owl:DatatypeProperty come from two 
different sources in the UML model. One source is the M2 association ownedAttribute between Class and Property, which 
generates the representation of a class as a bundle of owned attributes as in Table 16.2. An M1 instance of Class 
ownedAttribute Property would translate as properties whose domain is Class and whose range is the type of Property. 

Table 16.5 - Example Course Instance

Classifier code description NumEnrolled

Course INFS3101 Ontology and the Semantic Web 0

Table 16.6 - Simple Model Classes Translated to OWL 

Class OWL equivalent

Course <owl:Class rdf:ID="Course"/> 

Student <owl:Class rdf:ID="Student"/>
190                 Ontology Definition Metamodel, v1.0



The UML ownedAttribute instance would translate to owl:ObjectProperty if the type of Property were a UML Class, and 
owl:DatatypeProperty otherwise. The translation of Table 16.2 is shown in Table 16.7. Note that UML ownedAttribute M2 
associations are distinct, even if ownedAttributes have the same name associated with different classes. The owl property 
names must therefore be unique. One way to do this is to use a combination of the class name and the owned property 
name. Note also that since instances of ownedAttribute are always relationships among types, the equivalent OWL 
properties all have domain and range specified.

An alternative way to give domain and range to OWL properties is to use restriction to allValuesFrom the range class 
when the property is applied to the domain class. This is probably a more natural OWL specification. However, since all 
OWL properties arising from a UML model are distinct, the method employed in this chapter is adequate. Should a 
translation of a UML model be intended as a base for further development in OWL, an appropriate translation can be 
employed (see Section 16.3).

Note that the translation in Table 16.7 assumes that a single name is an identifier for instances of the corresponding class. 
This is not always true. That is there are cases in which a relational database implementation would use a compound key 
to identify an instance of a class. Since OWL individuals are always unitary names, the translation of the UML class 
would construct a unitary name from the values of the individual properties. For example, if the association enrolled were 
treated as a class (UML association class), its representing property might be a concatenation of Course.code and 
Student.id, so that the link for student 1234 enrolled in course INFS3101 might be translated to an OWL individual with 
name a globalized equivalent of 1234.INFS3101. Alternatively, a system-defined name could be assigned, linked to each 
name in the compound key by system-defined properties.

Table 16.7 - Simple Model Associations Translated to OWL 

Class Owned 
property

Type of 
owned 
property

OWL equivalent

Course code CourseID <owl:ObjectProperty rdf:ID="CourseCode">
<rdfs:domain rdf:resource="Course"/>
<rdfs:range rdf:resource="CourseID"/>

</owl:ObjectProperty>

description string <owl:DatatypeProperty rdf:ID="CourseDescription">
<rdfs:domain rdf:resource="Course"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

Num
Enrolled

integer <owl:DatatypeProperty rdf:ID="CourseEnrolled">
<rdfs:domain rdf:resource="Course"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#integer"/>

</owl:DatatypeProperty> 

Student ID StudentIdent <owl:ObjectProperty rdf:ID="StudentID">
<rdfs:domain rdf:resource="Student"/>
<rdfs:range rdf:resource="StudentIdent"/>

</owl:ObjectProperty>

name string <owl:DatatypeProperty rdf:ID="StudentName">
<rdfs:domain rdf:resource="Student"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>
Ontology Definition Metamodel, v1.0        191



The second source of owl properties in a UML M1 model is the M1 population of the M2 class association. A binary 
UML association translates directly to an owl:ObjectProperty. The translation of Table 16.4 is given in Table 16.8. Note 
that since associations in UML are always between types, the OWL property always has domain and range specified. If 
the association name occurs more than once in the same model, it must be disambiguated in the OWL translation, for 
example by concatenating the member names to the association name.

Both languages support the subclass relationship (OWL rdfs:subClassOf, UML generalization). Both also support 
subproperties (UML generalization of association or meta-associations among properties like subsetting or redefining). 
UML defines generalization at the supertype classifier, while in OWL subtype and subproperty are separately but 
identically defined. 

The translation from UML to OWL is straightforward. If <S, G> is an M1 instance of the UML M2 metaclass 
generalization (S is a subclassifier of G), then if both S and G are classes and TS, TG are respectively the types of the 
identifying owned property of S, G respectively, the OWL equivalent is the addition of the clause <rdfs:subClassOf 
rdf:resource="TG"/> to the definition of the OWL class TS. Similarly if S and G are both associations, the owl equivalent 
is the addition of the clause <rdfs:subPropertyOf rdf:resource="G"/> to the definition of the OWL object property S. Note 
that subassociations can be defined in a number of ways, including by OCL.

Figure 16.3 - M1 Model with Association Class

An association in UML can be N-ary. It can have its own ends (ownedEnd). An association can also be a class 
(association class), so can participate in further associations. In OWL DL, classes and properties are disjoint, but in OWL 
Full they are potentially overlapping. However, there is limited syntactic mechanism in the documents so far published to 

Table 16.8 - Sample Associations Translated to OWL

Association Assn end 1
Property Type

Assn end 2
Property Type

OWL equivalent

enrolled Course Student <owl:ObjectProperty rdf:ID="enrolled">
<rdfs:domain rdf:resource="Course"/>
<rdfs:range rdf:resource="Student"/>

</owl:ObjectProperty>

 Cou rse
 code
 description
NumE nrolled

 Studen t
 ID
 name

 enrolled

 enrolled

 grade

 Staff
 ID
 name

 instructor
192                 Ontology Definition Metamodel, v1.0



support this overlap. There is an advantage in translating these more complex UML associations to structures supported 
by OWL DL. In any case, the translations described are not normative, so those responsible for a particular application 
can use more powerful features of OWL if there is an advantage to doing so.

This specification takes advantage of the fact that both an N-ary relation among types T1 ... TN and an association class 
with attributes are formally equivalent to a set R of identifiers together with N projection functions P1,  ..., PN, where Pi:R 
-> Ti. Thereby both association classes and N-ary UML associations are translated to OWL classes with bundles of binary 
functional properties.

Figure 16.3 extends the model of Figure 16.2 by making enrolled an association class that owns an attribute grade. The 
association class enrolled is a member end of an association instructor, whose other member end is staff. Some students 
enrolled in a given course may be assigned to one staff member as instructor, some as another. 

The model of Figure 16.3 is represented in table form in Table 16.9.

The association class enrolled is represented by its two end classes, Course and Student, the attribute of the association 
class Grade, and by an owned attribute enrolledR that implements the association class as a class, in the same way as in 
Table 16.3 and Table 16.4.

The implementation of enrolled and Instructor in Table 16.9 is translated into OWL as follows:

<owl:Class rdf:ID="enrolled" / >
<owl:FunctionalProperty rdf:ID="enrolledCourse">

<rdfs:domain rdf:resource="enrolled/>
<rdfs: range rdf:resource="Course"/>

</owl:FunctionalProperty >
<owl:FunctionalProperty rdf:ID="enrolledStudent">

<rdfs:domain rdf:resource=enrolled/>
<rdfs: range rdf:resource="Student"/>

</owl:FunctionalProperty >
<owl:FunctionalProperty rdf:ID="enrolledGrade">

<rdfs:domain rdf:resource=enrolled/>
<rdfs: range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:FunctionalProperty >
<owl:FunctionalProperty rdf:ID="enrolledenrolledR">

<rdfs:domain rdf:resource=enrolled/>
<rdfs: range rdf:resource=enrolledR/>

</owl:FunctionalProperty >
<owl:FunctionalProperty rdf:ID="instructor">

<rdfs:domain rdf:resource=enrolledR/>

Table 16.9 - Sample Model Association Classes

Association Parts Type

enrolled end 1 Course

end 2 Student

attri-bute Grade

Reification enrolledR

instructor end 1 enrolledR

end 2 Staff
Ontology Definition Metamodel, v1.0        193



<rdfs: range rdf:resource=Staff/>
</owl:FunctionalProperty >

16.2.3 More Advanced Concepts

There are a number of more advanced concepts in both UML and OWL. In the cases where the UML concept occurs in 
OWL, the translation is often quite straightforward, so will not always be shown in this section (see Section 16.3 and 
Section 16.4 for full details).

Both languages support a module structure, called package in UML and ontology in OWL. The translation of package to 
ontology is straightforward. Both languages also support namespaces.

Both UML and OWL support a fixed defined extent for a class (OWL oneOf, UML enumeration). Note that in UML 
enumeration is a datatype rather than a class. 

UML has the option for associations to have distinguished ends that can be navigable or non-navigable. A navigable 
property is one that is owned by a class or optionally an association, while a non-navigable is not (the end might be of 
type integer, say). OWL properties always are binary and have distinguished ends called domain and range. A UML 
binary association with one navigable end and one non-navigable end will be translated into a property whose domain is 
the navigable end. A UML binary association with two navigable ends will be translated into a pair of OWL properties, 
where one is inverseOf the other.

A key difference is that in OWL a property is defined by default as having range and domain both Thing. A given 
property therefore can in principle apply to any class. So a property name has global scope and is the same property 
wherever it appears. In UML the scope of a property is limited to the subclasses of the class on which it is defined. A 
UML association name can be duplicated in a given diagram, with each occurrence having a different semantics. It is 
possible, though not customary, to include a universal superclass in an M1 model library. This is sufficiently unusual that 
it is not clear what the current toolsets would do with it.

An OWL individual can therefore be difficult to represent in a UML model. UML has a facility dynamic classification 
that allows an instance of one class to be changed into an instance of another, which captures some of the features of 
Individual, but an object must always be an instance of some class. UML models rarely include universal classes.

Both languages allow a class to be a subclass of more than one class (multiple inheritance). Both allow subclasses of a 
class to be declared disjoint. (In OWL, all classes are subclasses of Thing, so any pair of classes can be declared disjoint.) 
UML allows a collection of subclasses to be declared to cover a superclass, that is to say every instance of the superclass 
is an instance of at least one of the subclasses. The corresponding OWL construct is the declare the superclass to be the 
union of the subclasses, using the construct unionOf. 

UML has a strict separation of metalevels, so that the population of M1 classes is distinct from the population of M0 
instances and also the M1 model libraries. OWL Full permits classes to be instances of other classes. UML only models 
classes of classes in the context of declaration of disjoint or covering powertypes.

In OWL, a property restriction applied to a class can impose a cardinality constraint giving the minimum 
(minCardinality), maximum (maxCardinality), or exact number of instances that can participate in a relation (of the 
specified type) with an instance of that class. In addition, an OWL property can be globally declared as functional 
(functionalProperty) or inverse functional (inverseFunctional). A functional property has a maximum cardinality of 1 
on its range, while an inverse functional property has a maximum cardinality of 1 on its domain. In UML an association 
can have minimum and maximum cardinalities (multiplicity) specified for any of its ends. OWL allows individual-valued 
properties (objectProperty) to be declared in pairs, one the inverse of the other. 
194                 Ontology Definition Metamodel, v1.0



So if a binary UML association has a multiplicity on a navigable end, the corresponding OWL property will have the 
same multiplicity. If a binary UML association has a multiplicity on both its ends, then the corresponding OWL property 
will be an inverse pair, each having one of the multiplicity declarations. 

For an N-ary UML association, multiplicities are more problematic to map to OWL. For example, in Figure 16.4 the 
multiplicities show that:

• given instances of event, Olympiad, and competitor there is at most one instance of result.

• given instances of event, Olympiad, and result there is at most one instance of competitor.

• given instances of Olympiad, competitor, and result there may be many instances of event (an athlete may compete at 
several events in the same Olympiad and finish in the same place in each).

• given instances of event, competitor, and result there may be many instances of Olympiad (an athlete may compete in 
the same event at several Olympiads and finish in the same place in each). 

For an N-ary UML association, any multiplicity associated with one of its end classes will apply to the OWL property 
translating the corresponding projection from the association class to the translated end class. 

Figure 16.4 - Example N-ary Association with Multiplicity

The N-ary association in Figure 16.4 would be translated as a class competes whose instances are instances of links in the 
association, and four properties whose domain is competes and whose ranges are the classes attached to the member ends 
of the association. Since one instance of a link includes only one instance of the class at each member end, all the 
properties are functional. The multiplicities on the UML diagram do not translate to OWL in a straightforward way.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE rdf:RDF [
<!ENTITY owl   "http://www.w3.org/2002/07/owl#">
<!ENTITY rdf   "http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<!ENTITY rdfs  "http://www.w3.org/2000/01/rdf-schema#">
<!ENTITY xsd   "http://www.w3.org/2001/XMLSchema#">
]>
<rdf:RDF xmlns:rdf="&rdf;"
         xmlns:rdfs="&rdfs;"

 xmlns:owl="&owl;"
         xmlns:xsd="&xsd;"/>

<owl:Class rdf:ID="competes">
      <owl:subClassOf>
         <owl:Restriction>
        <owl:onProperty rdf:resource="competesEvent"/>
        <owl:minCardinality

 0 ..1  

 E ven t 
 even tID  

 O lym piad  
year 

 R esu lt 

 position   C om petito r 
 nam e 

 0 ..*  

 0 ..*  

 0 ..1  

 com petes 
Ontology Definition Metamodel, v1.0        195



rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
         </owl:Restriction>
      </owl:subClassOf>         
      <owl:subClassOf>
         <owl:Restriction>
            <owl:onProperty rdf:resource="competesCompetitor"/>
        <owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
         </owl:Restriction>
      </owl:subClassOf>         
      <owl:subClassOf>
         <owl:Restriction>
            <owl:onProperty rdf:resource="#competesOlympiad"/>
        <owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
         </owl:Restriction>
      </owl:subClassOf>         
      <owl:subClassOf>
         <owl:Restriction>
            <owl:onProperty rdf:resource="#competesResult"/>
          <owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
         </owl:Restriction>
      </owl:subClassOf>         
      <owl:subClassOf>
         <owl:Restriction>
            <owl:onProperty rdf:resource="#competesResult"/>
          <owl:maxCardinality
rdf:datatype="&xsd;nonNegativeInteger">1</owl:minCardinality>
         </owl:Restriction>
      </owl:subClassOf>         
</owl:Class>
<owl:FunctionalProperty rdf:ID="competesEvent">
 <rdfs:domain rdf:resource="#competes"/>
   <rdfs:range rdf:resource="#Event"/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="competesCompetitor">
  <rdfs:domain rdf:resource="#competes"/>
     <rdfs:range rdf:resource="#Competitor"/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="competesOlympiad">
  <rdfs:domain rdf:resource="#competes"/>
      <rdfs:range rdf:resource="#Olympiad"/>
</owl:FunctionalProperty>
<owl:FunctionalProperty rdf:ID="competesResult">
  <rdfs:domain rdf:resource="#competes"/>
     <rdfs:range rdf:resource="&xsd;string> >
</owl:FunctionalProperty>
</rdf:RDF>

In UML, multiplicities can be defined on both ends of an association. In OWL, general multiplicities apply to the range 
instances associated with a given domain instance. In both cases, multiplicities can be strengthened (minimim increased 
or maximum decreased) when associations/properties are applied to subclasses. 
196                 Ontology Definition Metamodel, v1.0



Note that the class might be the domain of a property for which the individual might not have a value. This can happen if 
the mincardinality of the domain of the property is 0, in which case the property is optional (or partial) for that class. The 
same can happen in UML. An instance of a class is constrained to participate only in properties that are mandatory, 
minimum cardinality > 0. So an instance can lack optional properties. (The somewhat strange construct maxCardinality < 
minCardinality is syntactically correct in OWL and has the semantics that the property has no instances. It can occur where 
multiple autonomous ontologies are merged, for example.)

However, even if the property is mandatory (mincardinality > 0 and maxcardinality >= mincardinality), there may not be 
definite values for the property. Consider a class (K) for which a property (P) is mandatory. In this case, the individual (I) 
must satisfy the predicate 

[M]: I instance of K -> exists X such that P(I) = X. 

UML and OWL do not require that there is a constant C such that X = C, e.g., all horses have color, but we may not know 
what color a particular horse has. As consequence of this possible indeterminacy, it may not be possible to compute a 
transitive closure for a property across several ontologies, even if they share individuals.

In UML, there is a strict separation between the M1 and M0 levels. If an association is mandatory (minimum cardinality 
greater than 0), it exactly matches the predicate [M]. Any difference between UML and OWL must come from the 
treatment of the model of the M1 theory at the M0 level. In practice, implementations derived from UML models tend to 
be ground Herbrand models implemented by something like an SQL database manager. For these cases, if we know a 
horse has a color, then we know what color it has. To the extent that UML tools and modeling build this expectation into 
products, conflict can occur when interoperating with an OWL ontology.

But UML does not mandate Herbrand compliance. It is possible for a particular application to introduce a special constant 
“unknown” into a class, and define special treatment by the programs. UML does not forbid an implementation of a class 
model in one of these ways. There is no difference in principle between UML and OWL for properties that are declared 
to have minCardinality greater than 0 (and maxCardinality >= minCardinality) for a class.

An OWL property can have its range restricted when applied to a particular class such that the range is limited (subtype 
of the property's range if declared) (allValuesFrom). UML permits these and other restrictions using the facilities: subsets, 
specializes, or redefines. Often the specific restriction is defined in OCL.

OWL allows properties to be declared symmetric (SymmetricProperty) or transitive (TransitiveProperty). In both 
cases, if the domain and range are not type compatible, the property is empty. UML uses OCL for this purpose.

OWL permits declaration of a property whose value is the same for all instances of a class, so the property value is in 
effect attached to the class (OWL DL property declared as allValuesFrom a singleton set for that class). OWL full allows 
properties to be directly assigned to classes without special machinery. In OWL, if class A is an instance of class B, then 
a property P whose domain includes B will designate a value P(A) that can apply to the class A so it can be derived for 
all instances of A.

UML allows a property to be derived from other model constructs, for example a composition of associations or from a 
generalization. That a property is derived can be represented as an annotation in OWL. The actual derivation rule cannot 
in general be represented in OWL (OWL does not support arithmetic, for example). Derivation rules in UML are 
expressed in OCL, and there is no general translation of OCL to OWL.

A classifier in UML can be declared abstract. An abstract classifier typically cannot be instantiated, but may be a 
superclass of concrete classifiers. There is no OWL equivalent for this.

Two different objects modeled in UML may have dependencies that are not represented by UML named (model) 
elements, so that a change in one (the supplier) requiring a change in the other (the client) will not be signaled by, for 
example, association links. Two such objects may be declared dependent. There are a number of subclasses of 
Ontology Definition Metamodel, v1.0        197



dependency, including abstraction, usage, permission, realization, and substitution. OWL does not have a comparable 
feature except as annotations, but RDF, the parent of OWL, permits an RDF:property relation between very general 
elements classified by RDFS:Class. Therefore, a dependency relationship between a supplier and client UML model 
element will be translated to a reserved name RDF:Property relation whose domain and range are both RDF:Class. 
Population of the property will include the individuals, which are the target of the translation of the supplier and client 
named elements.

16.2.4 Summary of More-or-Less Common Features

This section has described features of UML and OWL that are in most respects similar. Table 16.10 summarizes the 
features of UML in this feature space, giving the equivalent OWL features. UML features are grouped in clusters that 
translate to a single OWL feature or a cluster of related OWL features. The column Package shows the section of the 
UML Superstructure document [UML2] where the relevant features are documented.

Table 16.10 - Common Features of UML and OWL

UML elements Package OWL elements Comment

class, property ownedAttribute, 
typea

a. This cell summarizes the relationship between UML class and OWL class mediated by property, own-edAttribute and type. It does 
not signify that the latter three are themselves translated to OWL class.

7.3.7 Classes 
7.3.8 Classifiers 
7.3.32 Multiplicities

class

instance 7.3.22 Instances individual OWL individual independent 
of class 

ownedAttribute, 
binary association

7.3.7 Classes property OWL property can be global

subclass, 
generalization

7.3.7 Classes 
7.3.8 Classifiers 

subclass 
subproperty

N-ary association, association class 7.3.7 Classes 
7.3.4 Association Classes

class, property

enumeration 7.3.11 Datatypes oneOf

disjoint, cover 7.3.21 Generalization sets disjointWith,
unionOf

multiplicity 7.3.32 Multiplicities minCardinality 
maxCardinality 

OWL cardinality declared only 
for range

package 7.3.37 Packages ontology

dependency 7.3.12 Dependencies reserved name 
RDF:property
198                 Ontology Definition Metamodel, v1.0



All of the UML features considered in the scope of the ODM have more-or-less satisfactory OWL equivalents. Some 
UML features have no OWL equivalents, as summarized in Table 16.11. Some OWL features in this feature space have 
no UML equivalent, so are omitted from Table 16.10. They are summarized in Table 16.12. Besides the small differences 
in the features in the feature space common to UML and OWL, there are some more general differences described in 
Section 16.5, “OWL but not UML,” on page 231 and Section 16.6, “In UML But Not OWL,” on page 233.

Table 16.11 - UML features with no OWL equivalent

Table 16.12 - OWL features with no UML equivalent

16.3 UML to OWL

This section describes mappings from [UML2] models to ODM OWL models. The UML2 metamodel is based on ptc/04-
10-02. The mapping is limited to OWL DL, which means only OWL-DL constructs will be used in mapping definitions. 
There are many abstract metaclasses in UML2 kernel package, so only important concrete classes are mapped to OWL 
constructs.

Mappings are expressed in QVT [MOF QVT]. A brief tutorial is presented in Annex H.

Mappings are shown for all constructs in Table 16.10 for which there is an OWL equivalent, except for Instance. The 
Instance model is not part of the classes model, and is intended to show partial specifications of instances rather than 
concrete instances. The profiles represent OWL individuals as singleton classes rather than UML instances. So the 
mappings do not include Instance.

16.3.1 Naming Issues

In OWL, all objects are identified either by uniform resource identifiers (uri) or by an arbitrarily assigned identifier 
unique within the ontology (blank nodes). A typical method is for objects within an ontology to be identified by uri that 
is a fragment on a base uri that identifies the ontology. It is also possible for an object to have a uri independent of that 
of the ontology. Blank node identifiers can be treated as fragments in this way during the course of the mapping, even 
though the identifiers do not persist. A uri is conceptually global. It universally identifies the same object no matter where 
it appears.

navigable, non-navigable

derived

abstract classifier

Classes as instances

Thing, global properties, autonomous individual

allValuesFrom, someValuesFrom

SymmetricProperty, TransitiveProperty

Classes as instances

disjointWith, complementOf
Ontology Definition Metamodel, v1.0        199



In UML, objects are identified by name within a minimally disambiguating context. If there are several packages involved 
in a mapping, they have different names. But other packages may exist elsewhere that have the same name. Within a 
package, classes, associations, and some other objects are identified by names unique to the package. Lower level kinds 
of objects like properties are identified by names unique within their parent object. For example, several different classes 
may have attributes with the same name.

Ontologies in OWL are free-standing objects that can import one another. Packages in UML can also import one another, 
but in addition there is a standard procedure by which several packages may be merged into one.

A critical problem in mapping between UML and OWL is the generation of appropriate identifiers for objects in the target 
model instance given the identifiers of the relevant objects found in the relevant pattern in the source model instance. 
Since the mappings proceed from the packaging constructs to their components, the first problem is generation of an 
identifier for the target packaging construct given the identifier of the source packaging construct. If the source is an 
OWL ontology, one possibility is to identify the target package with the same uri as the ontology. However, this method 
violates the spirit of the uri, since the same uri now identifies two different objects that could evolve independently. If the 
source is a package, a base uri must be constructed for the target ontology. There is not enough information available in 
the UML model instance to generate a globally unique uri.

Because of these incompatibilities, we have made use of two only partly specified relations, PackageNameToUriBase and 
URIRefToName. PackageNameToUriBase takes a package name and creates a uri suitable to be extended by fragment 
identifiers. URIRefToName takes a uri reference, possibly a fragment on a base uri, and generates a name unique to the 
uri reference. (The relation takes distinct uri references to distinct names.)

Further, in mapping from UML to OWL, the target of objects whose names are unique within packages are identified by 
uri references that are fragments on the uri base of the corresponding ontology. Targets of objects whose names are unique 
only within a narrower context are identified by fragment identifiers generated by concatenating the name of the source 
object with the names of its context objects starting with the object whose name is unique to a package. Thus an attribute 
bar of a class foo would map to an object with fragment identifier foobar.

16.3.2 Package To Ontology

Each object in both the source and target model instance must have an identification scheme. Both UML and OWL 
support the concept of a namespace represented as a packaging construct, called Package in UML and ontology in OWL. 
Individual objects are contained in packaging constructs, and identified with respect to the identifier of their packaging 
construct. 

A package is a namespace for its members, and may contain other packages. Only packageable elements can be owned 
members of a package. By virtue of being a namespace, a package can import either individual members of other 
packages, or all the members of other packages.
200                 Ontology Definition Metamodel, v1.0



Figure 16.5 - Map UML Package to OWL Ontology

transformation UMLToOWL (uml:UML, owl:OWL)
// transform UML model to OWL model
{

// Objects in UML have names relative to other constructs, ultimately to Package
key Package(name);
key Class(name, owningPackage);
key Association(name, owningPackage);
key UML::...::Kernel::Property(name, class);
key UML::...::Kernel::Property(name, association);

// All objects in an OWL model instance are instances of OWLUniverse. Figure 16.10.
key OWLOntology(uriRef);
key OWLUniverse (uriRef, ontology); 
key OWLUniverse (nodeID, ontology); // anonymous classes

top relation PackageToOntology
//map packages in UML to ontologies in OWL
{

pn:String;
checkonly domain uml p: Package {name=pn};
enforce domain owl o: OWLOntology{uriRef=ref:URIReference};
Ontology Definition Metamodel, v1.0        201



when {
PackageNameToUriBase (pn, ref)

}
}// PackageToOntology

relation PackageNameToUriBase
{

primitive domain pn: string;
enforce domain owl ref: URIReference{};

// Details of this relation are left to specific mappings
} // PackageNameToUriBase

top relation ImportedPackageToOWLImports
//map imported packages in UML to OWLImports links in OWL
{

checkonly domain uml p: Package{packageImport = :PackageImport
{importedPackage = imp : Package}};

enforce domain owl o: OWLOntology{OWLImports= io:OWLOntology};
when{

PackageToOntology(p, o);
PackageToOntology(imp, io);

}
}//ImportedPackageToOWLImports

16.3.3 Class To Class

The mapping from Class to OWLClass includes the transformation of generalization relationships between Classes.

A generalization is a taxonomic relationship between a more general classifier and a more specific classifier. Each 
instance of the specific classifier is also an indirect instance of the general classifier. It has the same semantics of 
RDFSsubClassOf in RDF Schema, and the two ends of the generalization relationships can be accessed by the source and 
target that are defined in DirectedRelationship.
202                 Ontology Definition Metamodel, v1.0



Figure 16.6 - Map UML Class to OWL Class [1]
Ontology Definition Metamodel, v1.0        203



Figure 16.7 - Map UML Class to OWL Class [2]

top relation UClassToOClass
//map UML Class to OWL Class
{

cn:String;
checkonly domain uml uc:Class{name=cn, owningPackage=p:Package};
enforce domain owl oc:OWLClass{uriRef=:URIReference {uri = ref : UniformResourceIdentifier,

fragmentIdentifier=:LocalName{name=cn}}, ontology=o};
// no need to name the larger constructs unless they are used or generated elsewhere
when{

PackageToOntology(p, o);
ref = o.uri;  // Provides a base uri for the fragment identifier

}
}//UClassToOClass

top relation GeneralizationToSubClassOf
//map generalization hierarchy to rdfs:subClassof
{

checkonly domain uml uc:Class{superClass=gen:Class};
enforce domain owl oc:OWLClass{RDFSsubClassOf=super:OWLClass};
when{

UClassToOClass(uc, oc);
204                 Ontology Definition Metamodel, v1.0



UClassToOClass(gen, super);
}

}// GeneralizationToSubClassOf

16.3.4 Attribute to Property

The ownedAttribute defines the attributes owned by the class. It is an ordered set of Properties, which can be mapping to 
either OWLDatatypeProperty or OWLObjectProperty. If a property is part of the memberEnds of an Association, the 
mapping of it will be discussed in Association mapping sections [defined in Section 16.3.5 and Section 16.3.6].

If the type of the property is a PrimitiveType, the property is mapped to the OWLDatatypeProperty. If the type of the 
property is an Enumeration, and the ownedLiteral of the Enumeration has specification as ValueSpecification, then the 
property is OWLDatatypeProperty.

If the type of the property is Class, or the ownedLiteral of an Enumeration type has at least one classifier, the property can 
be mapped to OWLObjectProperty.

top relation AttributeToObjectProperty
// maps ownedAttribute where property's type is a class to an object property
// notice that the enforce creates the more specific object OWLObjectProperty, then the more general structure Property is 
created in the where clause. The when clause both forces the relation to wait until the classes have been mapped, and 
gives the mappings for the classes.
{

checkonly domain uml prop : Property{class = cl : Class, type = tp : Class};
enforce domain owl op : OWLObjectProperty{RDFSdomain = dom : OWLClass, RDFSrange = ran : OWLClass};
when {

UClassToOClass(cl, dom);
UClassToOClass(tp, ran);

}
where {

PropertyToProperty(prop, op);
}

} // AttributeToObjectProperty

relation PropertyToProperty
// not a top relation. Intended to be called in a where clause of the relation mapping one of the more specific metaclasses. 
It fills in the structures relevant to the superclass Property. Assumes the naming conventions for a property used as an 
attribute.
{

cn, pn : string;
checkonly domain uml prop : Property{name = pn, class = :Class{

name = cn, owningPackage=p:Package}};
enforce domain owl op : Property{uriRef=:URIReference

{uri = ref : UniformResourceIdentifier, fragmentIdentifier=:LocalName{name=cnpn}}, ontology=o};
when{

PackageToOntology(p, o);
ref = o.uri;  // Provides a base uri for the fragment identifier

}
where {

cnpn = cn + pn; // Follows naming conventions to disambiguate property name
}

} // PropertyToProperty

top relation AttributeToDatatypeProperty
Ontology Definition Metamodel, v1.0        205



// maps ownedAttribute where property's type is a primitive type to datatype property
{

checkonly domain uml prop : Property{class = cl : Class, type = tp : PrimitiveType};
enforce domain owl op : OWLDatatypeProperty{RDFSdomain = dom : OWLClass, RDFSrange = ran : Literal};
when {

UClassToOClass(cl, dom);
UMLPrimTypeToLiteral(tp, ran};

}
where {

PropertyToProperty(prop, op);
}

} // AttributeToDatatypeProperty

top relation UMLPrimTypeToLiteral
// maps UML primitive type names to OWL literal type names
// To be implemented
{} // UMLPrimTypeToLiteral

16.3.5 Binary Association To Object Property

A binary association specifies a relationship that can occur between typed instances. It has exactly two ends represented 
by properties, each of which is connected to the type of the end. The AssociationToObjectProperty relation is used to set 
OWLinverseOf relationships between inverse properties.

Note that in this strategy the UML association name is not mapped, so even though the OWL to UML mapping 
recognizes inverse pairs and maps them to associations, the association name is not recoverable.
206                 Ontology Definition Metamodel, v1.0



Figure 16.8 - Map UML Association to OWL ObjectProperty

top relation AssociationToPropertyPair
// Association whose ends are of different types goes to pair of inverse properties
{

checkonly domain uml assn : Association{
memberEnd = ps : Sequence(Property){

prop1 : Property {type = tp1:Class}, 
prop2 : Property{type = tp2 : Class}}};

// Note checkonly clause succeeds only when there are exactly two memberEnds
enforce domain owl oprop1 : OWLObjectProperty{

RDFSdomain = cl2:OWLClass, RDFSrange = cl1 : Class, OWLinverseOf = oprop2 : OWLObjectProperty{
 RDFSdomain = cl1:OWLClass, RDFSrange = cl2 : Class}};

when {
not prop1.type = prop2.type;  // ends are of different type
UClassToOClass(tp1, cl1);
Ontology Definition Metamodel, v1.0        207



UClassToOClass(tp2, cl2);
}
where {

EndPropertyToProperty(prop1, oprop1);
EndPropertyToProperty(prop2, oprop2);

}
} // AssociationToPropertyPair

relation EndPropertyToProperty
// not a top relation. Intended to be called in a where clause of the relation mapping one of the more specific metaclasses. 
It fills in the structures relevant to the superclass Property. Assumes the naming conventions for a property used as an 
association end.
{

an, pn : string;
checkonly domain uml prop : Property{name = pn, association = :Association{

name = an, owningPackage=p:Package}};
enforce domain owl op : Property{uriRef=:URIReference

{uri = ref : UniformResourceIdentifier, fragmentIdentifier=:LocalName{name=anpn}}, ontology=o};
when{

PackageToOntology(p, o);
ref = o.uri;  // Provides a base uri for the fragment identifier

}
where {

anpn = an + pn; // Follows naming conventions to disambiguate property name
}

} // EndPropertyToProperty

top relation SymAssociationToSymProperty
// Association where both properties are of the same type to symmetric property
{

checkonly domain uml assn : Association{
memberEnd = ps : Sequence(Property) {

prop1 : Property{type = tp :Class}, 
prop2 : Property{type = tp :Class}}};

// checkonly clause succeeds only if there are exactly two member ends.
enforce domain owl oprop1:SymmetricProperty{RDFSdomain = cl:OWLClass, RDFSrange = cl:OWLClass};
when {

UClassToOClass(tp, cl);
}
where {

EndPropertyToProperty(prop1, oprop1);
}

} // SymAssociationToSymProperty

16.3.6 Association Classes and N-ary Associations

An AssociationClass can be seen as an association that also has class properties, or as a class that also has association 
properties. It not only connects a set of classifiers but also defines a set of features that belong to the relationship itself 
and not to any of the classifiers.

Both association classes and N-ary associations are mapped to a class that is the domain of properties derived from each 
of its ends.
208                 Ontology Definition Metamodel, v1.0



16.3.6.1   Association Class

top relation AssociationClassToOWLClass
{

checkonly domain uml asc : AssociationClass{};
enforce domain owl cl : OWLClass{};
where {

UClassToOClass(asc, cl);
}

} // AssociationClassToOWLClass

top relation AssociationClassToOWLProps
// Generates the properties coming from the member ends.
{

checkonly domain uml asc : AssociationClass{memberEnd = uprop : Property{type = tp}};
enforce domain owl oprop : OWLObjectProperty{RDFSdomain = cl : OWLClass,

RDFSrange = rancl : OWLClass};
when {

AssociationClassToOWLClass(asc,cl);
UClassToOClass(tp, rancl);
EndPropertyToProperty(uprop, oprop);

}
} // AssociationClassToOWLProps

top relation OwnedEndAttributeToObjectProperty
// maps ownedEnd property where property's type is a class to an object property
{

checkonly domain uml asc : AssociationClass{ownedEnd = uprop : Property{type = tp}};
enforce domain owl op : OWLObjectProperty{RDFSdomain = dom : OWLClass, RDFSrange = ran : OWLClass};
when {

AssociationClassToOWLClass(asc,dom);
UClassToOClass(tp, ran);

}
where {

PropertyToProperty(uprop, op);
}

} // OwnedEndAttributeToObjectProperty

top relation OwnedEndAttributeToDatatypeProperty
// maps ownedAttribute where property's type is a primitive type to datatype property
{

checkonly domain uml asc : AssociationClass{ownedEnd = uprop : Property{type = tp : PrimitiveType}};
enforce domain owl op : OWLDatatypeProperty{RDFSdomain = dom : OWLClass, RDFSrange = ran : Literal};
when {

AssociationClassToOWLClass(asc,dom);
UMLPrimTypeToLiteral(tp, ran};

}
where {

PropertyToProperty(prop, op);
}

} // OwnedEndAttributeToDatatypeProperty
Ontology Definition Metamodel, v1.0        209



16.3.6.2   N-ary Association

top relation NaryAssociationToOWLClass
// Maps n-ary association where n > 2 to an OWL class
{

checkonly domain uml asc : Association{};
enforce domain owl cl : OWLClass{};
when {

asc.memberEnd->size() > 2; // only associations with more than two ends
}
where {

UClassToOClass(asc, cl);
}

} // NaryAssociationToOWLClass

top relation NaryAssociationToOWLProps
// Generates the properties coming from the member ends.
{

checkonly domain uml asc : Association{memberEnd = uprop : Property{type = tp}};
enforce domain owl oprop : OWLObjectProperty{RDFSdomain = cl : OWLClass,

RDFSrange = rancl : OWLClass};
when {

NaryAssociationToOWLClass(asc,cl);
UClassToOClass(tp, rancl);
EndPropertyToProperty(uprop, oprop);

}
} // NaryAssociationToOWLProps
210                 Ontology Definition Metamodel, v1.0



Figure 16.9 - Map UML AssociationClass to OWL

16.3.7 Multiplicity

In UML, property is a MultiplicityElement, which defines upperValue and lowerValue to express cardinality. However, 
OWL uses Restrictions to represent Cardinality. So in addition to map Class to OWLClass, some OWLRestrictions will 
be generated based on multiplicity definitions of the ownedProperties and corresponding RDFSsubClassOf relationships 
between OWLClass and OWLRestriction will also be created.

The relation mapping multiplicity can be a top relation, since having PropertyToProperty in the when clause delays its 
execution until the RDFSdomain = structure in the enforce clause already exists. It is possible that there are several 
domains for the property. This relation will force them all to be subclasses of the restriction class.

top relation UpperMultToMaxCard
// Upper multiplicity
{

m, n : string; 
checkonly domain uml p : Property{upperValue = :ValueSpecification{value = m}};
Ontology Definition Metamodel, v1.0        211



enforce domain owl owlp : Property{propertyRestriction = rest:MaxCardinalityRestriction{
OWLmaxCardinality = :TypedLiteral{lexicalForm = m, datatypeURI = :URIRef{

uri = :UniformResourceIdentifier{name = "xsd:integer"}}},
RDFSdomain = :OWLClass{RDFSSubClassOf = rest}};

when {
not m = '*';  // Excludes infinitity, which is no restriction
PropertyToProperty(p, owlp);

}
where {

BlankNodeID(rest);
}

} // UpperMultToMaxCard

relation BlankNodeID
// Make sure Blank node has a nodeID
{

n : string;
checkonly domain owl rest : OWLRestriction{};
enforce domain owl rest : OWLRestriction{nodeID = n};
where {

if rest.nodeID->isEmpty n = genAnonNodeID(); 
// Generates a unique blank node identifier

}
} // BlankNodeID

top relation LowerMultToMinCard
// Lower multiplicity
{

m, n : string;
checkonly domain uml p : Property{lowerValue = :ValueSpecification{value = m}};
enforce domain owl owlp : Property{propertyRestriction = rest:MinCardinalityRestriction{

OWLminCardinality = :TypedLiteral{lexicalForm = m, datatypeURI = :URIRef{
uri = :UniformResourceIdentifier{name = "xsd:integer"}}},

RDFSdomain = :OWLClass{RDFSSubClassOf = rest}};
when {

not m = 0;  // Excludes zero, which is no restriction
PropertyToProperty(p, owlp);

}
where {

BlankNodeID(rest);
}

} // LowerMultToMinCard

16.3.8 Association Generalization

Several kinds of generalizations of properties and associations in UML are mapped to subproperty and subclass 
relationships in OWL:

• subsetted properties to subPropertyOf

• properties at member ends of a generalized association to subPropertyOf

• generalized n-ary associations or association classes to subClassOf 
212                 Ontology Definition Metamodel, v1.0



top relation SubsetsPropertyToSubproperty
// Map a subsetted property to subPropertyOf
{

checkonly domain uml prop:Property{subsettedProperty = superprop : Property};
enforce domain owl oprop : Property{RDFSsubPropertyOf = osuperprop : OWLProperty};
when {

PropertyToProperty(prop, oprop);
PropertyToProperty(superprop, osuperprop);

}
} // SubsetsPropertyToSubproperty

top relation AssocGeneralToSubProp
// Maps each member end of a generalized association to a subproperty
// Steps through the member ends by successive instantiations of the set comprehension pattern
{

p1, p2 : OWL::...::OWLBase::Property;
checkonly domain uml assn : Association{general = superassn : Association{

memberEnd = supSeq : Sequence(Property){usuper | true}}, 
memberEnd = subSeq : Sequence(Property){uprop | true}}
{supSeq->indexOf(usuper) = subSeq->indexOf(uprop)}; // steps through both sequences in tandem

enforce domain owl oprop:Property{RDFSsubPropertyOf = osuper : Property};
when {

(AssociationToPropertyPair(assn, p1);  AssociationToPropertyPair(superassn, p2))OR
(SymAssociationToSymProperty(assn, p1); SymAssociationToSymProperty(superassn, p2))OR
(NaryAssociationToOWLProps(assn, p1); NaryAssociationToOWLProps(superassn, p2))OR
(AssociationClassToOWLProps(assn, p1); AssociationClassToOWLProps(superassn, p2));

// Makes sure associations are both mapped
EndPropertyToProperty(usuper, osuper); // Extracts mapping of end properties
EndPropertyToProperty(uprop, oprop); // Corresponding ends in super and sub

} 
} // AssocGeneralToSubProp

top relation GeneralizesNaryToSubclass
// Creates subclass relationship for mapped n-ary associations
{

checkonly domain uml assn : Association{general = superassn : Association};
enforce domain owl oclass : OWLClass{RDFSsubclassOf = osuper : OWLClass};
when {

NaryAssociationToOWLClass(assn, oclass);
NaryAssociationToOWLClass(superassn, osuper);

}
} // GeneralizesNaryToSubclass

top relation GeneralizesAssocClassToSubclass
// Creates subclass relationship for mapped association class generalization
{

checkonly domain uml assn : AssociationClass{general = superassn : AssociationClass};
enforce domain owl oclass : OWLClass{RDFSsubclassOf = osuper : OWLClass};
when {

AssociationClassToOWLClass(assn, oclass);
AssociationClassToOWLClass(superassn, osuper);

}
} // GeneralizesAssocClassToSubclass
Ontology Definition Metamodel, v1.0        213



16.3.9 Enumeration

An enumeration in UML is a designated collection of literals, so corresponds to an enumerated datatype in OWL.

top relation EnumerationToEnumeratedDatatype
//Created an enumerated datatype from an enumeration
(

checkonly domain uml enum:Enumeration{ownedLiteral = ul : EnumerationLiteral};
enforce domain owl edt:OWLDataRange{OWLoneOf = ol:RDFSLiteral};
where {

UMLLiteralToOWLLiteral(ul, ol); // not supplied
UClassToOClass(enum, edt);

}
) // EnumerationToEnumeratedDatatype

16.3.10  Powertypes

If a generalization set is covering, the general classifier is the union of the specific classifiers. If a generalization set is 
disjoint, then the specific classifiers are pairwise disjoint. OWL does not support the equivalent for properties, so 
generalization sets involving Associations are not mapped.

top relation IsCoveringToUnion
// Covering generalization set of classes goes to union 
{

checkonly domain uml genset : GeneralizationSet{isCovering = true, 
powertype = super : Class,
generalization = :Generalization{specific = speccl : Class}};

enforce domain owl ucl: UnionClass{OWLunionOf = osc : OWLClass};
when {

UClassToOClass(super, ucl);
UClassToOClass(speccl, osc);

}
}// IsCoveringToUnion

top relation IsDisjointToDisjoint
// Disjoint generalization to disjoint subclasses. Will generate sufficient pairs to make the mappings all pairwise disjoint
{

checkonly domain uml genset : GeneralizationSet{isDisjoint = true, 
powertype = super : Class,
generalization = :Generalization{specific = scl1 : Class},
generalization = :Generalization{specific = scl2 : Class}};

// Succeeds if there are more than one specific class
enforce domain owl cl1 : OWLClass{OWLdisjointWith = cl2 : OWLClass};
when {

scl1.name < scl2.name;
UClassToOClass(scl1, cl1);
UClassToOClass(scl2, cl2);

}
} // IsDisjointToDisjoint

} // transformation UMLToOWL
214                 Ontology Definition Metamodel, v1.0



16.4 OWL to UML

16.4.1 Problematic Features of OWL

16.4.1.1   Mapping for Individuals

In the profile, Individual is represented as a singleton class. This works well in a profile, because a profile is a tool of the 
OWL ontology creator. The ontology creator would only model individuals in a profile if there were some special reason 
to. They could, and probably would, choose not to represent the vast bulk of individuals in this way. 

The mappings on the other hand have to treat all individuals uniformly. It would be possible to map individuals to 
singleton classes, but then the mapping would have to deal with the RDFtype association. If an object is modeled as a 
singleton class, then the subclass relationship is equivalent to the instance relationship, so it would be necessary to map 
the RDFtype associations to subclass relationships in UML. This is probably not at all what one would generally want. In 
terms of Gruber's ontology quality measures, this is enormous encoding bias.  

In these informative mappings, mapping Individual is not specified.

16.4.1.2   Mapping for Enumerated Classes

Enumerated classes are represented in OWL as owl:oneOf class restrictions, where the enumeration is either a data range 
(literals) or a set of individuals. Since individuals are not mapped, only the data range version of oneOf class restriction 
is mapped.

16.4.1.3   Mapping for complementOf and disjointWith

UML has constructions corresponding to the OWL complementOf and disjointWith constructions in the PowerSets 
package. These have been mapped in the UML to OWL mappings. However, in OWL these constructs are pairwise rather 
than applying to an entire generalization set. Mapping pairwise restrictions like this is complicated, leading to a difficult-
to-read UML model. In these informative mappings, mappings for OWLcomplementOf and OWLdisjointWith are not 
specified.

16.4.1.4   Multiple Domains or Ranges for Properties 

It is possible for a property to have multiple classes specified as either the domain or range of a property. In this case, 
OWL specifies that the domain or range is the intersection of all. The mappings specified here take this into account.

A problem is that multiple instances of domain or range specifications can come from a number of sources. 

• Domain of the inverse of a property is range of the property, the range of the inverse is domain of a property

• Domain and range can be specified on superproperties of a property

• Domain and range can be derived from other equivalent properties

• Combinations of these

The mappings assume that the OWL model instance mapped includes the deductive closure of all domain and range 
specifications. 
Ontology Definition Metamodel, v1.0        215



16.4.2 Transformation Header

transformation OntoUMLSource  (owl:OWLMetamodel, uml:UMLMetamodel)
{

Figure 16.10 - Package structure of OWL

key OWLOntology(uriRef);
key OWLUniverse (uriRef, ontology); 
key OWLUniverse (nodeID, ontology); // anonymous classes
// All objects in an OWL model instance are instances of OWLUniverse. Figure 16.10.
// Objects in UML have names relative to other constructs, ultimately to Package
key Package(name);
key Class(name, owningPackage);
key Association(name, owningPackage);
key UML::...::Kernel::Property(name, class);
key UML::...::Kernel::Property(name, association);

16.4.3 Packaging Construct: OWLOntology

16.4.3.1   Ontology to Package

top relation OntoToPackage //Map ontology to Package.
{

checkonly domain owl ont:OWLOntology { };
enforce domain uml pack:Package { };
where {

TopOntoToPackage(ont, pack);
IntOntoToPackage(ont, pack);

}
} // OntoToPackage

relation TopOntoToPackage  //Map top ontology to Package (Figure 16.5 ).
{

n, un : string;
checkonly domain owl ont:OWLOntology {uriRef = :UniformResourceIdentifier{name = n}};
enforce domain uml pack:Package {name = un};
when {

ont.importingOntology->isEmpty;
}
where {

URIRefToName(n, un);
}

} //TopOntoToPackage

 

impor tingOntology  OWLimports  

owlUniver se ontology  
OWLOnt ology 

Individual  

Universe  
 

Property  OWLClass 
216                 Ontology Definition Metamodel, v1.0



relation IntOntoToPackage  //Map imported ontology to Package (Figure 16.5).
{

n, un : string;
checkonly domain owl ont:OWLOntology {uriRef = :UniformResourceIdentifier{name = n}, 

importingOntology =  onta : OWLOntology};
enforce domain uml pack:Package {name = un, 

_packageImport = :PackageImport{importingNamespace = packa:Package}};
when {

OntoToPackage(onta, packa);
}
where {

URIRefToName(n, un);
}

} //IntOntoToPackage

16.4.3.2   Ontology Properties to Comments

The Package construct in UML cannot be the source of properties. The only related structure is the facility to attach 
comments inherited from NamedElement. Other than the mapping between importingOntology and packageImport, 
ontology properties are therefore mapped to comments. Note that OWLversionInfo is not an Ontology property, but an 
annotation property.

top relation PriorVersionInfoToComment
{

v : string;
checkonly domain owl ont : OWLOntology{OWLpriorVersion = :RDFSLiteral{lexicalForm = v}};
enforce domain uml pack : Package{ownedComment = :Comment{body = (“Prior Version “ + v)}};
when {

OntoToPackage(ont, pack);
}

} // PriorVersionInfoToComment

top relation IncompatibleWithToComment
{

n : string;
checkonly domain owl ont:OWLOntology {OWLincompatibleWith = :OWLOntology{

uriRef = :UniformResourceIdentifier{name = n}}};
enforce domain uml pack : Package{ownedComment = :Comment{body = (“Incompatible With “ + n)}};
when {

OntoToPackage(ont, pack);
}

} // IncompatibleWithToComment

top relation BackwardsCompatibleWithToComment
{

n : string;
checkonly domain owl ont:OWLOntology {OWLbackwardsCompatibleWith = :OWLOntology{

uriRef = :UniformResourceIdentifier{name = n}}};
enforce domain uml pack : Package{ownedComment = :Comment{body = (“Backwards Compatible With “ + n)}};
when {

OntoToPackage(ont, pack);
}

} // BackwardsCompatibleWithToComment
Ontology Definition Metamodel, v1.0        217



16.4.4 Classes

16.4.4.1   OWL Class to UML Class

Classes in OWL are identified by uri, except for restriction classes that are blank nodes. A class in UML is identified by 
name within package.

top relation OClassToUClass
{

checkonly domain owl cl:OWLClass {ontology = ont : OWLOntology};
enforce domain uml ucl:Class {owningPackage = pack : Package};
when {

OntoToPackage(ont, pack)
};
where {

UClassToClass(cl, ucl);
AnonClassToClass(cl, ucl);

}
} // OClassToUClass

16.4.4.2   Class Identified by URI

relation UClassToClass
// map an OWL class identified by uri to a topic. 
{

identifier, un : string;
checkonly domain owl cl:OWLclass {uriRef = :UniformResourceIdentifier{name = identifier}};

// Note that an instance of an anonymous class fails to have a uri, so is excluded
enforce domain uml ucl:Class {name = un};
where {

URIRefToName(identifier, un);
}

} // UClassToClass

16.4.4.3   Anonymous Class to Class

An anonymous class in OWL is a blank node and is identified by a nodeID. This is unique within an ontology, if not 
persistent. This identifier will serve as a name for the corresponding UML class, where the name is persistent.

relation AnonClassToClass
// map an anonymous OWL class to a UML class. 
{

ID : string;
checkonly domain owl aclass:OWLClass {nodeID = ID};
enforce domain uml ucl : Class {name = ID};
when{

aclass.uriRef->isEmpty; // Some classes have also uri refs. These classes are not anonymous.
}

} // AnonClassToClass

16.4.5 Hierarchy

16.4.5.1   Subclass, Equivalent Class

top relation SubclassToGeneralization
218                 Ontology Definition Metamodel, v1.0



// map the RDFSsubclassOf meta-association to a UML subclass/superclass relationship (Figure 16.6).
{

checkonly domain owl subcl:OWLClass {RDFSsubClassOf = supercl : OWLClass};
enforce domain uml usubcl:Class {superClass = usuper : Class};
when {

OClassToUClass(subcl, usubcl);
OClassToUClass(supercl, usuper);

} // SubclassToGeneralization

top relation EquivalentClassToMutualGeneralization
// map equivalent classes to a pair of UML subclass/superclass relationships (Figure 16.6).
{

checkonly domain owl class1:OWLClass {OWLEquivalentClass = class2 : OWLClass};
enforce domain uml uclass1:Class {superClass = class2 : Class{superClass = class1}};
when {

OClassToUClass(class1, uclass1);
OClassToUClass(class2, uclass2);

} // EquivalentClassToMutualGeneralization

16.4.5.2   Universal Superclass

OWL has a universal superclass called owl:Thing acting as a default domain and range for properties. Need to create a 
comparable UML class, called Thing (see Section 14.2.5). 

top relation UniversalSuperclass
{

owlcl : OWLClass;
checkonly domain owl ont : OWLOntology{};
enforce domain uml thing : Class(name = “Thing”, owningPackage = pack : Package,

_class = ucl : Class}; // _class is opposite metaproperty to superClass
when {

OntoToPackage(ont, pack);
owlcl = ont.owlUniverse; // will instantiate for each OWL object which is an OWLClass
ucl = pack.ownedMember; // will instantiate for each ownedMember which is a Class
SubclassToGeneralization(owlcl, ucl); // forces wait until subclasses structure has been generated
ucl.superClass->isEmpty; // selects only those classes without superclasses

}
} //UniversalSuperclass

16.4.6  Constructed Classes

OWL allows classes to be constructed by union, intersection, and difference. OWL also allows classes to be declared 
disjoint. Union and intersection can be mapped to subclass relationships, while disjoint and difference are not mapped. 

top relation IntersectionToUML
// OWL intersection to subclass relationships
// Wil generate an instance of superClass for each instance of OWLintersectionOf
{

checkonly domain owl interclass : IntersectionClass{OWLintersectionOf = oclass : OWLClass,
ontology = ont : OWLOntology};

enforce domain uml usub:Class{superClass = uclass : Class, owningPackage = pack : Package};
when {

OntoToPackage(ont, pack);
OClassToUClass(interclass, usub);
OClassToUClass(oclass, uclass);
Ontology Definition Metamodel, v1.0        219



}
} // IntersectionToUML

top relation UnionToUML
// OWL union to subclass relationships
// Wil generate an instance of _Class for each instance of OWLunionOf
{

checkonly domain owl unclass : UnionClass{OWLunionOf = oclass : OWLClass,
ontology = ont : OWLOntology};

enforce domain uml usuper:Class{_Class = uclass : Class, owningPackage = pack : Package};
when {

OntoToPackage(ont, pack);
OClassToUClass(unclass, usuper);
OClassToUClass(oclass, uclass);

}
} // UnionToUML

16.4.7 Data Range

A data range in OWL is either a literal type or an enumeration of literals. The mapping of literal types is application 
specific, but the enumeration corresponds to the enumeration in UML.

top relation EnumerationToEnumeration
{

checkonly domain owl edt:OWLDataRange{OWLoneOf = ol:RDFSLiteral{lexicalForm = v}};
enforce domain uml enum:Enumeration{ownedLiteral = ul : EnumerationLiteral};
where {

OWLLiteralToUMLLiteral(ol, ul); // Not supplied
OClassToUClass(edt, enum);

}
} // EnumerationToEnumeration

16.4.8 Range Restriction Restriction Classes

The restriction classes allValuesFrom, someValuesFrom, and HasValue all define subclasses of the domain on which a 
specified property behaves in a specified way. UML does not have the machinery to represent the specified behavior. So 
the mapping in each case is to an anonymous class, declared as a subclass of the domain of the property (if any), with the 
restriction indicated in an attached comment. The mapping for hasValue only includes the case where the value is a literal, 
since there is not a good general representation of Individuals in UML.

top relation AllValuesFromToClass
{

cn, pn : string;
up : UML:...:Kernel:Property;
checkonly domain owl avr : AllValuesFromRestriction{OWLallValuesFrom = oc : OWLClass,

OWLonProperty = op : RDFProperty};
enforce domain uml rcl : Class{comment = (“AllValuesFrom “ + cn + “ on “ pn)};
when {

OClassToUClass(avr, rcl);
OWLPropToUMLProp(op, up);

}
where {

cn = rcl.name;
pn = up.name;
220                 Ontology Definition Metamodel, v1.0



SubclassOfPropDomain(op, rcl);
}

} // AllValuesFromToClass

relation SubclassOfPropDomain
// Makes UML mapping of restriction class subclas of mapping of property domain, if any
{

checkonly domain owl op:Property{RDFSdomain = oc : OWLClass};
enforce domain uml uc:Class{superClass = uc};
when {

OClassToUclass(oc, uc);
}

} // SubclassOfPropDomain

top relation SomeValuesFromToClass
{

cn, pn : string;
up : UML::...::Kernel::Property;
checkonly domain owl svr : SomeValuesFromRestriction{OWLsomeValuesFrom = oc : OWLClass,

OWLonProperty = op : RDFProperty};
enforce domain uml rcl : Class{comment = (“SomeValuesFrom “ + cn + “ on “ pn)};
when {

OClassToUClass(svr, rcl);
OWLPropToUMLProp(op, up);

}
where {

cn = rcl.name;
pn = up.name;
SubclassOfPropDomain(op, rcl);

}
} // SomeValuesFromToClass

top relation HasValueToClass
// Only applies to case where value is a literal
{

v, pn : string;
up : UML:...:Kernel:Property;
checkonly domain owl hvr : HasValueRestriction{OWLhasValue = olit : RDFSLiteral{lexicalForm = v},

OWLonProperty = op : RDFProperty};
enforce domain uml rcl : Class{comment = (“HasValue “ + v + “ on “ pn)};
when {

OClassToUClass(hvr, rcl);
OWLPropToUMLProp(op, up);

}
where {

pn = up.name;
SubclassOfPropDomain(op, rcl);

}
} // HasValueToClass

16.4.9 Properties in OWL

Properties in OWL are similar in concept to properties and associations in UML, but quite different in detail  The 
mappings follow as closely as possible the profiles given in Section 14.2.6.
Ontology Definition Metamodel, v1.0        221



An OWL property will be mapped to a UML property, which is an ownedAttribute of a Class in case:

• It is a datatype property.

• It is an object property with no inverse and is not inverse functional.

An OWL property will be mapped to a UML binary association in case:

• It is an object property with an inverse (including symmetric property). In this case the property and its inverse will be 
mapped to the two ends of the association.

• It is inverse functional. An inverse functional property generates a partition of its range. Even if it has no inverse, it 
must be mapped to an association because the corresponding multiplicity must apply to the end opposite the end 
corresponding to the inverse functional property.

Cardinality constraints will be mapped to multiplicities, this includes functional and inverse functional properties.

A property can have possibly several classes declared as its domain, and possibly several declared as its range. In either 
case the result is

• no classes declared - owl:Thing

• one class declared - the class

• more than one class declared - the intersection of the declared classes.

16.4.9.1   Property to Owned Attribute

top relation DTPropToAttribute
{

identifier, un : string;
checkonly domain owl dtp:OWLDataTypeProperty {uriRef = :UniformResourceIdentifier{name = identifier},

RDFSrange = :TypedLiteral {datatypeURI = dt},
ontology = ont:OWLOntology};

enforce domain uml prop : Property{name =un, owningPackage = pack : Package, type = tp : PrimitiveType};
when {

OntoToPackage(ont, pack);
LiteralToPrimitiveType(dt ,tp); // relates RDF literal types to UML primitive types

}
where {

URIRefToName(identifier, un);
}

} //DTPropToAttribute

top relation ObjPropToAttribute
{

identifier, un : string;
checkonly domain owl op:OWLObjectProperty {uriRef = :UniformResourceIdentifier{name = identifier},

ontology = ont:OWLOntology};
enforce domain uml prop : Property{name =un, owningPackage = pack : Package};
when {

OntoToPackage(ont, pack);
op.inverseProperty->isEmpty;  // no inverse
op.OWLinverseOf->isEmpty;
not op.oclIsTypeOf(SymmetricProperty); // not its own inverse
not op.oclIsTypeOf(InverseFunctional); // not inverse functional

}

222                 Ontology Definition Metamodel, v1.0



where {
URIRefToName(identifier, un);

}
} //ObjPropToAttribute

top relation AddAttributeClass
// Property and domain already mapped. Add Class.
{

checkonly domain owl prop:Property{};
enforce domain uml upr:Property{class = cl : Class};
when {

ObjPropToAttribute(prop, upr) OR DTPropToAttribute(prop, upr);
PropDomain(prop, cl);

}
} //AddAttributeClass

top relation AddAttributeType;
// property and range already mapped. Add type.
{

checkonly domain owl prop:Property{};
enforce domain uml upr:Property{type = cl};
when {

ObjPropToAttribute(prop, upr);
PropRange(prop, cl);

}
} // AddAttributeType

16.4.9.2   Property to Association

top relation PropertyPairToAssociation
// Property and its inverse go to an association whose name is the concatenation of the property names.
{

assocID : string;
pack1 : Package;
checkonly domain owl prop:Property{ontology = ont:OWLOntology, 

OWLinverseOf = invp : Property{ontology = invont : OWLOntology}};
enforce domain uml assn : Association(memberEnd = ps : Sequence(Property) {p1,  p2},

name = assocID, owningPackage = pack : Package};
when {

OntoToPackage(ont, pack); // association will be in this package
OntoToPackage(invont, pack1); // even though the inverse might be in another ontology
invp.equivalentProperty->isEmpty;  // no equivalent properties
invp.OWLEquivalentProperty->isEmpty;

}
where {

PropertyToAProperty(prop, p1);
PropertyToAProperty(invp, p2);
assocID = p1.name + p2.name; // Association name is concatenation of property names

}
} // PropertyPairToAssociation

top relation SymmetricPropToAssociation
// Symmetric property goes to an association both of whose member ends are the same property
{

assocID : string;
checkonly domain owl prop:SymmetricProperty{ontology = ont:OWLOntology};
Ontology Definition Metamodel, v1.0        223



enforce domain uml assn : Association{memberEnd = ps : Sequence(Property) {p1,  p1},
name = assocID, owningPackage = pack : Package};

when {
OntoToPackage(ont, pack); // association will be in this package

}
where {

PropertyToAProperty(prop, p1);
assocID = p1.name;

}
} // SymmetricPropToAssociation

top relation InverseFunctToAssociation
// Inverse functional property with no inverse go to an association
{

checkonly domain owl prop:InverseFunctionalProperty{ontology = ont:OWLOntology};
enforce domain uml assoc:Association{memberEnd = ps : Sequence(Property){p1,  p2}, 

name = assocID, owningPackage = pack : Package};
when {

prop.OWLinverseOf->isEmpty; // The inverse functional property has no inverse declared
prop.inverseProprety->IsEmpty;
OntoToPackage(ont, pack); // association will be in this package

}
where {

PropertyToAProperty(prop, p1);
PropertyToOppProperty(prop, p2);
assocID = p1.name;

}
} //InverseFunctToAssociation

relation PropertyToAProperty
// OWL property to UML property in context of an association end
{

identifier, un : string;
checkonly domain owl prop:Property{uriRef = :UniformResourceIdentifier{name = identifier}};
enforce domain uml uprop : Property{name = un};
where {

URIRefToName(identifier, un);
}

} // PropertyToAProperty

relation PropertyToOppProperty
// OWL property to opposite UML property in context of an association end (for inverse functional properties)
// This property has no corresponding OWL property, so can be fully specified.
{

identifier, un, onopp : string;
checkonly domain owl prop:Property{uriRef = :UniformResourceIdentifier{name = identifier}};
enforce domain uml uprop : Property{name = unopp, lowerValue = ‘0’, upperValue = ‘1’};
where {

URIRefToName(identifier, un);
unopp = “opposite_” + un;

}
} // PropertyToAProperty

top relation AddTypeAssocEnd
// association already mapped. Add types to properties at association ends. 
224                 Ontology Definition Metamodel, v1.0



// The type of the association end property is the class corresponding to the range of the corresponding OWL property
{

checkonly domain owl prop:Property{};
enforce domain uml Assn:Association(memberEnd = upr : Property{type = ran : Class}};
when {

PropertyToAProperty(prop, upr);
PropRange(prop, ran);

}
} // AddTypeAssocEnd

relation OWLPropToUMLProp
// Returns the UML property corresponding to an OWL Property. The UML property has already been created.
{

checkonly domain owl prop:Property{};
enforce domain uml uprop : Property{};
when {

DTPropToAttribute(prop, uprop) OR
ObjPropToAttribute(prop, uprop) OR
PropertyToAProperty(prop, uprop);

}
} // OWLPropToUMLProp

16.4.10  Domains, Ranges and Property Types

16.4.10.1  Domains

top relation PropDomain
{

checkonly domain owl prop:Property {};
enforce domain uml cl : Class{};
where {

DefaultDomain(prop, cl);
SingleDomain(prop, cl);
MultDomain(prop, cl);

}
} // PropDomain

relation DefaultDomain
// Create default domain for property
{

checkonly domain owl prop:Property{ontology = ont : OWLOntology};
enforce domain uml usuper : Class{};
when {

prop.RDFSdomain->isEmpty; // no domains declared, so default
UniversalSuperclass(ont, usuper); // usuper has already been created for this ontology

}
} // DefaultDomain

relation SingleDomain
// Find single domain for property
{

checkonly domain owl prop:Property{RDFSdomain = dom: OWLClass, ontology = ont : OWLOntology};
enforce domain uml domcl : Class{};
when {

prop.RDFSdomain->size() = 1; // only one domain declared
Ontology Definition Metamodel, v1.0        225



OClassToUClass(dom, domcl);
}

} // SingleDomain

relation MultDomain
// Find intersection of multiple domains for property as subclass called “DomainIntersection_” + name of property
// Assumed that the collection of domains of a property is the deductive closure of all sources of domains, in particular a 
range of an inverseOf property
{

din : string;
obj : NamedElement;
checkonly domain owl prop:Property{RDFSdomain = dom: OWLClass, ontology = ont : OWLOntology};
enforce domain uml domintcl : Class{name = rin, superClass = domcl: Class,

owningPackage = pack :Package};
when {

prop.RDFSdomain->size() > 1; // if more than one domain declared
OClassToUClass(dom, domcl); // will be instantiated once for each class
OWLPropToUMLObj(prop, obj); // Need the property to be created so can get its name
OntoToPackage(ont, pack);

}
where {

din = “DomainIntersection_” + obj.name;
}

} // MultDomain

16.4.10.2  Ranges

top relation PropRange
{

checkonly domain owl prop:Property {};
enforce domain uml cl : Class{};
where {

DefaultRange(prop, cl);
SingleRange(prop, cl);
MultRange(prop, cl);

}
} // PropRange

relation DefaultRange
// Create default range for property
{

checkonly domain owl prop:Property{ontology = ont : OWLOntology};
enforce domain uml usuper : Class{};
when {

prop.RDFSrange->isEmpty; // no ranges declared, so default
UniversalSuperclass(ont, usuper); // usuper has already been created for this ontology

}
} // DefaultRange

relation SingleRange
// Find single range for property
{

checkonly domain owl prop:Property{RDFSrange = ran: OWLClass, ontology = ont : OWLOntology};
enforce domain uml rancl : Class{};
when {

prop.RDFSrange->size() = 1; // only one range declared
226                 Ontology Definition Metamodel, v1.0



OClassToUClass(ran, rancl);
}

} // SingleRange

relation MultRange
// Find intersection of multiple ranges for property as subclass called “RangeIntersection_” + name of property
// Assumed that the collection of ranges of a property is the deductive closure of all sources of ranges, in particular a 
domain of an inverseOf property
{

rin : string;
obj : NamedElement;
checkonly domain owl prop:Property{RDFSrange = ran: OWLClass, ontology = ont : OWLOntology};
enforce domain uml ranintcl : Class{name = rin, superClass = rancl: Class,

owningPackage = pack : Package};
when {

prop.RDFSrange->size() > 1; // if more than one range declared
OClassToUClass(ran, rancl); // will be instantiated once for each class
OWLPropToUMLObj(prop, obj); // Need the property to be created so can get its name
OntoToPackage(ont, pack);

}
where {

rin = “RangeIntersection_” + obj.name;
}

} // MultRange

16.4.11  Cardinalities and Multplicities

top relation CardinalityToMultiplicitiy
{

checkonly domain owl oprop : Property{};
enforce domain uml uprop : Property{};
when {

OWLPropToUMLProp(oprop, uprop); // Delays until properties have been created
}
where {

if oprop.oclIsTypeOf(FunctionalProperty)  {
FunctionalToUMult(oprop, uprop);
FunctionalInverseFunToULMult(oprop, uprop);

} } else if oprop.oclIsTypeOf(InverseFunctionalProperty){
InvFunctionalToUMult(oprop, uprop);

} else {
CardToULMult(oprop, uprop);
MaxCardToUMult(oprop, uprop);
MinCardToLMult(oprop, uprop);

}
AddUnlimitedMax(uprop);
AddZeroMin(uprop);

}
} // CardinalityToMultiplicitiy

relation CardToULMult
// max and min cardinality are the same
{

c : string;
checkonly domain owl oprop : Property{
Ontology Definition Metamodel, v1.0        227



propertyRestriction = :CardinalityRestriction{OWLCardinality = :TypedLiteral{lexicalForm = c}};
enforce domain uml uprop : Property{upperValue = c, lowerValue = c};

} //MaxMinCardToULMult

relation MaxCardToUMult
// max cardinality
{

u : string;
checkonly domain owl oprop : Property{

propertyRestriction = :MaxCardinalityRestriction{OWLmaxCardinality = :TypedLiteral{lexicalForm = u}}};
enforce domain uml uprop : Property{upperValue = u};

} //MaxCardToUMult

relation MinCardToLMult
// min cardinality
{

l : string;
checkonly domain owl oprop : Property{

propertyRestriction = :MinCardinalityRestriction{OWLminCardinality = :TypedLiteral{lexicalForm = l}}};
enforce domain uml uprop : Property{lowerValue = l};

} //MinCardToLMult

relation FunctionalToUMult
// Functional property 
{

checkonly domain owl oprop : FunctionalProperty{};
enforce domain uml uprop : Property{upperValue = “1”};

} //FunctionalToUMult

relation InvFunctionalToUMult
// If a inverse functional property has an inverse, the multiplicity goes on the inverse
{

checkonly domain owl ifprop : InverseFunctionalProperty{};
enforce domain uml opprop : Property{upperValue = ‘1’};
when {

ifprop.OWLinverseOf->exists(invprop : Property | PropertyToAProperty(invprop, opprop))
or
ifprop.inverseProperty->exists(invprop : Property | PropertyToAProperty(invprop, opprop))

}
} // InvFunctionalToUMult

relation AddUnlimitedMax
// Add unlimited max cardinalities to UML properties with no max cardinality
{

enforce domain uml prop:Property{upperValue = “*”};
when {

prop.upperValue->isEmpty;
}

} // AddUnlimitedMax

relation AddZeroMin
// Add zero min cardinalities to UML properties with no min cardinality
{

enforce domain uml prop:Property{lowerValue = “0”};
when {
228                 Ontology Definition Metamodel, v1.0



prop.lowerValue->isEmpty;
}

} // AddZeroMin

16.4.12  Subproperty, Equivalent Property

top relation SubpropertyToGeneralization
// a property generalizes by subsetting
{

checkonly domain owl prop: Property{RDFSsubPropertyOf = superprop : Property};
enforce domain uml uprop{subsettedProperty = superuprop : Property};
when {

OWLPropToUMLObj(prop, uprop);
OWLPropToUMLObj(superprop, superuprop);

}
} //SubpropertyToGeneralization

top relation EquivPropertyToGeneralizations
// a Equivalent properties by mutual subsetting
{

checkonly domain owl prop: Property{OWLequivalentProperty = equivprop : Property};
enforce domain uml uprop : Property{subsettedProperty = equivuprop : Property{

subsettedProperty = uprop}};
when {

OWLPropToUMLObj(prop, uprop);
OWLPropToUMLObj(equivprop, equivuprop);

}
} //EquivPropertyToGeneralizations

16.4.13  Annotation Properties to Comments

OWL has an annotation property facility, including several built-in annotation properties, whose domain is 
OWLUniverse, while UML has only comments on NamedElement. Note that OWLversionInfo is an annotation property, 
not an ontology property. Note also that since the mapping doesn’t map Individuals to UML, annotation properties on 
individuals are not mapped.

The built-in annotation properties are modeled as meta-associations, while the user-defined annotation properties are 
instances of OWLAnnotationProperty.

top relation VersionInfoToComment
{

v : string;
checkonly domain owl res :OWLUniverse{OWLversionInfo = :RDFSLiteral{lexicalForm = v}};
enforce domain uml ne :NamedElement{ownedComment = :Comment{body = (“Version “ + v)}};
when {

UniverseToNamedElement(res, ne);
}

} // VersionInfoToComment

relation UniverseToNamedElement
{

checkonly domain owl res :OWLUniverse{};
enforce domain uml ne :NamedElement{};
when {
Ontology Definition Metamodel, v1.0        229



OntoToPackate(res, ne) OR
OClassToUClass(res, ne) OR

OWLPropToUMLProp(res, ne);
}

} // UniverseToNamedElement

function StringFromURIRef(uriref : URIReference) : string
{

uriref.fragmentIdentifier.name->isEmpty then uriref.name
else  uriref.name + “#” + uriref.fragmentIdentifier.name;

} // StringFromURIRef

top relation RDFSCommentToComment
{

com : string;
checkonly domain owl res:OWLUniverse{RDFScomment = :RDFSLiteral{lexicalForm = com}};
enforce domain uml ne:NamedElement(comment = com);
when {

UniverseToNamedElement(res, ne);
}

} // RDFSCommentToComment

top relation RDFSLabelToComment
{

com : string;
checkonly domain owl res:OWLUniverse{RDFSlabel = :RDFSLiteral{lexicalForm = com}};
enforce domain uml ne:NamedElement(comment = com);
when {

UniverseToNamedElement(res, ne);
}

} // RDFSLabelToComment

top relation SeeAlsoToComment
{

com : string;
checkonly domain owl res:OWLUniverse{RDFSseeAlso = sr : RDFSResource};
enforce domain uml ne:NamedElement(comment = com};
when {

UniverseToNamedElement(res, ne);
}
where {

if sr->oclIsTypeOf(RDFSLiteral) then com = sr.lexicalForm
else com = StringFromURIRef(sr.uriRef);

}
} // SeeAlsoToComment

top relation IsDefinedByToComment
{

com : string;
checkonly domain owl res:OWLUniverse{RDFSisDefinedBy = sr : RDFSResource};
enforce domain uml ne:NamedElement(comment = com};
when {

UniverseToNamedElement(res, ne);
}
where {
230                 Ontology Definition Metamodel, v1.0



if sr->oclIsTypeOf(RDFSLiteral) then com = sr.lexicalForm
else com = StringFromURIRef(sr.uriRef);

}
} // IsDefinedByToComment

top relation AnnotationPropertyToComment
// Map instances of annotation properties to comments. Excludes built-in annotation properties.
{

propuribase, propfrag, note : string;
checkonly domain owl ap :OWLAnnotationProperty{uriRef = propuri:URIReference,

predicateStatement =  :RDFStatement{
RDFsubject = res : OWLUniverse, RDFobject = obj : RDFSResource};

enforce domain uml ne:NamedElement{comment = (propname + “ “ + note)};
when {

UniverseToNamedElement(res, ne);
}
where {

propname = StringFromURIRef(propuri);
if obj->oclIsTypeOf(RDFSLiteral) then note = obj.lexicalForm

else note = StringFromURIRef(obj.uriRef);
}

} // AnnotationPropertyToComment

} // transformation OWLUMLSource

16.5 OWL but not UML

16.5.1 Predicate Definition Language

OWL permits a subclass to be declared using subClassOf or to be inferred from the definition of a class in terms of other 
classes. It also permits a class to be defined as the set of individuals that satisfy a restriction expression. These 
expressions can be a boolean combination of other classes (intersectionOf, unionOf, complementOf), or property value 
restriction on properties (requirement that a given property have a certain value – hasValue). The property 
equivalentClass applied to restriction expressions can be used to define classes based on property restrictions. 

For example, the class definition6

<owl:Class rdf:ID=”TexasThings”>
<owl:equivalentClass>

<owl:Restriction>
<owl:onProperty rdf:resource=”#locatedIn” />
<owl:allValuesFrom rdf:resource=”#TexasRegion” />

</owl:Restriction>
</owl:equivalentClass>

</owl:Class>

defines the class TexasThings as a subclass of the domain of the property locatedIn. These individuals are precisely those 
for which the range of locatedIn is in the class TexasRegion. Given that we know an individual to be an instance of 
TexasThings, we can infer that it has the property locatedIn, and all of the values of locatedIn associated with it are 

6. OWL Web Ontology Language Guide http://www/w3/org/TR/2003/PR-owl-guide-20031215/ section 3.4.1
Ontology Definition Metamodel, v1.0        231



instances of TexasRegion. Conversely, if we have an individual that has the property locatedIn and all of the values of 
locatedIn associated with that individual are in TexasRegion, we can infer that the individual is an instance of 
TexasThings.

Because it is possible to infer from the properties of an individual that it is a member of a given class, we can think of the 
complex classes and property restrictions as a sort of predicate definition language.

UML provides but does not mandate the predicate definition language OCL. Note that a subsumption reasoner could be 
built for UML. But because UML is strongly typed, it could work in the way mandated for OWL only if there were a 
universal superclass provided in the model library, which is rarely provided in practice.

OCL and CL (Common Logic) are two predicate definition languages that are relevant to the ODM. Both are more 
expressive than the complex class and property restriction expressions of OWL Full. There are also other predicate 
definition languages of varying expressive powers that particular applications might wish to use.

The ODM does not mandate any particular predicate definition language, but will provide a place for a package enabling 
the predicate definition language of choice for an application. In particular, the ODM includes a metamodel for CL.

16.5.2 Names 

A common assumption in computing applications is that within a namespace the same name always refers to the same 
object, and that different names always refer to different objects (the unique name assumption). As a consequence, 
given a set of names, one can count the names and infer that the names refer to that number of objects.

Names in OWL do not by default satisfy the unique name assumption. The same name always refers to the same object, 
but a given object may be referred to by several different names. Therefore counting a set of names does not warrant the 
inference that the set refers to that number of objects. Names, however, are conceptually constants, not variables.

OWL provides features to discipline names. The unique name assumption can be declared to apply to a set of names 
(allDifferent). One name can be declared to refer to the same object as another (sameAs). One name can be declared to 
refer to something different from that referred to by any of a set of names (differentFrom).

Two classes can be stated to be equivalent (equivalentClass) and two properties can be stated to be equivalent 
(equivalentProperty). Equivalent classes have the same extents, equivalent properties link the same pairs. 

UML supports named elements with namespaces only at the M1 level. Although a UML class may be defined to contain 
a definite collection of names, names at the M0 level are not prescribed. Applications modeled in UML are frequently 
implemented using systems like SQL that default the unique name assumption, but this is not mandated. UML places no 
constraints on names at the M0 level.

In particular, it is permitted for applications modeled in UML to be implemented at the M0 level using names that are 
existentially quantified variables. Note that the UML constraint language OCL uses variables. OWL does not support 
variables at all.

16.5.3 Other OWL Developments

There are a number of developments related to OWL that are not yet finalized, including SWRL Semantic Web Rule 
Language and OWL services. These are considered out of scope for the ODM. A translation of an out-of-scope model 
element will be to a comment in the OWL target.
232                 Ontology Definition Metamodel, v1.0



16.6 In UML But Not OWL

16.6.1 Behavioral and Related Features

UML allows the specification of behavioral features, which declare capabilities and dynamic aspects of the system. OCL 
can be used to restrict derived properties. Facilities of UML that can be used to describe application programs include:

• operations, which describe the parameters of methods;

• static operations, which have a shared implementation for all subclasses;

• interface classes, which specify an interface to a set of attributes and operations that could be implemented by one or 
more classes; and 

• active classes, which are classes that have a separate thread of execution control for each instance.

ODM omits these features of UML.

16.6.2 Complex Objects

UML supports various flavors of the part-of relationship between classes. In general, a class (of parts) can have a part-of 
relationship with more than one class (of wholes). One flavor (composition) specifies that every instance of a given class 
(of parts) can be a part of at most one whole. Another (aggregation) specifies that instances of parts can be shared among 
instances of wholes.

Composite structures defined in classes specify runtime instances of classes collaborating according to connectors. 
They are used to hierarchically decompose a class into its internal structure that allows a complex object to be broken 
down into parts. These diagrams extend the capabilities of class diagrams, which do not specify how internal parts are 
organized within a containing class and have no direct means of specifying how interfaces of internal parts interact with 
its environment. 

Ports model how internal instances are to be organized. Ports define an interaction point between a class and its 
environment, or a class and its contents. They allow you to group the required and provided interfaces into logical 
interactions that a component has with the outside world. Collaboration provides constructs for modeling roles played by 
connectors.

Although not strictly part of the complex object feature set, the feature template (parameterized class) is most useful 
where the parameterized class is complex. One could for example define a multimedia object class for movies, and use it 
as a template for a collection of classes of genres of movie, or a complex object giving the results of the instrumentation 
on a fusion reactor that would be a template for classes containing the results of experiments with different objectives.

Although it is recognized that there is a need for facilities to model mereotopological relationships in ontologies, and 
UML provides a capability in this space, there does not seem to be sufficient agreement on the scope and semantics of 
existing models for inclusion of specific mereotopological modeling features into the ODM at this stage.

16.6.3 Access Control

UML permits a property to be designated read-only. It also allows classes to have public and private elements. ODM 
omits access control features.
Ontology Definition Metamodel, v1.0        233



16.6.4 Keywords

UML has keywords that are used to extend the functionality of the basic diagrams. They also reduce the amount of 
symbols to remember by replacing them with standard arrows and boxes and attaching a <<keyword>> between 
guillements. A common feature that uses this is <<interfaces>>. ODM omits this feature.

16.6.5 Profiles

UML has a facility called Profile, whereby a specialist developer can make lightweight extensions to the modeling 
language by defining stereotypes, which define subclasses of metaclasses. This enables the developer to either articulate 
the metaclass into a number of kinds or to rename the metaclass.

OWL DL does not have a facility like this. One can achieve the same effect in OWL Full by defining subclasses of 
owl:Class or rdf:Property, since OWL is its own metalanguage. 

Profiling in UML is necessary because of the strict separation of metalevels, and is useful partly because it allows re-use 
of the UML graphical rendering conventions, and also the UML graphical editors and other tools. OWL does not at 
present have a standard graphical representation. Because OWL DL does not support an equivalent of stereotypes, and 
because the functional equivalent of stereotypes in OWL Full is a user capability rather than a metamodeler capability as 
in UML, the mappings from UML to OWL and from OWL to UML disregard this feature. 
234                 Ontology Definition Metamodel, v1.0



17 Mapping Topic Maps to OWL

17.1 Overview

The mappings in this and the other mapping chapters of the ODM are expressed in the Relations language of QVT [MOF 
QVT]. A brief tutorial on this system is given in Annex H, MOF QVT: A Brief Tutorial.

The mappings in this chapter are semantic mappings in terms of the W3C Semantic Web Best Practices and Deployment 
Group work-in-progress paper [RDF/TM], and where possible follow its suggestions. A Working Group Note or 
Recommendation is planned, which may require that these mappings be revised during Finalization.

Note that the suggestions in [RDF/TM] are based on an earlier version of the Topic Maps Data Model than the ODM. The 
more recent version has many changes. Further, the mappings referred to in [RDF/TM] are all to RDF, whereas the 
mappings in the ODM are to OWL Full. 

There is a significant structural mismatch between Topic Maps and OWL, which is at least partly mediated by the ODM 
OWL metamodel. In Topic Maps, as in UML, all objects are contained in packaging structures, which in Topic Maps is 
the metaclass TopicMap. In OWL, all objects are instances of the metaclass RDFSResource. In RDFS, a resource is 
conceived of as an object “in the world” that an ontology may make statements about. An ontology is a collection (graph) 
of statements, each of which refers to resources, but given a resource we can’t in principle navigate to the statements that 
refer to it. This is analogous to the fact that a web page may be linked to by many other web pages, but there is no reverse 
navigation. The site <omg.org> is the target of links from many sites, but there is no easy way for the OMG to know what 
those sites are.

However, a resource referred to in an OWL ontology is always an instance of one of the ODM OWL metaclasses. The 
declaration (in OWL) that a resource is an instance of one of the OWL metaclasses is a statement in a definite OWL 
ontology. It is possible to navigate from that declaration to the ontology it is asserted in. This situation is modeled in the 
OWL metamodel by the structures shown in Figure 11.8.

17.2 Topic Maps to OWL Full Mapping

17.2.1 Overview

The elements of the Topic Maps MOF meta-model are mapped into the OWL Full MOF metamodel as shown in the QVT 
statements below.  

transformation TMapOntoSource  (tmap:TopicMapMetamodel, owlont:OWLMetamodel)
{

QVT needs to know how the various constructs are identified. The key statement can tell which model the class is in if 
the class’ name is unique within the two models. 

17.2.1.1   RDFS/OWL Objects

key OWLUniverse(uriRef, ontology); 

All objects in OWL (Full) are instances of Individual. But QVT does not support overlapping subtypes, so that the 
identifier is supplied by the common supertype of all OWL objects, OWLUniverse (Figure 11.8). The identifier URI is 
inherited from the superclass RDFSResource. URI is a unique identifier if the object has a URI. But in OWL the type of 
a resource depends on the ontology.
Ontology Definition Metamodel, v1.0        235



key OWLOntology(uriRef);

An OWL Ontology is identified by its base URI.

key OWLUniverse(nodeID, ontology); 

A blank node does not have a URI. It is identified by a nodeID. The subclass BlankNode of OWLUniverse is defined by 
the presence of a nodeID attribute. The attribute nodeID is unique within a given repository population. It is the 
responsibility of the ontology server to main this uniqueness. But there is no requirement that the value of nodeID will be 
the same for different queries to the repository. Note that in OWL blank nodes occur only as restriction classes and the 
like, so are always used in declarations that are statements in a particular ontology.

key Statement(RDFSsubject, RDFSpredicate, RDFSobject, ontology);

17.2.1.2   Topic Map Objects

Topic Maps has a most general constuct, the abstract class TopicMapConstruct.

Topic map constructs have a complex system of identifiers. A construct has a possibly empty set of itemIdentifiers, each 
which is identifying. A topic has in addition a possibly empty set of subjectIdentifiers and a possibly empty set of 
subjectLocators, each of which is identifying. There is a constraint that an instance of TopicMapConstruct has at least one 
identifier, so that it is not valid for all of the properties to be empty.

Since different subclasses of TopicMapConstruct have different identification schemes, they are enumerated in the key 
statements. But Topic has several alternate keys. The following key declarations have the semantics that the first applies 
unless its property is empty. In that case, the second applies, and so on.

In each case the key is the set of property values. 

key TopicMap(itemidentifiers);
key Topic(itemIdentifiers, parent); 
key Association(itemIdentifiers, parent); 
key TypeAble(itemIdentifiers, parent); //each subclass has a parent property  
key Variant(itemIdentifiers, parent); //belongs to exactly one TopicName  
key Topic(subjectIdentifiers); // alternative for Topic only 
key Topic(subjectLocators); // alternative for Topic only  

The basic packaging construct in Topic Maps is TopicMap, while the basic packaging construct in OWL is 
OWLOntology. In each case, the package can contain other packages. In TM, a TopicMap can have a reifer that belongs 
to another topic map, while in OWL, one OWLOntology can import another. Instance models of these are shown in 
Figure 17.1.

We assume the topic map to be transformed is normalized as follows:

• Topic maps are nested as a tree. Therefore there is a top topic map. 

• The top topic map has an IRI among its identifiers. If not, one can be added.

Each topic map has an IRI among its itemIdentifiers. (If a topic map does not have an IRI among its identifiers, it can be 
merged with its parent.)

The dependency structure of the Topic Maps metamodel includes:

• Topic and Association depend on TopicMap (parent)

• Association depends on Topic (type) and TopicMap (parent)
236                 Ontology Definition Metamodel, v1.0



• AssociationRole depends on Topic (player, type) and Association (parent)

• Occurrence depends on Topic (parent, type)

• TopicName depends on Topic (parent, type)

• Variant depends on TopicName (parent) and Topic (scope)

17.2.2 Packaging Construct: TopicMap

Figure 17.1 - Container structures in TM and OWL

The packaging construct TopicMap goes to OWLOntology. Topic Maps included in other topic maps are mapped to 
ontologies which are imported by other ontologies. 

function TMiri(identifier : string) : boolean
// True if the identifier conforms to the syntax of a URI
{
// Details left to concrete implementations
} // TMiri

top relation TMapToOnto // Map topic map to ontology
{

checkonly domain tmap tm:TopicMap{};
enforce domain owlont ont:OWLOntology{};
where{

TopTMapToOnto(tm, ont);
IntTMapToOnto(tm, ont);

}
} //TMapToOnto

function TopTopicMap(tm:TopicMap): Boolean
// true if tm is a top topic map. Either no reifier or reifier is in the same topic map.
{

if ((tm.reifer->IsEmpty) or 
(not tm.reifier.parent->exists(tmp | tmp <> tm)) then true

else false
endif;

} //TopTopicMap

relation TopTMapToOnto  //Map the top topic map to an ontology
{

tmb : string;
checkonly domain tmap tm:TopicMap {itemIdentifiers = tmb};

 
parent  reifier 

tma :TopicMap 
itemIdentifiers :Topic 

tmb :TopicMap 
itemIdentifiers 

importingOntology 
ontb :OWLOntology 
uriRef 

onta :OWLOntology 
uriRef  
Ontology Definition Metamodel, v1.0        237



enforce domain owlont ont:OWLOntology {uriRef = :URIReference{uri=:UniformResourceIdentifier{name=tmb}}};
when {

TopTopicMap(tm );
}

} //TopTMapToOnto

relation IntTMapToOnto  //Map other than top topic map to an ontology
{

tma : string;
checkonly domain tmap tm:TopicMap {itemIdentifiers = tma, 

reifier = top: Topic {parent = tmb : TopicMap}};
enforce domain owlont ont:OWLOntology {uriRef = :URIReference{uri=:UniformResourceIdentifier{name=tma}} 

importingOntology = ontb : OWLOntology}; 
when {

not TopTopicMap(tm);
tm.reifer.parent->exists(tmb:TopicMap | TMapToOnto(tmb, ontb);

}
} //IntTMapToOnto

17.2.3 Most General Structure: TopicMapConstruct

Instances of TopicMapConstruct can all map to instances of OWLUniverse. Mapping is constructed on demand when 
mapping more specific constructs.

relation TMCToOntoObjs
// Map links from topic map constructs in a TM to objects in an ontology.
// Modeled on AttributeToColumn [MOF QVT], p 172.
{

tm : TopicMap;
checkonly domain tmap tmc:TopicMapConstruct {};
enforce domain owlont ind:OWLUniverse {uriRef = ref : URIReference, 

RDFtype = c : OWLClass{uriRef = :URIReference{uri = :UniformResourceIdentifier{name = ‘owl:Thing’}}},
ontology = ont:Ontology}; 

when {
// The semantics of QVT provide that there are multiple executions of these relations, each of which generates an 

alternative binding for ref. The OR connector results in the three relations being executed in separate instantiations, each 
generating a binding for ref.

(TMCToOntoURIRef(tmc, ref) OR
TopicSIToOntoRef(tmc, ref) OR // Applies only if tmc is a Topic
TopicSLToOntoRef(tmc, ref)); // Applies only if tmc is a Topic
 not OWLUniverse.allInstances-> exists(i | i <> ind and TMCToOntoObjs(tmc, i));

// prevents more than one target object from being constructed. So in this case, the target object is constructed with the 
first instantiation of ref, which can come from any of the alternatives. See the key declarations for TopicMapConstruct.

tm = TMCToTM(tmc); 
TMapToOnto (tm, ont); // Assumes ontolory target already exists. OK because relation is a top relation

}
where {

MultItemIDsToSameAs(tmc, ind2); // Map the rest of identifiers to resources
}

} // TMCToOntoObjs

function TMCToTM(tmc:TopicMapConstruct) : TopicMap
// Returns the topic map containing the topic map construct.
// Every topic map construct is either a Topic, Association, Occurrence, AssociationRole, TopicName, Variant or TopicMap 
Figure 13.1, Figure 13.2.
238                 Ontology Definition Metamodel, v1.0



{
if tmc.oclIsTypeOf(Topic) or tmc.oclIsTypeOf(Association) then tmc.parent
else if tmc.oclIsTypeOf(Occurrence) or tmc.oclIsTypeOf(AssociationRole) or 

tmc.oclIsTypeOf(TopicName) then tmc.parent.parent
else tmc.oclIsTypeOf(Variant) then tmc. parent.parent.parent
else tmc // tmc is a Topic Map
endif 

endif;
} // TMCToTm

relation IDtoURIRef
// if ident is a uri then return ident else make uri reference from base and ident

checkonly domain tmap ident:string, base:string{};
enforce domain owlont uriref: URIReference {};
where {

if TMiri(ident) then URItoURIRef(ident, uriref)
else FragToURIRef(ident, base, uriref);

}
} // IDtoURIRef

relation URItoURIRef
// string is already uri
checkonly domain tmap ident:string{};
enforce domain owlont uriref: UniformResourceIdentifier{name = ident};
} // URItoUIRRef

relation FragToURIRef
// construct uri from base and fragment
checkonly domain tmap ident:string, base:string {};
enforce domain owlont uriref : URIReference{uri = :UniformResourceIdentifier{name = base},

 fragmentIdentifier = :LocalName{name = ident}};
} // UFragToURIRef

top relation TMCToOntoURIRef
//Map item identifiers in a topic map construct to a URI reference in an ontology. 
{

base : string; 
tm: TopicMap; 
ont : OWLOntology;
checkonly domain tmap tmc:TopicMapConstruct { }; //  Figure 13.1. 
enforce domain owlont ref:URIReference { }; 
when {

tm = TMCToTM(tmc);
TMapToOnto(tm, ont);

}
where {

base = ont.uriRef.uri.name;
IDtoURIRef(tmc.itemIdentifiers, base, ref);

} 
} // TMCToOntoURIRef
Ontology Definition Metamodel, v1.0        239



17.2.4 Multiple Identifiers to SameAs

A topic map construct can have several instances of itemIdentifiers, all of which are identifying. A topic has also 
subjectIdentifiers and subjectLocators. Each gets mapped to a distinct Individual. The identifiers need to be tied together 
with SameAs. Subordinate to TopicMapConstruct.

relation MultItemIDsToSameAs  
//Tie together distinct instances of itemIdentifers from an instance TopicMapConstruct with SameAs
{

checkonly domain tmap tmc:TopicMapConstruct { }; // Figure 13.1. 
enforce domain owlont ind:OWLIndividual {uriRef = ref, 

OWLsameAs = ind1: OWLIndividual}; // Figure 11.6
when {
// The semantics of QVT provide that there are multiple executions of these relations, each of which generates an 

alternative binding for ref. The OR connector results in the three relations being executed in separate instantiations, each 
generating a binding for ref.

(TMCToOntoURIRef(tmc, ref) OR
TopicSIToOntoRef(tmc, ref) OR // Applies only if tmc is a Topic
TopicSLToOntoRef(tmc, ref)); // Applies only if tmc is a Topic
TMCToOntoObjs(tmc, ind1); 

// The target object is constructed with other than the first instantiation of ref, which can come from any of the 
alternatives. The generated object is identified with the first instantiation. See the key declarations for 
TopicMapConstruction.

} 
} // MultItemIDsToSameAs

17.2.5 Topic to OWL Class

Some topics are mapped to classes in OWL. 

• Topics that are the type of an association but not a structural type

• Topics playing a type role in an association of type ‘type-instance’

• Either type in a subtype/ supertype relationship.

Figure 17.2 Type-instance structure in TM. Instances of  Figure 13.2 and Figure 13.3

function TypeTopic(top: Topic) : Boolean
{
// True if a topic instance is considered a class, as an OCL expression on the TM metamodel. 

if ((top.typedConstruct ->exists(assoc: Association) and not StructuralType(top))

 

type 

roles parent 
asr:AssociationRole :Association 

inst:Topic 

type 

:Topic 
subjectIdentifiers = ‘tmcore:type’ 

:Topic 
subjectIdentifiers = ‘tmcore:type-instance’’ 
240                 Ontology Definition Metamodel, v1.0



// Topic is a type of an association, but not a structural type 
OR

(top.roles->exists(asr | (asr.type.subjectIdentifiers =  ‘tmcore:type’) and 
(asr.parent.type.subjectIdentifiers =  ‘tmcore:type-instance’))) OR 

// condition in Figure 17.2
top.roles->exists(asr | asr.parent.type.subjectIdentifiers = ‘tmcore:supertype-subtype’)

// Topic is either a subtype or a supertype, therefore a type.
) then true

else false
endif;

} // TypeTopic

top relation TopicToClass // Map topic to a class
{

checkonly domain tmap inst:Topic { };
enforce domain owlont oc:OWLClass { };
when {

TypeTopic(inst);
}
where {

TMCToOntoObjs(inst, oc);  // Create resource
}

} // TopicToClass

17.2.6 Subtype to Subclass

The subtype-supertype relationship is mapped to the subclass relationship. Depends on Topic.

Figure 17.3 - Subtype-supertype structure in TM. Instance of  Figure 13.2 and Figure 13.3

 

player 
roles 

type 

roles player 

asr_subt:AssociationRole assoc:Association 

supert:Topic 

subt:Topic 

asr_supert:AssociationRole 

type 

type 

:Topic 
subjectIdentifiers = ‘tmcore:subType’ 

:Topic 
subjectIdentifiers = ‘tmcore:superType-subType’ 

:Topic 
subjectIdentifiers = ‘tmcore:superType’ 
Ontology Definition Metamodel, v1.0        241



top relation ClassHierarchy // Map subtype-supertype to subclassOf (Figure 17.3)
{

subID : string;
checkonly domain tmap assoc:Association {};
enforce domain owlont osubc : OWLClass {RDFSsubClassOf = osuperc:OWLClass};

  when { 
assoc.type.subjectIdentifiers->exists(subID | subID = 'tmcore:superType-subType');
assoc.roles->exists(asr_subt | asr_subt.type.subjectIdentifiers = 'tmcore:subType' and  

asr_subt.player->exists(subt : Topic | assoc.roles->exists(asr_supert | 
asr_supert.type.subjectIdentifiers = 'tmcore:superType' and

asr_supert.player-> exists(supert : Topic |
TopicToClass(subt, subc) and TopicToClass(supert, superc))))); 

}
} // ClassHierarchy

17.2.7 Topic to Property

A topic that is a type of an Occurrence, AssociationRole, or TopicName is mapped to a property. Called from those 
constructs, so is not a top relation.

relation TopicToProperty // Map topic to a property
{

checkonly domain tmap inst:Topic { };
enforce domain owlont op:Property { };
when {

inst.typedConstruct->(exists(occ : Occurrence) or exists(ar : AssociationRole) or 
exists(n : TopicName));

}
where {

TMCToOntoObjs(inst, op);  // Create resource
}

} // TopicToProperty

17.2.8 Topic to Individual

A topic that is not a type is an individual-level object, so is mapped to an individual. The individual may belong to a class 
more specific than owl:Thing if the topic plays an ‘instance’ role in an association of type ‘type-instance.’ Depends on 
Topic (the individual’s type, if any).

top relation TopicToIndividual // Map topic to an individual. 
{ 

checkonly domain tmap inst:Topic { };
enforce domain owlont oind:Individual { };
when {

not TypeTopic(inst);
}
where {

TopicToTypedIndividual(inst, oind);
TMCToOntoObjs(inst, oind);  // Create resource. Topic to untyped individual.

}
} // TopicToIndividual
242                 Ontology Definition Metamodel, v1.0



Figure 17.4 - Topic structure for typed Individual. Instances of  Figure 13.2 and Figure 13.3  

relation TopicToTypedIndividual // Map topic to a typed individual. 
{

checkonly domain tmap inst:Topic { };
enforce domain owlont oind:Individual {RDFtype = topclass : OWLClass};
when {

inst.roles->exists(asr_ii : AssociationRole | 
(asr_ii.type.subjectIdentifiers =  ‘tmcore:instance) and 

asr_ii.parent->exists(assn : Association | (assn.type.subjectIdentifiers = 
tmcore:type-instance’) and

assn.roles->exists(asr_tt : AssociationRole | (asr_tt.type.
subjectIdentifiers = ‘tmcore:type’) and asr_tt.player->

exists(typetop : Topic | TopicToClass(typetop, topclass)))));
// Diagrammed in Figure 17.4 
 //type topic is a class
}

}  // TopicToTypedIndividual

17.2.9 Topic Subject Identifiers 

A topic has subject identifiers that are identifying. They are mapped to URI References.

top relation TopicSIToOntoRef
//Map a subject identifier in a topic to URI reference in an ontology. 
{

base : string; 
tm: TopicMap; 
ont : OWLOntology;
checkonly domain tmap top:Topic { }; // Figure 13.2. 
enforce domain owlont ref:URIReference { }; 
when {

tm = TMCToTM(top);
TMapToOnto(tm, ont); //Ontology providing base URI

 

type 

type 

player roles 

roles 

parent 
asr_ii:AssociationRole assn:Association 

typetop:Topic 

inst:Topic 

asr_tt:AssociationRole 

type 

:Topic 
subjectIdentifiers = ‘tmcore:type-instance’ 

:Topic 
subjectIdentifiers = ‘tmcore:type’ 

:Topic 
subjectIdentifiers = ‘tmcore:instance’ 
Ontology Definition Metamodel, v1.0        243



}
where {

base = ont.uriRef.uri.name;
IDtoURIRef(top.subjectIdentifiers, base, ref);

} 
} // TopicSIToOntoRef

17.2.10  Topic Subject Locators 

A topic has subject locators that are mapped to resources. They are mapped to URI references. 

top relation TopicSLToOntoRef  
//Map a subject locator in a topic to URI reference in an ontology. 
{

base : string; 
tm: TopicMap; 
ont : OWLOntology;
checkonly domain tmap top:Topic { }; // Figure 13.3. 
enforce domain owlont ref:URIReference { }; 
when {

tm = TMCToTM(top);
TMapToOnto(tm, ont); //Ontology providing base URI

}
where {

base = ont.uriRef.uri.name;
IDtoURIRef(top.subjectLocators, base, ref);

} 
} // TopicSLToOntoRef

17.2.11  Association to Individual

An association is an individual-level object, more like an instance of an association class in UML. So an association is 
mapped to an OWL individual. All associations have a type, so the type is mapped to a class of which the individual is an 
instance. Depends on Topic.

An n-ary association is linked to n instances of AssociationRole, each of which is mapped to a property. Like the mapping 
of UML association classes, this strategy does not privilege binary associations. Binary associations in Topic Maps do not 
provide sufficient information to specify the directionality of an OWL property. On the other hand, this approach works 
for unary associations as well as any other.

Several association types are used for structural purposes, so are excluded from this mapping.

Figure 17.5 - Associations. Instance of  Figure 13.2  and Figure 13.3

 

player 

roles 

rtype :Topic 

role:AssociationRole assoc:Association top :Topic 

type 

atype :Topic 

type 
244                 Ontology Definition Metamodel, v1.0



function StructuralType(top:Topic): Boolean
// True if topic is a structural type
{

if top.subjectIdentifiers->
exists(t | t = ‘tmcore:type-instance’ or t = ‘tmcore:superType-subType’)

then true
else false
endif;

} // StructuralType

top relation AssocToTypedInd // Map association to a typed individual. Figure 17.5
{

checkonly domain tmap assoc:Association {type = atype:Topic };
enforce domain owlont op:Individual {RDFtype = aclass:OWLClass};
when {

not StructuralType(atype);
TopicToClass(atype, aclass);

}
where {

TMCToOntoObjs(assoc, op);  // Create resource
}

} // AssocToTypedInd

17.2.12  Association Role to Property

Association roles are also individual-level objects, which have types. An association role must be linked both to a Topic 
and an Association, as in Figure 17.5. So an association role maps to a statement in RDF whose predicate is the result of 
a mapping of the association role’s type. Depends on Association and Topic.

Excluded are roles of structural associations.

top relation RoleToStatement // Map Association Roles to OWL statements. 
{

ont : Ontology;
tm : TopicMap;
checkonly domain tmap role:AssociationRole {

parent = assoc : Association {type = atype : Topic}, 
player  = top : Topic};

enforce domain owlont ost:Statement 
{RDFSPredicate = prop : OWLObjectProperty,
RDFSSubject = assocobj : Individual, RDFSObject = topobj : Individual,
ontology = ont};

when {
not StructuralType(atype);
AssocToTypedInd(assoc, assocobj);  // Created typed individual
TopicToIndividual(top, topobj);  // Created typed individual

}
where {

TopicToProperty(typetop, prop); // Create Property
tm = TMCToTM(role); // Find ontology corresponding to AssociationRole
TMapToOnto (tm, ont); // Assumes ontolory target already exists. OK because relation is a top relation

}
} // RoleToStatement
Ontology Definition Metamodel, v1.0        245



17.2.13  Occurrence to Property

An occurrence is mapped also to a statement. An occurrence is linked to a topic and has a type, so the predicate is a 
property mapped from the type. If the occurrence datatype is ‘uri’ the property is an object property, otherwise a datatype 
property. The subject of the statement is mapped from the topic. Depends on Topic. 

Figure 17.6 - Occurrence Instances. Instance of  Figure 13.2 and Figure 13.3

top relation OccurInstToStatement // Occurrence to OWL statement. Figure 17.6
{

ont : Ontology;
tm : TopicMapl
checkonly domain tmap occ:Occurrence {};
enforce domain owlont ost:Statement {ontology = ont};
where {

OccurInstToObjStatement(occ, ost);
OccurInstToDTStatement(occ, ost);
tm = TMCToTM(occ); // Find ontology corresponding to Occurrence
TMapToOnto (tm, ont); // Assumes ontolory target already exists. OK because relation is a top relation

}
}  // OccurInstToStatement

relation OccurInstToObjStatement //Instance of object property statement
{

turi : string;
checkonly domain tmap occ:Occurrence {parent = top : Topic, type = toptype : Topic, 

datatype = ‘uri’, value = turi};
enforce domain owlont ost:Statement {RDFSPredicate = op : OWLObjectProperty, 

RDFSSubject = sub : Individual,
RDFSObject = obj : Individual {uriRef = :URIReference{uri = :UniformResourceIdentifier{name = turi}}}};

when {
TopicToIndividual(top, sub); // Created Individual

}
where {

TopicToProperty(toptype, op); // Create Property 
}

}  // OccurInstToObjStatement

relation OccurInstToDTStatement //Instance of datatype property statement
{

v, dt : string;
checkonly domain tmap occ:Occurrence {parent = top : Topic, type = toptype : Topic };
enforce domain owlont ost:Statement {RDFSPredicate = dtp : OWLDatatypeProperty,

RDFSSubject = sub : Individual,
RDFSObject = obj : PlainLiteral {lexicalForm = v}};

when {
occ.datatype->exists(dt | dt <> ‘uri’) and occ.value->exists(v);
TopicToIndividual(top, sub); // Created Individual

 
type parent 

top :Topic 
occ : Occurrence 
value = vname 
datatype : string 
 

toptype :Topic 
246                 Ontology Definition Metamodel, v1.0



}
where {

TopicToProperty(toptype, dtp); // Create Property
}

}  // OccurInstToDTStatement

17.2.14  Topic Names to Object Properties, Variants to Property Values

A topic name is a typed construct. It would be natural to map a topic name to a label, but a topic name can have variants, 
so must be able to be the subject of a property. TopicName is therefore mapped to an Individual, which has the value of 
the name as a label. Depends on Topic.

Variant names are mapped to values of a property whose uri is the Topic Map published subject ‘tmcore:variant-name.’ 
Some variants are resources while some are literals. But all variants have a scope, so the object of a variant is mapped to 
an Individual. The value of the variant whose datatype is not URI is mapped to a label of the object Individual. In this 
case the individual will be a blank node. The repository is responsible for assigning differentiating nodeID attributes to 
blank nodes.

Figure 17.7 - Topic Name and Variant Name. Instances of Figure 13.2 and Figure 13.3 

top relation TopicNamesToObjProp // Names go to object property statements. Figure 17.7
{

tn : string;
oind : Statement;
ont : Ontology;
tm : topicMap;
checkonly domain tmap inst:Topic {topicNames = n:TopicName 

{value = tn, type = toptype}};
enforce domain owlont ost:Statement {RDFSPredicate = op : OWLObjectProperty,

RDFSSubject = sub : Individual,
RDFSObject = obj : Individual {RDFSlabel = pl : PlainLiteral {lexicalForm = tn}},
ontology = ont};

when {
TopicToIndividual(inst, sub); // Created Individual

}
where {

TopicToProperty(toptype, op); // Create Property
TMCToOntoObjs(n, obj); // Create Individual
tm = TMCToTM(inst); // Find ontology corresponding to Topic
TMapToOnto (tm, ont); // Assumes ontolory target already exists. OK because relation is a top relation
VariantToObjProp(n, oind);
VariantToDTProp(n, oind);

}
} // TopicNamesToDTProp

 

scope 

type 

variants 

topicNames 

:Topic 

v :Variant 
value = vname 
datatype : string 
 

n : TopicName 
value = tn 

toptype:Topic 

st:Topic 
Ontology Definition Metamodel, v1.0        247



relation VariantToObjProp 
// Variant which is a resource to object property statement. Figure 13.2 
{

vname : string;
sst : Statement;
ont : Ontology;
tm : TopicMap;
checkonly domain tmap n:TopicName {

variants = v:Variant {datatype = ‘uri’, value = vname}};
enforce domain owlont ost:Statement {

RDFSpredicate = op : OWLObjectProperty {uriRef = :UniformResourceIdentifier
{name= ‘tmcore:variant-name’}}, 

RDFSsubject = sub : Individual,
RDFSobject = obj : Individual{uriRef = :UniformResourceIdentifier{name = vname}},
ontology = ont};

when {
TMCToOntoObjs(n, sub); // Created Individual

}
where {

tm = TMCToTM(n); // Find ontology corresponding to TopicName
TMapToOnto (tm, ont); // Assumes ontolory target already exists. OK because relation is a top relation
TMCToOntoObjs(v, obj); // Create Individual
VariantScope(v, sst : Statement);

}
} // VariantToObjProp

relation VariantToDTProp 
// Variant which is not a uri to object property statement whose object has the value as a label. Figure 13.2  Object will be 
a blank node. Repository is responsible for assigning differentiating values of nodeID to blank nodes.
{

vname : string;
sst : Statement;
ont : Ontology;
tm : TopicMap;
checkonly domain tmap n:TopicName {variants = v:Variant};
enforce domain owlont ost:Statement {

RDFSpredicate = op : OWLObjectProperty {uriRef = :UniformResourceIdentifier
{name = ‘tmcore:variant-name’}), 

RDFSsubject = sub : Individual,
RDFSobject = obj : Individual {RDFSlabel = pl : PlainLiteral {lexicalForm = vname}},
ontology = ont};

when {
v.datatype->exists(dt | dt <> ‘uri’) and 

v.value->exists(vname);
TMCToOntoObjs(n, sub); // Created Individual

}
where {

TMCToOntoObjs(v, obj); // Created Individual
tm = TMCToTM(n); // Find ontology corresponding to TopicName
TMapToOnto (tm, ont); // Assumes ontolory target already exists. OK because relation is a top relation
VariantScope(v, sst : Statement);

}
} // VariantToDTProp
248                 Ontology Definition Metamodel, v1.0



17.2.15  Scope to Property Values

There is no concept in OWL comparable to the Topic Map concept scope, but we can map scope relationships to 
statements whose predicate is the uri ‘tmcore:scope.’ Depends on the subclasses of ScopeAble, Variant, and Topic. 

top relation ScopeToStatement
{

tm : TopicMap;
ont : Ontology;
checkonly domain tmap s:ScopeAble {scope = st : Topic};
enforce domain owlont ost:Statement {

RDFSpredicate = op : OWLObjectProperty {uriRef = :UniformResourceIdentifier{name = ‘tmcore:scope’}}, 
RDFSsubject = sub : Individual,
RDFSobject = obj : Individual,
ontology = ont};

when {
TMCToOntoObjs(s, sub); // Created Individual
TopicToIndividual(st, obj); // Created Individual

}
where {

tm = TMCToTM(s); // Find ontology corresponding to ScopeAble object
TMapToOnto (tm, ont); // Assumes ontolory target already exists. OK because relation is a top relation

}
} // ScopeToStatement

relation VariantScope
// All variants have a scope. Mapped to a statement. Depends on Variant and Topic (scope).
{

tm : TopicMap;
ont : Ontology;
checkonly domain tmap v:Variant {scope = st : Topic};
enforce domain owlont ost:Statement {

RDFSpredicate = op : OWLObjectProperty {uriRef = :UniformResourceIdentifier{name = ‘tmcore:scope’}}, 
RDFSsubject = sub : Individual,
RDFSobject = obj : Individual,
ontology = ont};

when {
TMCToOntoObjs(v, sub); // Created Individual
TopicToIndividual(st, obj); // Created Individual

}
where {

tm = TMCToTM(v); // Find ontology corresponding to Variant
TMapToOnto (tm, ont); // Assumes ontolory target already exists. OK because relation is a top relation

}
} // VariantScope

} // transformation TMapOntoSource

17.3 OWL to Topic Maps
transformation OntoTMapSource  (owlont:OWLMetamodel, tmap:TopicMapMetamodel)
{

Ontology Definition Metamodel, v1.0        249



Figure 17.8 - Package structure of OWL

key OWLUniverse (uriRef, ontology); 
// All objects in an OWL model instance are instances of OWLUniverse. Figure 17.8.
key TopicMap(itemidentifiers);
key Topic(itemIdentifiers, parent); 
key Association(itemIdentifiers, parent); 
key TypeAble(itemIdentifiers, parent); //each subclass has a parent property  
key Variant(itemIdentifiers, parent); //belongs to exactly one TopicName  
key Topic(subjectIdentifiers); // alternative for Topic only 
key Topic(subjectLocators); // alternative for Topic only  

17.3.1 Packaging Construct: OWLOntology

top relation OntoToTMap //Map ontology to a topic map.
{

checkonly domain owlont ont:OWLOntology { };
enforce domain tmap tm:TopicMap { };
where {

TopOntoToTMap(ont, tm);
IntOntoToTMap(ont, tm);

}
} // OntoToTmap

relation TopOntoToTMap  //Map top ontology to a topic map. Figure 17.1.
{

tmi : string;
checkonly domain owlont ont:OWLOntology {uriRef = :UniformResourceIdentifier{name = tmi}};
enforce domain tmap tm:TopicMap {itemIdentifiers = tmi};
when {

ont.importingOntology->isEmpty;
}

} //TopOntoToTMap

relation IntOntoToTMap  //Map imported ontology to a topic map. Figure 17.1.
{

tmi : string;
checkonly domain owlont ont:OWLOntology {uriRef = :UniformResourceIdentifier{name = tmi}, 

importingOntology =  onta : OWLOntology};
enforce domain tmap tm:TopicMap {itemIdentifiers = tmi, 

reifier = t:Topic {subjectLocators = tmi, parent = tma}};
when {

OntoToTmap(onta, tma);
}

} //IntOntoToTMap

 

impor tingOntology  OWL imports  

owlUniver se ontology  
OWLOntology 

Individual 

OWLUniverse 
 

Property  OW LClass 
250                 Ontology Definition Metamodel, v1.0



17.3.2 Class to Topic

Classes in OWL are identified by uri, except for restriction classes that are blank nodes. A class in Topic Maps is a topic 
that has a specific role in a specific association. See Figure 17.2.

top relation ClassToTopic
{

checkonly domain owlont cl:OWLClass { };
enforce domain tmap top:Topic {

roles = asr : AssociationRole {
type = tt : Topic {subjectIdentifiers = ‘tmcore:type’}},

parent = assn : Association {
type = tc : Topic {subjectIdentifiers = ‘tmcore:type-instance’}}

};
where {

UClassToTopic(cl, top);
RestrictionToTopic(cl, top);

}
} // ClassToTopic

17.3.3 Class Identified by URI

relation UClassToTopic
// map an OWL class identified by uri to a topic. 
{

identifier : string;
checkonly domain owlont cl:OWLclass {uriRef = :UniformResourceIdentifier{name = identifier}, 

ontology = ont:OWLOntology};
// Note that an instance of OWLRestriction fails to have a uri, so is excluded
enforce domain tmap top:Topic {parent = tm, itemIdentifiers = identifier, 

subjectLocators = identifier};
when {

OntoToTMap(ont, tm);
}

} // UClassToTopic

17.3.4 Restriction to Topic

relation RestrictionToTopic
// map an OWL restriction to a topic. 
{

ID : string;
checkonly domain owlont res:OWLRestriction {nodeID = ID, 

ontology = ont:OWLOntology };
// Note that an instance of OWLRestriction is a blank node

enforce domain tmap top:Topic {parent = tm, itemIdentifiers = ID, 
subjectLocators = ID};

when {
OntoToTMap(ont, tm);

}
} // RestrictionToTopic
Ontology Definition Metamodel, v1.0        251



17.3.5 Individual to Topic

top relation IndividualToTopic
// map an OWL individual to a topic. An individual is an instance of at least one class, so the topic is linked to another topic 
which is the class. See Figure 13.4.
{

identifier : string;
checkonly domain owlont ind:Individual {uriRef = :UniformResourceIdentifier{name = identifier}, 

RDFType = cl:OWLClass, ontology = ont:OWLOntology};
enforce domain tmap top:Topic {parent = tm, itemIdentifiers = identifier, 

subjectLocators = identifier
roles = asri : AssociationRole{type = ti : Topic{subjectIdentifiers = ‘tmcore:instance’}

parent = assn : Association 
{type = ta : Topic {subjectIdentifiers = ‘tmcore:type-instance’},

roles = asrt : AssociationRole 
{type = ti : Topic {subjectIdentifiers = ‘tmcore:type}

player = cltop : Topic}
}

}
} ;
when {

OntoToTMap(ont, tm);
ClassToTopic(cl,cltop);

}
} // IndividualToTopic

17.3.6 Hierarchy: RDFSsubclassOf

top relation SubclassToSubtype
// map the RDFSsubclassOf meta-association to a TM subclass/superclass relationship. See Figure 17.3.
{

identifier : string;
checkonly domain owlont subcl:OWLClass {uriRef = :UniformResourceIdentifier{name = identifier}, 

RDFSsubClassOf = supercl : OWLClass,
ontology = ont:OWLOntology};

enforce domain tmap subcltop:Topic {
roles = asrsub : AssociationRole{type = 

tsub : Topic{subjectIdentifiers = ‘tmcore:subType’},
parent = assn : Association 

{type = ta : Topic {subjectIdentifiers = ‘tmcore:superType-subType’},
roles = asrsuper : AssociationRole 

{type = tsuper : Topic {subjectIdentifiers = ‘tmcore:superType’},
player = supercltop : Topic}

}
}

} ;
when {

OntoToTMap(ont, tm);
ClassToTopic(subcl, subcltop);
ClassToTopic(supercl, supercltop);

} // SubclassToSubtype
252                 Ontology Definition Metamodel, v1.0



17.3.7 Object Property to Association Type

Figure 17.9 - Topic Map target of object property statement Figure 13.2 and Figure 13.3

top relation ObjPropToAssocType
// map an OWL object property to a topic intended to be the type of an association to which the property instance 
statements are mapped. See Figure 17.9.
{

identifier : string;
checkonly domain owlont op:OWLObjectProperty {uriRef = :UniformResourceIdentifier{name = identifier}, 

ontology = ont:OWLOntology};
enforce domain tmap top:Topic {parent = tm, itemIdentifiers = identifier, 

subjectLocators = identifier};
when {

OntoToTMap(ont, tm);
}

} // ObjPropToAssocType

17.3.8 Object Property Instance Statement to Association Instance

This mapping is very different from the mapping of associations to object properties. It gives a much better representation 
of an object property, but with very specialized types of association roles. The types are taken from RDF.

top relation ObjPropStateToAssocInst
// Map an OWL statement whose predicate is an object property to an instance of an association. See Figure 17.9.
{

ID, asrsub, asrob : string;
checkonly domain owlont os:Statement {ontology = ont:OWLOntology,

RDFSsubject = sub: Individual, RDFSpredicate = prop: OWLObjectProperty,
RDFSobject = obj : Individual};

enforce domain tmap assoc : Association {parent = tm, itemIdentifiers = ID, 
type = proptop : Topic,
roles = : AssociationRole {itemIdentifiers =asrsub, type = : Topic 

{subjectIdentifiers = ‘rdf:subject’},
player = subtop : Topic}

tsub:Topic

subjectIdentifiers = ‘rdf:subject’ proptop:Topic

subtop:Topic asrsub:AssociationRole assoc:Association

objtop:Topic asrobj:AssociationRole

topj:Topic

subjectIdentifiers = ‘rdfobject’

type type

player

roles

player

roles

type
Ontology Definition Metamodel, v1.0        253



roles = : AssociationRole {itemIdentifiers =  asrobj, type = : Topic 
{subjectIdentifiers = ‘rdf:object’},

player = objtop : Topic}
} ;

when {
ObjPropToAssocType(prop, proptop);
IndividualToTopic(sub, subtop);
IndividualToTopic(obj, objtop);

}
where {
ID = genTMCItemidentifier(tm);
asrsub = genTMCItemidentifier(tm);
asrobj = genTMCItemidentifier(tm);
}

} // ObjPropStateToAssocInst

function genTMCItemidentifier(tm : TopicMap) : string
// Generates a string which can be used as itemIndentifiers of a topic map construct, unique to topic map tm
{ 
} // genTMCItemidentifier

17.3.9 Datatype Property to Occurrence

top relation DTPropToOccurType
// map an OWL datatype property to a topic intended to be the type of an occurrence to which the property instance 
statements are mapped. See Figure 17.6.
{

identifier : string;
checkonly domain owlont dtp:OWLDataTypeProperty {uriRef = :UniformResourceIdentifier{name = identifier},

ontology = ont:OWLOntology};
enforce domain tmap top:Topic {parent = tm, itemIdentifiers = identifier, 

subjectLocators = identifier};
when {

OntoToTMap(ont, tm);
}

} // DTPropToOccurType

17.3.10  Datatype Property Instance Statement to Occurrence

top relation DTPropStateToOccurrence
// Map an OWL statement whose predicate is a datatype property to an instance of an occurrence. See Figure 17.6.
{

ID, dt , lexf : string;
checkonly domain owlont os:Statement {ontology = ont:OWLOntology,

RDFSsubject = sub: Individual, RDFSpredicate = prop: OWLDatatypeProperty,
RDFSobject = obj : Literal{ lexicalForm = lexf}};

enforce domain tmap occ : Occurrence {parent = subtop, itemIdentifiers = ID, 
type = proptop : Topic, value = lexf, datatype = dt} ;

when {
DTPropToOccurType(prop, proptop);
IndividualToTopic(sub, subtop);

}
where {

dt = datatypeOf(obj);
ID = genTMCItemidentifier(tm);
254                 Ontology Definition Metamodel, v1.0



}
} // DTPropStateToOccurrence

function datatypeOf(obj : Literal) : string
{

if obj.datatypeURI->exists(dt : string) then dt
else ‘’

endif;
} // datatypeOf

17.3.11  SameAs, EquivalentClass, EquivalentProperty

Individuals, classes, and properties all map to Topics. SameAs, equivalentClass, and equivalentProperty therefore all map 
to assertions that two topics are the same. Topic Maps has a normative procedure for merging topics.

relation mergeTopics 
{

// as specified in [TMDM]
} // mergeTopics

top relation SameAsToMerge
{

checkonly domain owlont ind:Individual {OWLsameAs = ind1 : Individual};
when {

IndividualToTopic(ind, top);
IndividualToTopic(ind1, top1);

}
where {

mergeTopics(top, top1);
}

} // SameAsToMerge

top relation EquivClassToMerge
{

checkonly domain owlont cl : OWLClass {OWLequivalentClass = cl1 : OWLClass};
when {

ClassToTopic(cl, top);
ClassToTopic(cl1, top1);

}
where {

mergeTopics(top, top1);
}

} // EquivClassToMerge

top relation EquivPropToMerge
{

checkonly domain owlont prop:Property {OWLequivalentProperty = prop1 : Property};
when {

PropertyToTopic(prop, top);
PropertyToTopic (prop1, top1);

}
where {

mergeTopics(top, top1);
}

} // EquivPropToMerge
Ontology Definition Metamodel, v1.0        255



relation PropertyToTopic
// Property is an abstract class, so any instance is an instance of one of its subtypes
{

checkonly domain owlont prop:Property { };
enforce domain tmap top : Topic { }; 
when {

(ObjPropToAssocType(prop, top) OR
DTPropToOccurType(prop, top));

}
} // PropertyToTopic

} // transformation OntoTMapSource
256                 Ontology Definition Metamodel, v1.0



18 Mapping RDFS and OWL to CL

18.1 Overview
Mapping from the W3C Semantic Web languages, the Resource Description Framework [RDF Primer] [RDF Concepts] 
and the Web Ontology Language [OWL S&AS] to Common Logic (CL) is relatively straightforward, as per the draft 
mapping under development by Pat Hayes [SCL Translation] for incorporation in ISO 24707 [ISO 24707]. The mapping 
supports translation of RDF vocabularies and OWL ontologies from the RDFS and OWL metamodels, respectively, to the 
CL metamodel, in the spirit of the language mapping. Users are encouraged to familiarize themselves with the original 
translation specification and to recognize that the overarching goal is to preserve not only the abstract syntax of the source 
languages but their underlying semantics, such that CL reasoners can accurately represent and reason about content 
represented in knowledge bases that reflect those models. The mapping, as it stands, is intended to take an RDFS/OWL 
ontology as input and map it directly to CL from the triple format. Additional work, including (1) a direct mapping from 
an RDFS/OWL ontology represented solely in a UML/MOF environment using the metamodels and profiles contained 
herein,  (2) representation of the mappings using MOF QVT, (3) a lossy, reverse mapping from CL to RDFS/OWL using 
MOF QVT to preserve lossy information, and (4) bi-directional mappings from CL to and from UML 2, again using MOF 
QVT to preserve lossy information, are planned.

Note that we have not attempted to address the issues raised in [SCL Translation] regarding the distinction between an 
embedded or translation approach to determining how to map language constructs – such decisions are left to the vendor, 
depending on the target application(s).

18.2 RDFS to CL Mapping
The separation between RDF and RDF Schema given in [SCL Translation] is not maintained in the ODM, which supports 
RDF Schema by design. As discussed in the Design Rationale, maintaining that separation from a MOF/UML perspective 
did not make sense, since (1) it is difficult, at best, to separate the abstract syntax of RDF from that of RDF Schema, and 
(2) the goal of ODM is to support ontology definition in MOF and UML tools, which is most commonly done using RDF 
Schema, OWL, or another knowledge representation language. Basic RDF graphs can be translated to CL using the 
mapping described herein, however.

18.2.1 RDF Triples

Any simple RDF triple (expressed as subject predicate object), can be embedded in CL as (rdf_triple subject 
predicate object)1 and/or translated to a CL atomic sentence directly (predicate subject object)2. These 
mappings can be expressed in terms of the metamodel elements shown in Table 18.1.

Table 18.1 - RDF Triple to CL Mapping

RDFS Metamodel 
Element

RDFS Metamodel 
Property

CL Metamodel Element CL Metamodel Property

RDFStatement Relation1 predicate: rdf_triple

RDFsubject arguments [1]

RDFpredicate arguments [2]

RDFobject arguments [3]
Ontology Definition Metamodel, v1.0        257



These two approaches are completely compatible, and the relationship between them can be expressed through the axiom:

(forall (x y z)(iff (rdf_triple y x z)(x y z)))

The translation extends this notion further through to ensure that the predicate expressed by the triple is indeed a valid 
RDF property, the “cautious translation approach.”

18.2.1.1 RDF Property Axiom 

(forall (x y z)(iff (rdf_triple y x z)(and (rdf:Property x)(x y z))))

18.2.1.2 RDF Promiscuity Axiom 

(forall (x)(rdf:Property x))

For the purposes of this specification, any RDF or RDFS predicate that is not explicitly mapped to CL can be translated 
directly using this method.

18.2.2 RDF Literals

Literals in RDF can be defined as either “plain literals” or “typed literals,” corresponding to classes of the same names in 
the RDFS metamodel. Plain literals translate into CL quoted strings, possibly paired with a language tag, and in both RDF 
and CL they are understood to denote themselves. The function stringInLang is used to indicate the pair consisting of 
a plain literal and a language tag. Typed literals in RDFS and OWL have two parts: a character string representing the 
lexical form of the literal, and a datatype name that indicates a function from a lexical form to a value. In RDFS/OWL 
these two components are incorporated into a special literal syntax; in CL, the datatype is represented as a function name 
applied to the lexical form as an argument. Table 18.2 provides the corresponding metamodel mappings.

18.2.3 RDF URIs and Graphs 

URIs and URI references can be used directly as CL names. Blank nodes in an RDF graph translate to existentially bound 
variables with a quantifier whose scope is the entire graph. A graph is the conjunction of the triples it contains. Basic 
translation for the corresponding metamodel elements is given in Table 18.2.

RDFStatement RDFpredicate Relation2 predicate

RDFsubject arguments [1]

RDFobject arguments [2]

Table 18.2 - Basic RDF to CL Mapping

RDFS Metamodel 
Element

RDFS Metamodel Property CL Metamodel 
Element

CL Metamodel Property

RDFSResource URI reference “aaa” –or– 
namespace and local name “aaa” –or– 
blank node ID “_:aaa”

LogicalName string: aaa

PlainLiteral lexicalForm: “aaa” SpecialName specialNameKind: 
quotedString, 
string: aaa

Table 18.1 - RDF Triple to CL Mapping
258                 Ontology Definition Metamodel, v1.0



For example, the RDF graph
_:x ex:firstName "Jack"^^xsd:string . 
_:x rdf:type ex:Human . 
_:x Married _:y . 
_:y ex:firstName "Jill"^^xsd:string .

maps into the CL sentence:
(exists (x y)(and 

(ex:firstName x (xsd:string 'Jack')) 
(rdf:type x ex:Human) 
(Married x y) 
(ex:firstName y (xsd:string 'Jill')) 

))

The RDF vocabularies for reification, containers, and values have no special semantic conditions, so translate uniformly 
into CL using the above conversion methods. 

18.2.4 RDF Lists

[SCL Translation] includes a discussion relevant to both RDFS and OWL ontologies regarding the mapping of lists that 
represent relations between multiple arguments to CL. Since RDF triple syntax can directly express only unary and binary 
relations, relations of higher arity must be encoded, and OWL in particular uses lists to do this encoding. Axioms for 
translating such lists, derived from [Fikes & McGuinness], are provided in [SCL Translation] and are incorporated herein 
by reference. 

18.2.5 RDF Schema

As discussed in [SCL Translation], RDF Schema extends RDF through semantic constraints that impose additional 
meaning on the RDFS vocabulary. In particular, it gives a special interpretation to rdf:type as being a relationship between 
a ‘thing’ and a ‘class,’ that approximates the set-membership relationship in set theory. This relationship is captured in 
several axioms, repeated here due to their importance with regard to streamlining the mapping.

18.2.5.1 RDFS Class Axiom 

(forall (x y)(iff (rdf:type x y) (and (rdfs:Class y)(y x))))

PlainLiteral lexicalForm: “aaa” 
languageTag:  “tag”

Function operator: 
stringInLang, 
arguments [1]: aaa, 
arguments [2]: tag

TypedLiteral lexicalForm: “aaa”
datatypeURI: “ddd”

Function operator: ddd 
arguments [1]: aaa

RDFDescription contains: RDFSResource CLModule CLText: Phrase 

RDF graph 
(set of triples) 
{ttt1,...,tttn}

Sentence (exists(bbb1...bbbm) 
(and ttt1 ... tttn) 
where _:bbb1... _:bbbm 
are all the blank node 
IDs in the graph.

Table 18.2 - Basic RDF to CL Mapping
Ontology Definition Metamodel, v1.0        259



18.2.5.2 RDFS Promiscuity Axiom

(forall (x) (rdfs:Class x))

18.2.5.3 RDFS Universal Resource Axiom

(forall (x) (rdfs:Resource x))

Taken together, these axioms justify the more efficient mapping of RDFS triples to CL given in Table 18.3, to be used in 
place of Table 18.1.

The translations are ordered, with the second used only when the first does not apply.

The above example now translates into the more intuitive form

(exists (x y)

(and

(ex:firstName x (xsd:string 'Jack'))

(ex:Human x)

(Married x y)

(ex:firstName y (xsd:string 'Jill'))

))

where ex:Human is a genuine predicate. 

Similarly to the case for RDF, this assumes that every unary predicate corresponds to an RDFS class; to be more cautious, 
one would omit the promiscuity axiom and insert an extra assumption explicitly as part of the translation process: if (1), 
add axiom (rdfs:Class bbb); otherwise, (2) add axiom: (rdf:Property ppp).

18.2.6   RDFS Semantics

In [RDF Semantics], several of the constraints are expressed as RDFS assertions (“axiomatic triples”), but others are too 
complex to be represented in RDFS and so must be stated explicitly as external model-theoretic constraints on RDFS 
interpretations. All of these can be expressed directly as CL axioms, however. A CL encoding of RDFS is obtained by 
following the translation rules and adding a larger set of axioms. RDFS interpretations of a graph can be identified with 
CL interpretations of the translation of the graph with the RDF and RDFS axioms added.

A series of tables encoding numerous axioms is provided in [SCL Translation] that reflect the axiomatic triples, RDFS 
“semantic conditions,” and extensional axioms, as well as axioms for interpreting datatypes, which are incorporated 
herein by reference. Some of these are summarized in an RDFS extensional logical form translation table, which may be 
more efficient than deriving the translation from the embedding and axioms. 

Table 18.3 - RDFS Triple to CL Mapping

RDFS Metamodel Element RDFS Metamodel Property CL Metamodel Element CL Metamodel Property

(1) RDFStatement RDFsubject (aaa) 
RDFpredicate (rdf:type) 
RDFobject (bbb)

Relation predicate: bbb 
arguments [1]: aaa

(2) RDFStatement, (any 
other triple)

RDFsubject (aaa) 
RDFpredicate (ppp) 
RDFobject (bbb)

Relation predicate: ppp 
arguments [1]: aaa 
arguments [2]: bbb
260                 Ontology Definition Metamodel, v1.0



These are provided in Table 18.4, mapped to the appropriate metamodel elements. 

.
Table 18.4 - RDFS Extensional Logical Form Translation

RDFS Metamodel 
Element

RDFS Metamodel 
Property

CL Metamodel 
Element

CL Metamodel Property ‘Cautious’ Axiom(s)

RDFStatement RDFsubject (aaa) 
RDFpredicate (rdf:type) 
RDFobject (bbb)

Relation predicate: bbb 
arguments [1]: aaa

(rdfs:Class bbb)

RDFStatement RDFsubject (aaa) 
RDFpredicate 
(rdfs:domain) 
RDFobject (bbb)

Universal 
Quantification

Binding: Term: u 
Term: y

(rdfs:Class bbb) 
(rdf:Property 
aaa)

Implication antecedent: (aaa u y)3 

consequent: (bbb u)

3Relation predicate: aaa 
arguments [1]: u 
arguments [2]: y

Relation predicate: bbb 
arguments [1]: u

RDFStatement RDFsubject (aaa) 
RDFpredicate 
(rdfs:range) 
RDFobject (bbb)

Universal 
Quantification

Binding: Term: u 
Term: y

(rdfs:Class bbb) 
(rdf:Property 
aaa)

Implication antecedent: (aaa u y) 
consequent: (bbb y)

Relation predicate: aaa 
arguments [1]: u 
arguments [2]: y

Relation predicate: bbb 
arguments [1]: y

RDFStatement RDFsubject (aaa) 
RDFpredicate 
(rdfs:subClassOf) 
RDFobject (bbb)

Universal 
Quantification

Binding: Term: u (rdfs:Class bbb) 
(rdfs:Class aaa)

Implication antecedent: (aaa u) 
consequent: (bbb u)

Relation predicate:aaa 
arguments [1]: u

Relation predicate: bbb 
arguments [1]: u
Ontology Definition Metamodel, v1.0        261



Where possible clauses included in sentences, such as the antecedent and consequent of an implication, are expanded for 
further clarification.  The translations are ordered, with the final one used only when the others do not apply.

18.3 OWL to CL Mapping
As described in the relevant specifications, the Web Ontology Language (OWL) is actually three closely related dialects 
rather than a single language, which share a common set of basic definitions but differ in scope and by the degree to 
which their syntactic forms are restricted. The OWL metamodel given in Chapter 11 of this specification is intended to 
represent the abstract syntax for OWL Full, but can also represent the abstract syntax for OWL DL, as long as restrictions 
to support the more constrained semantics of OWL DL are applied. 

The discussion provided in [SCL Translation] provides additional insight into the variations among OWL dialects. It then 
provides an unrestricted translation from the OWL vocabulary to CL, and further refines it for each dialect given a 
common starting point. There are a number of important considerations provided in that discussion, including a series of 
axioms applicable to any CL reasoning environment designed to support OWL ontologies as input. 

Table 18.5 provides a summary translation from RDFS/OWL triples, as represented in the metamodel triple constructs, 
mapped to the appropriate high-level CL metamodel sentence constructs. We’ve taken this approach in keeping with the 
translation, but also due to the fact that what is mapped in some cases is actually a subgraph consisting of multiple RDFS/
OWL statements as well as for increased clarity. Further refinement of some of the CL sentences will be accomplished 
during the finalization phase of the specification, along with inclusion of examples. The translation assumes the axioms 
stated in Section 18.1 and Section 18.2, as well as the following identity axioms:

(forall ((x owl:Thing)(y owl:Thing))(iff (owl:differentFrom x y)(not (= x y)) ))

(forall ((x owl:Thing))(not (owl:Nothing x)))

Note that OWL assertions involving annotation and ontology properties are not covered explicitly, and should be simply 
transcribed as atomic assertions in CL, using the same mechanisms described for RDF triples.

To use the table below to translate an OWL/RDF graph, simply generate the corresponding CL for every subgraph that 
matches the pattern specified in the leftmost two columns. The notation ALLDIFFERENT is used as a shorthand for 
conjunction of n(n-1) “inequations” which assert that the terms are all distinct:

RDFStatement RDFsubject (aaa) 
RDFpredicate 
(rdfs:subPropertyOf) 
RDFobject (bbb)

Universal 
Quantification

Binding: Term: u 
Term: y

(rdf:Property 
bbb) 
(rdf:Property 
aaa)

Implication antecedent: (aaa u y) 
consequent: (bbb u y)

Relation predicate: aaa 
arguments [1]: u 
arguments [2]: y

Relation predicate: bbb 
arguments [1]: u 
arguments [2]: y

RDFStatement (any 
other triple)

RDFsubject (aaa) 
RDFpredicate (ppp) 
RDFobject (bbb)

Relation predicate: ppp 
arguments [1]: aaa 
arguments [2]: bbb

(rdf:Property 
ppp)

Table 18.4 - RDFS Extensional Logical Form Translation
262                 Ontology Definition Metamodel, v1.0



[ALLDIFFERENT x1 ... xn]

means:
(and  

(not (= x1 x2)) (not (=x1 x3)) ... (not (= x1 xn))  
(not (= x2 x3)) ... (not (= x2 xn)) 
(not (= x3 xn)) ... 
... 
(not (= xn-1 xn))  

)

Note that the negation of this is a disjunction of equations. owl_Property should be read as shorthand for the union of 
owl:DatatypeProperty and owl:ObjectProperty.

Unlike the RDFS translation, this translates entire RDF subgraphs into logical sentences. To achieve a full translation, all 
matching subgraphs must be translated, and then any remaining triples rendered into logical atoms using the RDF 
translation. Note that a triple in the graph may occur in more than one subgraph; in particular, the owl:onProperty triples 
will often occur in several subgraph patterns when cardinality and value restrictions are used together.

 

Table 18.5 - RDFS/OWL to CL Metamodel Translation

RDFS/OWL 
Metamodel 
Element

RDFS/OWL  
Metamodel 
Property

CL Metamodel 
Element

CL Metamodel Property Assumption(s)

Subgraph:
RDFStatement

RDFStatement

RDFsubject (rrr) 
RDFpredicate 
(owl:onProperty) 
RDFobject (ppp)

RDFsubject (rrr) 
RDFpredicate 
(owl:minCardinality) 
RDFobject (n)

Universal 
Quantification

Implication

Binding: (Term: (x 
owl:Thing))

antecedent: (rrr x)
consequent:
(exists ((x1 owl:Thing) ... 
(xn owl:Thing)) (and  
    [ALLDIFFERENT x1 ... xn] 
    (ppp x x1) ...(ppp x xn) 
))

(owl:Restriction 
rrr) 
(rdf:Property 
ppp)

subgraph:
RDFStatement

RDFStatement

RDFsubject (rrr) 
RDFpredicate 
(owl:onProperty) 
RDFobject (ppp)

RDFsubject (rrr) 
RDFpredicate 
(owl:maxCardinality) 
RDFobject (n)

Universal 
Quantification

Implication

Binding: (
    Term:(x owl:Thing) 
    Term:(x1 owl:Thing) 
     ... 
     Term: (xn+1 owl:Thing) 
)

antecedent: 
(and (rrr x) 
    (ppp x x1) ...(ppp x xn+1) 
)
consequent: (not 
[ALLDIFFERENT x1 ... xn+1]) 

(owl:Restriction 
rrr) 
(rdf:Property 
ppp)
Ontology Definition Metamodel, v1.0        263



subgraph
RDFStatement

RDFStatement

RDFsubject (rrr) 
RDFpredicate 
(owl:onProperty) 
RDFobject (ppp)

RDFsubject (rrr) 
RDFpredicate 
(owl:cardinality) 
RDFobject (n)

Universal 
Quantification

Implication

Binding: (Term: (x 
owl:Thing))

antecedent: (rrr x) 
consequent:  
(exists ((x1 owl:Thing) ... 
(xn owl:Thing)) (and  
    [ALLDIFFERENT x1 ... xn] 
    (ppp x x1) ...(ppp x xn) 
    (forall ((z 
owl:Thing))(implies
        (ppp x z)
        (or (= z x1) ... (= z 
xn)) 
    )) 
))

(owl:Restriction 
rrr) 
(rdf:Property 
ppp)

subgraph
RDFStatement

RDFStatement

RDFsubject (rrr) 
RDFpredicate 
(owl:onProperty) 
RDFobject (ppp)

RDFsubject (rrr) 
RDFpredicate 
(owl:allValuesFrom) 
RDFobject (ccc)

Universal 
Quantification

Equivalence

Binding: (Term: (x 
owl:Thing))

lvalue: (rrr x) 
rvalue: (forall (y)(implies 
(ppp x y)(ccc y)))

(owl:Restriction 
rrr) 
(rdf:Property 
ppp)

subgraph
RDFStatement

RDFStatement

RDFsubject (rrr) 
RDFpredicate 
(owl:onProperty) 
RDFobject (ppp)

RDFsubject (rrr) 
RDFpredicate 
(owl:someValuesFrom
) 
RDFobject (ccc)

Universal 
Quantification

Equivalence

Binding: (Term: (x 
owl:Thing))

lvalue: (rrr x) 
rvalue: (exists (y)(and (ppp x 
y)(ccc y)))

(owl:Restriction 
rrr) 
(rdf:Property 
ppp)

subgraph
RDFStatement

RDFStatement

RDFsubject (rrr) 
RDFpredicate 
(owl:onProperty) 
RDFobject (ppp)

RDFsubject (rrr) 
RDFpredicate 
(owl:hasValue) 
RDFobject (vvv)

Universal 
Quantification

Equivalence

Binding: (Term: (x 
owl:Thing))

lvalue: (rrr x)
rvalue: (ppp x vvv)

(owl:Restriction 
rrr) 
(rdf:Property 
ppp)

Table 18.5 - RDFS/OWL to CL Metamodel Translation
264                 Ontology Definition Metamodel, v1.0



RDFStatement RDFsubject (ppp) 
RDFpredicate 
(rdf:type) 
RDFobject 
(owl:Functional 
Property)

-or-

Conjunction

Universal 
Quantification

Implication

UniversalQuantification:  
Binding: ( 
    Term: (x owl:Thing) 
    Term: (y owl:Thing) 
    Term: (z owl:Thing) 
)

Implication: (
    antecedent: (and (ppp x 
y)(ppp x z)) 
    consequent: (= y z) 
)

Binding: ( 
    Term: (x owl:Thing) 
    Term: (y rdfs:Literal) 
    Term: (z rdfs:Literal) 
)

antecedent: (and (ppp x y)(ppp 
x z))
consequent: (= y z)

(owl_Property 
ppp)

RDFStatement RDFsubject (ppp) 
RDFpredicate 
(rdf:type) 
RDFobject(owl: 
InverseFunctional 
Property)

Universal 
Quantification

Implication

Binding: ( 
    Term: (x owl:Thing) 
    Term: (y owl:Thing) 
    Term: (z owl:Thing) 
)

antecedent: (and (ppp y x)(ppp 
z x)) 
consequent: (= y z)

(owl:Object 
Property ppp)

RDFStatement RDFsubject (ppp) 
RDFpredicate 
(rdf:type) 
RDFobject 
(owl:Symmetric 
Property)

Universal 
Quantification

Implication

Binding: ( 
    Term: (x owl:Thing) 
    Term:(y owl:Thing) 
)

antecedent: (ppp x y)
consequent: (ppp y x)

(owl:Object 
Property ppp)

RDFStatement RDFsubject (ppp) 
RDFpredicate 
(rdf:type) 
RDFobject 
(owl:Transitive 
Property)

Universal 
Quantification

Implication

Binding: ( 
    Term: (x owl:Thing) 
    Term: (y owl:Thing) 
    Term:   (z owl:Thing) 
)

antecedent: (and (ppp x y)(ppp 
y z))
consequent: (ppp x z)

(owl:Object 
Property ppp)

Table 18.5 - RDFS/OWL to CL Metamodel Translation
Ontology Definition Metamodel, v1.0        265



RDFStatement RDFsubject (ppp) 
RDFpredicate(owl: 
equivalentProperty) 
RDFobject (qqq)

Universal 
Quantification

Implication

Binding: ( 
    Term: (x owl:Thing) 
    Term:(y owl:Thing) 
)

antecedent: (ppp x y)
consequent: (qqq x y)

(owl_Property 
ppp) 
(owl_Property 
qqq)

RDFStatement RDFsubject (ppp) 
RDFpredicate 
(owl:inverseOf) 
RDFobject (qqq)

Universal 
Quantification

Implication

Binding: ( 
    Term: (x owl:Thing) 
    Term:(y owl:Thing) 
)

antecedent: (ppp x y)
consequent: (qqq y x)

(owl_Property 
ppp) 
(owl_Property 
qqq)

RDFStatement RDFsubject (ccc) 
RDFpredicate 
(owl:equivalentClass) 
RDFobject (ddd)

Universal 
Quantification

Implication

Binding: (Term: (x 
owl:Thing))

antecedent: (ccc x)
consequent: (ddd x)

(owl:Class ccc) 
(owl:Class ddd)

RDFStatement RDFsubject (ccc) 
RDFpredicate 
(owl:disjointWith) 
RDFobject (ddd)

Universal 
Quantification

Negation

Binding: (Term: (x 
owl:Thing))

Sentence: ( 
    Conjunction: ( 
        Sentence: (ccc x) 
        Sentence: (ddd x) 
))

(owl:Class ccc) 
(owl:Class ddd)

RDFStatement RDFsubject (ccc) 
RDFpredicate 
(owl:complementOf) 
RDFobject (ddd)

Universal 
Quantification

Implication

Binding: (Term: (x 
owl:Thing))

antecedent: (ccc x)
consequent: (not(ddd x))

(owl:Class ccc) 
(owl:Class ddd)

Table 18.5 - RDFS/OWL to CL Metamodel Translation
266                 Ontology Definition Metamodel, v1.0



RDFStatement

RDFStatement

…

RDFStatement

RDFsubject (ccc) 
RDFpredicate 
(owl:intersectionOf) 
RDFobject (lll-1) 

RDFsubject (lll-1) 
RDFpredicate 
(rdf:first) 
RDFobject (aaa-1)

RDFsubject (lll-1) 
RDFpredicate 
(rdf:rest) 
RDFobject (lll-2)

…

RDFsubject (lll-n) 
RDFpredicate 
(rdf:first) 
RDFobject (aaa-n)

RDFsubject (lll-n) 
RDFpredicate 
(rdf:rest) 
RDFobject (rdf:nil)

Universal 
Quantification

Implication

Binding: (Term: (x 
owl:Thing))

antecedent: (ccc x)
consequent: (and (aaa-1 x) ... 
(aaa-n x) )

(owl:Class ccc)

RDFStatement

RDFStatement

…

RDFStatement

RDFsubject (ccc) 
RDFpredicate 
(owl:unionOf) 
RDFobject (lll-1)

RDFsubject (lll-1) 
RDFpredicate 
(rdf:first) 
RDFobject (aaa-1)

RDFsubject (lll-1) 
RDFpredicate 
(rdf:rest) 
RDFobject (lll-2)

…

RDFsubject (lll-n) 
RDFpredicate 
(rdf:first) 
RDFobject (aaa-n)

RDFsubject (lll-n) 
RDFpredicate 
(rdf:rest) 
RDFobject (rdf:nil)

Universal 
Quantification

Implication

Binding: (Term: (x 
owl:Thing))

antecedent: (ccc x)
consequent: (or (aaa-1 x) ... 
(aaa-n x) )

(owl:Class ccc)

Table 18.5 - RDFS/OWL to CL Metamodel Translation
Ontology Definition Metamodel, v1.0        267



RDFStatement

RDFStatement

RDFStatement

…

RDFStatement

RDFsubject (ccc) 
RDFpredicate 
(owl:oneOf) 
RDFobject (lll-1)

RDFsubject (ccc) 
RDFpredicate 
(rdf:type) 
RDFobject (owl:Class)

RDFsubject (lll-1) 
RDFpredicate 
(rdf:first) 
RDFobject (aaa-1) 
 
RDFsubject (lll-1) 
RDFpredicate 
(rdf:rest) 
RDFobject (lll-2)

…

RDFsubject (lll-n) 
RDFpredicate 
(rdf:first) 
RDFobject (aaa-n)

RDFsubject (lll-n) 
RDFpredicate 
(rdf:rest) 
RDFobject (rdf:nil)

Universal 
Quantification

Implication

Binding: (Term: (x 
owl:Thing))

antecedent: (ccc x)
consequent: (or (= aaa-1 x) 
... (= aaa-n x) )

(owl:Class ccc)

Table 18.5 - RDFS/OWL to CL Metamodel Translation
268                 Ontology Definition Metamodel, v1.0



RDFStatement

RDFStatement

RDFStatement

…

RDFStatement

RDFsubject (ccc) 
RDFpredicate 
(owl:oneOf) 
RDFobject (lll-1)

RDFsubject (ccc) 
RDFpredicate 
(rdf:type) 
RDFobject 
(owl:DataRange)

RDFsubject (lll-1) 
RDFpredicate 
(rdf:first) 
RDFobject (aaa-1)

RDFsubject (lll-1) 
RDFpredicate 
(rdf:rest) 
RDFobject (lll-2)

…

RDFsubject (lll-n) 
RDFpredicate 
(rdf:first) 
RDFobject (aaa-n)

RDFsubject (lll-n) 
RDFpredicate 
(rdf:rest) 
RDFobject (rdf:nil)

Universal 
Quantification

Implication

Binding: (Term: (x 
rdfs:Literal))

antecedent: (ccc x) 
consequent: (or (= aaa-1 x) 
... (= aaa-n x) )

(owl:DataRange 
ccc)

Table 18.5 - RDFS/OWL to CL Metamodel Translation
Ontology Definition Metamodel, v1.0        269



RDFStatement

RDFStatement

RDFStatement

…

RDFStatement

RDFsubject (ccc) 
RDFpredicate 
(rdf:type) 
RDFobject 
(owl:AllDifferent)

RDFsubject (ccc) 
RDFpredicate(owl:dist
inctMembers) 
RDFobject (lll-1)

RDFsubject (lll-1) 
RDFpredicate 
(rdf:first) 
RDFobject (aaa-1)

RDFsubject (lll-1) 
RDFpredicate 
(rdf:rest) 
RDFobject (lll-2)

…

RDFsubject (lll-n) 
RDFpredicate 
(rdf:first) 
RDFobject (aaa-n)

RDFsubject (lll-n) 
RDFpredicate 
(rdf:rest) 
RDFobject (rdf:nil)

Universal 
Quantification

Implication

Sentence

Binding: (Term: (x 
owl:Thing))

antecedent: (ccc x) 
consequent:  (or (= aaa-1 x) 
... (= aaa-n x) )

[ALLDIFFERENT aaa-1 ... aaa-
n]

(owl:Class ccc)

RDFStatement RDFsubject (aaa) 
RDFpredicate 
(rdf:type) 
RDFobject (bbb)

Relation predicate: bbb 
arguments [1]: aaa

(owl:Class bbb)

RDFStatement RDFsubject (aaa) 
RDFpredicate 
(rdfs:domain) 
RDFobject (bbb)

Universal 
Quantification

Implication

Binding: ( 
    Term: (u rdfs:Resource) 
    Term: (y rdfs:Resource) 
)

antecedent: (aaa u y)
consequent: (bbb u)

(owl:Class bbb) 
(rdf:Property 
aaa)

RDFStatement RDFsubject (aaa) 
RDFpredicate 
(rdfs:range) 
RDFobject (bbb)

Universal 
Quantification

Implication

Binding: ( 
    Term: (u rdfs:Resource) 
    Term: (y rdfs:Resource) 
)

antecedent: (aaa u y) 
consequent: (bbb y)

(owl:Class bbb) 
(rdf:Property 
aaa)

Table 18.5 - RDFS/OWL to CL Metamodel Translation
270                 Ontology Definition Metamodel, v1.0



In addition, depending on the dialect of OWL (OWL DL or OWL Full) in question, certain hierarchical axioms are 
assumed, which enforce the distinction between owl:ObjectProperty and owl:DatatypeProperty, for example. For OWL 
DL, they also enforce the strict segregation between classes, properties, and individuals. These are summarized below for 
comparison purposes.

OWL Hierarchy Axioms
(forall ((x owl:Thing)(y owl:Thing))(iff (owl:sameAs x y)(= x y) )) 
(forall (x) (implies (rdfs:Class x) (rdfs:Resource x)) 
(forall (x) (implies (rdf:Property x) (rdfs:Resource x)) 
(forall (x) (implies (rdfs:Datatype x) (rdfs:Class x)) 
(forall (x) (implies (owl:Thing x) (rdfs:Resource x)) 
(forall (x) (implies (owl_Property x) (rdf:Property x)) 
(forall (x) (implies (owl:Class x) (rdfs:Class x)) 
(forall (x) (implies (owl:DataRange x) (rdfs:Class x)) 
(forall (x) (implies (owl:Restriction x) (owl:Class x)) 
(forall (x) (implies (owl:ObjectProperty x) (owl_Property x)) 
(forall (x) (implies (owl:DatatypeProperty x) (owl_Property x)) 
(forall (x) (implies (owl:Thing x) (rdfs:Resource x)) 
(forall (x) (not (and (owl:Thing x)(rdfs:Literal x)))) 
(forall (x) (not (and (owl:Thing x)(owl:Ontology x)))) 
(forall (x) (not (and (owl:ObjectProperty x)(owl:DatatypeProperty x))))

OWL-DL Specific Hierarchy Axioms

(forall (x) (not (and (owl:Thing x)(owl_Property x)))) 
(forall (x) (not (and (owl:Thing x)(owl:Class x)))) 
(forall (x) (not (and (owl:Class x)(owl_Property x)))) 
(forall (x) (not (and (owl:OntologyProperty x)(owl_Property x)))) 
(forall (x) (not (and (owl:AnnotationProperty x)(owl_Property x))))

RDFStatement RDFsubject (aaa) 
RDFpredicate 
(rdfs:subClassOf) 
RDFobject (bbb)

Universal 
Quantification

Implication

Binding: Term: (u 
rdfs:Resource)

antecedent: (aaa u) 
consequent: (bbb u)

(owl:Class bbb) 
(owl:Class aaa)

RDFStatement RDFsubject (aaa) 
RDFpredicate(rdfs:sub
PropertyOf) 
RDFobject (bbb)

Universal 
Quantification

Implication

Binding: ( 
   Term: (u rdfs:Resource) 
   Term: (y rdfs:Resource) 
)

antecedent: (aaa u y) 
consequent: (bbb u y)

(rdf:Property 
bbb) 
(rdf:Property 
aaa)

any other triple
RDFStatement

RDFsubject (aaa) 
RDFpredicate (ppp) 
RDFobject (bbb)

Relation predicate: ppp 
arguments [1]: aaa 
arguments [2]: bbb

(rdf:Property 
ppp)

Table 18.5 - RDFS/OWL to CL Metamodel Translation
Ontology Definition Metamodel, v1.0        271



18.4 RDFS to CL Mapping in MOF QVT
transformation RDFS2CL(in src:RDFS,out dest:CL);

configuration property EMBED_TRIPLES := false; --  default value

------------------------------------------------------------------
------------- Conversion of RDF Triples --------------------------
------------------------------------------------------------------
query RDFRessource::isSchemaType() : Boolean =
  if self.RDFpredicate.isTypeOf(TypedLiteral)
    and self.lexicalForm='xsd:type' then true
    else false
  endif;

mapping RDFStatement::convertTriple() : AtomicSentence {
  init { 
    result := if EMBED_TRIPLES=true then 
                  self.convertTripleEmbedded()
              else 
                 if not self.RDFpredicate.isSchemaType()
                   then self.convertTripleDirect() 
                   else self.convertTripleDirectWithSchemaType() 
                 endif
              endif;
  }
}

mapping RDFStatement::convertTripleDirect() : AtomicSentence  {
  predicate := self.RDFpredicate.map convertRessource();
  arguments := {
    self.RDFsubject.map convertRessource();
    self.RDFobject.map convertRessource();
    };
}

mapping RDFStatement::convertTripleDirectWithSchemaType() : AtomicSentence  {
  predicate := self.RDFobject.map convertRessource();
  arguments := self.RDFsubject.map convertRessource();
  end { -- TODO: Add here the implied axioms 
  }
}

mapping RDFStatement::convertTripleEmbedded() : AtomicSentence  {
  predicate := new LogicalName('rdf_triple');
  arguments := {
    self.RDFpredicate.map convertRessource();
    self.RDFsubject.map convertRessource();
    self.RDFobject.map convertRessource();
    };
  end { -- axioms
    result.parent().phrase += {
      self.map addPropertyAxiom();
      self.map addPromiscuityAxiom();
    };
  }
272                 Ontology Definition Metamodel, v1.0



}

------------------------------------------------------------------
------------- Conversion of RDF Ressources -----------------------
------------------------------------------------------------------

mapping RDFRessource::convertRessource() : Sentence 
 disjuncts PlainLiteral::convertLiteral,
           TypedLiteral::convertLiteral,
           Graph::convertGraph
{}

mapping PlainLiteral::convertLiteral() : FunctionalTerm  {
  operator := new LogicalName("stringInLang");
  arguments := {
     new LogicalName(self.lexicalForm);
     if self.language then new LogicalName(self.language);
  };
}

mapping TypedLiteral::convertLiteral() : FunctionalTerm {
  operator := new LogicalName(self.datatypeURI); 
    -- TODO: is datatypeURI a string?
  arguments := new LogicalName(self.lexicalForm);
}

mapping Graph::convertGraph() : Sentence {
  init {
    result := new ExistentialQuantification(
      self.statement[#BlankNode]->nodeID->asOrderedSet(),
      new Conjunction(self.statement->map convertTriple())
    );
  }
}

--------------------------------------------------------------------------
---------------- Axioms when embedding triples ---------------------------
--------------------------------------------------------------------------

mapping RDFStatement::addPropertyAxiom() : Sentence {
  -- (forall (x y z)(iff (rdf_triple y x z)(and (rdf:Property x)(x y z))))
  init {
    result := new UniversalQuantification(
     Sequence{'x','y','z'},
     new Biconditional(
       new AtomicSentence('rdf_triple',Sequence{'y','x','z'}),
       new Conjunction(
            Sequence {
              new AtomicSentence('rdf:Property',Sequence{'x'}),
              Sequence{'x','y','z'}
            }
          )
Ontology Definition Metamodel, v1.0        273



       )
     );
 }
}

mapping RDFStatement::addPromiscuityAxiom() : Sentence {
  -- (forall (x)(rdf:Property x))
  init {
    result := new UniversalQuantification(
     Sequence{'x'},
     new AtomicSentence(new LogicalName('rdf:Property'),Sequence{'x'})
     );
 }
}

-------------------------------------------------------------------
--- Constructor operations for main CL concepts -------------------
-------------------------------------------------------------------

constructor LogicalName(lname:String) {
  name := lname;
}

constructor UniversalQuantification(names:Sequence(String),s:Sentence) {
   boundName := names->object(n) LogicalName {name:=n;};
   body := s;
}

constructor Biconditional(left:Sentence,right:Sentence) {
  lvalue := left;
  rvalue := right;
}

constructor AtomicSentence(pName:String,args:Sequence(Any)) {
  predicate := new LogicalName(pName);
  arguments := args->collect(a |
                if a.isKindOf(String) then new LogicalName(name=a)
                else a endif);
}

constructor Conjunction(lsentence : Sequence(Sentence)) {
  conjunct := lsentence;
}

274                 Ontology Definition Metamodel, v1.0



19 References (non-normative)

[BCMNP] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider editors;The 
Description Logic Handbook: Theory, Implementation and Applications; Cambridge 
University Press, January 2003

[CGS] Sowa, J.F., Conceptual Structures: Information Processing in Mind and Machine. 
Addison-Wesley, Reading, MA, 1984

[DOLCE] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari and L. Schneider, Sweetening 

Ontologies with DOLCE, 13th International Conference on Knowledge Engineering and 
Knowledge Management (EKAW02), 1-4 October 2002, Siguenza, Spain

[Fikes & 
McGuinness]

An Axiomatic Semantics for RDF, RDF Schema and DAML+OIL  
<http://www.ksl.stanford.edu/people/dlm/daml-semantics/abstract-axiomatic-semantics-
august2001.html> Fikes, R., McGuinness, D. L., KSL Technical Report KSL-01-01, 
August 2001

[GE] J. Paul, S. Withanachchi, R. Mockler, M. Gartenfeld, W. Bistline and D. Dologite, 
Enabling B2B Marketplaces: the case of GE Global Exchange Services, in Annals Of 
Cases On Information Technology, Hershey, PA : Idea Group, 2003

[GuarWel] N. Guarino and C. Welty, Identity, Unity and Individuality: Towards a Formal Toolkit for 
Ontological Analysis, in: W. Horn (ed) Proceedings of ECAI-2000: The European 
Conference on Artificial Intelligence IOS Press, Amsterdam, 2000

[KIF] M. R. Genesereth & R. E. Fikes, Knowledge Interchange Format, Version 3.0 Reference 
Manual. KSL Report KSL-92-86, Knowledge Systems Laboratory, Stanford University, 
June 1992

[MSDW] R. Colomb, A. Gerber and M. Lawley, Issues in Mapping Metamodels in the Ontology 

Definition Metamodel, 1st International Workshop on the Model-Driven Semantic Web 
(MSDW 2004) Monterey, California, USA. 20-24 September, 2004

[Nary] W3C Defining N-ary Relations on the Semantic Web: Use with Individuals. Working 
Draft 21 July 2004.  
http://www.w3.org/TR/2004/WD-swbp-n-aryRelations-20040721/

[ODM RFP] Ontology Definition Metamodel Request for Proposal, OMG Document ad/2003-03-40

[OntoClean] N. Guarino and C. Welty.  Evaluating Ontological Decisions with OntoClean, 
Communications of the ACM, 45(2) (2002) 61-65

[OWL OV] OWL Web Ontology Language Overview, W3C Recommendation 10 February 2004. 
Deborah L. McGuinness and Frank van Harmelen eds. Latest version is available at: 
http://www.w3.org/TR/owl-features/

[OWL Reference] OWL Web Ontology Language Reference. W3C Recommendation 10 February 2004, 
Mike Dean, Guus Schreiber, eds. Latest version is available at http://www.w3.org/TR/
owl-ref/
Ontology Definition Metamodel, v1.0        275



[OWL XML 
Syntax]

OWL Web Ontology Language XML Presentation Syntax. Masahiro Hori, Jérôme 
Euzenat, and Peter F. Patel-Schneider, Editors.  W3C Note, 11 June 2003.  Latest version 
is available at http://www.w3.org/TR/owl-xmlsyntax/

[PartWhole] W3C Simple part-whole relations in OWL Ontologies. W3C Working Draft 15 January 
2005. http://www.cs.man.ac.uk/~rector/swbp/simple-part-whole/simple-part-whole-
relations-v0-2.html

[RDF/TM] W3C A survey of RDF/Topic Maps Interoperability Proposals W3C Working Draft 29 
March, 2005.  Latest version is available at http://www.w3.org/TR/2005/WD-rdftm-
survey-20050329

[Rose] IBM Rational Rose, http://www-130.ibm.com/developerworks/rational/products/rose

[SCL Translation] Translating Semantic Web Languages into SCL, Patrick Hayes, IHMC, November 2004. 
 Latest  version available at http://www.ihmc.us/users/phayes/CL/SW2SCL.htm

[UML2.1 Infra] Unified Modeling Language: Infrastructure, version 2.1.  OMG Specification, ptc/06-04-
03. Latest version (convenience document) is available at http://www.omg.org/docs/ptc/
06-04-03.pdf

[UML2.1] Unified Modeling Language: Superstructure, version 2.1.  OMG Specification, ptc/06-
04-02. Latest version (convenience document) is available at http://www.omg.org/docs/
ptc/06-04-02.pdf

[WinChafHerr] M. Winston, R. Chaffin, and D. Herrmann, (1987). A taxonomy of part-whole relations.  
Cognitive Science 11, 417-444

[XSCHD] XML Schema Datatypes in RDF and OWL, W3C Working Group Note 14 March 2006, 
Jeremy J. Carroll, Jeff Z. Pan, eds.  Latest version is available at http://www.w3.org/TR/
swbp-xsch-datatypes/
276                 Ontology Definition Metamodel, v1.0



Annex A
(normative)

Foundation Library (M1) for RDF and OWL           

This annex includes several libraries: (1) an M1 library to be used with the RDF metamodel, (2) an M1 library to be 
used with the OWL metamodel in addition to the RDF library, (3) a model library to be used with the RDF profile, 
and (4) a model library for use with the OWL profile in addition to the RDF profile model library.

A.1 RDF Metamodel Library Elements

An M1 instance of either the RDF or OWL metamodels will generally require the use of some built-in resources as 
M1 instances of some M2 classes. Table A.1 gives a foundation library containing resources that may be required for 
use with the RDF Metamodel.

Table A.1  - Foundation Library (M1) for Use with the RDF Metamodel

M1 Object Metaclass/Classifier Properties Description, Constraints

RDF Model Library UML::Package n/a Contains the set of M1 model elements 
defined in this table

nil RDF::RDFS::RDFList n/a The value of RDFfirst is nil; the value of 
RDFrest is nil; Special instance of 
RDFList - the empty list

label RDF::RDFS::RDFProperty language: String [0..1] label is an optional property of RDFS 
Resource; the value of the label property 
must be a UML::LiteralString; A human-
readable label for a resource

comment RDF::RDFS::RDFProperty language: String [0..1] comment is an optional property of 
RDFSResource; the value of the 
comment property must be a 
UML::LiteralString; A human-readable 
comment associated with a resource

seeAlso RDF::RDFS::RDFProperty n/a seeAlso is an optional property of 
RDFSResource; its type must also be 
RDFSResource; a reference providing 
further information about the resource 
that classifies it

isDefinedBy RDF::RDFS::RDFProperty n/a isDefinedBy is a subproperty of seeAlso; 
a reference providing definitional 
information about the resource that 
classifies it
Ontology Definition Metamodel, v1.0 277



A subset of the XML Schema Datatypes, specified in, are also available for use in RDF. We provide these in a 
separate M1 package. All others are considered unsuitable for use with RDF and should not be used.

_1, _2, _3, _4, _5, _6, 
_7, _8, _9, _10, etc.

RDF:RDFS::RDFSContainer
MembershipProperty

n/a Ordered properties (meaning that the 
properties themselves are ordered by 
their number, essentially indices) 
indicating that their object is a member 
of the container that is their subject; 
every instance of 
RDFSContainerMembershipProperty is a 
subPropertyOf member

value RDF::RDFBase::RDF 
Property

n/a Distinguished instance of RDFProperty 
with no specific interpretation. Intended 
to be used to, for example, indicate the 
principal value in a complex of 
properties others of which provide 
context (units, for example). Deprecated 
in the ODM.

XMLLiteral RDF::RDFS::RDFSDatatype The value of datatypeURI 
for XMLLiteral is http://
www.w3.org/1999/02/22-
rdf-syntax-
ns#XMLLiteral.

A distinguished RDF datatype, which is 
a subclass of TypedLiteral, used for 
embedding XML in RDF.

Table A.2 - Foundation Library (M1) Defining XML Schema Datatypes For Use with RDF

M1 Object Metaclass/Classifier Properties Description, Constraints

XSD Model Library UML::Package n/a The package containing the set of M1 
model elements defined in this table

string RDF::RDFS::RDFSDatatype The value of datatypeURI for 
string is http://www.w3.org/
TR/xmlschema-2/#string

string is a subclass of TypedLiteral

boolean RDF::RDFS::RDFSDatatype The value of datatypeURI for 
boolean is http://www.w3.org/
TR/xmlschema-2/#boolean

boolean is a subclass of TypedLiteral

decimal RDF::RDFS::RDFSDatatype The value of datatypeURI for 
decimal is http://www.w3.org/
TR/xmlschema-2/#decimal

decimal is a subclass of TypedLiteral

float RDF::RDFS::RDFSDatatype The value of datatypeURI for 
float is http://www.w3.org/TR/
xmlschema-2/#float

float is a subclass of TypedLiteral

double RDF::RDFS::RDFSDatatype The value of datatypeURI for 
double is http://www.w3.org/
TR/xmlschema-2/#double

double is a subclass of TypedLiteral

Table A.1  - Foundation Library (M1) for Use with the RDF Metamodel

M1 Object Metaclass/Classifier Properties Description, Constraints
278                                                                                                                                                       Ontology Definition Metamodel, v1.0



dateTime RDF::RDFS::RDFSDatatype The value of datatypeURI for 
dateTime is http://
www.w3.org/TR/xmlschema-2/
#dateTime

dateTime is a subclass of TypedLiteral

time RDF::RDFS::RDFSDatatype The value of datatypeURI for 
time is http://www.w3.org/TR/
xmlschema-2/#time

time is a subclass of TypedLiteral

date RDF::RDFS::RDFSDatatype The value of datatypeURI for 
date is http://www.w3.org/TR/
xmlschema-2/#date

date is a subclass of RDFSLiteral

gYearMonth RDF::RDFS::RDFSDatatype The value of datatypeURI for 
gYearMonth is http://
www.w3.org/TR/xmlschema-2/
#gYearMonth

gYearMonth is a subclass of RDFS 
Literal

gYear RDF::RDFS::RDFSDatatype The value of datatypeURI for 
gYear is http://www.w3.org/
TR/xmlschema-2/#gYear

gYear is a subclass of RDFSLiteral

gMonthDay RDF::RDFS::RDFSDatatype The value of datatypeURI for 
gMonthDay is http://
www.w3.org/TR/xmlschema-2/
#gMonthDay

gMonthDay is a subclass of RDFS 
Literal

gDay RDF::RDFS::RDFSDatatype The value of datatypeURI for 
gDay is http://www.w3.org/
TR/xmlschema-2/#gDay

gDay is a subclass of RDFSLiteral

gMonth RDF::RDFS::RDFSDatatype The value of datatypeURI for 
gMonth is http://www.w3.org/
TR/xmlschema-2/#gMonth

gMonth is a subclass of RDFSLiteral

hexBinary RDF::RDFS::RDFSDatatype The value of datatypeURI for 
hexBinary is http://
www.w3.org/TR/xmlschema-2/
#hexBinary 

hexBinary is a subclass of RDFS 
Literal

base64Binary RDF::RDFS::RDFSDatatype The value of datatypeURI for 
base64Binary is http://
www.w3.org/TR/xmlschema-2/
#base64Binary

base64Binary is a subclass of 
RDFSLiteral

anyURI RDF::RDFS::RDFSDatatype The value of datatypeURI for 
anyURI is http://www.w3.org/
TR/xmlschema-2/#anyURI

anyURI is a subclass of RDFSLiteral

normalizedString RDF::RDFS::RDFSDatatype The value of datatypeURI for 
normalizedString is http://
www.w3.org/TR/xmlschema-2/
#normalizedString

normalizedString is a subclass of 
RDFSLiteral

token RDF::RDFS::RDFSDatatype The value of datatypeURI for 
token is http://www.w3.org/
TR/xmlschema-2/#token

token is a subclass of RDFSLiteral

Table A.2 - Foundation Library (M1) Defining XML Schema Datatypes For Use with RDF
Ontology Definition Metamodel, v1.0 279



language RDF::RDFS::RDFSDatatype The value of datatypeURI for 
language is http://www.w3.org/
TR/xmlschema-2/#language

language is a subclass of RDFSLiteral

NMTOKEN RDF::RDFS::RDFSDatatype The value of datatypeURI for 
NMTOKEN is http://
www.w3.org/TR/xmlschema-2/
#NMTOKEN

NMTOKEN is a subclass of RDFS 
Literal

Name RDF::RDFS::RDFSDatatype The value of datatypeURI for 
Name is http://www.w3.org/
TR/xmlschema-2/#Name

Name is a subclass of RDFSLiteral

NCName RDF::RDFS::RDFSDatatype The value of datatypeURI for 
NCName is http://
www.w3.org/TR/xmlschema-2/
#NCName

NCName is a subclass of RDFSLiteral

integer RDF::RDFS::RDFSDatatype The value of datatypeURI for 
integer is http://www.w3.org/
TR/xmlschema-2/#integer

integer is a subclass of RDFSLiteral

nonPositiveInteger RDF::RDFS::RDFSDatatype The value of datatypeURI for 
nonPositiveInteger is http://
www.w3.org/TR/xmlschema-2/
#nonPositiveInteger

nonPositiveInteger is a subclass of 
RDFSLiteral

negativeInteger RDF::RDFS::RDFSDatatype The value of datatypeURI for 
negativeInteger is http://
www.w3.org/TR/xmlschema-2/
#negativeInteger

negativeInteger is a subclass of  
RDFSLiteral

long RDF::RDFS::RDFSDatatype The value of datatypeURI for 
long is http://www.w3.org/TR/
xmlschema-2/#long

long is a subclass of RDFSLiteral

int RDF::RDFS::RDFSDatatype The value of datatypeURI for 
int is http://www.w3.org/TR/
xmlschema-2/#int

int is a subclass of RDFSLiteral

short RDF::RDFS::RDFSDatatype The value of datatypeURI for 
short is http://www.w3.org/TR/
xmlschema-2/#short

short is a subclass of RDFSLiteral

byte RDF::RDFS::RDFSDatatype The value of datatypeURI for 
byte is http://www.w3.org/TR/
xmlschema-2/#byte

byte is a subclass of RDFSLiteral

nonNegativeInteger RDF::RDFS::RDFSDatatype The value of datatypeURI for 
nonNegativeInteger is http://
www.w3.org/TR/xmlschema-2/
#nonNegativeInteger

nonNegativeInteger is a subclass of 
RDFSLiteral

unsignedLong RDF::RDFS::RDFSDatatype The value of datatypeURI for 
unsignedLong is http://
www.w3.org/TR/xmlschema-2/
#unsignedLong

unsignedLong is a subclass of 
RDFSLiteral

Table A.2 - Foundation Library (M1) Defining XML Schema Datatypes For Use with RDF
280                                                                                                                                                       Ontology Definition Metamodel, v1.0



A.2 OWL Metamodel Library Elements

Table A.3 gives a foundation library containing resources that may be required for use with the OWL Metamodel.

unsignedInt RDF::RDFS::RDFSDatatype The value of datatypeURI for 
unsignedInt is http://
www.w3.org/TR/xmlschema-2/
#unsignedInt

unsignedInt is a subclass of  
RDFSLiteral

unsignedShort RDF::RDFS::RDFSDatatype The value of datatypeURI for 
unsignedShort is http://
www.w3.org/TR/xmlschema-2/
#unsignedShort

unsignedShort is a subclass of  
RDFSLiteral

unsignedByte RDF::RDFS::RDFSDatatype The value of datatypeURI for 
unsignedByte is http://
www.w3.org/TR/xmlschema-2/
#unsignedByte

unsignedByte is a subclass of  
RDFSLiteral

positiveInteger RDF::RDFS::RDFSDatatype The value of datatypeURI for 
positiveInteger is http://
www.w3.org/TR/xmlschema-2/
#positiveInteger

positiveInteger is a subclass of 
RDFSLiteral

Table A.3 - Foundation Library (M1) for Use with the OWL Metamodel

M1 Object Metaclass Properties Description, Constraints

OWL Model Library UML::Package Contains the set of M1 model elements 
defined in this table

Nothing OWL::OWLBase::OWLClass [1] Nothing is an RDFSsubclassOf every 
instance of OWLClass; [2] Thing is the 
complement of Nothing.

Thing OWL::OWLBase::OWLClass [1] Every instance of OWLClass is an 
RDFSsubclassOf Thing; [2] Thing is the 
default domain and range of every 
instance of OWLObjectProperty; [3] 
Thing is the default domain of every 
instance of OWLDatatypeProperty.

versionInfo OWL::OWLBase::OWL 
AnnotationProperty

RDF Model Library::label OWL::OWLBase::OWL 
AnnotationProperty

Redefines label from Table A.1

RDF Model  
Library::comment

OWL::OWLBase::OWL 
AnnotationProperty

Redefines comment from Table A.1

RDF Model 
Library::seeAlso

OWL::OWLBase::OWL 
AnnotationProperty

Redefines seeAlso from Table A.1

RDF Model 
Library::isDefinedBy

OWL::OWLBase::OWL 
AnnotationProperty

Redefines isDefinedBy from Table A.1

Table A.2 - Foundation Library (M1) Defining XML Schema Datatypes For Use with RDF
Ontology Definition Metamodel, v1.0 281



A.3 UML Profile for RDF Library Elements

Table A.4 gives a foundation library containing resources that may be used in addition to and with the RDF Profile.  
Rather than creating a separate package for these elements, they augment the RDF profile package described in 
Section 14.1, “UML Profile for RDF.”

In the table below:

• The first column, M1 Object, represents the element in the model library being described. 

• The second column,  Base Class & Stereotype, the base class is the UML metamodel element that the M1 Object 
is an instance of, and the stereotype, if any, is the stereotype applied to the M1 object. 

• The third column, Parent, represents the classifier that generalizes the M1 object if the M1 object is itself a  
classifier.

• The Properties column provides UML properties of the M1 object if that object is a classifier. 

• Finally, the Description, Constraints column describes the M1 object and identifies additional constraints on that 
object, if any.

Table A.4 - Foundation Library (M1) for Use with the RDF Profile

M1 Object Base Class &
Stereotype

Parent Properties Description, Constraints

_1, _2, _3, _4, _5, _6, 
_7, _8, _9, _10, etc.

UML::Property; 
«rdfsContainer 
Membership 
Property»

Ordered properties (meaning that 
the properties themselves are 
ordered by their number, essentially 
indices) indicating that their object 
is a member of the container that is 
their subject

nil UML::Instance 
Specification, no  
stereotype

[1] The classifier for the Instance 
Specification must be RDFList; [2] 
The value of the first property must 
be nil; [3] the value of the rest 
property must be nil; Special 
instance of RDFList - the empty 
list.

RDFAlt UML::Datatype; no 
stereotype

RDFSContainer This is the class of RDF 
“Alternative” containers. «rdfAlt» is 
used conventionally to indicate to a 
human reader that typical 
processing will be to select one of 
the members of the container. The 
first member of the container, i.e., 
the value of the rdf:_1 property, 
is the default choice.

RDFBag UML::Datatype; no 
stereotype

RDFSContainer This is the class of RDF “Bag”  
containers. It is used conventionally 
to indicate that the container is 
intended to be unordered and allow 
duplicate members.
282                                                                                                                                                       Ontology Definition Metamodel, v1.0



Table A.5 gives a foundation library defining the set of XML Schema Datatypes that may be used with the RDF and 
OWL Profiles. All others are considered unsuitable for use with RDF and should not be used.

RDFList UML::Datatype; no 
stereotype

uriRef: String [1] 
– the URI 
reference(s) for 
the list; first: 
[0..1] – the 
resource 
representing the 
first element in 
the list; rest: 
RDFList [0..1] – 
a sublist 
excluding the 
first element of 
the original list

This class represents descriptions of 
RDF collections, conventionally 
called lists and other list-like 
structures, corresponding to 10.6.3 
(“RDFList”).
[1] The value of the uriRef property 
must be a UML::LiteralString that is 
stereotyped by «uriReference»;  
[2] The value of the first property 
must be an instance of something 
stereotyped by «rdfsResource»;  
[3] The value of the rest property 
must be an instance of RDFList.  

RDFSContainer UML::Datatype; no 
stereotype

uriRef: String [1] 
– the URI 
reference(s) for 
the container

This is a super-class of RDF 
container classes, corresponding to 
10.6.4 (“RDFSContainer”).
[1] The value of the uriRef property 
must be a UML::LiteralString that is 
stereotyped by «uriReference». 

RDFSContainer 
MembershipProperty

UML::Property; 
«rdfsContainer 
Membership 
Property»

«rdfProperty» [1] Instances of this property are 
stereotyped by «rdfsResource»; 
This property has as instances the 
properties rdf:_1, rdf:_2, 
rdf:_3 ... that are used to state 
that a resource is a member of a 
container, corresponding to 10.6.5 
(“RDFSContainerMembershipPrope
rty”).

RDFSeq UML::Datatype; no 
stereotype

RDFSContainer This is the class of RDF “Sequence” 
containers. It is used conventionally 
to indicate that the numerical 
ordering of the container 
membership properties of the 
container is intended to be 
significant.

value UML::Property; no 
stereotype

Distinguished instance of 
RDFProperty with no specific 
interpretation. Intended to be used 
to, for example, indicate the 
principal value in a complex of 
properties others of which provide 
context (units, for example). 
Deprecated in the ODM.

Table A.4 - Foundation Library (M1) for Use with the RDF Profile
Ontology Definition Metamodel, v1.0 283



Table A.5 - Foundation Library (M1) Defining XML Schema Datatypes For Use with the RDF Profile

M1 Object Base Class &
Stereotype

Parent Properties Description, Constraints

XSD Library UML::Package The package containing the set of M1 
model elements defined in this table.

string UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/#string.”

boolean UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/#boolean.”

decimal UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/#decimal.”

float UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/#float.”

double UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/#double.”

dateTime UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/#dateTime.”

time UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/#time.”

date UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/#date.”

gYearMonth UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/
#gYearMonth.”

gYear UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/#gYear.”
284                                                                                                                                                       Ontology Definition Metamodel, v1.0



gMonthDay UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/
#gMonthDay.”

gDay UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/#gDay.”

gMonth UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/#gMonth.”

hexBinary UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/
#hexBinary.”

base64Binary UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/
#base64Binary.”

anyURI UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/#anyURI.”

normalizedString UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/
#normalizedString.”

token UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/#token.”

language UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/#language.”

NMTOKEN UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/
#NMTOKEN.”

Name UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/#Name.”

Table A.5 - Foundation Library (M1) Defining XML Schema Datatypes For Use with the RDF Profile
Ontology Definition Metamodel, v1.0 285



NCName UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/#NCName.”

integer UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/#integer.”

nonPositiveInteger UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/
#nonPositiveInteger.”

negativeInteger UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/
#negativeInteger.”

long UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/#long.”

int UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/#int.”

short UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/#short.”

byte UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/#byte.”

nonNegativeInteger UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/
#nonNegativeInteger.”

unsignedLong UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/
#unsignedLong.”

unsignedInt UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/
#unsignedInt.”

Table A.5 - Foundation Library (M1) Defining XML Schema Datatypes For Use with the RDF Profile
286                                                                                                                                                       Ontology Definition Metamodel, v1.0



A.4 UML Profile for OWL Library Elements

Table A.6 gives a foundation library containing resources that may be used in addition to and with the OWL Profile.  
Rather than creating a separate package for these elements, they augment the OWL profile package described in 
Section 14.2, “UML Profile for OWL.”

unsignedShort UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/
#unsignedShort.”

unsignedByte UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/
#unsignedByte.”

positiveInteger UML::LiteralString; 
«typedLiteral»

[1] The value of datatypeURI for string is 
an instance of UML::LiteralString, with a 
value of the value property: “http://
www.w3.org/TR/xmlschema-2/
#positiveInteger.”

Table A.6 - Foundation Library (M1) for Use with the OWL Profile

M1 Object Base Class & 
Stereotype

Parent Properties Description, Constraints

Nothing UML::Class;
«owlClass»

[1] Nothing is generalized by every 
M1 class stereotyped by 
«owlClass»; [2] There is a 
«complementOf» constraint 
between Nothing and Thing.

Thing UML::Class;
«owlClass»

[1] Thing generalizes every M1 
class stereotyped by «owlClass».

Table A.5 - Foundation Library (M1) Defining XML Schema Datatypes For Use with the RDF Profile
Ontology Definition Metamodel, v1.0 287



288                                                                                                                                                       Ontology Definition Metamodel, v1.0



Annex B

  (informative)

Conceptual Entity Relationship Modeling

B.1 Overview

UML is considered a basic conceptual modeling language from an ODM perspective. It is frequently used for this purpose, 
and is also critical for leveraging existing artifacts as a basis for ontology modeling, either through migration to one of the 
ontology-specific languages represented in the ODM, or integration with other components represented in these languages. 
Many resources that may be leveraged for ontology development are modeled not in UML, but in one of the dialects of the 
Entity-Relationship system. The ODM team considered including an ER metamodel, but in the end did not do so for several 
reasons: (1) there is no existing ISO or other standard reference for ER (as there is for each of the other conceptual modeling 
languages included herein), (2) there are many “dialects” for Entity Relationship Modeling implemented by various tools, 
without discriminating features that might be useful if implemented in an ODM conceptual ER metamodel, and (3) we believe 
that the best place for developing such a metamodel is the upcoming information modeling effort that will ultimately replace 
the current Common Warehouse Metamodel (CWM).

Even so, the team also believes that: 

• A significant percentage of conceptual modeling is done in an ER framework.

• This will continue to be the case indefinitely. 

• ER-style modeling is sufficiently similar to logical modeling in UML that providing an appendix describing a general 
mapping strategy from ER to UML and ODM would be useful. 

This informative annex shows the relationship between common ER constructs and comparable UML constructs. The only 
aspect of ER modeling without a close correspondence to UML is the concept of identifiers. Here, we describe an optional 
package sufficient to represent ER identifiers.

B.2 Basic Constructs: Entity, Attribute, Relationship

The basic constructs of ER correspond directly to UML constructs:

• Entity or entity type corresponds to class.

• Attribute corresponds to Attribute (a property that is an ownedAttribute of a class).

• Value set or Domain of an attribute corresponds to the type of the property.

• A composite attribute has a domain corresponding to a type which itself has attributes (in UML).

• Relationship or relationship type corresponds to association.
Ontology Definition Metamodel, v1.0        289



• Role in a relationship corresponds to a property at a memberEnd.

• A relationship which can have attributes, or itself participate in other relationships, corresponds to an association class.

B.3 Cardinality Constraints

A number of constructs in ER correspond to UML multiplicity constraints.

• Multiple valued attributes correspond to properties whose maximum multiplicity is greater than 1.

• Attributes that can be null correspond to properties whose minimum multiplicity is 0.

• Total participation of an entity playing a role corresponds to a minimum multiplicity greater than 0 in the 
corresponding property.

• Partial participation of an entity playing a role corresponds to a minimum multiplicity of 0 in the corresponding 
property.

• Cardinality ratio of ‘one’ corresponds to a maximum multiplicity of 1 in the corresponding property.

• Cardinality ratio of ‘many’ corresponds to a maximum multiplicity of ‘*’ in the corresponding property.

• Min-max notation for cardinality constraints corresponds approximately to multiplicity notation in UML, with slight 
variation. In ER, the constraints refer to the number of instances of the entity playing the role that can appear in the 
relationship set. In UML, the multiplicities refer to the number of instances of the class that is the type of the property 
that can be associated with a fixed collection of instances for the other memberEnds. So for a binary relationship, the 
min-max cardinality corresponds to the multiplicities for the opposite property. For relationships with degree greater 
than two, there is no simple correspondence between ER min-max cardinality constraints and UML multiplicities.

B.4 Generalization

The enhanced ER (EER) system has a generalization/specialization mechanism that corresponds to that in UML. The 
disjointness and completeness constraints for specialization correspond respectively to the isDisjoint and isCovering attributes 
of a GeneralizationSet in the UML PowerTypes package.

B.5 Identity

The major feature of ER modeling lacking in UML is the concept of identity. The MOF has a primitive identity construct, the 
isID attribute of Property in the Identities package, but UML does not support identity at all.

Identity is supported in ER in several ways:

• An entity instance can be identified by an attribute (key), or by a combination of attributes (compound key). 

• An entity instance can be identified by the key of another entity it has a relationship with. For example, in a dialect of 
ER in which relationships cannot have attributes, that a student is given a grade in respect of enrollment in a course can 
be modeled by treating the enrollment as an entity identified by the keys of the student and course entities it is related 
to.

• In the special case of a weak entity, an instance of an entity is identified by a compound of local attributes (partial key) 
and the key of another (identifying or owner) entity it is in an identifying relationship with. 
290                 Ontology Definition Metamodel, v1.0



The ER identity feature can be supported by the following MOF package that could be included in UML. Class and Property 
are both from the UML2 Classes diagram, while NamedElement is from the Namespaces diagram of the UML2 Kernel 
package.

Figure B.1 - Identifiers (Keys) Diagram

B.5.1 Identifier 

Description

Connects a class with one or more properties constituting a (possibly compound) key for the class. An instance of Identifier is 
identified by the property identifiedClass together with name from NamedElement. If there is only one instance of Identifier 
associated with an instance of Class, then name can be absent.

Attribute

• No additional attributes

Associations

• identifiedClass [1] the class identified.

• identifyingProperty [1..n] the collection of one or more properties constituting the identifier.

Constraints

Identifier has a name if its identifiedClass has more than one identifier.

context Identifier inv:

(self.identifiedClass.identifier->sizeOf()>1)implies (self.name->

     exists(n : string | (self.identifiedClass.identifier.name->

          forAll(m: string | m = n implies

                (self = self.identifiedClass.identifier))

          )

     )

)

P rope rty
C las s

Iden t ifie r

1 . .n

0 . .n

+ id en t ify ing P rop e rty
1 . .n {o rde red }

+ ide n t ifie r0 . .n

Iden t if ie rP r ope rty

1

0 . .n

+ ide n t ifi edC las s 1

+ id en t ifie r
0 . .n

Ide n t if ie rC la s s

N am edE l em e n t
Ontology Definition Metamodel, v1.0        291



All the identifying properties of the class must be associated with the class identified or a superclass, either as owned attributes 
or the type of a property at another memberEnd of an association.

context Identifier inv:

 (self.identifyingProperty-> forAll(p:Property |

     (self.identifiedClass.ownedAttribute->(exists (pp:Property | pp= p)) or 

     (self.allparents().ownedAttribute->exists(pp:Property | pp= p)) or

     (self.identifiedClass.oclIsKindOf(p.opposite.type))

 ))

B.6 Profile for Identity

An optional package for UML is not very useful unless it has some way of drawing it. The easiest way to get a notation is to 
define a profile. 

If a Class and Identifier are fixed, we have a set of Property. It therefore makes sense to profile Identifier as an extension of the 
metaclass Property, as shown in Figure B.2. 

Figure B.2 - Profile for Identity

Tagged Values

• alt : string - name of instance of alternative identifier if there are more than one identifiers for a given class.

B.7 Example

We show an example of use of identifiers, employing the notation specified in Figure B.2, in Figure B.3. The application is 
keeping track of results in a sporting competition like the Olympics. 

Team and Event are identified by single attributes: country for Team and eID for Event.

Competitor has a single composite identifier, the attribute cName and the property team. This identifier carries the tag ‘a’ for 
alt.

CompetesIn has no identifier. Instances are identified by OID, as is usual for UML classes. It could, however, be identified by 
the composite of the properties competitor and event.

The subclass MedalAwarded of CompetesIn does have an identifier, the attribute medal and the property event of its superclass 
CompetesIn. This identifier carries the tag ‘b’ for alt.

The subclass MedalWinner of Competitor has an additional identifier, carrying tag ‘c’ for alt. Besides the identifier inherited 
from its superclass Competitor, an instance of MedalWinner is identified by the property wins. So a medal winner is identified 
by the identifier of MedalAwarded, which is the medal and the event.

Identifier

alt : S tring

< <s tereoty pe> >

P roperty
< <m etac lass >>< <ex tens ion> >
292                 Ontology Definition Metamodel, v1.0



Strictly, the tag ‘b’ for alt is not needed in the identifier for MedalAwarded, as there is only one identifier for that class. The tag 
is used to improve readability.

Figure B.3 - Example of Identifier Usage

MedalK ind

Event

<<Identifier>> eID : String

Team

<<Ident ifier>> count ry : string

CompetesIn

1+event 1
<<Identifier alt = b>>

Competitor

<<Identifier al t = a>> cName :  s tring

1+team 1

<<Identifier alt = a>>

0..n1

+competesIn

0..n
+competitor
1

MedalAwarded

<<Identifier alt = b>> medal : MedalKind
MedalWinner

1

+wins

1

<<Identifier alt = c>>
Ontology Definition Metamodel, v1.0        293



294                 Ontology Definition Metamodel, v1.0



Annex C
 (informative)

Description Logic Metamodel

This annex provides an introduction to Description Logics through the elaboration of an exemplar Description Logic Meta-
Model.

C.1 Introduction

The Description Logic (DL) meta-model defines a basic, minimally constrained DL. In use, DLs are typically found in the 
Knowledge-Base of a Knowledge Representation System, as shown in Figure C.1. 

Figure C.1 - Knowledge Representation System

A DL Knowledge Base is traditionally divided into three principal parts:

1. Terminology or schema, the vocabulary of application domain, called the “TBox.” 

2. Assertions, which are named individuals expressed in terms of the vocabulary, called the “ABox.” 

3. Description Language that define terms and operators for build expressions.

Note that the TBox and ABox elements represent two separate meta-levels in the application domain. 

K now ledge Representation System

Know ledge Base

TBoxTBox

A BoxA Box

D escription
Language

Description
Language ReasonerReasoner

K now ledge Representation System

Know ledge Base

TBoxTBox

A BoxA Box

D escription
Language

Description
Language ReasonerReasoner
Ontology Definition Metamodel, v1.0        295



C.2 Containers

Basic containment constructs of this DL meta-model, as shown in Figure C.2, are provided through the TBox and ABox 
elements, which correspond directly to the TBox and ABox concepts from description logics. 

Figure C.2 - Basic Containment Constructs

C.2.1 TBox

Description

A TBox contains all of a DL model’s terminology. The TBox may include Terms and any of the sub-classes of Term. Note that 
this includes Instances to allow supporting predefined, delineated instances as ‘special terms’ in the ABox. An example of this 
would be OWL Thing.

Associations

• Containment.content[0..n]: Term – the terminology contained in this TBox.

• instances[0..n]: ABox – the TBox that uses terms and instances from this TBox.

• terminology[1]: TBox – the TBox that contains the terminology used by this TBox (or ABox)

C.2.2 ABox

Description

An ABox contains all of a DL model’s instances. The ABox extends TBox and restricts its content to be only the sub-classes 
Instance.

Associations

• Containment.content[0..n]: Instance – the instances contained in this ABox, redefining containment from TBox.

Semantics

All the instances in an ABox are expressed using the terminology from exactly one TBox.

ABox
Instance

1 0..n1 +content 0..n

containment
{redefines}

TBox
1

+instances
0..n

instantiates

+terminology1 Term

Identifier : String

1 0..n1 +content 0..n

containment

ABox
Instance

1 0..n1 +content 0..n

containment
{redefines}

TBox
1

+instances
0..n

instantiates

+terminology1 Term

Identifier : String

1 0..n1 +content 0..n

containment
296                 Ontology Definition Metamodel, v1.0



C.3 Concepts and Roles

C.3.1 Element

Description

Element is an abstract base class of all atomic components in a DL as seen in Figure C.3. It defines the notion of unique 
identity so that references may be made to elements using that identifier. 

Figure C.3 - Element Model

Attributes

• UniqueIdentifier: String - Uniquely identifies an Element and all Elements are identified by a single value. That is if 
UniqueIdentifiers of two Elements are different, then the Elements are different. Note that this is different than URIs. 
UniqueIdentifier is required.

C.3.2 Concept

Description

Concept is a set of Instances that are define as having something in common.

Concept is a specialization of Element.

ABox 
Elements

TBox 
Elements

Individual

Concept

0..n

1..n

+member
0..n

+type
1..n

isA

Role

Instance

Assertion

0..n

1..n

+member
0..n
{unique member.UniqueIdentifier}

+type

1..n

{unique type.UniqueIdent ifier}

isA

1

0..n

+subject
1

0..n

subject

1

0..n

+object
1

0..n

object

Elem ent

UniqueIdentifier : String
Ontology Definition Metamodel, v1.0        297



Similar Terms

Class, Entity, Topic, Type

Associations

• isA.member: Individual[0..n] -- The set of Individuals that are the extent of the concept.

C.3.3 Instance

Description

Instance provides an abstract base class for all ABox constructs. Instance is a specialization of Term.

Similar Terms

Object, Instantiation

C.3.4 Role

Description

A Role is a set of binary tuples, specifically (subject, object), that asset that this role for subject is satisfied by object. Role is a 
specialization of Element.

Similar Terms

Association, Attribute, Property, Slot

Associations

• isA.member: Assertion [0..n] -- The set of Assertions that are the extent of the concept.

C.3.5 Individual

Description

Individual is an instance of a Concept. An Individual is a specialization of Instance

Similar Terms

Object

Associations

• isA.type: Concept[1..n] – The set of concept sets that has this individual as a member.

C.3.6 Assertion

Description

Assertions are the specific binary tuples that are instances of Roles. An Assertion is a specialization of Instance.
298                 Ontology Definition Metamodel, v1.0



Similar Terms

Link, Statement, Fact

Associations

• subject.subject: Instance[1] – The Instance that is the subject of the assertion.

• object.object: Instance[1] – The Instance that is the object of the assertion.

• sA.type: Concept[1..n] – The set of Roles that has this assertion as a member.

• predicate: Instance[1] – A derived reference to the Role which this assertion is an instance of. (Not shown in diagram.)

C.4 Datatypes

C.4.1 Datatype

Description 

A Datatype is a specialization of Concept. Datatypes are those concepts whose members have no identity except their value, 
that is the members of a datatype are literals, as shown in Figure C.4. Datatype may represent primitive types, for example 
integer, string, or boolean; or user defined type, for example time-interval or length-in-meters.

Figure C.4 - DataType Model

Associations

• isA.member: Literal[0..n] – the set of literals that are members of this datatype.

C.4.2 Literal

Description

Literals are the specification of instances of datatypes. The UniqueIdentifier inherited from Element is for a literal, uniquely 
defined by the literal’s value itself.

Literal

value : Any

DataType

0..n

0..n

+type

{unique type.UniqueIdentifier} 0..n

+member

{unique member.UniqueIdentifier} 0..n

isA Individual

Concept
Ontology Definition Metamodel, v1.0        299



Attributes

• value: Any – The implementation and Datatype dependent value of this literal.

Associations

• type: Datatype[0..n] – the possibly empty set of datatypes in which this literal is a member.

Constraints

Restricts range of Concept.type to a set of Datatypes.

Semantics

Element.UniqueIdentifier has a functional relation with Literal.value.

Literal.value has a functional relation with Element.UniqueIdentifier.

C.5 Collections

C.5.1 Collection

Description

A Collection is a specialization of Concept. Collection allows instances to be brought together as a group and referenced as a 
single collective. The class diagram for Collection is shown in Figure C.5.

Collection is conceptually a ‘bag,’ that is un-order and allowing duplicate members.

Figure C.5 - Collection Model

ListSet

Collection

Inst ance

Extent

1..n

0..n

+type
1..n

+member
0..n

0..n
+c ontains

0..n

Individual

Concept
300                 Ontology Definition Metamodel, v1.0



Similar Terms

Container; and Sequence, List, Bag, Set as specific types.

Associations

• isA.member: Extent[0..n] – The set of instances of a particular kind of collection.

C.5.2 List

Description

List is a specialization of Collection. List requires that the member instances that are in the collection are ordered in a user 
defined way.

Semantics

For all ai , aj members of the list, there is a comparator function C() such that C(ai) < C(aj) if i < j

C.5.3 Set

Description

Set is a specialization of Collection. Set requires that the member instances in the collection are unique. 

Semantics

For all ai , aj members of the list, there is a identity function I() such that I(ai)=I(aj) iff i = j

C.5.4 Extent

Description

Extent is a specialization of Instance. Extent is the set of all instances of a collection of a particular type, for example the set of 
all Alphabetical-Lists.

Associations

• containment.contains: Instance[0..n] – Those instances that are in this instance of a collection.

• isA.type: Collection - The set of collection sets that has this extent as a member.

C.6 Expressions and Constructors

Expressions provide the mechanism for constructing class definitions and implications about TBox elements. They provide a 
hook for more expressive constraint and rule languages. 

A number of common expression constructors, shown in Figure C.6, are provided as specializations of Constructor.
Ontology Definition Metamodel, v1.0        301



Figure C.6 - Specializations of Constructor

C.6.1 Term

Description

Terms are the components used to build expressions. They are an abstract root class of most DL classes, excluding only ABox, 
TBox, and Constructors. 

Similar Terms

Word, Component

Attributes

• Identifier: String [0..1] – An optional identifier for this term.

C.6.2 Expression

Description

Expressions are the representation of the DL Knowledge Base Description Language, shown in Figure C.1. Expressions are an 
extension of Term and are also constructed from Terms using Constructors. Thus allowing arbitrarily complex expressions to 
be created. 

Intersect
ion

UnionNegation Quantifie
r

Implicati
on

Definitio
n

Inclusion

ForAllExistential NumberRestiction

Constructor

Expres sion

1
+constructor

1

Term

Identifier : String
0..1

+t erm_2

0..1

1

+t erm_1

1

302                 Ontology Definition Metamodel, v1.0



Similar Terms

Statement, Formula

Associations

• term_1: Term[1] – The required term for the constructor.

• term_2: Term[0..1] – The optional term for the constructor.

• constructor: Constructor[1] – a monadic or dyadic operator applied to the terms.

C.6.3 Constructor

Description

A Constructor is an operator that is used to build expressions. A Constructor may be either monadic or dyadic.

Note that individual specializations of constructor may have additional semantics and restrictions that are not elaborated here.

Similar Terms

Operator

Semantics

• Monadic constructors have term_2.multiplicity = 0

• Dyadic constructors have term_2.multiplicity = 1

C.6.4 Intersection 

Description

The Intersection constructor is a dyadic constructor. It results in the set of instances that are members of both the left-hand 
term and the right-hand term.

C.6.5 Negation 

Description

The Negation constructor is a monadic constructor. It results in the set containing all instances not contained in the right-hand 
term. 

C.6.6 Union

Description

The Union constructor is a dyadic constructor. It results is the set containing any instance that is a member of either the left-
hand or right-hand term.
Ontology Definition Metamodel, v1.0        303



C.6.7 Quantifier

Description

A Quantifier is a specialization of Constructor. It is a monadic constructor. They are operators that bind the number of a role’s 
assertions by specifying their quantity in a logical formula.

C.6.8 ForAll

Description

ForAll is a specialization of Quantifier. ForAll specifies that all members of term_1 must have the binding value for the 
specified role.

C.6.9 Existential 

Description

Existential is a specialization of Quantifier. Existential specifies that at least one member of term_1 has the binding value for 
the specified role.

C.6.10 NumberRestriction

Description

NumberRestriction is a specialization of Quantifier. NumberRestriction specifies that a specified number of members have a 
value for the specified role, similar to cardinality or multiplicity.

Further specializations of NumberRestriction may include upper bound, lower bound, and exact number specifications.

C.6.11 Definition

Description

Definition is a specialization of Constructor. It is dyadic. Definition is used in axioms to define the left-hand term as exactly 
the right-hand term.

C.6.12 Implication

Description

Implication is a specialization of Constructor. It is dyadic. Implication is a logical relationship between the term_1 and term_2, 
that states term_2 is true if term_1 is true.

C.6.13 Inclusion

Description

Inclusion is a specialization of Constructor. It is dyadic. Inclusion is a relation between the term_1 and the term_2 that states 
all members of the first are also members of the second. Inclusion is similar to sub-types, in that all members of a sub-type are 
included in the super-type.
304                 Ontology Definition Metamodel, v1.0



C.7 Examples

The following two examples, in Figure C.7 and Figure C.8, illustrate the representation of simple statements as instance 
models of the DL meta-model. 

C.7.1 Example One

Figure C.7 - Example One

A PersonalCar is a Car 
that is owned by a person.

Car is a type of Vehicle.

owns : Role

PersonalCar : 
Concept

e1 :  Expression

e2 : Expression

Car : Concept
e4 : Expression

 : Definition

 : Intersection

 : Existential

e5 : Expression

Vehicle : Concept

 : Inclusion
Person : Concept
Ontology Definition Metamodel, v1.0        305



C.7.2 Example Two

Figure C.8 - Example Two

blue : 
Literal

Carl :  Individual

 : Assertion

e : Extent

owns : Role

a : Assertion b : Assertioncolor : Role

Car : Concept

red : 
Literal

thing1 : 
Individual

thing2 : 
Individual

Carl owns a car that is red 
and another car that is blue.

Color : DataType

'owns' is more 
association-like.

'color' is more 
attribute-like

subject

object

typemem ber

subjec t

content

type member

subjec t

content

object

typemember

object
t ype member
306                 Ontology Definition Metamodel, v1.0



C.8 Overview Diagram

Figure C.9 provides a overview of the complete class hierarchy and key associations in the DL meta-model.

Figure C.9 - Complete DL Metamodel

TBox

ABox 
Elements

TBox 
Ele ments

DataTy pe

Literal

v alue : Any

0..n

0..n

+ty pe
0..n

+m ember
0..n

isA

Indiv idual

Concept

0..n

1.. n

+member
0..n

+ty pe
1.. n

isA

Collection ABox

Extent

1.. n

0.. n

+ty pe
1.. n

+member
0.. n

isA

Role

Ins tan ce 10..n 1
+content

0..n

containment
{redef ines}

0..n

+contains

0..n

containment

Assert ion

0..n

1.. n

+member
0..n

+ty pe
1.. n

isA

1

0..n

+subject
1

0..n
subject

1

0..n

+object
1

0..n

object

Element

UniqueIdentif ier : String
ConstructorEx pres sion

1+constructor1

Term

Identif ier : String
0..1 +term_20..1

1 +term_11

1

0.. n

1

+content0.. n
co ntainment
Ontology Definition Metamodel, v1.0        307



308                 Ontology Definition Metamodel, v1.0



Annex D  
(informative)

Extending the ODM

D.1 Extendibility

From the Usage Scenarios and Goals of Chapter 7, there is an enormous variety of kinds of application for ontologies. They 
can be used at design time only or at both design and run time. They can be schemas only or involve both schemas and 
instances. Their structure can be imposed from outside their domain or can emerge from the activities of interoperating parties. 
And so on.

Many of these kinds of application have special requirements that are common to many application instances but that are not at 
all universal. The ODM specification has limited its efforts to the most general structural issues.

However, in practice one can envisage particular extensions to the general structures that support significant numbers of 
application instances, which would be published by third parties outside the OMG ODM process but that would be consistent 
with the ODM, in much the same way as the Dublin Core metadata standard is published as an RDFS namespace. These 
extensions would use the MOF Package as a medium.

We will illustrate this facility with three examples, all of which use model elements from OWL packages so are seen as 
extending OWL. The examples are respectively of metaclass taxonomies, semantic domain instance models, and n-ary 
associations.

D.2 Metaclass Taxonomy

The first example, shown in Figure D.1, that of a metaclass taxonomy, extends OWLClass with the distinction between 
countable and bulk classes as advocated by Guarino and Welty [GuarWel]. A countable class has an extent consisting of 
identifiable individuals while a bulk class is a sort of amorphous mass like length measured in metres or value measured in 
Euros. In a model instance, classes would be instances of one of the specialized subclasses rather than of the more general 
OWLClass.

Figure D.1 - Metamodel for Bulk/Countable Classes in OWL 

This is the sort of enhancement that would be done for UML using profiles. OWL does not have a profile mechanism. 
However, OWL Full supports a somewhat analogous facility, that of defining subclasses of the metaclass owl:Class. Since 
owl:Class is an instance of OWLClass, it is possible to declare instances of OWLClass that are subclasses of owl:Class. So a 

O W LC las s

C oun tab leC las s B u lk C las s
Ontology Definition Metamodel, v1.0        309



package extension to the ODM metamodel for OWL specifying CountableClass and BulkClass can be given a concrete 
implementation in this way for native OWL. If the UML profile for OWL is used as the concrete syntax for the OWL 
metamodel, the profile could be extended in the normal way.

This same approach can be used with other taxonomies of metaclasses, for example the taxonomy of endurants and perdurants 
proposed in the DOLCE system [DOLCE]. 

It is possible to develop these packages as extensions to one of the metamodels, in this case OWL, then use the ODM mapping 
facilities to migrate it to any of the other metamodels. Note that the MOF permits multiple inheritance, so that several such 
extensions can in principle be used simultaneously. However, the MOF Instances Model does not support an object having 
multiple classifiers. This specification has recommended that the MOF specification be amended to remove this limitation, 
which strongly impacts the ODM.

D.3  Models of General Kinds of Application Domains

There are many large application domains that can support the development of richer modeling constructs than those provided 
in OWL. In many cases, richer modeling constructs can be implemented using the facilities of OWL, published as component 
ontologies, and incorporated into end-use ontologies by importation. We will illustrate this using the part-whole relationship.

A feature of OWL is that properties are by default defined globally, with range and domain both Thing. This makes it possible 
to represent mereological relationships as instances of property. Instances of metaclasses can be modeled using instance 
models, a facility of MOF 2.0. For example, Figure D.2 defines a version of isPartOf which is transitive, every part belongs to 
at least one whole (and by transitivity to all the wholes up the chain), and a part cannot exist without its corresponding whole. 
This kind of part-of relation could be suitable for modeling say the Olympic family. An athlete is part of an event (if a 
competitor), an event is part of a sporting program, a sporting program is part of the Olympics of a given Olympiad, and 
anyone who competes in any event in any program in any Olympics is a part of the Olympic family. But an Olympics cannot 
exist without at least one program, a program must have at least one event, and an event at least one competitor.

Figure D.2 - MOF Instance Model for isPartOf Property

There are a large number of varieties of mereotopological relationships [WinChafHerr], including those specified in UML. 
They could be catalogued and published as a package, perhaps with specialized software. The W3C Semantic Web Best 
Practices and Deployment Working Group (SWBPD) is considering this problem with respect to OWL. A very preliminary 
report is [PartWhole].

 

OWLminCardinality 

OWLminCardinality 

isPartOf: OWLTransitiveProperty  

OWLonProperty  

:OWLRestriction 

OWLinverseOf 

:OWLTransitivePro perty 

OWLonProperty  

:OWLRestriction 

1:RDFSLiteral 

1:RDFSLiteral 
310                 Ontology Definition Metamodel, v1.0



D.4 N-ary Associations

A natural way to model some constructs is to use n-ary relations. For example, the system of metaproperties advocated in the 
OntoClean system [OntoClean]. Some properties are used to manage the subclass hierarchy and objects with parts. A property 
can carry unity with respect to a class if it is used to tell which parts belong to which wholes. It can carry identity if it is used 
to identify instances of a class. It can be rigid with respect to a class if it is used to tell that an object is an instance of that class. 
It can be essential for a class if knowing only that an individual is an instance of that class we know the value of that property.

A property can either necessarily have a metaproperty, or can possibly have a metaproperty, or can be declared to necessarily 
not have a metaproperty. For example, a property necessarily identifying instances of a class can necessarily not be a rigid 
property for that class. 

A metamodel for this system of metaproperties as a quaternary association is shown in Figure D.3.

Figure D.3 - Metamodel for OntoClean system, Extending OWL

The two enumerations are defined

• Enumeration MetapropertyKind: rigid, necessary, identity, unity

• Enumeration StatusKind: necessarily, not necessarily, necessarily not

Most of the metamodels in the ODM permit n-ary associations, except RDFS/OWL. But an n-ary association can be 
represented as a class with n binary properties. To be consistent with the previous examples, a possible package to model 
metaproperties in Figure D.4 extends the OWL metamodel. Note that the metaproperty is modeled as a subclass of OWLClass. 
This can facilitate mapping from OWL to an n-ary association or equivalent in another metamodel. The class of 
metaproperties is a subclass of NAryProperty. This approach is consistent with the more general pattern discussed by the 
SWBPD in the preliminary report [Nary].

OWL Class (from OWL)

Property  (from OWL)

MetapropertyKind
<<enumeration>>

Metaproperty

1

0..n

+class

1

+metaproperty
0..n

WithRespectTo

1 0..n

+property

1
+metap

0..nOn

1

0..n

+prop1

+metap
0..n

TakesValue

StatusKind
<<enumeration>>

10..n

+metap

0..n

WithStatus

+status

1

Ontology Definition Metamodel, v1.0        311



Figure D.4 - Metaproperty Package for OWL

We need an additional constraint that all the properties implementing a given n-ary property have the central class as their 
domain.

context NAryProperty inv:
self.property.RDFSdomain->(forall d | d = self)

OWLClass (from OWL)

NAryPropertyProperty (from OWL)

1..n 0..n

+nary

0..n

Projection+property

1..n
312                 Ontology Definition Metamodel, v1.0



Annex E
(informative)

Mappings - Informative, Not Normative

In developing the mappings for the various ODM languages, the team concluded that the mappings we specify cannot in 
practice be normative.

In our discussion in Section 10.2.3, for example we see that there are two different ways to map n-ary associations from UML 
to OWL, depending on whether we take OWL Full or OWL DL as target. In Section 10.2.2, we note that OWL has a 
mandatory universal superclass (owl:Thing), which can map to a universal superclass in UML, but this is contrary to normal 
practice in UML modeling. A particular project might analyze the uses of universal properties in the OWL source model and 
choose to declare a number of more general but not universal superclasses in the UML target. 

In the W3C Semantic Web Best Practices and Deployment task force’s report on Topic Map mappings [RDF/TM], the point is 
made several times that there are different ways to map particular structures, and that each way has its advantages and 
disadvantages. In any particular project, design decisions will be taken in favor of advantages and against disadvantages so 
different projects will map in different ways.

There are several kinds of problems. One we can call structure conflation, where two constructs in one system map to a single 
construct in the other. In this case, a general-purpose mapping doesn't round trip. UML binary associations and class-valued 
attributes map to OWL properties, for example. In topic maps, three different kinds of identifiers map to one kind in OWL.

But there is nothing to stop a particular project from specifying naming conventions so there is a record in the target of what 
construct the source was, and from maintaining that convention in subsequent development.

A second kind of problem we will call structure loss. Here a complex construct is mapped to a collection of simpler constructs. 
There is insufficient information in the target metamodel for a general mapping to map collections of simple constructs to 
complex constructs in the source metamodel. Examples here are UML N-ary associations and association classes, which get 
mapped to a class and a collection of properties. In Topic Maps, the Association construct is typed itself and has N typed roles. 
The association maps to a class and the typed roles to properties. It is in general impossible to reliably map the reverse.

But again, there is nothing to stop a particular project from using naming conventions or annotations to retain a memory of the 
structure, and maintaining those conventions in subsequent maintenance so as to be able to reverse map.

Alternatively, a TM project could decide to limit itself to binary associations, making possible mapping associations directly to 
properties in that particular case.

The third kind of problem we will call trapdoor mappings, where a kind of construct in the source is mapped to a very specific 
arrangement of a general structure in the target. The analogy is with cryptography, where the encryption function takes any 
plaintext into an encrypted text, but almost no encrypted texts map back to plain text. 

In topic maps, this occurs with the mapping of scope and variant names to specific properties in OWL identified with TM 
URIs. OWL properties map to TM associations with specific roles named with OWL URIs. Unless the source for a reverse 
mapping happened to maintain these conventions, it would be impossible to reverse in a sensible way.
Ontology Definition Metamodel, v1.0        313



A fourth kind of problem stems from what we will call feature lack, that the target metamodel lacks a feature present in the 
source. In this case there is no apparent general way to map the feature from the source. But in a particular project the feature 
may for example be used in a particular way leading to a mapping to target features particularized by naming conventions. 
OWL restriction classes relative to UML or Topic Map are of this kind.

The fifth kind of problem is what we will call incompatible structural principles. The different metamodels are organized very 
differently. UML is organized around classes, with instances as subordinate objects. OWL has both classes and individuals 
typed only by a universal superclass. In Topic Maps, a Topic instance can be either typed or not. But a particular project might 
use a particular discipline in its use of these structures leading to mappings not otherwise feasible.

In practice, the mappings provided in the ODM can be useful, though. First, they show feasibility of one set of design choices 
for the mappings, providing a baseline from which a particular project can vary. Second, they bring clearly to the fore the 
detailed relationships among the metamodels. These relationships can help those who understand one of the target languages 
to come to an understanding of the others. UML is similar to ER, but both are very different from RDFS/OWL, and all are 
quite different from TM. CL has far greater functionality than any of the others.

So although normative mappings are not feasible, we argue that the mappings presented have strong informative value.
314                 Ontology Definition Metamodel, v1.0



Annex F 
(informative)

RDF and OWL Workarounds for MOF 
Multiple Classification Issue

This annex provides alternate approaches for modeling several aspects of RDF and OWL that may not be readily accessible to 
tools due to the MOF multiple classification issue #9466.  They include:

• Access to blank node identifiers from other constructs such as OWL restriction classes.

• Access to type information for multiply classified OWL properties (e.g., functional and object).

• Access to type information for multiply classified concepts in OWL Full in general (e.g., concepts that are both classes 
and individuals, depending on role).

The workarounds provided below are non-normative, however may be used by vendors claiming ODM compliance until the 
MOF issue is resolved.
Ontology Definition Metamodel, v1.0        315



F.1 RDF Workaround for Blank Node Identifiers

Figure F.1 -  RDFBase Package, The Statements Diagram (Revised)

As shown in Figure F.1, the change necessary to work around the multiple classification issue with respect to blank nodes is 
simply to promote the node identifier to RDFSResource as an optional attribute at the higher level.

F.1.1  BlankNode (Revised Definition)

Attributes

None

F.1.2  RDFSResource (Revised Definition)

Attributes

• nodeID: String [0..1] - is a placeholder for an optional blank node identifier.

Constraints
[1] context RDFSResource inv:

   self.nodeID->notEmpty() implies self.oclIsTypeOf(BlankNode)

BlankNode

RDFSLiteral
lexicalForm : string

URIReferenceNode

[0. .1]
[0..1]

RDFProperty

RDFStatement
isReifiedOnly : Boolean
isReified : Boolean

0..1

0..*

+RDFpredicate
0..1

+predicateStatement
0..*

PredicateForStatement

RDFGraph

1..*

1..*

+graph
1..*

+statement
1..*

StatementForGraph

RDFSResource
nodeID : String0..10..*

+RDFobject
0..1

+objectStatement
0..*

ObjectForStatement

0..1
0..* +RDFsubject

0..1

+subjectStatement
0..*

SubjectForStatement

URIReference

0..*

0..*

+nameForReification
0..*

+reifiedStatement
0..*

Reification

0..1

0..1

+namedGraph
0..1

+graphName

0..1

NameForGraph 0..1

0..*

+resource
0..1

+uriRef

0..*

URIRefForResource

UniformResourceIdentifier

name : string

0..*

0..1

+uriRef
0..*

+uri
0..1

URIForURIReference

[0..1]
316                 Ontology Definition Metamodel, v1.0



F.2 OWL Workaround for Multiple Classification of Properties

Figure F.2 - The OWL Properties Diagram (Revised)

As shown in Figure F.2, a number of changes are required to the OWL properties definitions given in Chapter 11, in order to 
support multiple classification of properties in OWL. These changes consist primarily of eliminating certain property 
subclasses and replacing them with attributes on the requisite parent classes.

Thus, classes defined in Section 11.4.1, “FunctionalProperty,” Section 11.4.2, “InverseFunctionalProperty,” Section 11.4.8, 
“SymmetricProperty,” and Section 11.4.9, “TransitiveProperty,” are not required, and instead the following attributes must be 
added to the definitions given in Section 11.4.7, “Property,” and Section 11.4.5, “OWLObjectProperty,” respectively.

F.2.1  OWLObjectProperty (Revised Definition)

Attributes

• isInverseFunctional: Boolean [0..1] - indicates whether or not an object property is inverse functional.

• isSymmetric: Boolean [0..1] - indicates whether or not an object property is symmetric.

• isTransitive: Boolean [0..1] - indicates whether or not an object property is transitive.

F.2.2  Property (Revised Definition)

Attributes

• isFunctional: Boolean [0..1] - indicates whether or not an object or datatype property is functional.

RDFProperty

Property
isDeprecated : Boolean
isFunctional : Boolean
...

0..*

0..*

+OWLequivalentProperty
0..* EquivalentProperty

+equivalentProperty
0..*

OWLOntologyPropertyOWLAnnotationProperty

OWLDatatypeProperty OWLObjectProperty

isInverseFunctional : Boolean
isSymmetric : Boolean
isTransitive : Boolean

0..*

0..*

+OWLinverseOf
0..* InverseProperty

+inverseProperty
0..*

[0..1]
Ontology Definition Metamodel, v1.0        317



F.3 OWL Full Intersections

A central characteristic distinguishing OWL Full from OWL DL is that in OWL DL the metaclasses Individual, Property, and 
OWLClass are pairwise disjoint, while in OWL Full they may overlap. In a MOF2 metamodel the subclasses of a metaclass 
are overlapping by default, so the OWL metamodel provided in the OWLBase Package in Chapter 11 is actually a metamodel 
for OWL Full. It becomes a metamodel for OWL DL by the addition of OCL constraints, including the pairwise disjointedness 
of Individual, Property and OWLClass, provided in Section 11.8, “OWLDL Package - Constraints for OWL DL 
Conformance.”

However, as discussed in Section 6.1, “Changes to Adopted OMG Specifications” there is a limitation in the MOF2 semantic 
domain (instances) model that requires that an InstanceSpecification be associated with exactly one classifier. This makes it 
impossible to have an object as an instance both of Individual and OWLClass, for example. Note that the UML Infrastructure 
Instances Model does permit an InstanceSpecification to be associated with more than one classifier.

This problem is handled in UML by defining specific intersection classes where needed, for example AssociationClass. The 
modifications provided in the sections that follow provide additional attributes on OWLBase metamodel classes as well as 
definitions of new intersection classes required as a work-around to implement OWL Full. When a future revision of MOF 
relaxes the semantic domain model to permit multiple classifiers, these additional derived attributes and the OWLFull Package 
implementing the intersection classes this package will become superfluous.

Figure F.3 provides a revised OWL Universe diagram, including the additional derived attributes required on the OWLClass 
and Property metaclasses.

Figure F.3 - The OWL Universe Diagram (Revised)

In Figure F.4, the set of additional intersection classes as well as related enumerations to support OWL Full in light of the 
MOF issue are shown.

OWLOntologyProperty

OWLClass

isDeprecated : Boolean
/ isClassKind : OWLClassKind
/ hasRestrictionKind : OWLRestrictionKind

Individual

OWLDataRange OWLAnnotationProperty

Property

isDeprecated : Boolean
isFunctional : Boolean
/ isObjectProperty : Boolean
/ isDatatypeProperty : Boolean

[0..1] [0..1]

OWLOntologyUniverse
11

+ontology
1

+owlUniverse
1

UniverseForOntology

RDFSResource

nodeID : String
318                 Ontology Definition Metamodel, v1.0



Figure F.4 - OWLFullIntersections Diagram

F.3.1  IndividualOWLClass

Description

Intersection of Individual and OWLClass

Attributes

None

Associations

• Specialize Class Individual

• Specialize Class OWLClass

Constraints

None

Semantics

Conjunction of semantics of Individual and of OWLClass.

Individual OWLClass
isDeprecated : Boolean
/ isClassKind : OWLClassKind
/ hasRestrictionKind : OWLRestrictionKind

IndividualOWLClass

Property
isDeprecated : Boolean
isFunctional : Boolean
/ isObjectProperty : Boolean
/ isDatatypeProperty : Boolean

OWLClassKind

isComplementClass
isEnumeratedClass
isIntersectionClass
isOWLRestrictionClass
isUnionClass

<<Enumeration>>
OWLRestrictionKind

isHasValueRestriction
isAllValuesFromRestriction
isSomeValuesFrom Restriction
isCardinali tyRestriction
isM axCardinal ityRestriction
isM inCardina li tyRestriction

<<Enumeration>>

[0..1]
[0..1]

IndividualPropertyPropertyOWLClass

IndividualPropertyOWLClass
Ontology Definition Metamodel, v1.0        319



F.3.2  IndividualPropertyOWLClass

Description

Intersection of Individual, Property, and OWLClass.

Attributes

None

Associations

• Specialize Class IndividualProperty

• Specialize Class IndividualOWLClass

• Specialize Class PropertyOWLClass

Constraints

None

Semantics

Conjunction of semantics of Individual, Property, and of OWLClass.

F.3.3  IndividualProperty

Description

Intersection of Individual and Property

Attributes

None

Associations

• Specialize Class Individual

• Specialize Class Property

Constraints

None

Semantics

Conjunction of semantics of Individual and of Property.
320                 Ontology Definition Metamodel, v1.0



F.3.4  OWLClass (Augmented Definition)

Description

As in OWLBase

Attributes

• isClassKind : OWLClassKind [0..1] - partitions OWLClass into the subclasses defined in OWLBase.      

• hasRestrictionKind : OWLRestrictionKind [0..1] - partitions OWLRestriction into the subclasses defined in 
OWLBase.

Associations

No additional associations

Constraints
     context OWLClass inv         
        (self.classType = isComplementClass) implies self.oclIsTypeOf(ComplementClass) and         
        (self.classType = isIntersectionClass) implies self.oclIsTypeOf(IntersectionClass) and         
        (self.classType = isUnionClass) implies self.oclIsTypeOf(UnionClass) and         
        (self.classType = isEnumeratedClass) implies self.oclIsTypeOf(EnumeratedClass) and         
        (self.classType = isOWLRestrictionClass) implies (self.oclIsKindOf(OWLRestriction) and                

                                              self.restrictionType->notEmpty())) and         
        (self.restrictionType->notEmpty() implies self.classType = isOWLRestrictionClass) and        
         (self.restrictionType = isHasValueRestriction) implies self.oclIsTypeOf(HasValueRestriction) and         
        (self.restrictionType = isAllValuesFromRestriction) implies 
                                self.oclIsTypeOf(AllValuesFromRestriction) and        
        (self.restrictionType = isSomeValuesFromRestriction) implies                

                            self.oclIsTypeOf(SomeValuesFromRestriction) and         
        (self.restrictionType = isCardinalityRestriction) implies 
                                self.oclIsTypeOf(CardinalityRestriction) and         
        (self.restrictionType = isMaxCardinalityRestriction) implies               

                            self.oclIsTypeOf(MaxCardinalityRestriction) and         
        (self.restrictionType = isMinCardinalityRestriction) implies               

                            self.oclIsTypeOf(MinCardinalityRestriction) 

Semantics

Same as in OWLBase

F.3.5  OWLClassKind

Description

OWLClassKind is an enumeration of the following literal values.

• isComplementClass, isEnumeratedClass, isIntersectionClass, isOWLRestrictionClass, isUnionClass

F.3.6  OWLRestrictionKind

Description

OWLRestrictionKind is an enumeration of the following literal values:
Ontology Definition Metamodel, v1.0        321



• isHasValueRestriction, isAllValuesFromRestriction, isSomeValuesFromRestriction, isCardinalityRestriction, 
isMaxCardinalityRestriction, isMinCardinalityRestriction 

F.3.7  Property (Augmented Definition)

Description

As in OWLBase 

Attributes

• isObjectProperty : Boolean [1] - true if instance is an instance of OWLObjectProperty     

• isDatatypeProperty : Boolean [1] - true if instance is an instance of OWLDatatypeProperty 

Associations

• no additional associations

Constraints
     context OWLFullProperty inv:
        (self.isObjectProperty or self.isDatatypeProperty) and
        self.isObjectProperty implies self.oclIsTypeOf(OWLObjectProperty) and
        self.isDatatypeProperty implies self.oclIsTypeOf(OWLDatatypeProperty) 

Semantics

Same as in OWLBase

F.3.8  PropertyOWLClass

Description

Intersection of Property and OWLClass

Attributes

None

Associations

• Specialize Class Property

• Specialize Class OWLClass

Constraints

None

Semantics

Conjunction of semantics of Property and of OWLClass.
322                 Ontology Definition Metamodel, v1.0



F.3.9  Examples

The metaclass PropertyOWLClass is familiar to UML users as the analog in OWLFull to the UML association class, whereas 
the other intersection classes may seem unusual.

IndividualOWLClass can be used as a metaclass to specify classes of classes. For example, the US Department of Labor 
Standard Industrial Classification system (SIC) is used to classify enterprises. Each classification can be viewed as a class 
whose instances are enterprises. However, there are a large number of such SIC classes. For some applications, it might make 
sense to model the collection of SIC classes as instances of a class SICClass. This would then enable one to model a datatype 
property, say numberOfEstablishments, whose domain is SICClass, whose range is integer, and whose semantics is “number 
of establishments classified by an instance of SICClass.”

IndividualProperty can be used to specify a class whose instances are properties. For example, a machine learning application 
building a decision tree from a training set to classify a stream of cases often uses an algorithm related to ID3. ID3 starts with 
a large number of properties and builds a decision tree by successive choice of properties depending on how much the property 
contributes to classification (entropy gain). This is naturally modeled using a class whose instances are the properties. 
IndividualProperty can also be used to specify a property whose domain is a class of properties. The entropy gain property 
used in ID3 is a good example.

IndividualPropertyOWLClass can be used to specify a class whose instances are association classes.
Ontology Definition Metamodel, v1.0        323



324                 Ontology Definition Metamodel, v1.0



Annex G 
(informative)

The Relationship of the Business Nomenclature 
  Metamodel to the ODM

Figure G.1 - The Business Nomenclature Metamodel

The Business Nomenclature (BN) metamodel from the CWM standard is shown in Figure G.1. The metamodel has been 
redrawn and slightly modified to simplify the picture without losing anything essential:

• Derived attributes have been omitted.

• The aggregation notation on the associations whose source is Nomenclature have been removed.

• The cardinality constraints have been omitted.

• The Model Element metaclass has been omitted.

• Two associations at Concept and Term derived from element/relatedelement have been omitted. 

In this note we show that BN can be comfortably represented as an M1 model in place of its native M2 model, and in the three 
key ODM metamodels: UML, OWL, and Topic Maps.

 

/owned  elemen t 

/namespace 

/owned  element 

/namesp ace 

gloss ary taxonomy 

owned  element 

namespace 

parent 

owned  element namespace 

child 

Vocabulary element 
Definition :string 
Example :string 
Usage :string 

Nomenclature 

Taxonomy 

Business domain 

Glossary  
Language 

Package 
related elemen t 

elemen t 

concept term 

narrowerTerm 

widerTerm preferredTerm 

synonym Term Concept 
Ontology Definition Metamodel, v1.0        325



We can exhibit BN as a UML model simply by reinterpreting the diagram. 

• The terms represented in rectangles (the upper rectangle where two rectangles are conjoined) are natively MOF 
classes. To see BN as a UML model, we interpret the rectangles as UML Classes. 

• The terms represented as attached to ends of unadorned lines are names of pairs of MOF associations and their 
opposites. In the UML interpretation, these are interpreted as UML associations and their opposites. 

• Terms represented in the lower of two attached rectangles are names of MOF attributes. In the UML interpretation, 
these are interpreted as UML attributes.

The systems of lines terminating in an arrow represent the MOF subclass relationship, with the MOF classes at the unadorned 
ends being MOF subclasses of the MOF class at the end with the arrow. In the UML interpretation, the system of lines 
represents the UML subclass relationship.

Similarly, MOF cardinality constraints (not shown) would be interpreted as UML cardinality constraints.

We now want to see BN as an OWL model. Note that OWL does not have a native graphic notation. However, the mapping 
from UML to OWL in Chapter 16 allows us to interpret the MOF diagram as a visualization of an OWL ontology:

• UML classes are OWL classes.

• UML associations are pairs of OWL object properties with their inverses.

• UML attributes are OWL datatype properties.

• UML subclasses are M1 instances of the RDFsubclassOf  MOF association.

• UML cardinality constraints are OWL cardinality restrictions.

So with these interpretations, Figure G.1 is a visualization of an OWL model.

In a similar way, by following the mapping in Chapter 17, Mapping Topic Maps to OWL, the BN metamodel can be 
interpreted as a Topic Map:

• OWL classes are Topics.

• OWL object properties are TM Topics that are types of associations. The names of the ends are interpreted as TM 
Topics that are types of association roles.

• OWL datatype properties are TM Topics that are types of occurrences.

• OWL subclasses are M1 instances of TM Association participating in the TM type meta-association with the M1 
instance ‘supertype-subtype’ of Topic, with M1 instances of Topic playing roles of supertype and subtype.

• OWL cardinality constraints are not mapped, since TM does not support a comparable feature.

With these interpretations, Figure G.1 is a visualization of a Topic Map.

An instance of BN in the various systems is:

• An M1 instance of the MOF metamodel in Figure G.1 would be something like the INSPEC thesaurus. All the 
metaclasses would be populated with concrete strings representing the vocabulary elements and higher-level 
constructs organizing this particular thesaurus.

• An M0 instance of the UML model would be exactly the same thing using the UML instance model rather than the 
MOF instance model.
326                 Ontology Definition Metamodel, v1.0



• The INSPEC thesaurus is an OWL ontology M1 model instance of BN with an M0 population of Individual and 
Statement.

• The INSPEC thesaurus is a Topic Map is a collection of instances of Topic linked by instances of Association. (The 
Topic Maps metamodel is a mixture of M2 and M1 level constructs, so some of the instances of Topic are M1 and 
others are M0.)

Finally, the fact that an M1 instance of BN is identical to an M0 instance of the equivalent UML model suggests that BN is 
more appropriately modeled at the UML M1 level than the MOF M2 level. M1 instances of the ODM metamodels can be left 
unpopulated if there are no M1 instances of their instances models. BN does not have its own instance model, instead relying 
on the MOF instance model, hence the instances models of the other metamodels.

That the ODM casts light on the strategy for modeling other systems suggests a further use for ODM components. In 
particular, the component Common Logic has a sound model theory, so that CL can be used to ground other models like SBVR 
(Semantics of Business Vocabulary and Business Rules) or PRR (Production Rule Representation).
Ontology Definition Metamodel, v1.0        327



328                 Ontology Definition Metamodel, v1.0



Annex H  
(informative)

MOF QVT - A Brief Tutorial

Mappings are expressed in the MOF Query / Views / Transformations [MOF QVT] specification. Since this is very new, we 
present here some key points on QVT Relations that may assist the reader. More detailed points are included as comments 
where they appear in the individual mapping chapters.

H.1 Sketch of QVT

A transformation is represented as a Relation statement, which has four parts. Two of the parts, the checkonly and when 
clauses, describe patterns of objects in the models being transformed. Elements of these patterns are named by variables. If a 
collection of objects exists in the models that satisfy the pattern, the elements in positions named by variables instantiate the 
variables. If more than one such collection exists, the variables are instantiated multiple times, once for each collection.

The other two parts, the enforce and where clauses, carry out the transformation. The enforce clause describes a pattern in the 
same way as the checkonly clause, but where the pattern described does not exist in the model, sufficient objects are added to 
the model to satisfy the pattern. The where clause indicates further transformations that must be executed by calling other 
relations. A transformation is carried out for each set of instantiations of the variables.

The when clause includes calls to relations that are treated as predicates, returning true if the predicates in the checkonly and 
when clauses are satisfied, and if the enforce clauses in the relations called in the where clause find that the patterns specified 
to be constructed already exist. No work is done via a when clause. The when clause can also contain OCL expressions, which 
can also instantiate variables. In the when clause, the various predicates are connected by either semicolon, interpreted as 
conjunction, or “or,” interpreted as disjunction. In evaluating a disjunction, each variable instantiation making the disjunction 
true is successively generated. OCL functions can be used.

There are two kinds of variables in QVT: a native QVT variable and the variables appearing in iterators in OCL statements. 
Native QVT variables have scope the relation they occur in. All variables must be declared as to type, but the declaration can 
occur in the checkonly or enforce clauses as well as by specific declaration. A variable cannot be declared in a relation call. 

OCL iterator variables have scope as in OCL, namely limited to the subexpression they appear in. But a QVT relation call 
containing OCL variables can appear in the body of an iterator.

Relations are executed in two different ways. A top relation is executed by the system. Relations not top are executed by being 
called in a where clause.  Both kinds of relations can be called in a when clause. The guard patterns in the checkonly and when 
clauses control the sequence of evaluation of top relations.

When a relation is called, its parameters are passed as for a normal procedure call. The variables declared in domains in 
checkonly and where clauses are treated as formal parameters, associated sequentially with variables in the calling sequence.  

Once an object is created, its type is fixed. An object will match a pattern specifying a supertype, but not one specifying a 
subtype. Therefore an object must be created with the most specific type applying to it. Properties of the object specified in 
supertypes can be added by relations in the where clause, so the common MOF model architecture of abstract classes is 
Ontology Definition Metamodel, v1.0        329



supported. Note that subclass relationships must be directly declared in the MOF model. QVT does not recognize overlapping 
subclasses.

In case a model element (A) depends on another model element (B) (has an association with lower multiplicity greater than 0 
at the member end), the mapping of A can be delayed until after the mapping of B by placing the relation mapping B in the 
when clause of the relation mapping A.

In case a model element (B) is subordinate to another model element A, the relation mapping B is placed in the where clause 
of the relation mapping A, so B is mapped after A. A subordinate model element B is a part of A that makes little sense apart 
from A. B often would have an identifier that includes the identifier of A. But the decision to consider one element as 
subordinate another is a design choice. There is no absolute criterion.

H.2 Repository Issues

Mappings in QVT involve finding instances of patterns. It therefore becomes important to know what populations of the 
various ODM model instances must be accessible in the repository serving the QVT pattern matching engine. These same 
considerations apply to any reasoning procedures that a repository may be called upon to perform.

Four of the five metamodels have a packaging construct. In UML, the packaging construct is called Package, in OWL 
OWLOntology, in Topic Maps the Topic Map, and in Common Logic the Module. In these metamodels, structural declarations 
and constraints are bounded in scope by the packaging constructs containing them, and by the packaging construct contents 
that may be imported into them.

RDFS on the other hand does not have a bounded packaging construct. RDFS elements are instances of Statement, which are 
grouped into Graphs, which may optionally be named. But an instance of Graph does not necessarily have any semantic 
relevance. In particular, it does not necessarily bound the scope of a structural declaration.

There is a relationship between the Graph metaclass of RDFS and the OWLOntology metaclass of OWL. All OWL 
declarations are equivalent to RDF statements, so OWL declarations involve RDF Graphs. However, a given instance of RDF 
Graph can contain (parts of) possibly several Ontologies, and a given Ontology can have parts in possibly several RDF 
Graphs.

So when performing a mapping using QVT or performing any reasoning task, the repository must make accessible the relevant 
packaging structure contents and the contents of imported structures. The computation of patterns and other reasoning 
computations are limited in scope to the relevant packaging structure contents. However, in the case of RDFS the application 
is responsible for making the relevant RDF Graphs accessible to whatever reasoning mechanisms the repository may be called 
upon to perform. The mechanisms for specifying the relevant graphs is outside the scope of the ODM.

There is also a relationship between the population of a model instance accessible to a repository procedure and the MOF 
concept of navigability. A process in a repository can link from one object to another via any property, whether designated 
navigable or not.  Designating a property navigable is an instruction to repository designers to make it easy to find links using 
that property, by for example providing  indexes. Although using a non-navigable property is legal, it is discouraged on the 
grounds that it is not necessarily efficiently supported.

For example, in UML there is no specified property linking an instance of Package to a package that may import it. This 
reflects the fact that a package does not necessarily know which other package might import it. However, if the repository is 
known to contain the contents of all relevant packages, it is possible to find all packages importing a given package, relative to 
the content of the repository.
330                 Ontology Definition Metamodel, v1.0



INDEX

A
ABox 296
Acknowledgements 11
Additional Information 9
AllValuesFromRestriction 77
Analytic Applications 20
Application centric perspectives 15
Application Changeability 16
Assertion 298
Association 121
AssociationClass 208
AssociationRole 123
Atom 105
AtomicSentence 105
Atoms Diagram 104

B
Biconditional 107
Binding 114
Blank node 35
BlankNode 134
Boolean Sentences Diagram 113
BooleanSentence 108
Bulk class 309
Business Applications 17

C
CardinalityRestriction 75
Changes to Adopted OMG Specifications 9
Class 48
Class axioms 158
Class description 158
Class extension 158
CMOF (Complete MOF) 29
Collection 52, 300
Comment 94
CommentedSentence 108
CommentedTerm 102
Common Logic (CL) 5, 8, 28, 93
ComplementClass 70
Complete MOF (CMOF) 5
Compliance 2
Compliance Point 3
Computation Independent Model (CIM) 5, 8
Concept 297
Conformance 2, 89, 92
Conjunction 109
Constructor 303
Containers 52
Control / Degree of Manageability 16
Countable class 309
Coupling 16

D
Datatype 49, 86, 299
Definition 5, 304
Description Logics (DL) 5, 8, 25
Disjunction 109
Documents 56

E
Element 297
Emergent Property Discovery 20
EMOF (Essential MOF) 29
Engineering Applications 21
Entity-Relationship (ER) 5, 8
EnumeratedClass 70, 159
Equation 106
Essential MOF (EMOF) 5
Exchange of Complex Data Sets 20
ExclusionSet 95
Existential 304
ExistentialQuantification 110
Expression 302
eXtended Markup Language (XML) 8, 9
Extent 301

F
First Order Logic (FOL) 8
ForAll 304
Formality 15
FunctionalProperty 80
FunctionalTerm 103

H
HasValueRestriction 78
Herbrand models 197
How to Read this Specification 10

I
ID3 323
Implication 110, 304
Importation 96
Inclusion 304
Individual 71, 85, 298
Information Systems Development 21
Instance 298
Instance Dynamics 15
Integration Focus 16
International Organization for Standardization / International Elec-

trotechnical Commission (ISO/IEC) 8
Internationalized Resource Identifier (IRI) 8
Interpretation 6
Intersection 303
IntersectionClass 72
InverseFunctionalProperty 81
IrregularSentence 111
issues/problems xii

K
Knowledge Interchange Format (KIF) 6, 8
Ontology Definition Metamodel, v1.0        331



L
Lifecycle Usage 16
List 301
Literals 37, 138, 299
LocalName 60

M
M1 Issues 29
Mapping UML to OWL 187
MaxCardinalityRestriction 76
Meta-Object Facility (MOF) 6, 8
MinCardinalityRestriction 76
Model centric perspectives 14
Model Driven Architecture (MDA) 8
Model Dynamics 15
Module 97
Multiplicity 211

N
Name 98
NamedGraph 45
Namespace 56, 60
Namespace definition 61
NamespaceDefinition 132
N-ary Associations 208
Negation 111, 303
Node 36
Node, blank 35
Normative references 3
Number Restrictions 75
NumberRestriction 304

O
Object Constraint Language (OCL) 6, 8
Object Management Group, Inc. (OMG) xi
Occurrence 124
ODM Overview 31
OMG specifications xi
Ontology Definition Metamodel (ODM) 6, 8
Ontology Engineering 21
OWL annotation properties 152
OWL class 72
OWL DL 63
OWL DL Conformance 89
OWL Full 63
OWL Lite 63
OWL Metamodel 63
OWL ontology 66, 151
OWL ontology properties 153
OWL Universe 87
OWLAllDifferent 86
OWLAnnotationProperty 81, 91
OWLBase package 63
OWLClass 158
OWLDataRange 75
OWLDatatypeProperty 82, 91
OWLGraph 65
OWLObjectProperty 82, 91
OWLOntology 67
OWLOntologyProperty 83, 92
OWLRestriction 73

P
Perspectives 13, 14
Phrases 94, 99
Phrases Diagram 94
PlainLiteral 42, 139
Platform Independent Model (PIM) 6, 8
Platform Specific Model (PSM) 6, 9
Predicate Definition Language 231
Properties 79
Properties in OWL 221
Property 37, 84
Published Subjects 126

Q
Quantified Sentences Diagram 113
QuantifiedSentence 112
Quantifier 304
Query / View / Transformation (QVT) 9

R
RDF base graph data model 35
RDF containers 52
RDF document 59
RDF Lists 259
RDF Literals 258
RDF Profile Package 131
RDF property 37
RDF Schema (RDFS) 7, 9, 259
RDF Statement 44
RDF Triples 35, 39, 257
RDF URI references 40
RDFAlt 53
RDFBag 53
RDFDocument 132
RDFGlobalProperty 148
RDFGraph 46, 135
RDFList 53
RDFProperty 51, 144
RDFS Semantics 260
RDFS to CL Mapping 257
RDFS/OWL Objects 235
RDFSClass 48, 141
RDFSComment 139
RDFSContainer 54
RDFSContainerMembershipProperty 54
RDFSDatatype 49, 50, 142
RDFSDomain 149
RDFSeq 55
RDFSisDefinedBy 142
RDFSLabel 139
RDFSLiteral 38, 135
RDFSRange 150
RDFSResource 38, 50, 55, 136
RDFSseeAlso 143
RDFSsubClassOf 143
RDFSsubPropertyOf 150
RDFStatement 136
RDFType 144
RDFtype 50
RDFWeb Package 56
RDFXMLLiteral 43, 140
332                                      Ontology Definition Metamodel, v1.0



References 3
ReifiableConstruct 118
Reification 137
ReificationKind 138
Resource 38
Resource Description Framework (RDF) 7, 9, 33
RestrictionClass 159
Role 298
Run Time Interoperation 17

S
Sample Input and Output of WSDL to IDL 287, 295, 309, 315
Scope 1, 33, 63, 93, 235, 257, 329
ScopeAble 122
Semantic Web (SW) 9
Sentence 99
Sentences Diagram 106
SequenceMarker 103
Set 301
SICClass 323
SomeValuesFromRestriction 78
Symbols 8
SymmetricProperty 84, 197

T
TBox 296
Term 104, 302
Terms and definitions 5
Terms Diagram 101
Text 100
The Description Logics dialect of OWL (OWL DL) 8
The most expressive dialect of OWL (OWL Full) 8
Topic 119
Topic Map 181, 235
Topic Map Metamodel 117
Topic Maps (TM) 7, 9
TopicMap 118
TopicMapConstruct 117
TopicName 125
Traditional First Order Logic (TFOL) 9
TransitiveProperty 85, 92, 197
Triple 35, 36, 37, 39
TypeAble 123
TypedLiteral 43, 50, 140
typographical conventions xii

U
Unified Modeling Language (UML) 7, 9
Uniform Resource Identifier (URI) 9
UniformResourceIdentifier 39, 133
Union 303
UnionClass 74
UniversalQuantification 112
universe of discourse 7
URI reference 39, 40
URIReference 133
URIReferenceNode 41, 137
US Department of Labor Standard Industrial Classification system 

(SIC) 323
Usage Scenarios 13, 17

V
Value Restrictions 77
Variant 126

W
Web 56
Web Ontology Language (OWL) 7, 8, 63

X
XML Metadata Interchange (XMI) 8, 9
XML namespace 60
Ontology Definition Metamodel, v1.0        333



334                                      Ontology Definition Metamodel, v1.0


	Preface
	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 How to Read This Specification
	6.3 Proof of Concept
	6.4 Acknowledgements

	7 Usage Scenarios and Goals
	7.1 Introduction
	7.2 Perspectives
	7.2.1 Model-Centric Perspectives
	7.2.1.1 Level of Authoritativeness
	7.2.1.2 Source of Structure
	7.2.1.3 Degree of Formality
	7.2.1.4 Model Dynamics
	7.2.1.5 Instance Dynamics

	7.2.2 Application-Centric Perspectives
	7.2.2.1 Control / Degree of Manageability
	7.2.2.2 Application Changeability
	7.2.2.3 Coupling
	7.2.2.4 Integration Focus
	7.2.2.5 Lifecycle Usage


	7.3 Usage Scenarios
	7.4 Business Applications
	7.4.1 Run Time Interoperation
	7.4.2 Application Generation
	7.4.3 Ontology Lifecycle

	7.5 Analytic Applications
	7.5.1 Emergent Property Discovery
	7.5.2 Exchange of Complex Data Sets

	7.6 Engineering Applications
	7.6.1 Information Systems Development
	7.6.2 Ontology Engineering

	7.7 Goals for Generic Ontologies and Tools

	8 Design Principles
	8.1 Why Not Simply Use or Extend the UML 2.0 Metamodel?
	8.2 Component Metamodel Selection
	8.3 Relationships among Metamodels
	8.3.1 The Need for Translation
	8.3.2 UML Profiles
	8.3.3 Mappings
	8.3.4 Mappings Are Informative, Not Normative

	8.4 Why Common Logic over OCL?
	8.5 Why EMOF?
	8.6 M1 Issues

	9 ODM Overview
	10 The RDF Metamodel
	10.1 Overview
	10.1.1 Organization
	10.1.2 Design Considerations
	10.1.2.1 Metamodel Constructs
	10.1.2.2 Naming


	10.2 RDFBase Package, RDF Triples
	10.2.1 BlankNode
	10.2.2 Node
	10.2.3 RDFProperty
	10.2.4 RDFSLiteral
	10.2.5 RDFSResource
	10.2.6 RDF Triple
	10.2.7 UniformResourceIdentifier
	10.2.8 URIReference
	10.2.9 URIReferenceNode

	10.3 RDFBase Package, RDF Literals
	10.3.1 PlainLiteral
	10.3.2 RDFSResource (Augmented Definition)
	10.3.3 RDFXMLLiteral
	10.3.4 TypedLiteral
	10.3.5 URIReference (Augmented Definition)

	10.4 RDFBase Package, RDF Statements
	10.4.1 RDFProperty (Augmented Definition)
	10.4.2 RDFSResource (Augmented Definition)
	10.4.3 RDFStatement
	10.4.4 Triple (Augmented Definition)

	10.5 RDFBase Package, RDF Graphs
	10.5.1 NamedGraph
	10.5.2 RDFGraph
	10.5.3 Triple (Augmented Definition)

	10.6 RDFS Package, Classes and Utilities
	10.6.1 RDFSClass
	10.6.2 RDFSDatatype
	10.6.3 RDFSResource (Augmented Definition)
	10.6.4 TypedLiteral (Augmented Definition)

	10.7 RDFS Package, RDF Properties
	10.7.1 RDFProperty (Augmented Definition)
	10.7.2 RDFSClass (Augmented Definition)

	10.8 RDFS Package, Containers and Collections
	10.8.1 RDFAlt
	10.8.2 RDFBag
	10.8.3 RDFList
	10.8.4 RDFSContainer
	10.8.5 RDFSContainerMembershipProperty
	10.8.6 RDFSeq
	10.8.7 RDFSResource (Augmented Definition)

	10.9 RDF Documents and Namespaces (RDFWeb Package)
	10.9.1 Document
	10.9.2 LocalName
	10.9.3 Namespace
	10.9.4 NamespaceDefinition
	10.9.5 Triple (Augmented Definition)
	10.9.6 URIReference (Augmented Definition)


	11 The OWL Metamodel
	11.1 Overview
	11.1.1 Organization of the OWL Metamodel
	11.1.2 Design Considerations
	11.1.2.1 Naming


	11.2 OWLBase Package - OWL Ontology
	11.2.1 OWLGraph
	11.2.2 OWLOntology
	11.2.3 RDFSLiteral (Augmented Definition)
	11.2.4 Triple (Augmented Definition)

	11.3 OWLBase Package - Class Descriptions
	11.3.1 ComplementClass
	11.3.2 EnumeratedClass
	11.3.3 Individual
	11.3.4 IntersectionClass
	11.3.5 OWLClass
	11.3.6 OWLRestriction
	11.3.7 UnionClass
	11.3.8 OWLDataRange
	11.3.9 Number Restrictions
	11.3.9.1 CardinalityRestriction
	11.3.9.2 MaxCardinalityRestriction
	11.3.9.3 MinCardinalityRestriction

	11.3.10 RDFProperty (Augmented Definition, from RDFBase Package)
	11.3.11 TypedLiteral (Augmented Definition, from RDFBase Package)
	11.3.12 Value Restrictions
	11.3.12.1 AllValuesFromRestriction
	11.3.12.2 HasValueRestriction
	11.3.12.3 SomeValuesFromRestriction


	11.4 OWLBase Package - Properties
	11.4.1 FunctionalProperty
	11.4.2 InverseFunctionalProperty
	11.4.3 OWLAnnotationProperty
	11.4.4 OWLDatatypeProperty
	11.4.5 OWLObjectProperty
	11.4.6 OWLOntologyProperty
	11.4.7 Property
	11.4.8 SymmetricProperty
	11.4.9 TransitiveProperty

	11.5 OWLBase Package - Individuals
	11.5.1 OWLAllDifferent

	11.6 OWLBase Package - Datatypes
	11.7 OWLBase Package - OWL Universe
	11.7.1 OWLUniverse
	11.7.2 OWLOntology (Augmented Definition)

	11.8 OWLDL Package - Constraints for OWL DL Conformance
	11.8.1 Classes in OWL DL
	11.8.2 OWL DL Restrictions
	11.8.2.1 AllValuesFromRestriction
	11.8.2.2 HasValueRestriction
	11.8.2.3 SomeValuesFromRestriction

	11.8.3 OWL DL Property Constraints
	11.8.3.1 OWLAnnotationProperty
	11.8.3.2 OWLDatatypeProperty
	11.8.3.3 OWLObjectProperty
	11.8.3.4 OWLOntologyProperty
	11.8.3.5 TransitiveProperty


	11.9 OWLFull Package - Constraints For OWL Full Conformance

	12 The Common Logic Metamodel
	12.1 Overview
	12.1.1 Design Considerations
	12.1.2 Modeling Notes

	12.2 The Phrases Diagram
	12.2.1 Comment
	12.2.2 ExclusionSet
	12.2.3 Identifier
	12.2.4 Importation
	12.2.5 Module
	12.2.6 Name
	12.2.7 Phrase
	12.2.8 Sentence
	12.2.9 Text

	12.3 The Terms Diagram
	12.3.1 Argument
	12.3.2 CommentedTerm
	12.3.3 FunctionalTerm
	12.3.4 SequenceMarker
	12.3.5 Term

	12.4 The Atoms Diagram
	12.4.1 Atom
	12.4.2 AtomicSentence
	12.4.3 Equation

	12.5 The Sentences Diagram
	12.5.1 Biconditional
	12.5.2 BooleanSentence
	12.5.3 CommentedSentence
	12.5.4 Conjunction
	12.5.5 Disjunction
	12.5.6 ExistentialQuantification
	12.5.7 Implication
	12.5.8 IrregularSentence
	12.5.9 Negation
	12.5.10 QuantifiedSentence
	12.5.11 UniversalQuantification

	12.6 The Boolean Sentences Diagram
	12.7 The Quantified Sentences Diagram
	12.7.1 Binding

	12.8 Summary of CL Metamodel Elements with Interpretation

	13 The Topic Map Metamodel
	13.1 Topic Map Constructs
	13.1.1 TopicMapConstruct
	13.1.2 ReifiableConstruct
	13.1.3 TopicMap
	13.1.4 Topic
	13.1.5 Association

	13.2 Scope and Type
	13.2.1 ScopeAble
	13.2.2 TypeAble
	13.2.3 AssociationRole
	13.2.4 Occurrence
	13.2.5 TopicName
	13.2.6 Variant

	13.3 Published Subjects
	13.3.1 Type-Instance Relationship Among Topics
	13.3.2 Subtype-Supertype Relationship Among Topics

	13.4 Example

	14 UML Profile for RDF and OWL
	14.1 UML Profile for RDF
	14.1.1 RDF Profile Package
	14.1.2 RDF Documents
	14.1.2.1 NamespaceDefinition
	14.1.2.2 RDFDocument
	14.1.2.3 UniformResourceIdentifier
	14.1.2.4 URIReference

	14.1.3 RDF Statements
	14.1.3.1 BlankNode
	14.1.3.2 RDFGraph
	14.1.3.3 RDFSLiteral
	14.1.3.4 RDFSResource
	14.1.3.5 RDFStatement
	14.1.3.6 Reification
	14.1.3.7 URIReferenceNode

	14.1.4 ReificationKind
	14.1.5 Literals
	14.1.5.1 PlainLiteral
	14.1.5.2 RDFSComment
	14.1.5.3 RDFSLabel
	14.1.5.4 RDFXMLLiteral
	14.1.5.5 TypedLiteral

	14.1.6 Classes and Utilities
	14.1.6.1 RDFSClass
	14.1.6.2 RDFSDatatype
	14.1.6.3 RDFSisDefinedBy
	14.1.6.4 RDFSseeAlso
	14.1.6.5 RDFSsubClassOf
	14.1.6.6 RDFType

	14.1.7 Properties in RDF
	14.1.7.1 RDFProperty
	14.1.7.2 RDFGlobalProperty
	14.1.7.3 RDFSDomain
	14.1.7.4 RDFSRange
	14.1.7.5 RDFSsubPropertyOf

	14.1.8 Containers and Collections

	14.2 UML Profile for OWL
	14.2.1 OWL Profile Package
	14.2.2 OWL Ontology
	14.2.3 OWL Annotation Properties
	14.2.3.1 OWLAnnotationProperty
	14.2.3.2 owl:versionInfo

	14.2.4 OWL Ontology Properties
	14.2.4.1 owl:OntologyProperty
	14.2.4.2 owl:backwardCompatibleWith
	14.2.4.3 owl:imports
	14.2.4.4 owl:incompatibleWith
	14.2.4.5 owl:priorVersion

	14.2.5 OWL Class Descriptions, Restrictions, and Class Axioms
	14.2.5.1 OWLClass
	14.2.5.2 EnumeratedClass
	14.2.5.3 RestrictionClass
	14.2.5.4 Cardinality Constraints
	14.2.5.5 owl:allValuesFrom Constraint
	14.2.5.6 owl:someValuesFrom and owl:hasValue Constraints
	14.2.5.7 owl:intersectionOf Class Description
	14.2.5.8 owl:unionOf Class Description
	14.2.5.9 owl:complementOf Class Description
	14.2.5.10 owl:disjointWith Class Axiom
	14.2.5.11 owl:equivalentClass Class Axiom

	14.2.6 Properties
	14.2.6.1 owl:DatatypeProperty
	14.2.6.2 owl:ObjectProperty
	14.2.6.3 owl:Property
	14.2.6.4 owl:equivalentProperty Relation
	14.2.6.5 owl:inverseOf Relation

	14.2.7 Individuals
	14.2.7.1 Class Membership and Property Values of Individuals
	14.2.7.2 owl:sameAs Relation
	14.2.7.3 owl:differentFrom Relation
	14.2.7.4 owl:AllDifferent Construct
	14.2.7.5 Individual Property Values

	14.2.8 Datatypes
	14.2.8.1 Enumerated Data Values



	15 The Topic Map Profile
	15.1 Stereotypes
	15.1.1 Topic Map
	15.1.2 Topic
	15.1.3 Association
	15.1.4 Characteristics

	15.2 Abstract Bases
	15.2.1 TopicMapElement
	15.2.2 Scoped Element
	15.2.3 TypedElement

	15.3 Example

	16 Mapping UML to OWL
	16.1 Introduction
	16.2 Features in Common (More or Less)
	16.2.1 UML Kernel
	16.2.2 Class and Property - Basics
	16.2.3 More Advanced Concepts
	16.2.4 Summary of More-or-Less Common Features

	16.3 UML to OWL
	16.3.1 Naming Issues
	16.3.2 Package To Ontology
	16.3.3 Class To Class
	16.3.4 Attribute to Property
	16.3.5 Binary Association To Object Property
	16.3.6 Association Classes and N-ary Associations
	16.3.6.1 Association Class
	16.3.6.2 N-ary Association

	16.3.7 Multiplicity
	16.3.8 Association Generalization
	16.3.9 Enumeration
	16.3.10 Powertypes

	16.4 OWL to UML
	16.4.1 Problematic Features of OWL
	16.4.1.1 Mapping for Individuals
	16.4.1.2 Mapping for Enumerated Classes
	16.4.1.3 Mapping for complementOf and disjointWith
	16.4.1.4 Multiple Domains or Ranges for Properties

	16.4.2 Transformation Header
	16.4.3 Packaging Construct: OWLOntology
	16.4.3.1 Ontology to Package
	16.4.3.2 Ontology Properties to Comments

	16.4.4 Classes
	16.4.4.1 OWL Class to UML Class
	16.4.4.2 Class Identified by URI
	16.4.4.3 Anonymous Class to Class

	16.4.5 Hierarchy
	16.4.5.1 Subclass, Equivalent Class
	16.4.5.2 Universal Superclass

	16.4.6 Constructed Classes
	16.4.7 Data Range
	16.4.8 Range Restriction Restriction Classes
	16.4.9 Properties in OWL
	16.4.9.1 Property to Owned Attribute
	16.4.9.2 Property to Association

	16.4.10 Domains, Ranges and Property Types
	16.4.10.1 Domains
	16.4.10.2 Ranges

	16.4.11 Cardinalities and Multplicities
	16.4.12 Subproperty, Equivalent Property
	16.4.13 Annotation Properties to Comments

	16.5 OWL but not UML
	16.5.1 Predicate Definition Language
	16.5.2 Names
	16.5.3 Other OWL Developments

	16.6 In UML But Not OWL
	16.6.1 Behavioral and Related Features
	16.6.2 Complex Objects
	16.6.3 Access Control
	16.6.4 Keywords
	16.6.5 Profiles


	17 Mapping Topic Maps to OWL
	17.1 Overview
	17.2 Topic Maps to OWL Full Mapping
	17.2.1 Overview
	17.2.1.1 RDFS/OWL Objects
	17.2.1.2 Topic Map Objects

	17.2.2 Packaging Construct: TopicMap
	17.2.3 Most General Structure: TopicMapConstruct
	17.2.4 Multiple Identifiers to SameAs
	17.2.5 Topic to OWL Class
	17.2.6 Subtype to Subclass
	17.2.7 Topic to Property
	17.2.8 Topic to Individual
	17.2.9 Topic Subject Identifiers
	17.2.10 Topic Subject Locators
	17.2.11 Association to Individual
	17.2.12 Association Role to Property
	17.2.13 Occurrence to Property
	17.2.14 Topic Names to Object Properties, Variants to Property Values
	17.2.15 Scope to Property Values

	17.3 OWL to Topic Maps
	17.3.1 Packaging Construct: OWLOntology
	17.3.2 Class to Topic
	17.3.3 Class Identified by URI
	17.3.4 Restriction to Topic
	17.3.5 Individual to Topic
	17.3.6 Hierarchy: RDFSsubclassOf
	17.3.7 Object Property to Association Type
	17.3.8 Object Property Instance Statement to Association Instance
	17.3.9 Datatype Property to Occurrence
	17.3.10 Datatype Property Instance Statement to Occurrence
	17.3.11 SameAs, EquivalentClass, EquivalentProperty


	18 Mapping RDFS and OWL to CL
	18.1 Overview
	18.2 RDFS to CL Mapping
	18.2.1 RDF Triples
	18.2.1.1 RDF Property Axiom
	18.2.1.2 RDF Promiscuity Axiom

	18.2.2 RDF Literals
	18.2.3 RDF URIs and Graphs
	18.2.4 RDF Lists
	18.2.5 RDF Schema
	18.2.5.1 RDFS Class Axiom
	18.2.5.2 RDFS Promiscuity Axiom
	18.2.5.3 RDFS Universal Resource Axiom

	18.2.6 RDFS Semantics

	18.3 OWL to CL Mapping
	18.4 RDFS to CL Mapping in MOF QVT

	19 References (non-normative)
	A - Foundation Library (M1) for RDF and OWL
	B - Conceptual Entity Relationship Modeling
	C - Description Logic Metamodel
	D - Extending the ODM
	E - Mappings - Informative, Not Normative
	F - RDF and OWL Workarounds for MOFMultiple Classification Issue
	G - The Relationship of the Business NomenclatureMetamodel to the ODM
	H - MOF QVT - A Brief Tutorial

